
A PROBABILISTIC  
AND NON-DETERMINISTIC
 CALL-BY-PUSH-VALUE
 LANGUAGE
Jean Goubault-Larrecq

PCF, probabilistic choice, and the trouble with V

Curing the trouble using call-by-push-value

Semantics, adequacy, full abstraction

Theoretical Computer Science 5 (1977) 223-255.
@ Korth-Holland Publishi

. iv
Department of Artificial Intelligence, University of Edinburgh, Hope Park Square, Meadow Lane,

dinburgh EH8 9NW, Scotland

Communicated by Robin Milner
Received July 1975

Abstract. The paper studies connections between denotational and operational semantics for a
simple programming language based on LCF. It begins with the connection between the
behaviour of a program and its denotation. It turns out that a program denotes _L in any of severai
possible semantics iff it does not terminate. From this it follows that if two terms have the same
denotation in one of these semantics, they have the same behaviour in all contexts. The converse
fails for all the semantics. If, however, the language is extended to allow certain parallel facilities,
behaviours: equivalence does coincide with denotational equivalence in one of the semantics1
considered, which may therefore be called “fully abstract”. Next a connection is given which
actually determines -he semantics up to isomorphism from the behaviour alone. Conversely, by
allowing further parallel facilities, every r.e. element of the fully abstract semantic?, becomes
definable, thus characterising the programming language, up to interdefinability, from the set of
r.e. elements of he domains of the semantics.

We present here a study of some connections between the operational and
denotational semantics of a simple programming language based on LCF [3,5].

bile this language is. itself rather far from the commonly used languages, we do
hop,- that the kind o connections studied will be illuminating in the study of these

ature of its denotatdon. For us a program will b

223

PLOTKIN’S PCF (1977)

Types σ, τ, … ::= int | σ → τ

Terms M, N, … ::= xτ 
 | MN  
 | λ xσ . M 
 | rec xσ . M 
 | n  
 | succ M 
 | pred M 
 | ifz M N P

(All terms are typed. Call by name.)

PLOTKIN’S PCF (1977)

An operational semantics:  
 M →* N

A denotational semantics:  
 ⟦M⟧

Adequacy:  
for every ground M : int,  
 ⟦M⟧=n iff M →* n

Types σ, τ, … ::= int | σ → τ

Terms M, N, … ::= xτ 
 | MN  
 | λ xσ . M 
 | rec xσ . M 
 | n  
 | succ M 
 | pred M 
 | ifz M N P

(All terms are typed. Call by name.)

PLOTKIN’S PCF (1977)

Contextual preordering:  
M ⪯ N iff  
for every context C : int,  
 C[M] →* n ⇒ C[N] →* n

Fact: if ⟦M⟧≤⟦N⟧ then M ⪯ N

Converse is full abstraction.  
Fails for PCF, works for PCF+por

An operational semantics:  
 M →* N

A denotational semantics:  
 ⟦M⟧

Adequacy:  
for every ground M : int,  
 ⟦M⟧=n iff M →* n

DCPOS

Every type τ interpreted as a dcpo ⟦τ⟧… 
= poset in which every directed family D 
 has a supremum ⋁D

⋁D

D

DCPOS

Every type τ interpreted as a dcpo ⟦τ⟧… 
= poset in which every directed family D 
 has a supremum ⋁D

⟦int⟧ = ℤ⊥ (⊥≤n, all n incomparable)

⋁D

D

DCPOS

Every type τ interpreted as a dcpo ⟦τ⟧… 
= poset in which every directed family D 
 has a supremum ⋁D

⟦int⟧ = ℤ⊥ (⊥≤n, all n incomparable)

⟦σ → τ⟧ = [⟦σ⟧ → ⟦τ⟧],  
dcpo of Scott-continuous maps : ⟦σ⟧ → ⟦τ⟧ 
 (monotonic + preserves directed sups)

⋁D

D

THE SEMANTICS OF PCF

⟦MN⟧ = ⟦M⟧(⟦N⟧)  
⟦λ xσ . M⟧ = (V ↦ ⟦M⟧[xσ:=V])

Meaningful since Dcpo is a
Cartesian-closed category

Types σ, τ, … ::= int | σ → τ

Terms M, N, … ::= xτ 
 | MN  
 | λ xσ . M 
 | rec xσ . M 
 | n  
 | succ M 
 | pred M 
 | ifz M N P

∈ ⟦σ → τ⟧ ∈ ⟦σ⟧

∈ ⟦σ⟧ ∈ ⟦τ⟧

⟦MN⟧ = ⟦M⟧(⟦N⟧)  
⟦λ xσ . M⟧ = (V ↦ ⟦M⟧[xσ:=V])

Meaningful since Dcpo is a
Cartesian-closed category

CARTESIAN-CLOSEDNESS

In order to prove full abstraction
(with por), we require to be able
to approximate elements of
⟦τ⟧ by definable elements ⟦M⟧.

In the case of PCF, each ⟦τ⟧ is an
algebraic bc-domain,  
making that possible.

Cartesian-closed… good.

∈ ⟦σ → τ⟧ ∈ ⟦σ⟧

∈ ⟦σ⟧ ∈ ⟦τ⟧

CCCS OF CONTINUOUS DCPOS

In order to prove full abstraction
(with por), we require to be able
to approximate elements of
⟦τ⟧ by definable elements ⟦M⟧.

In the case of PCF, each ⟦τ⟧ is an
algebraic bc-domain,  
making that possible.

Cartesian-closed… good.
algebraic

bc-domains

CCCS OF CONTINUOUS DCPOS

In order to prove full abstraction
(with por), we require to be able
to approximate elements of
⟦τ⟧ by definable elements ⟦M⟧.

In the case of PCF, each ⟦τ⟧ is an
algebraic bc-domain,  
making that possible.

Cartesian-closed… good.

Many other CCCs would fit.

algebraic
bc-domains

bc-domains

algebraic complete lattices

continuous complete lattices

bifinite domains

RB-domains

FS-domains

L-domains

continuous coherent dcpos

continuous dcpos

dcpos

CCCs of
continuous

dcpos

CONTINUOUS DCPOS

Approximation (way-below):  
 x ≪ y iff for every directed D such that y≤⋁D,  
 x is already below some element of D

y

x

CONTINUOUS DCPOS

Approximation (way-below):  
 x ≪ y iff for every directed D such that y≤⋁D,  
 x is already below some element of D

⋁D

D

y

x

CONTINUOUS DCPOS

Approximation (way-below):  
 x ≪ y iff for every directed D such that y≤⋁D,  
 x is already below some element of D

⋁D

D

y

x

≪

CONTINUOUS DCPOS

Approximation (way-below):  
 x ≪ y iff for every directed D such that y≤⋁D,  
 x is already below some element of D

A basis B of a dcpo X iff for every x,  
 {b ∈ B | b ≪ x} directed and has x as sup 
A dcpo X is continuous iff has a basis

⋁D

D

y

x

≪

CONTINUOUS DCPOS

Approximation (way-below):  
 x ≪ y iff for every directed D such that y≤⋁D,  
 x is already below some element of D

A basis B of a dcpo X iff for every x,  
 {b ∈ B | b ≪ x} directed and has x as sup 
A dcpo X is continuous iff has a basis

Ex: the finite subsets of A form a basis of P(A) with inclusion  
 ℕ forms a basis of ℕ ∪ {∞} 
 ℚ+ forms a basis of ℝ+ ∪ {∞} (x ≪ y iff x=0 or x<y here)

⋁D

D

y

x

≪

ADDING PROBABILITIES

Types 
σ, τ, … ::= int | σ → τ | Vτ

Terms M, N, … ::= … 
 | M ⊕ N 
 | ret M 
 | do xσ ⃪ M; N

ADDING PROBABILITIES

Types 
σ, τ, … ::= int | σ → τ | Vτ

Terms M, N, … ::= … 
 | M ⊕ N 
 | ret M 
 | do xσ ⃪ M; N

Monadic type of subprobability
valuations over τ

ADDING PROBABILITIES

Types 
σ, τ, … ::= int | σ → τ | Vτ

Terms M, N, … ::= … 
 | M ⊕ N 
 | ret M 
 | do xσ ⃪ M; N

Monadic type of subprobability
valuations over τ

with M, N: Vτ,
choose between M and N

with probability 1/2

ADDING PROBABILITIES

Types 
σ, τ, … ::= int | σ → τ | Vτ

Terms M, N, … ::= … 
 | M ⊕ N 
 | ret M 
 | do xσ ⃪ M; N

Monadic type of subprobability
valuations over τ

with M, N: Vτ,
choose between M and N

with probability 1/2

monadic constructions:
M:τ ⇒ ret M:Vτ

M:Vσ N:Vτ ⇒ do xσ ⃪ M; N : Vτ

(Moggi 1991)

THE TROUBLE
WITH V

algebraic
bc-domains

bc-domains

algebraic complete
lattices

continuous
complete lattices

bifinite domains

RB-domains

FS-domains

L-domains

continuous
coherent dcpos

continuous dcpos

Look for a category of
continuous dcpos that is…

(Jung, Tix 1998)

THE TROUBLE
WITH V

algebraic
bc-domains

bc-domains

algebraic complete
lattices

continuous
complete lattices

bifinite domains

RB-domains

FS-domains

L-domains

continuous
coherent dcpos

continuous dcpos

Look for a category of
continuous dcpos that is…

Cartesian-closed

(Jung, Tix 1998)

THE TROUBLE
WITH V

algebraic
bc-domains

bc-domains

algebraic complete
lattices

continuous
complete lattices

bifinite domains

RB-domains

FS-domains

L-domains

continuous
coherent dcpos

continuous dcpos

Look for a category of
continuous dcpos that is…

Cartesian-closed

closed under V

?

?
(Jung, Tix 1998)

MORE POSITIVELY:

algebraic
bc-domains

bc-domains

algebraic complete
lattices

continuous
complete lattices

bifinite domains

RB-domains

FS-domains

L-domains

continuous
coherent dcpos

continuous dcpos

Look for a category of
continuous dcpos that is:

Cartesian-closed

closed under V

(Jung, Tix 1998)

MORE POSITIVELY:

algebraic
bc-domains

bc-domains

algebraic complete
lattices

continuous
complete lattices

bifinite domains

RB-domains

FS-domains

L-domains

continuous
coherent dcpos

continuous dcpos

Look for a category of
continuous dcpos that is:

Cartesian-closed

closed under V

?

?
(Jung, Tix 1998)

OTHER
SOLUTIONS (1)

Change categories entirely.  
E.g., reason in probabilistic
coherence spaces

Equationally fully abstract
semantics 
(Ehrhard, Pagani, Tasson 14)

also for call-by-push-value
(Ehrhard, Tasson 19)

probabilistic choice ‘built-in’

OTHER SOLUTIONS (2)

Change categories, and opt for QCB spaces/predomains
(Battenfeld 06)  
… Cartesian-closed, and has a probabilistic choice monad

OTHER SOLUTIONS (2)

Change categories, and opt for QCB spaces/predomains
(Battenfeld 06)  
… Cartesian-closed, and has a probabilistic choice monad

Changes categories, and opt for quasi-Borel spaces/
domains 
 (Heunen, Kammar, Staton, Yang 17; Vákár, Kammar, Staton 19)  
… Cartesian-closed,  
 and closed under a ‘laws of random variables’ functor

BACK TO DOMAINS

There is no need to leave  
domain theory after all

An easy solution 
using call-by-push-value

will also handle the mix with  
demonic non-determinism

PCF, probabilistic choice, and the trouble with V

Curing the trouble using call-by-push-value

Semantics, adequacy, full abstraction

PCF, probabilistic choice, and the trouble with V

Curing the trouble using call-by-push-value

Semantics, adequacy, full abstraction

TWO KINDS OF TYPES?

No such problem with two kinds of types:  
σ, τ, … ::= int | … | σ × τ | Vτ 
σ, τ, … ::= … | σ → τ

continuous (coherent) dcpos

bc-domains/continuous lattices

CALL-BY-PUSH-VALUE

No such problem with two kinds of types:  
σ, τ, … ::= int | unit | Uσ | σ × τ | Vτ 
σ, τ, … ::= Fσ | σ → τ

This is the type structure of Paul B. Levy’s call-by-push-value  
(except for the V construction)

(Levy 1999)

continuous (coherent) dcpos

bc-domains/continuous lattices

CALL-BY-PUSH-VALUE

No such problem with two kinds of types:  
σ, τ, … ::= int | unit | Uσ | σ × τ | Vτ 
σ, τ, … ::= Fσ | σ → τ

This is the type structure of Paul B. Levy’s call-by-push-value  
(except for the V construction)

(Levy 1999)

continuous (coherent) dcpos

bc-domains/continuous lattices

value types

CALL-BY-PUSH-VALUE

No such problem with two kinds of types:  
σ, τ, … ::= int | unit | Uσ | σ × τ | Vτ 
σ, τ, … ::= Fσ | σ → τ

This is the type structure of Paul B. Levy’s call-by-push-value  
(except for the V construction)

(Levy 1999)

continuous (coherent) dcpos

bc-domains/continuous lattices

value types

computation types

U AND F

 
σ, τ, … ::= int | unit | σ × τ | Vτ 
σ, τ, … ::= σ → τ

continuous (coherent) dcpos

bc-domains/continuous lattices

U AND F

 
σ, τ, … ::= int | unit | Uσ | σ × τ | Vτ 
σ, τ, … ::= σ → τ

U converts from bc-domains to continuous coherent dcpos 
… semantically the identity: ⟦Uσ⟧=⟦σ⟧

continuous (coherent) dcpos

bc-domains/continuous lattices

U AND F

 
σ, τ, … ::= int | unit | Uσ | σ × τ | Vτ 
σ, τ, … ::= σ → τ

U converts from bc-domains to continuous coherent dcpos 
… semantically the identity: ⟦Uσ⟧=⟦σ⟧

M, N, … ::= … 
 | force M (Uσ ↝ σ)  
 | thunk M (σ ↝ Uσ)  

continuous (coherent) dcpos

bc-domains/continuous lattices

U AND F

 
σ, τ, … ::= int | unit | Uσ | σ × τ | Vτ 
σ, τ, … ::= σ → τ

U converts from bc-domains to continuous coherent dcpos 
… semantically the identity: ⟦Uσ⟧=⟦σ⟧

M, N, … ::= … 
 | force M (Uσ ↝ σ)  
 | thunk M (σ ↝ Uσ)  

⟦force M⟧ = ⟦M⟧ 
⟦thunk M⟧ = ⟦M⟧

force thunk M → M

continuous (coherent) dcpos

bc-domains/continuous lattices

U AND F

 
σ, τ, … ::= int | unit | Uσ | σ × τ | Vτ 
σ, τ, … ::= Fσ | σ → τ

U converts from bc-domains to continuous coherent dcpos 
… semantically the identity: ⟦Uσ⟧=⟦σ⟧

F converts from continuous coherent dcpos to bc-domains 
… Ershov’s bounded complete hull  
 would be the canonical choice

(but is too intricate for our purposes.)

Theoretical

ELSEVIER Theoretical Computer Science 175 (1997) 3-13

Computer Science

The bounded-complete hull of an a-space
Yu.L. Ershov*,’

Research Institute jbr Informatics and Mathematics, Novosibirsk State University,
630090 Novosibirsk, Russia

1. Introduction

In the paper [3], the author suggested a general topological approach to domain
theory as highly convenient and more general than the established more traditional
approach using dcpos (directed-complete partial orders) starting from D. Scott’s work.
This approach was realized by the author in the papers [2,3] for the cases of f-spaces
and A-spaces (complete f&space = algebraic bounded-complete domain, complete Ao-
space = bounded-complete domain; in the sequel, the term bc-domain will be used to
denote bounded-complete domains). In the introduction to [3], the properties of the
relation 4 of a recognizable approximation was discussed.

I would like to quote from [3]: “It is natural to require that all recognizable approx-
imations of a fixed element x should form a directed set and this can be satisfied in
the strong (but sufficiently reasonable) form:

(5) if x0 + x and x1 3 x then there exists an element x2 E X0 [basis] which is the
exact upper bound (x2 = x0 V XI) of these elements in (X, <) and x2 + x.” (Compare
with the definition of an abstract basis in [l]).

One of the arguments for the reasonability of the condition (5) is the following
(naive) consideration: “If I know that x0 and x1 are approximations of an element x,
then the pair (x0,x1) can be considered as an approximation of x, which contains only
that information about x which is carried by the approximations x0 and XI. So from
the point of view of information about x a couple (x0,x1) is the exact upper bound
for x0 and XI .” The problem is that the pair (x0,x1) does not belong to the space of
approximations X.

It is the aim of the present paper to present a mathematically correct realization of
the idea described above and to show that for any a-space (= a basis for a domain, see
Proposition 4 below) there exists a uniquely dejined bc-domain B and a homeomorphic
embedding A : X -+ B with the properties of universality and minimality (the exact

* E-mail: root@ershov.nsu.nsk.su.
’ The work was done while the author visited Technische Hochschule Darmstadt. Thanks to Professor
K. Keimel and Deutsche Forschungsgemeinschaft.

0304-3975/97/$17.00 @ 1997 - Elsevier Science B.V. All rights reserved
PZI SO304-3975(96)00167-3

continuous (coherent) dcpos

bc-domains/continuous lattices

THE SMYTH POWERDOMAIN

QX = {compact saturated subsets of X}, reverse inclusion ⊇

Fact. For X continuous coherent dcpo,  
 Ershov’s bc-hull of X is a subspace of QX.

QX is itself a bc-domain (even a continuous complete lattice),  
and is much easier to use.

Serves as a model of demonic non-determinism.

THE SMYTH POWERDOMAIN

QX = {compact saturated subsets of X}, reverse inclusion ⊇  
defines a(nother) monad on the cat. of cont. coh. dcpos.

Unit: η : X → QX : x ↦ ↑x (continuous)

Extension: for f : X → L where L continuous complete lattice,  
 let f* : QX → L : Q ↦ inf {f(x) | x ∈ Q} 
— if f is continuous then f* is continuous 
— f* o η = f 
— f* o g* = (f* o g)*

THE SMYTH⊥ POWERDOMAIN

Q⊥X = QX plus a fresh bottom ⊥  
defines a(nother) monad on the cat. of cont. coh. dcpos.

Unit: η : X → Q⊥X : x ↦ ↑x (continuous)

Extension: for f : X → L where L continuous complete lattice,  
 let f* : Q⊥X → L : Q ↦ inf {f(x) | x ∈ Q}, ⊥ ↦ ⊥  
— if f is continuous then f* is continuous — and f* is strict now  
— f* o η = f 
— f* o g* = (f* o g)*

U AND F

 
σ, τ, … ::= int | unit | Uσ | σ × τ | Vτ 
σ, τ, … ::= Fσ | σ → τ

U converts from bc-domains to continuous coherent dcpos: ⟦Uσ⟧=⟦σ⟧

F converts from continuous coherent dcpos to bc-domains: ⟦Fσ⟧=Q⊥⟦σ⟧

continuous (coherent) dcpos

bc-domains/continuous lattices

U AND F

 
σ, τ, … ::= int | unit | Uσ | σ × τ | Vτ 
σ, τ, … ::= Fσ | σ → τ

U converts from bc-domains to continuous coherent dcpos: ⟦Uσ⟧=⟦σ⟧

F converts from continuous coherent dcpos to bc-domains: ⟦Fσ⟧=Q⊥⟦σ⟧

M, N, … ::= … 
 | abortFσ 
 | M N 
 | produce M (σ ↝ Fσ)  
 | M to xσ in N 

choice

monad

Jx�K ⇢ = ⇢(x�)

J�x�.MK ⇢ = V 2 J�K 7! JMK (⇢[x� 7! V]) JMNK ⇢ = JMK ⇢(JNK ⇢)
JproduceproduceproduceMK ⇢ = ⌘Q(JMK ⇢)

JM tototo x� ininin NK ⇢ = (V 2 J�K 7! JNK ⇢[x� 7! V])⇤(JMK ⇢)
JthunkthunkthunkMK ⇢ = JMK ⇢ JforceforceforceMK ⇢ = JMK ⇢

J⇤K ⇢ = > JnK ⇢ = n

JsuccsuccsuccMK ⇢ =

⇢
n+ 1 if n = JMK ⇢ 6= ?
? otherwise

JpredpredpredMK ⇢ =

⇢
n� 1 if n = JMK ⇢ 6= ?
? otherwise

Jifzifzifz M N P K ⇢ =

8
<

:

JNK ⇢ if JMK ⇢ = 0
JP K ⇢ if JMK ⇢ 6= 0,?
? if JMK ⇢ = ?

JM ;NK ⇢ =

⇢
JNK ⇢ if JMK ⇢ = >
? otherwise

J⇡1MK ⇢ = m, J⇡2MK ⇢ = n where JMK ⇢ = (m,n)

JhM,NiK ⇢ = (JMK ⇢, JNK ⇢)
JretretretMK ⇢ = �JMK⇢

Jdododox� M ;NK ⇢ = (V 2 J�K 7! JNK ⇢[x� 7! V])†(JMK ⇢)

JM �NK ⇢ =
1

2
(JMK ⇢+ JNK ⇢)

JM ? NK ⇢ = JMK ⇢ ^ JNK ⇢ JabortabortabortFFF⌧ K ⇢ = ;

Jrecrecrecx�.MK ⇢ = lfp(V 2 J�K 7! JMK ⇢[x� 7! V])

Jpifzpifzpifz M N P K ⇢ =

8
<

:

JNK ⇢ if JMK ⇢ = 0
JP K ⇢ if JMK ⇢ 6= 0,?
JNK ⇢ ^ JP K ⇢ if JMK ⇢ = ?

J�>bMK ⇢ =

8
<

:

> if JMK ⇢ 6= ? and
b⌧ ⌫({>}) for every ⌫ 2 JMK ⇢

? otherwise

Figure 2: Denotational semantics

10

continuous (coherent) dcpos

bc-domains/continuous lattices

U AND F

 
σ, τ, … ::= int | unit | Uσ | σ × τ | Vτ 
σ, τ, … ::= Fσ | σ → τ

U converts from bc-domains to continuous coherent dcpos: ⟦Uσ⟧=⟦σ⟧

F converts from continuous coherent dcpos to bc-domains: ⟦Fσ⟧=Q⊥⟦σ⟧

M, N, … ::= … 
 | abortFσ 
 | M N 
 | produce M (σ ↝ Fσ)  
 | M to xσ in N 

⟦abortFσ⟧ = ∅  
⟦M N⟧ = ⟦M⟧ ⋀ ⟦N⟧ 
⟦produce M⟧ = η(⟦M⟧)  
⟦M to xσ in N⟧ =  
 (V ↦ ⟦N⟧[xσ:=V])* (⟦M⟧)

choice

monad

Jx�K ⇢ = ⇢(x�)

J�x�.MK ⇢ = V 2 J�K 7! JMK (⇢[x� 7! V]) JMNK ⇢ = JMK ⇢(JNK ⇢)
JproduceproduceproduceMK ⇢ = ⌘Q(JMK ⇢)

JM tototo x� ininin NK ⇢ = (V 2 J�K 7! JNK ⇢[x� 7! V])⇤(JMK ⇢)
JthunkthunkthunkMK ⇢ = JMK ⇢ JforceforceforceMK ⇢ = JMK ⇢

J⇤K ⇢ = > JnK ⇢ = n

JsuccsuccsuccMK ⇢ =

⇢
n+ 1 if n = JMK ⇢ 6= ?
? otherwise

JpredpredpredMK ⇢ =

⇢
n� 1 if n = JMK ⇢ 6= ?
? otherwise

Jifzifzifz M N P K ⇢ =

8
<

:

JNK ⇢ if JMK ⇢ = 0
JP K ⇢ if JMK ⇢ 6= 0,?
? if JMK ⇢ = ?

JM ;NK ⇢ =

⇢
JNK ⇢ if JMK ⇢ = >
? otherwise

J⇡1MK ⇢ = m, J⇡2MK ⇢ = n where JMK ⇢ = (m,n)

JhM,NiK ⇢ = (JMK ⇢, JNK ⇢)
JretretretMK ⇢ = �JMK⇢

Jdododox� M ;NK ⇢ = (V 2 J�K 7! JNK ⇢[x� 7! V])†(JMK ⇢)

JM �NK ⇢ =
1

2
(JMK ⇢+ JNK ⇢)

JM ? NK ⇢ = JMK ⇢ ^ JNK ⇢ JabortabortabortFFF⌧ K ⇢ = ;

Jrecrecrecx�.MK ⇢ = lfp(V 2 J�K 7! JMK ⇢[x� 7! V])

Jpifzpifzpifz M N P K ⇢ =

8
<

:

JNK ⇢ if JMK ⇢ = 0
JP K ⇢ if JMK ⇢ 6= 0,?
JNK ⇢ ^ JP K ⇢ if JMK ⇢ = ?

J�>bMK ⇢ =

8
<

:

> if JMK ⇢ 6= ? and
b⌧ ⌫({>}) for every ⌫ 2 JMK ⇢

? otherwise

Figure 2: Denotational semantics

10

Jx�K ⇢ = ⇢(x�)

J�x�.MK ⇢ = V 2 J�K 7! JMK (⇢[x� 7! V]) JMNK ⇢ = JMK ⇢(JNK ⇢)
JproduceproduceproduceMK ⇢ = ⌘Q(JMK ⇢)

JM tototo x� ininin NK ⇢ = (V 2 J�K 7! JNK ⇢[x� 7! V])⇤(JMK ⇢)
JthunkthunkthunkMK ⇢ = JMK ⇢ JforceforceforceMK ⇢ = JMK ⇢

J⇤K ⇢ = > JnK ⇢ = n

JsuccsuccsuccMK ⇢ =

⇢
n+ 1 if n = JMK ⇢ 6= ?
? otherwise

JpredpredpredMK ⇢ =

⇢
n� 1 if n = JMK ⇢ 6= ?
? otherwise

Jifzifzifz M N P K ⇢ =

8
<

:

JNK ⇢ if JMK ⇢ = 0
JP K ⇢ if JMK ⇢ 6= 0,?
? if JMK ⇢ = ?

JM ;NK ⇢ =

⇢
JNK ⇢ if JMK ⇢ = >
? otherwise

J⇡1MK ⇢ = m, J⇡2MK ⇢ = n where JMK ⇢ = (m,n)

JhM,NiK ⇢ = (JMK ⇢, JNK ⇢)
JretretretMK ⇢ = �JMK⇢

Jdododox� M ;NK ⇢ = (V 2 J�K 7! JNK ⇢[x� 7! V])†(JMK ⇢)

JM �NK ⇢ =
1

2
(JMK ⇢+ JNK ⇢)

JM ? NK ⇢ = JMK ⇢ ^ JNK ⇢ JabortabortabortFFF⌧ K ⇢ = ;

Jrecrecrecx�.MK ⇢ = lfp(V 2 J�K 7! JMK ⇢[x� 7! V])

Jpifzpifzpifz M N P K ⇢ =

8
<

:

JNK ⇢ if JMK ⇢ = 0
JP K ⇢ if JMK ⇢ 6= 0,?
JNK ⇢ ^ JP K ⇢ if JMK ⇢ = ?

J�>bMK ⇢ =

8
<

:

> if JMK ⇢ 6= ? and
b⌧ ⌫({>}) for every ⌫ 2 JMK ⇢

? otherwise

Figure 2: Denotational semantics

10

continuous (coherent) dcpos

bc-domains/continuous lattices

U AND F

 
σ, τ, … ::= int | unit | Uσ | σ × τ | Vτ 
σ, τ, … ::= Fσ | σ → τ

U converts from bc-domains to continuous coherent dcpos: ⟦Uσ⟧=⟦σ⟧

F converts from continuous coherent dcpos to bc-domains: ⟦Fσ⟧=Q⊥⟦σ⟧

M, N, … ::= … 
 | abortFσ 
 | M N 
 | produce M (σ ↝ Fσ)  
 | M to xσ in N 

⟦abortFσ⟧ = ∅  
⟦M N⟧ = ⟦M⟧ ⋀ ⟦N⟧ 
⟦produce M⟧ = η(⟦M⟧)  
⟦M to xσ in N⟧ =  
 (V ↦ ⟦N⟧[xσ:=V])* (⟦M⟧)

(produce M) to xσ in N → N[xσ:=M] + etc.

choice

monad

Jx�K ⇢ = ⇢(x�)

J�x�.MK ⇢ = V 2 J�K 7! JMK (⇢[x� 7! V]) JMNK ⇢ = JMK ⇢(JNK ⇢)
JproduceproduceproduceMK ⇢ = ⌘Q(JMK ⇢)

JM tototo x� ininin NK ⇢ = (V 2 J�K 7! JNK ⇢[x� 7! V])⇤(JMK ⇢)
JthunkthunkthunkMK ⇢ = JMK ⇢ JforceforceforceMK ⇢ = JMK ⇢

J⇤K ⇢ = > JnK ⇢ = n

JsuccsuccsuccMK ⇢ =

⇢
n+ 1 if n = JMK ⇢ 6= ?
? otherwise

JpredpredpredMK ⇢ =

⇢
n� 1 if n = JMK ⇢ 6= ?
? otherwise

Jifzifzifz M N P K ⇢ =

8
<

:

JNK ⇢ if JMK ⇢ = 0
JP K ⇢ if JMK ⇢ 6= 0,?
? if JMK ⇢ = ?

JM ;NK ⇢ =

⇢
JNK ⇢ if JMK ⇢ = >
? otherwise

J⇡1MK ⇢ = m, J⇡2MK ⇢ = n where JMK ⇢ = (m,n)

JhM,NiK ⇢ = (JMK ⇢, JNK ⇢)
JretretretMK ⇢ = �JMK⇢

Jdododox� M ;NK ⇢ = (V 2 J�K 7! JNK ⇢[x� 7! V])†(JMK ⇢)

JM �NK ⇢ =
1

2
(JMK ⇢+ JNK ⇢)

JM ? NK ⇢ = JMK ⇢ ^ JNK ⇢ JabortabortabortFFF⌧ K ⇢ = ;

Jrecrecrecx�.MK ⇢ = lfp(V 2 J�K 7! JMK ⇢[x� 7! V])

Jpifzpifzpifz M N P K ⇢ =

8
<

:

JNK ⇢ if JMK ⇢ = 0
JP K ⇢ if JMK ⇢ 6= 0,?
JNK ⇢ ^ JP K ⇢ if JMK ⇢ = ?

J�>bMK ⇢ =

8
<

:

> if JMK ⇢ 6= ? and
b⌧ ⌫({>}) for every ⌫ 2 JMK ⇢

? otherwise

Figure 2: Denotational semantics

10

Jx�K ⇢ = ⇢(x�)

J�x�.MK ⇢ = V 2 J�K 7! JMK (⇢[x� 7! V]) JMNK ⇢ = JMK ⇢(JNK ⇢)
JproduceproduceproduceMK ⇢ = ⌘Q(JMK ⇢)

JM tototo x� ininin NK ⇢ = (V 2 J�K 7! JNK ⇢[x� 7! V])⇤(JMK ⇢)
JthunkthunkthunkMK ⇢ = JMK ⇢ JforceforceforceMK ⇢ = JMK ⇢

J⇤K ⇢ = > JnK ⇢ = n

JsuccsuccsuccMK ⇢ =

⇢
n+ 1 if n = JMK ⇢ 6= ?
? otherwise

JpredpredpredMK ⇢ =

⇢
n� 1 if n = JMK ⇢ 6= ?
? otherwise

Jifzifzifz M N P K ⇢ =

8
<

:

JNK ⇢ if JMK ⇢ = 0
JP K ⇢ if JMK ⇢ 6= 0,?
? if JMK ⇢ = ?

JM ;NK ⇢ =

⇢
JNK ⇢ if JMK ⇢ = >
? otherwise

J⇡1MK ⇢ = m, J⇡2MK ⇢ = n where JMK ⇢ = (m,n)

JhM,NiK ⇢ = (JMK ⇢, JNK ⇢)
JretretretMK ⇢ = �JMK⇢

Jdododox� M ;NK ⇢ = (V 2 J�K 7! JNK ⇢[x� 7! V])†(JMK ⇢)

JM �NK ⇢ =
1

2
(JMK ⇢+ JNK ⇢)

JM ? NK ⇢ = JMK ⇢ ^ JNK ⇢ JabortabortabortFFF⌧ K ⇢ = ;

Jrecrecrecx�.MK ⇢ = lfp(V 2 J�K 7! JMK ⇢[x� 7! V])

Jpifzpifzpifz M N P K ⇢ =

8
<

:

JNK ⇢ if JMK ⇢ = 0
JP K ⇢ if JMK ⇢ 6= 0,?
JNK ⇢ ^ JP K ⇢ if JMK ⇢ = ?

J�>bMK ⇢ =

8
<

:

> if JMK ⇢ 6= ? and
b⌧ ⌫({>}) for every ⌫ 2 JMK ⇢

? otherwise

Figure 2: Denotational semantics

10

continuous (coherent) dcpos

bc-domains/continuous lattices

PCF, probabilistic choice, and the trouble with V

Curing the trouble using call-by-push-value

Semantics, adequacy, full abstraction

PCF, probabilistic choice, and the trouble with V

Curing the trouble using call-by-push-value

Semantics, adequacy, full abstraction

OPERATIONAL SEMANTICS

A Krivine machine for deterministic
operations, working on configurations 
 C . M

C · E[M]! CE ·M C[N] · �x� .M ! C ·M [x� := N]

C[tototo x� ininin N] · produceproduceproduceM ! C ·N [x� := M] C[forceforceforce] · thunkthunkthunkM ! C ·M
[] · produceproduceproduceM ! [produceproduceproduce] ·M

C[predpredpred] · n! C · n� 1 C[succsuccsucc] · n! C · n+ 1

C[ifzifzifz N P] · 0! C ·N C[ifzifzifz N P] · n! C · P (n 6= 0)

C[;N] · ⇤ ! C ·N
C[⇡1] · hM,Ni ! C ·M C[⇡2] · hM,Ni ! C ·N

C[dododox� ;N] · retretretM ! C ·N [x� := M] [produceproduceproduce] · retretretM ! [produceproduceproduceretretret] ·M
C · recrecrecx� .M ! C ·M [x� := recrecrecx� .M]

(a 2 Q \ [0, 1))
[produceproduceproduceretretret] · ⇤ # a C ·M # 0

(a 2 Q \ [0, 1))
C · abortabortabortFFF⌧ #a

C0 ·M 0 # a
(if C ·M ! C0 ·M 0

)

C ·M # a

C ·M # a C ·N # b

C ·M �N # (a+ b)/2

C ·M # a C ·N # a

C ·M ? N # a

[] ·M # b C · ⇤ # a

C ·�>bM # a

C · ifzifzifz M N P # a

C · pifzpifzpifz M N P # a

C ·N # a C · P # a

C · pifzpifzpifz M N P # a

Figure 3: Operational semantics

We will freely reuse the notations -�, for the similarly defined notions on the re-
lated languages CBPV(D, P)+pifzpifzpifz, CBPV(D, P)+�, and CBPV(D, P)+pifzpifzpifz+
�. If there is any need to make the language precise, we will mention it explic-
itly.

We end this section with a few elementary lemmata, which will come in
handy later on, and which should help the reader train with the way the oper-
ational semantics works.

Lemma 4.5 If C · M # a is derivable and b 2 Q is such that 0 b a,
then C · M # b is also derivable, whether in CBPV(D, P), CBPV(D, P) + pifzpifzpifz,
CBPV(D, P) +�, or CBPV(D, P) + pifzpifzpifz+�.

Proof. Easy induction on the rules of Figure 3. In the case of a derivation of
the form C ·M �N # a, where a = (a1 + a2)/2, from C ·M # a1 and C ·N # a2,
we write b as (b1 + b2)/2 where b1 and b2 are rational and between 0 and a1,
resp. a2. (E.g., we let b1 = min(a1, 2b) and b2 = 2b� b1 = max(2b� a1, 0).) By
induction hypothesis we can derive C ·M # b1 and C ·N # b2, so we can derive
C ·M �N # (b1 + b2)/2 = b. 2

Lemma 4.6 If C ·M ! C 0
·M 0, then Pr(C ·M#) � Pr(C 0

·M 0
#).

Proof. Whenever we can derive C 0
· M 0

a, we can derive C · M # a by the
leftmost rule of the next-to-last row of Figure 3. 2

13

OPERATIONAL SEMANTICS

A Krivine machine for deterministic
operations, working on configurations 
 C . M

Prob. must-termination judgments 
 C . M ↓ a  
(« whichever way you resolve the  
 demonic non-deterministic choices,  
 the probability that C . M terminates 
 is >a. »)

C · E[M]! CE ·M C[N] · �x� .M ! C ·M [x� := N]

C[tototo x� ininin N] · produceproduceproduceM ! C ·N [x� := M] C[forceforceforce] · thunkthunkthunkM ! C ·M
[] · produceproduceproduceM ! [produceproduceproduce] ·M

C[predpredpred] · n! C · n� 1 C[succsuccsucc] · n! C · n+ 1

C[ifzifzifz N P] · 0! C ·N C[ifzifzifz N P] · n! C · P (n 6= 0)

C[;N] · ⇤ ! C ·N
C[⇡1] · hM,Ni ! C ·M C[⇡2] · hM,Ni ! C ·N

C[dododox� ;N] · retretretM ! C ·N [x� := M] [produceproduceproduce] · retretretM ! [produceproduceproduceretretret] ·M
C · recrecrecx� .M ! C ·M [x� := recrecrecx� .M]

(a 2 Q \ [0, 1))
[produceproduceproduceretretret] · ⇤ # a C ·M # 0

(a 2 Q \ [0, 1))
C · abortabortabortFFF⌧ #a

C0 ·M 0 # a
(if C ·M ! C0 ·M 0

)

C ·M # a

C ·M # a C ·N # b

C ·M �N # (a+ b)/2

C ·M # a C ·N # a

C ·M ? N # a

[] ·M # b C · ⇤ # a

C ·�>bM # a

C · ifzifzifz M N P # a

C · pifzpifzpifz M N P # a

C ·N # a C · P # a

C · pifzpifzpifz M N P # a

Figure 3: Operational semantics

We will freely reuse the notations -�, for the similarly defined notions on the re-
lated languages CBPV(D, P)+pifzpifzpifz, CBPV(D, P)+�, and CBPV(D, P)+pifzpifzpifz+
�. If there is any need to make the language precise, we will mention it explic-
itly.

We end this section with a few elementary lemmata, which will come in
handy later on, and which should help the reader train with the way the oper-
ational semantics works.

Lemma 4.5 If C · M # a is derivable and b 2 Q is such that 0 b a,
then C · M # b is also derivable, whether in CBPV(D, P), CBPV(D, P) + pifzpifzpifz,
CBPV(D, P) +�, or CBPV(D, P) + pifzpifzpifz+�.

Proof. Easy induction on the rules of Figure 3. In the case of a derivation of
the form C ·M �N # a, where a = (a1 + a2)/2, from C ·M # a1 and C ·N # a2,
we write b as (b1 + b2)/2 where b1 and b2 are rational and between 0 and a1,
resp. a2. (E.g., we let b1 = min(a1, 2b) and b2 = 2b� b1 = max(2b� a1, 0).) By
induction hypothesis we can derive C ·M # b1 and C ·N # b2, so we can derive
C ·M �N # (b1 + b2)/2 = b. 2

Lemma 4.6 If C ·M ! C 0
·M 0, then Pr(C ·M#) � Pr(C 0

·M 0
#).

Proof. Whenever we can derive C 0
· M 0

a, we can derive C · M # a by the
leftmost rule of the next-to-last row of Figure 3. 2

13

C · E[M]! CE ·M C[N] · �x� .M ! C ·M [x� := N]

C[tototo x� ininin N] · produceproduceproduceM ! C ·N [x� := M] C[forceforceforce] · thunkthunkthunkM ! C ·M
[] · produceproduceproduceM ! [produceproduceproduce] ·M

C[predpredpred] · n! C · n� 1 C[succsuccsucc] · n! C · n+ 1

C[ifzifzifz N P] · 0! C ·N C[ifzifzifz N P] · n! C · P (n 6= 0)

C[;N] · ⇤ ! C ·N
C[⇡1] · hM,Ni ! C ·M C[⇡2] · hM,Ni ! C ·N

C[dododox� ;N] · retretretM ! C ·N [x� := M] [produceproduceproduce] · retretretM ! [produceproduceproduceretretret] ·M
C · recrecrecx� .M ! C ·M [x� := recrecrecx� .M]

(a 2 Q \ [0, 1))
[produceproduceproduceretretret] · ⇤ # a C ·M # 0

(a 2 Q \ [0, 1))
C · abortabortabortFFF⌧ #a

C0 ·M 0 # a
(if C ·M ! C0 ·M 0

)

C ·M # a

C ·M # a C ·N # b

C ·M �N # (a+ b)/2

C ·M # a C ·N # a

C ·M ? N # a

[] ·M # b C · ⇤ # a

C ·�>bM # a

C · ifzifzifz M N P # a

C · pifzpifzpifz M N P # a

C ·N # a C · P # a

C · pifzpifzpifz M N P # a

Figure 3: Operational semantics

We will freely reuse the notations -�, for the similarly defined notions on the re-
lated languages CBPV(D, P)+pifzpifzpifz, CBPV(D, P)+�, and CBPV(D, P)+pifzpifzpifz+
�. If there is any need to make the language precise, we will mention it explic-
itly.

We end this section with a few elementary lemmata, which will come in
handy later on, and which should help the reader train with the way the oper-
ational semantics works.

Lemma 4.5 If C · M # a is derivable and b 2 Q is such that 0 b a,
then C · M # b is also derivable, whether in CBPV(D, P), CBPV(D, P) + pifzpifzpifz,
CBPV(D, P) +�, or CBPV(D, P) + pifzpifzpifz+�.

Proof. Easy induction on the rules of Figure 3. In the case of a derivation of
the form C ·M �N # a, where a = (a1 + a2)/2, from C ·M # a1 and C ·N # a2,
we write b as (b1 + b2)/2 where b1 and b2 are rational and between 0 and a1,
resp. a2. (E.g., we let b1 = min(a1, 2b) and b2 = 2b� b1 = max(2b� a1, 0).) By
induction hypothesis we can derive C ·M # b1 and C ·N # b2, so we can derive
C ·M �N # (b1 + b2)/2 = b. 2

Lemma 4.6 If C ·M ! C 0
·M 0, then Pr(C ·M#) � Pr(C 0

·M 0
#).

Proof. Whenever we can derive C 0
· M 0

a, we can derive C · M # a by the
leftmost rule of the next-to-last row of Figure 3. 2

13

OPERATIONAL SEMANTICS

A Krivine machine for deterministic
operations, working on configurations 
 C . M

Prob. must-termination judgments 
 C . M ↓ a  
(« whichever way you resolve the  
 demonic non-deterministic choices,  
 the probability that C . M terminates 
 is >a. »)

C · E[M]! CE ·M C[N] · �x� .M ! C ·M [x� := N]

C[tototo x� ininin N] · produceproduceproduceM ! C ·N [x� := M] C[forceforceforce] · thunkthunkthunkM ! C ·M
[] · produceproduceproduceM ! [produceproduceproduce] ·M

C[predpredpred] · n! C · n� 1 C[succsuccsucc] · n! C · n+ 1

C[ifzifzifz N P] · 0! C ·N C[ifzifzifz N P] · n! C · P (n 6= 0)

C[;N] · ⇤ ! C ·N
C[⇡1] · hM,Ni ! C ·M C[⇡2] · hM,Ni ! C ·N

C[dododox� ;N] · retretretM ! C ·N [x� := M] [produceproduceproduce] · retretretM ! [produceproduceproduceretretret] ·M
C · recrecrecx� .M ! C ·M [x� := recrecrecx� .M]

(a 2 Q \ [0, 1))
[produceproduceproduceretretret] · ⇤ # a C ·M # 0

(a 2 Q \ [0, 1))
C · abortabortabortFFF⌧ #a

C0 ·M 0 # a
(if C ·M ! C0 ·M 0

)

C ·M # a

C ·M # a C ·N # b

C ·M �N # (a+ b)/2

C ·M # a C ·N # a

C ·M ? N # a

[] ·M # b C · ⇤ # a

C ·�>bM # a

C · ifzifzifz M N P # a

C · pifzpifzpifz M N P # a

C ·N # a C · P # a

C · pifzpifzpifz M N P # a

Figure 3: Operational semantics

We will freely reuse the notations -�, for the similarly defined notions on the re-
lated languages CBPV(D, P)+pifzpifzpifz, CBPV(D, P)+�, and CBPV(D, P)+pifzpifzpifz+
�. If there is any need to make the language precise, we will mention it explic-
itly.

We end this section with a few elementary lemmata, which will come in
handy later on, and which should help the reader train with the way the oper-
ational semantics works.

Lemma 4.5 If C · M # a is derivable and b 2 Q is such that 0 b a,
then C · M # b is also derivable, whether in CBPV(D, P), CBPV(D, P) + pifzpifzpifz,
CBPV(D, P) +�, or CBPV(D, P) + pifzpifzpifz+�.

Proof. Easy induction on the rules of Figure 3. In the case of a derivation of
the form C ·M �N # a, where a = (a1 + a2)/2, from C ·M # a1 and C ·N # a2,
we write b as (b1 + b2)/2 where b1 and b2 are rational and between 0 and a1,
resp. a2. (E.g., we let b1 = min(a1, 2b) and b2 = 2b� b1 = max(2b� a1, 0).) By
induction hypothesis we can derive C ·M # b1 and C ·N # b2, so we can derive
C ·M �N # (b1 + b2)/2 = b. 2

Lemma 4.6 If C ·M ! C 0
·M 0, then Pr(C ·M#) � Pr(C 0

·M 0
#).

Proof. Whenever we can derive C 0
· M 0

a, we can derive C · M # a by the
leftmost rule of the next-to-last row of Figure 3. 2

13

C · E[M]! CE ·M C[N] · �x� .M ! C ·M [x� := N]

C[tototo x� ininin N] · produceproduceproduceM ! C ·N [x� := M] C[forceforceforce] · thunkthunkthunkM ! C ·M
[] · produceproduceproduceM ! [produceproduceproduce] ·M

C[predpredpred] · n! C · n� 1 C[succsuccsucc] · n! C · n+ 1

C[ifzifzifz N P] · 0! C ·N C[ifzifzifz N P] · n! C · P (n 6= 0)

C[;N] · ⇤ ! C ·N
C[⇡1] · hM,Ni ! C ·M C[⇡2] · hM,Ni ! C ·N

C[dododox� ;N] · retretretM ! C ·N [x� := M] [produceproduceproduce] · retretretM ! [produceproduceproduceretretret] ·M
C · recrecrecx� .M ! C ·M [x� := recrecrecx� .M]

(a 2 Q \ [0, 1))
[produceproduceproduceretretret] · ⇤ # a C ·M # 0

(a 2 Q \ [0, 1))
C · abortabortabortFFF⌧ #a

C0 ·M 0 # a
(if C ·M ! C0 ·M 0

)

C ·M # a

C ·M # a C ·N # b

C ·M �N # (a+ b)/2

C ·M # a C ·N # a

C ·M ? N # a

[] ·M # b C · ⇤ # a

C ·�>bM # a

C · ifzifzifz M N P # a

C · pifzpifzpifz M N P # a

C ·N # a C · P # a

C · pifzpifzpifz M N P # a

Figure 3: Operational semantics

We will freely reuse the notations -�, for the similarly defined notions on the re-
lated languages CBPV(D, P)+pifzpifzpifz, CBPV(D, P)+�, and CBPV(D, P)+pifzpifzpifz+
�. If there is any need to make the language precise, we will mention it explic-
itly.

We end this section with a few elementary lemmata, which will come in
handy later on, and which should help the reader train with the way the oper-
ational semantics works.

Lemma 4.5 If C · M # a is derivable and b 2 Q is such that 0 b a,
then C · M # b is also derivable, whether in CBPV(D, P), CBPV(D, P) + pifzpifzpifz,
CBPV(D, P) +�, or CBPV(D, P) + pifzpifzpifz+�.

Proof. Easy induction on the rules of Figure 3. In the case of a derivation of
the form C ·M �N # a, where a = (a1 + a2)/2, from C ·M # a1 and C ·N # a2,
we write b as (b1 + b2)/2 where b1 and b2 are rational and between 0 and a1,
resp. a2. (E.g., we let b1 = min(a1, 2b) and b2 = 2b� b1 = max(2b� a1, 0).) By
induction hypothesis we can derive C ·M # b1 and C ·N # b2, so we can derive
C ·M �N # (b1 + b2)/2 = b. 2

Lemma 4.6 If C ·M ! C 0
·M 0, then Pr(C ·M#) � Pr(C 0

·M 0
#).

Proof. Whenever we can derive C 0
· M 0

a, we can derive C · M # a by the
leftmost rule of the next-to-last row of Figure 3. 2

13

Let Pr(C . M↓) = sup {a | C . M ↓ a}, Pr(M↓) =Pr([_] . M↓)

ADEQUACY

Prop (adequacy). 
For every M : FVunit,  
— ⟦M⟧=⊥ and Pr(M↓)=0, or  
— ⟦M⟧=∅ and Pr(M↓)=1, or else  
— Pr(M↓)=min {ν({⊤}) | ν ∈ ⟦M⟧}

Jx�K ⇢ = ⇢(x�)

J�x�.MK ⇢ = V 2 J�K 7! JMK (⇢[x� 7! V]) JMNK ⇢ = JMK ⇢(JNK ⇢)
JproduceproduceproduceMK ⇢ = ⌘Q(JMK ⇢)

JM tototo x� ininin NK ⇢ = (V 2 J�K 7! JNK ⇢[x� 7! V])⇤(JMK ⇢)
JthunkthunkthunkMK ⇢ = JMK ⇢ JforceforceforceMK ⇢ = JMK ⇢

J⇤K ⇢ = > JnK ⇢ = n

JsuccsuccsuccMK ⇢ =

⇢
n+ 1 if n = JMK ⇢ 6= ?
? otherwise

JpredpredpredMK ⇢ =

⇢
n� 1 if n = JMK ⇢ 6= ?
? otherwise

Jifzifzifz M N P K ⇢ =

8
<

:

JNK ⇢ if JMK ⇢ = 0
JP K ⇢ if JMK ⇢ 6= 0,?
? if JMK ⇢ = ?

JM ;NK ⇢ =

⇢
JNK ⇢ if JMK ⇢ = >
? otherwise

J⇡1MK ⇢ = m, J⇡2MK ⇢ = n where JMK ⇢ = (m,n)

JhM,NiK ⇢ = (JMK ⇢, JNK ⇢)
JretretretMK ⇢ = �JMK⇢

Jdododox� M ;NK ⇢ = (V 2 J�K 7! JNK ⇢[x� 7! V])†(JMK ⇢)

JM �NK ⇢ =
1

2
(JMK ⇢+ JNK ⇢)

JM ? NK ⇢ = JMK ⇢ ^ JNK ⇢ JabortabortabortFFF⌧ K ⇢ = ;

Jrecrecrecx�.MK ⇢ = lfp(V 2 J�K 7! JMK ⇢[x� 7! V])

Jpifzpifzpifz M N P K ⇢ =

8
<

:

JNK ⇢ if JMK ⇢ = 0
JP K ⇢ if JMK ⇢ 6= 0,?
JNK ⇢ ^ JP K ⇢ if JMK ⇢ = ?

J�>bMK ⇢ =

8
<

:

> if JMK ⇢ 6= ? and
b⌧ ⌫({>}) for every ⌫ 2 JMK ⇢

? otherwise

Figure 2: Denotational semantics

10

ADEQUACY

Prop (adequacy). 
For every M : FVunit,  
— ⟦M⟧=⊥ and Pr(M↓)=0, or  
— ⟦M⟧=∅ and Pr(M↓)=1, or else  
— Pr(M↓)=min {ν({⊤}) | ν ∈ ⟦M⟧}

I.e., Pr(M↓)=h*(⟦M⟧)  
 where h(ν) = ν({⊤})

Jx�K ⇢ = ⇢(x�)

J�x�.MK ⇢ = V 2 J�K 7! JMK (⇢[x� 7! V]) JMNK ⇢ = JMK ⇢(JNK ⇢)
JproduceproduceproduceMK ⇢ = ⌘Q(JMK ⇢)

JM tototo x� ininin NK ⇢ = (V 2 J�K 7! JNK ⇢[x� 7! V])⇤(JMK ⇢)
JthunkthunkthunkMK ⇢ = JMK ⇢ JforceforceforceMK ⇢ = JMK ⇢

J⇤K ⇢ = > JnK ⇢ = n

JsuccsuccsuccMK ⇢ =

⇢
n+ 1 if n = JMK ⇢ 6= ?
? otherwise

JpredpredpredMK ⇢ =

⇢
n� 1 if n = JMK ⇢ 6= ?
? otherwise

Jifzifzifz M N P K ⇢ =

8
<

:

JNK ⇢ if JMK ⇢ = 0
JP K ⇢ if JMK ⇢ 6= 0,?
? if JMK ⇢ = ?

JM ;NK ⇢ =

⇢
JNK ⇢ if JMK ⇢ = >
? otherwise

J⇡1MK ⇢ = m, J⇡2MK ⇢ = n where JMK ⇢ = (m,n)

JhM,NiK ⇢ = (JMK ⇢, JNK ⇢)
JretretretMK ⇢ = �JMK⇢

Jdododox� M ;NK ⇢ = (V 2 J�K 7! JNK ⇢[x� 7! V])†(JMK ⇢)

JM �NK ⇢ =
1

2
(JMK ⇢+ JNK ⇢)

JM ? NK ⇢ = JMK ⇢ ^ JNK ⇢ JabortabortabortFFF⌧ K ⇢ = ;

Jrecrecrecx�.MK ⇢ = lfp(V 2 J�K 7! JMK ⇢[x� 7! V])

Jpifzpifzpifz M N P K ⇢ =

8
<

:

JNK ⇢ if JMK ⇢ = 0
JP K ⇢ if JMK ⇢ 6= 0,?
JNK ⇢ ^ JP K ⇢ if JMK ⇢ = ?

J�>bMK ⇢ =

8
<

:

> if JMK ⇢ 6= ? and
b⌧ ⌫({>}) for every ⌫ 2 JMK ⇢

? otherwise

Figure 2: Denotational semantics

10

ADEQUACY

Prop (adequacy). 
For every M : FVunit,  
— ⟦M⟧=⊥ and Pr(M↓)=0, or  
— ⟦M⟧=∅ and Pr(M↓)=1, or else  
— Pr(M↓)=min {ν({⊤}) | ν ∈ ⟦M⟧}

I.e., Pr(M↓)=h*(⟦M⟧)  
 where h(ν) = ν({⊤})

Proof: by suitable logical relations.

Jx�K ⇢ = ⇢(x�)

J�x�.MK ⇢ = V 2 J�K 7! JMK (⇢[x� 7! V]) JMNK ⇢ = JMK ⇢(JNK ⇢)
JproduceproduceproduceMK ⇢ = ⌘Q(JMK ⇢)

JM tototo x� ininin NK ⇢ = (V 2 J�K 7! JNK ⇢[x� 7! V])⇤(JMK ⇢)
JthunkthunkthunkMK ⇢ = JMK ⇢ JforceforceforceMK ⇢ = JMK ⇢

J⇤K ⇢ = > JnK ⇢ = n

JsuccsuccsuccMK ⇢ =

⇢
n+ 1 if n = JMK ⇢ 6= ?
? otherwise

JpredpredpredMK ⇢ =

⇢
n� 1 if n = JMK ⇢ 6= ?
? otherwise

Jifzifzifz M N P K ⇢ =

8
<

:

JNK ⇢ if JMK ⇢ = 0
JP K ⇢ if JMK ⇢ 6= 0,?
? if JMK ⇢ = ?

JM ;NK ⇢ =

⇢
JNK ⇢ if JMK ⇢ = >
? otherwise

J⇡1MK ⇢ = m, J⇡2MK ⇢ = n where JMK ⇢ = (m,n)

JhM,NiK ⇢ = (JMK ⇢, JNK ⇢)
JretretretMK ⇢ = �JMK⇢

Jdododox� M ;NK ⇢ = (V 2 J�K 7! JNK ⇢[x� 7! V])†(JMK ⇢)

JM �NK ⇢ =
1

2
(JMK ⇢+ JNK ⇢)

JM ? NK ⇢ = JMK ⇢ ^ JNK ⇢ JabortabortabortFFF⌧ K ⇢ = ;

Jrecrecrecx�.MK ⇢ = lfp(V 2 J�K 7! JMK ⇢[x� 7! V])

Jpifzpifzpifz M N P K ⇢ =

8
<

:

JNK ⇢ if JMK ⇢ = 0
JP K ⇢ if JMK ⇢ 6= 0,?
JNK ⇢ ^ JP K ⇢ if JMK ⇢ = ?

J�>bMK ⇢ =

8
<

:

> if JMK ⇢ 6= ? and
b⌧ ⌫({>}) for every ⌫ 2 JMK ⇢

? otherwise

Figure 2: Denotational semantics

10

NOTE

None of that yet requires CCCs of 
continuous (or algebraic) domains

NOTE

None of that yet requires CCCs of 
continuous (or algebraic) domains

Soundness/adequacy works 
even for non-call-by-push-value  
probabilistic languages,  
working in the CCC Dcpo

dcpos

NOTE

None of that yet requires CCCs of 
continuous (or algebraic) domains

Soundness/adequacy works 
even for non-call-by-push-value  
probabilistic languages,  
working in the CCC Dcpo

Continuity is only needed for more advanced applications:  
— full abstraction (next)  
— commutativity of the V monad (Fubini) at higher types

dcpos

THE CONTEXTUAL PREORDER

Let M ⪯ N iff for every context C of output type FVunit,  
 Pr(C . M↓) ≤ Pr(C . N↓)

THE CONTEXTUAL PREORDER

Let M ⪯ N iff for every context C of output type FVunit,  
 Pr(C . M↓) ≤ Pr(C . N↓)

M ⪯ N iff for every context C of output type FVunit,  
 h*(⟦C[M]⟧) ≤ h*(⟦C[N]⟧) (adequacy)

THE CONTEXTUAL PREORDER

Let M ⪯ N iff for every context C of output type FVunit,  
 Pr(C . M↓) ≤ Pr(C . N↓)

M ⪯ N iff for every context C of output type FVunit,  
 h*(⟦C[M]⟧) ≤ h*(⟦C[N]⟧) (adequacy)

Corollary. If ⟦M⟧ ≤ ⟦N⟧ then M ⪯ N.

THE CONTEXTUAL PREORDER

Let M ⪯ N iff for every context C of output type FVunit,  
 Pr(C . M↓) ≤ Pr(C . N↓)

M ⪯ N iff for every context C of output type FVunit,  
 h*(⟦C[M]⟧) ≤ h*(⟦C[N]⟧) (adequacy)

Corollary. If ⟦M⟧ ≤ ⟦N⟧ then M ⪯ N.

Proof. ⟦C[M]⟧ = ⟦C⟧ (⟦M⟧) ≤ ⟦C⟧ (⟦N⟧) = ⟦C[N]⟧ 
 since ⟦C⟧ (= ⟦λx . C[x]⟧) is Scott-continuous hence monotonic.  
 Then apply h*, which is monotonic as well. ☐

THE APPLICATIVE PREORDER

Let M ⪯ N iff for every context C of output type FVunit,  
 Pr(C . M↓) ≤ Pr(C . N↓)

Let M ⪯app N iff for every term P : τ → FVunit,  
 Pr(PM↓) ≤ Pr(PN↓)

THE APPLICATIVE PREORDER

Let M ⪯ N iff for every context C of output type FVunit,  
 Pr(C . M↓) ≤ Pr(C . N↓)

Let M ⪯app N iff for every term P : τ → FVunit,  
 Pr(PM↓) ≤ Pr(PN↓)

Proposition (« Milner’s context lemma » in PCF):  
 M ⪯ N iff M ⪯app N.

THE APPLICATIVE PREORDER

Let M ⪯ N iff for every context C of output type FVunit,  
 Pr(C . M↓) ≤ Pr(C . N↓)

Let M ⪯app N iff for every term P : τ → FVunit,  
 Pr(PM↓) ≤ Pr(PN↓)

Proposition (« Milner’s context lemma » in PCF):  
 M ⪯ N iff M ⪯app N.

Proof: based on an idea of A. Jung (Streicher 06), reusing our
previous logical relation.

FULL ABSTRACTION?

Conjecture (full abstraction): ⟦M⟧ ≤ ⟦N⟧ iff M ⪯ N.

FULL ABSTRACTION?

Conjecture (full abstraction): ⟦M⟧ ≤ ⟦N⟧ iff M ⪯ N.

Wrong. (As in (Plotkin 77).) Using another logical relation,  
for every P : int → int → Fint, if ⟦P⟧(⊥)(0)=⟦P⟧(0)(⊥)={0}  
 then ⟦P⟧(⊥)(⊥)={0}

FULL ABSTRACTION?

Conjecture (full abstraction): ⟦M⟧ ≤ ⟦N⟧ iff M ⪯ N.

Wrong. (As in (Plotkin 77).) Using another logical relation,  
for every P : int → int → Fint, if ⟦P⟧(⊥)(0)=⟦P⟧(0)(⊥)={0}  
 then ⟦P⟧(⊥)(⊥)={0}

Hence with M = λP . PΩ0==0 && P0Ω==0 
 N = λP . MP && PΩΩ==0 (and some syntactic sugar)  
we have M ⪯ N.

FULL ABSTRACTION?

Conjecture (full abstraction): ⟦M⟧ ≤ ⟦N⟧ iff M ⪯ N.

Wrong. (As in (Plotkin 77).) Using another logical relation,  
for every P : int → int → Fint, if ⟦P⟧(⊥)(0)=⟦P⟧(0)(⊥)={0}  
 then ⟦P⟧(⊥)(⊥)={0}

Hence with M = λP . PΩ0==0 && P0Ω==0 
 N = λP . MP && PΩΩ==0 (and some syntactic sugar)  
we have M ⪯ N.

But ⟦M⟧≰⟦N⟧ since ⟦M⟧(por)=⊤, ⟦N⟧(por)=⊥.

FULL ABSTRACTION?

Add parallel if pifz:  
⟦pifz M N P⟧ = ⟦N⟧ if ⟦M⟧=0 
 ⟦P⟧ if ⟦M⟧≠0,⊥  
 ⟦N⟧⋀⟦P⟧ (not ⊥!) if ⟦M⟧=⊥

FULL ABSTRACTION?

Add parallel if pifz:  
⟦pifz M N P⟧ = ⟦N⟧ if ⟦M⟧=0 
 ⟦P⟧ if ⟦M⟧≠0,⊥  
 ⟦N⟧⋀⟦P⟧ (not ⊥!) if ⟦M⟧=⊥

Conjecture (full abstraction): ⟦M⟧ ≤ ⟦N⟧ iff M ⪯ N.

FULL ABSTRACTION?

Add parallel if pifz:  
⟦pifz M N P⟧ = ⟦N⟧ if ⟦M⟧=0 
 ⟦P⟧ if ⟦M⟧≠0,⊥  
 ⟦N⟧⋀⟦P⟧ (not ⊥!) if ⟦M⟧=⊥

Conjecture (full abstraction): ⟦M⟧ ≤ ⟦N⟧ iff M ⪯ N.

Still wrong. As in (GL 15), missing statistical termination
testers.

STATISTICAL TERMINATION TESTERS

Let M = λP . P(Ω ⊕ ret *)  
 N = λP . P(Ω) ⊕ ret * (modulo some missing force, produce, etc.)  
Then M ⪯ N, even with pifz

STATISTICAL TERMINATION TESTERS

Let M = λP . P(Ω ⊕ ret *)  
 N = λP . P(Ω) ⊕ ret * (modulo some missing force, produce, etc.)  
Then M ⪯ N, even with pifz

But ⟦M⟧≰⟦N⟧ since ⟦M⟧([>b])=↑δ⊤, ⟦N⟧([>b])=⊥ for all b<1/2,  
where [>b] : ⟦Vunit⟧ → ⟦FVunit⟧ 
 maps every ν to ‘termination’ (↑δ⊤) if ν({⊤})>b,  
 to ⊥ otherwise.

STATISTICAL TERMINATION TESTERS

Let M = λP . P(Ω ⊕ ret *)  
 N = λP . P(Ω) ⊕ ret * (modulo some missing force, produce, etc.)  
Then M ⪯ N, even with pifz

But ⟦M⟧≰⟦N⟧ since ⟦M⟧([>b])=↑δ⊤, ⟦N⟧([>b])=⊥ for all b<1/2,  
where [>b] : ⟦Vunit⟧ → ⟦FVunit⟧ 
 maps every ν to ‘termination’ (↑δ⊤) if ν({⊤})>b,  
 to ⊥ otherwise.

[>b] tests whether the prob. that its argument terminates is > b.

FULL ABSTRACTION

Add pifz + ⃝ >b (with the semantics of [>b], 0<b<1 dyadic)

FULL ABSTRACTION

Add pifz + ⃝ >b (with the semantics of [>b], 0<b<1 dyadic)

Theorem (full abstraction): with pifz and ⃝ >b,  
 ⟦M⟧ ≤ ⟦N⟧ iff M ⪯ N.

FULL ABSTRACTION

Add pifz + ⃝ >b (with the semantics of [>b], 0<b<1 dyadic)

Theorem (full abstraction): with pifz and ⃝ >b,  
 ⟦M⟧ ≤ ⟦N⟧ iff M ⪯ N.

And now a glimpse of the argument…

FULL ABSTRACTION: PROOF

We assume ⟦M⟧ ≰ ⟦N⟧, and we wish to prove not (M ⪯ N).

FULL ABSTRACTION: PROOF

We assume ⟦M⟧ ≰ ⟦N⟧, and we wish to prove not (M ⪯ N).

There is a subbasic open set U / ⟦M⟧ ∈ U, ⟦N⟧ ∉ U 
 (because ≤ is the specialization ordering of the Scott topology)

FULL ABSTRACTION: PROOF

We assume ⟦M⟧ ≰ ⟦N⟧, and we wish to prove not (M ⪯ N).

There is a subbasic open set U / ⟦M⟧ ∈ U, ⟦N⟧ ∉ U 
 (because ≤ is the specialization ordering of the Scott topology)

If U is definable by a term P  
(i.e., ⟦P⟧ maps each x ∈ U to ↑δ⊤ and each x ∉ U to ⊥)  
then ⟦PM⟧ = ↑δ⊤, ⟦PN⟧ = ⊥, so not (M ⪯app N).  
Conclude by Milner’s context lemma.

FULL ABSTRACTION: PROOF

We assume ⟦M⟧ ≰ ⟦N⟧, and we wish to prove not (M ⪯ N).

There is a subbasic open set U / ⟦M⟧ ∈ U, ⟦N⟧ ∉ U 
 (because ≤ is the specialization ordering of the Scott topology)

If U is definable by a term P  
(i.e., ⟦P⟧ maps each x ∈ U to ↑δ⊤ and each x ∉ U to ⊥)  
then ⟦PM⟧ = ↑δ⊤, ⟦PN⟧ = ⊥, so not (M ⪯app N).  
Conclude by Milner’s context lemma.

Challenge: show that each ⟦τ⟧ has a subbase of definable opens.

PROBABILISTIC TYPES

⟦Vσ⟧: subbasic opens [U>b]  
 where U is a basic open of ⟦σ⟧, b dyadic in (0,1)

PROBABILISTIC TYPES

⟦Vσ⟧: subbasic opens [U>b]  
 where U is a basic open of ⟦σ⟧, b dyadic in (0,1)

I.e. (requires ⟦σ⟧ continuous!) Scott=weak topology (Kirch 93)

PROBABILISTIC TYPES

⟦Vσ⟧: subbasic opens [U>b]  
 where U is a basic open of ⟦σ⟧, b dyadic in (0,1)

I.e. (requires ⟦σ⟧ continuous!) Scott=weak topology (Kirch 93)

test ν∈[U>b]: iff ν(U)>b, implemented through  
 ‘ ⃝ >b (do xσ ⃪ ν; ⟨test xσ ∈ U⟩)’

PROBABILISTIC TYPES

⟦Vσ⟧: subbasic opens [U>b]  
 where U is a basic open of ⟦σ⟧, b dyadic in (0,1)

I.e. (requires ⟦σ⟧ continuous!) Scott=weak topology (Kirch 93)

test ν∈[U>b]: iff ν(U)>b, implemented through  
 ‘ ⃝ >b (do xσ ⃪ ν; ⟨test xσ ∈ U⟩)’

Note: ⟦Vσ⟧ also has a basis of 
 ∑x ax δx, ax dyadic, each x from a basis of ⟦σ⟧ 
 implementable using ret and ⊕

F TYPES

⟦Fσ⟧: subbasic opens ☐U 
 where U is a basic open of ⟦σ⟧

F TYPES

⟦Fσ⟧: subbasic opens ☐U 
 where U is a basic open of ⟦σ⟧

I.e. (requires ⟦σ⟧ continuous!) Scott=upper Vietoris topology

F TYPES

⟦Fσ⟧: subbasic opens ☐U 
 where U is a basic open of ⟦σ⟧

I.e. (requires ⟦σ⟧ continuous!) Scott=upper Vietoris topology

test Q ∈ ☐U: iff Q⊆U, implemented through  
 ‘Q to xσ in ⟨test xσ ∈ U⟩’

F TYPES

⟦Fσ⟧: subbasic opens ☐U 
 where U is a basic open of ⟦σ⟧

I.e. (requires ⟦σ⟧ continuous!) Scott=upper Vietoris topology

test Q ∈ ☐U: iff Q⊆U, implemented through  
 ‘Q to xσ in ⟨test xσ ∈ U⟩’

Note: ⟦Fσ⟧ also has a basis of ↑{x1, …, xn},  
 (each xi from a basis of ⟦σ⟧), plus ⊥,  
 implementable using produce, abort, and

Jx�K ⇢ = ⇢(x�)

J�x�.MK ⇢ = V 2 J�K 7! JMK (⇢[x� 7! V]) JMNK ⇢ = JMK ⇢(JNK ⇢)
JproduceproduceproduceMK ⇢ = ⌘Q(JMK ⇢)

JM tototo x� ininin NK ⇢ = (V 2 J�K 7! JNK ⇢[x� 7! V])⇤(JMK ⇢)
JthunkthunkthunkMK ⇢ = JMK ⇢ JforceforceforceMK ⇢ = JMK ⇢

J⇤K ⇢ = > JnK ⇢ = n

JsuccsuccsuccMK ⇢ =

⇢
n+ 1 if n = JMK ⇢ 6= ?
? otherwise

JpredpredpredMK ⇢ =

⇢
n� 1 if n = JMK ⇢ 6= ?
? otherwise

Jifzifzifz M N P K ⇢ =

8
<

:

JNK ⇢ if JMK ⇢ = 0
JP K ⇢ if JMK ⇢ 6= 0,?
? if JMK ⇢ = ?

JM ;NK ⇢ =

⇢
JNK ⇢ if JMK ⇢ = >
? otherwise

J⇡1MK ⇢ = m, J⇡2MK ⇢ = n where JMK ⇢ = (m,n)

JhM,NiK ⇢ = (JMK ⇢, JNK ⇢)
JretretretMK ⇢ = �JMK⇢

Jdododox� M ;NK ⇢ = (V 2 J�K 7! JNK ⇢[x� 7! V])†(JMK ⇢)

JM �NK ⇢ =
1

2
(JMK ⇢+ JNK ⇢)

JM ? NK ⇢ = JMK ⇢ ^ JNK ⇢ JabortabortabortFFF⌧ K ⇢ = ;

Jrecrecrecx�.MK ⇢ = lfp(V 2 J�K 7! JMK ⇢[x� 7! V])

Jpifzpifzpifz M N P K ⇢ =

8
<

:

JNK ⇢ if JMK ⇢ = 0
JP K ⇢ if JMK ⇢ 6= 0,?
JNK ⇢ ^ JP K ⇢ if JMK ⇢ = ?

J�>bMK ⇢ =

8
<

:

> if JMK ⇢ 6= ? and
b⌧ ⌫({>}) for every ⌫ 2 JMK ⇢

? otherwise

Figure 2: Denotational semantics

10

FUNCTION TYPES (1/2)

⟦σ → τ⟧: subbasic opens [x ↦ V],  
 where x is from some basis of ⟦σ⟧,  
 V is a subbasic open of ⟦τ⟧

FUNCTION TYPES (1/2)

⟦σ → τ⟧: subbasic opens [x ↦ V],  
 where x is from some basis of ⟦σ⟧,  
 V is a subbasic open of ⟦τ⟧

I.e. (uses ⟦σ⟧ bc-domain!) Scott=top. of pointwise convergence

FUNCTION TYPES (1/2)

⟦σ → τ⟧: subbasic opens [x ↦ V],  
 where x is from some basis of ⟦σ⟧,  
 V is a subbasic open of ⟦τ⟧

I.e. (uses ⟦σ⟧ bc-domain!) Scott=top. of pointwise convergence

test f in [x ↦ V]: iff f(x) ∈ V, implemented straightforwardly

FUNCTION TYPES (1/2)

⟦σ → τ⟧: subbasic opens [x ↦ V],  
 where x is from some basis of ⟦σ⟧,  
 V is a subbasic open of ⟦τ⟧

I.e. (uses ⟦σ⟧ bc-domain!) Scott=top. of pointwise convergence

test f in [x ↦ V]: iff f(x) ∈ V, implemented straightforwardly

Note we need to also define a basis of each type ⟦σ⟧ now.  
We have them for V and F types, and the difficult case is for →.

FUNCTION TYPES (2/2)

Basis for ⟦σ → τ⟧: step functions ⋁1≤i≤n Ui ↘ yi  
 mapping each x to ⋁{yi | x ∈ Ui}… 
 but that sup is hard to implement — we only have infs.

FUNCTION TYPES (2/2)

Basis for ⟦σ → τ⟧: step functions ⋁1≤i≤n Ui ↘ yi  
 mapping each x to ⋁{yi | x ∈ Ui}… 
 but that sup is hard to implement — we only have infs.

Trick: for each subset I of {1, …, n},  
 let UI = intersection of Ui, i in I,  
 yI = sup of yi, i in I.  
Then ⋁1≤i≤n Ui ↘ yi (x) = inf {yI | I ⊇ Ix} where Ix = {i | x ∈ Ui}

FUNCTION TYPES (2/2)

Basis for ⟦σ → τ⟧: step functions ⋁1≤i≤n Ui ↘ yi  
 mapping each x to ⋁{yi | x ∈ Ui}… 
 but that sup is hard to implement — we only have infs.

Trick: for each subset I of {1, …, n},  
 let UI = intersection of Ui, i in I,  
 yI = sup of yi, i in I.  
Then ⋁1≤i≤n Ui ↘ yi (x) = inf {yI | I ⊇ Ix} where Ix = {i | x ∈ Ui}

Additional difficulties (need for pifz notably)… omitted. Done!☐

SUMMARY

Circumventing the trouble with V 
by using two classes of types,  
as provided by call-by-push-value

We obtain (inequational) full
abstraction with prob. choice +
demonic non-determinism

Questions?

