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LCF CONSIDERED AS A PROGRAMMING LANGUAGE

G.D. PLOTKIN

o o f A -=Seial Intelligence, University of Edinburgh, Hope Park Square, Meadow Lane,
‘W, Scotland

Robin Milner

r studies connections between denotational and operational semaniics for a
ig language based on LCF. It begins with the connection between the
ram and its denotation. It turns out that a program denotes L in any of severai
ff iv does not terminate. From this it follows that if two terms have the same
{ these semantics, they have the same behaviour in all contexts. The converse
ntics, If, however, the language is extended to allow certain parallel facilities
lence does coincide with denotational equivalence in one of the semantics.
nuy therefore be called “fully abstract™, Next a connection is given which
‘ne semantics up to isomorphism from the bebaviour alone. Conversely, by
allowing further parallel facilities, every re. element of the fully abstract semantice. becomes
definable, thus characierising the programming language, up to interdefinability, from the set of
r.e. eleminis of e domains of the semantics.

—

1. Introduction

We present here a sivdy of some connections between the operational and
denotational semantics of a simple programming language based on LCF [3,5].
Whiie this langnage is itself rather far from the commenly used languages, we do
hop: that the kind of connections studied will be illuminating in the study of these
lunguages too.

The first connection is the relation between the behaviour of a program and the

— M

Types O, T,...:=int|0o—T

Terms M,N, ... = x¢

MN

>\ Xo . M
rec xg. M
n

succ M
pred M

ifzMNP

(All terms are typed. Call by name.)



PLOTKIN'S PCF (19/77)

Types O, T,...:=int|0c—>T

Terms M,N, ... = x¢

MN

>\ Xo . M
rec xg. M
n

succ M
pred M
ifzMNP

(All terms are typed. Call by name.)

An operational semantics:
M —->*N

A denotational semantics:
[M]

Adequacy:
for every ground M :int,
IM]=niff M =*n



PLOTKIN'S PCF (19/77)

An operational semantics: Contextual preordering:
M =% N M =< N iff
for every context C : int,
A denotational semantics: CIM] ?*n = C[N] ?*n
[M]
Fact: if [M]<[N] then M =< N
Adequacy:

for every ground M :int, Converse is full abstraction.

[MI=niff M =&*n Fails for PCF, works for PCF+por



DCPOS

Every type T interpreted as a dcpo [T]...

= poset in which every directed family D
has a supremum VD

VD
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DCPOS

Every type T interpreted as a depo [T]...

= poset in which every directed family D
has a supremum VD

[int] = Z, (L<n,all nincomparable)
[c = 7] =[[co] — [TI],

dcpo of Scott-continuous maps :[O] — [T]
(monotonic + preserves directed sups)

VD



THE SEMANTICS OF PCF

Terms M, N, ..

I
|>\Xo'

e [O— T] e [O]

[MN] = [IMI(IN])
[A xo.M] = (Vo [M][x5:=V])

e [O] e [T]

Meaningful since Dcpo is a
Cartesian-closed category



CARTESIAN-CLOSEDNESS

e [O— T1] e [O]

[MNT] = [MI(INT)
[A xa.M] = (V » [M][x5:=V])

€ [O] e [T]

Meaningful since Dcpo is a
Cartesian-closed category

In order to prove full abstraction
(with por), we require to be able
to approximate elements of

[T] by definable elements [M].

In the case of PCF, each [T] is an

algebraic bc-domain,
making that possible.

Cartesian-closed... good.
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CCCS OF CONTINUOUS DCPOS

In order to prove full abstraction
(with por), we require to be able
to approximate elements of

[T] by definable elements [M].

In the case of PCF, each [T] is an

algebraic bc-domain,
making that possible.

Cartesian-closed... good.

Many other CCCs would fit.

continuous dcpos

continuous coherent dcpos

FS-domains CCGCs of
continuous
dcpos

RB-domains

L-domains

bifinite domains

bc-domains

algebraic
bc-domains

continuous complete lattices

algebraic complete lattices
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A basis B of a dcpo X iff for every x,
{b € B|b « x} directed and has x as sup

A dcpo X is continuous iff has a basis




CONTINUOUS DCPOS

Approximation (way-below): y _— .
x <y iff for every directed D such that y<VD, '
x is already below some element of D V

A basis B of a dcpo X iff for every x,
{b € B|b « x} directed and has x as sup

A dcpo X is continuous iff has a basis

Ex: the finite subsets of A form a basis of P(A) with inclusion
N forms a basis of N u {00}

Q+ forms a basis of R+ u {0} (x < y iff x=0 or x<y here)



ADDING PROBABILITIES

Types
O, T,...:=Int |0~ T| VT
Terms M,N, ... = ...

Mo N

ret M

do xc — M; N



ADDING PROBABILITIES

Monadic type of subprobability
valuations over T
Types
O, T,...:=Int |0~ T| VT

Terms M,N, ... = ...
Mo N

ret M
do xc — M; N




ADDING PROBABILITIES

Monadic type of subprobability
valuations over T
Types
O, T,...:=Int |0~ T| VT

with M, N: VT,
Terms M,N, ... = ... choose between M and N
M@ N with probability 1/2

ret M
do xc — M; N




ADDING PROBABILITIES

Monadic type of subprobability

valuations over T

Types
O, T,...:=Int |0~ T| VT

with M, N: VT,
Terms M,N, ... == ... choose between M and N

M@ N with probability 1/2

ret M
do xc — M; N

mohnadic constructions:
M:T = ret M\:VT

MVO N.VT =do xc— M;N : VT

(Moggi-1991)
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contiiuous
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FS-domains
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RB-domains
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MORE POSITIVELY: o o

continuous
coherent dcpos

FS-domains

(Jung, Tix | 34
RB-domains
Look for a category of

continuous dcpos that is L-domains

bifinite domains

. bc-domains
Cartesian-closed

algebraic

bc-domains continuous

closed under V .
complete lattices

algebraic complete
lattices



OTHER
SOLUTIONS (1)

Change categories entirely.
E.g., reason in probabilistic
coherence spaces

Equationally fully abstract
semantics

(Ehrhard, Pagani, Tasson 14)

also for call-by-push-value
(Ehrhard, Tasson 19)

probabilistic choice ‘built-in’




OTHER SOLUTIONS (2)

Change categories, and opt for QCB spaces/predomains
(Battenfeld 06)

... Cartesian-closed, and has a probabilistic choice monad




OTHER SOLUTIONS (2)

Change categories, and opt for QCB spaces/predomains
(Battenfeld 06)

... Cartesian-closed, and has a probabilistic choice monad

Changes categories, and opt for quasi-Borel spaces/
domains

(Heunen, Kammar, Staton, Yang | 7;Vakar, Kammar, Staton 19)
... Cartesian-closed,

and closed under a ‘laws of random variables’ functor




BACK TO DOMAINS

continuous dcpos

There is no need to leave |
domain theory after all S G

FS-domains

RB-domains

An eaS)’ SOIUt'On Look for a category of

continuous dcpos that is Sl et S

using call-by-push-value e

algebraic

bc-domains continuous

closed under V .
complete lattices

will also handle the mix with
demonic non-determinism

algebraic complete
lattices
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TWO KINDS OF TYPES?

No such problem with two kinds of types: continuous (coherent) dcpos

O,T,...:=int|... | oxT|VT

(0 0 iy MR T € . . .
bc-domains/continuous lattices




CALL-BY-PUSH-VALUE

No such problem with two kinds of types: continuous (coherent) dcpos

O,T,...:=int|unit |Ug |oxT|VT

oT1T...=FC|O—T , , ,
bc-domains/continuous lattices

This is the type structure of Paul B. Levy’s call-by-push-value
(except for the V construction)

Call-By-Push-Value: A Subsuming Paradigm
(extended abstract)

Paul Blain Levy*

Department of Computer Science, Queen Mary and Westficld College
LONDON E1 4NS pbl@dcs.qmw.ac.uk

Abstract. Call-by-push-valuc is a ncw paradigm that subsumecs the
call-by-namc and call-by-valuc paradigms, in the following scnsc: both
opcrational and denotational scmantics for those paradigms can be scen

as arising, via translations that wec will provide, from similar scmantics
for call-by-push-valuc. evy

To cxplain call-by-push-valuc, we first discuss gencral opcrational idceas,
cspecially the distinction between values and computations, using the
principle that “a valuc is, a computation docs”. Using an cxample pro-
gram, we scc that the lambda-calculus primitives can be understood as
push/pop commands for an opcrand-stack.

We provide operational and denotational semantics for a range of com-
putational cffects and show their agreement. We hence obtain semantics
for call-by-namec and call-by-valuc, of which some arc familiar, some arc
new and some were known but previously appcarcd mysterious.



CALL-BY-PUSH-VALUE

No such problem with two kinds of types: value types
O,T,...:=int|unit |Ug |oxT|VT

oT1T...=FC|O—T , , ,
bc-domains/continuous lattices

This is the type structure of Paul B. Levy’s call-by-push-value
(except for the V construction)

Call-By-Push-Value: A Subsuming Paradigm
(extended abstract)

Paul Blain Levy*

Department of Computer Science, Queen Mary and Westficld College
LONDON E1 4NS pbl@dcs.qmw.ac.uk

Abstract. Call-by-push-valuc is a ncw paradigm that subsumecs the
call-by-namc and call-by-valuc paradigms, in the following scnsc: both
opcrational and denotational scmantics for those paradigms can be scen

as arising, via translations that wec will provide, from similar scmantics
for call-by-push-valuc. evy

To cxplain call-by-push-valuc, we first discuss gencral opcrational idceas,
cspecially the distinction between values and computations, using the
principle that “a valuc is, a computation docs”. Using an cxample pro-
gram, we scc that the lambda-calculus primitives can be understood as
push/pop commands for an opcrand-stack.

We provide operational and denotational semantics for a range of com-
putational cffects and show their agreement. We hence obtain semantics
for call-by-namec and call-by-valuc, of which some arc familiar, some arc
new and some were known but previously appcarcd mysterious.



CALL-BY-PUSH-VALUE

No such problem with two kinds of types: value types
O,T,...:=int|unit |Ug |oxT|VT
@, T e i FO G T

computation types

This is the type structure of Paul B. Levy’s call-by-push-value
(except for the V construction)

Call-By-Push-Value: A Subsuming Paradigm
(extended abstract)

Paul Blain Levy*

Department of Computer Science, Queen Mary and Westficld College
LONDON E1 4NS pbl@dcs.qmw.ac.uk

Abstract. Call-by-push-valuc is a ncw paradigm that subsumecs the
call-by-namc and call-by-valuc paradigms, in the following scnsc: both
opcrational and denotational scmantics for those paradigms can be scen

as arising, via translations that wec will provide, from similar scmantics
for call-by-push-valuc. evy

To cxplain call-by-push-valuc, we first discuss gencral opcrational idceas,
cspecially the distinction between values and computations, using the
principle that “a valuc is, a computation docs”. Using an cxample pro-
gram, we scc that the lambda-calculus primitives can be understood as
push/pop commands for an opcrand-stack.

We provide operational and denotational semantics for a range of com-
putational cffects and show their agreement. We hence obtain semantics
for call-by-namec and call-by-valuc, of which some arc familiar, some arc
new and some were known but previously appcarcd mysterious.
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O,T,...:=int|unit |Ug |oxT|VT

MINGGos=as,
| forceM (Uag ~ 0)
| thunk M (0 ~ UQ)



U AND F

continuous (coherent) dcpos
O, & et o—T : : :
bc-domains/continuous lattices

U converts from bc-domains to continuous coherent dcpos
... semantically the identity: [Ug]=[C]

O,T,...:=int|unit |Ug |oxT|VT

VNN o =as,
| forceM (Ug ~ O0) [force M] = [M]
| thunk M (0 ~ UQ) [thunk M] = [M]

force thunk M - M



U AND F

O,T,...:=int|unit |Ug |oxT|VT

Tveer i F O G T . . .
bc-domains/continuous lattices

o, T,

continuous (coherent) dcpos

U converts from bc-domains to continuous coherent dcpos

... semantically the identity: [Ug]=[C]

F converts from continuous coherent dcpos to bc-domains

... Ershov’s bounded complete hull
would be the canonical choice

(but is too intricate for our purposes.)

Theoretical

ELSEVIER Theoretical Computer Science 175 (1997) 3-13 —_—

The bounded-complete hull of an x-space
Yu.L. Ershov*!

Research Institute for Informatics and Mathematics, Novosibirsk State University,
630090 Novosibirsk, Russia

1. Introduction

In the paper [3], the author suggested a general topological approach to domain
theory as highly convenient and more general than the established more traditional



THE SMY TH POWERDOMAIN

QX = {compact saturated subsets of X}, reverse inclusion 2

Fact. For X continuous coherent dcpo,
Ershov’s bc-hull of X is a subspace of QX.

QX is itself a bc-domain (even a continuous complete lattice),
and is much easier to use.

Serves as a model of demonic non=-determinism.



THE SMY TH POWERDOMAIN

QX = {compact saturated subsets of X}, reverse inclusion 2
defines a(nother) monad on the cat. of cont. coh. dcpos.

Unit: n: X = QX :x~ Tx (continuous)

Extension: for f : X = L where L continuous complete lattice,

let f*:QX — L:Q +~ inf {f(x) | x € Q}
— if f is continuous then f* is continuous
= ot =]
—ffogf=(ffog)”



THE SMY TH, POWERDOMAIN

Q. X = QX plus a fresh bottom L
defines a(nother) monad on the cat. of cont. coh. dcpos.

Unit: n: X 2 Q. X:x~ Tx (continuous)

Extension: for f : X = L where L continuous complete lattice,

let f*: QX 2> L:Q~inf{f(x) | x€Q}, L~ L
— if f is continuous then f* is continuous — and f* is strict now
et i P
et A 2| g o S



U AND F

continuous (coherent) dcpos
oT1T...=FC|O—T , , ,
bc-domains/continuous lattices

U converts from bc-domains to continuous coherent dcpos: [UCO]=[OT]

O,T,...:=int|unit |Ug |oxT|VT

F converts from continuous coherent dcpos to bc-domains: [FO]=Q . [CT]



U AND F

continuous (coherent) dcpos
FoOo|o—T . . .
bc-domains/continuous lattices

U converts from bc-domains to continuous coherent dcpos: [UT]=[C]

(0 53 PN T
(0 g e

int |unit | Uc |oxT|VT

F converts from continuous coherent dcpos to bc-domains: [FO]=Q . [CT]
M,N, ... == ...

M abortro
MO N
produce M (0~ FO)

W M to xo in N




U AND F

continuous (coherent) dcpos

O,T,...:=int|unit |Ug |oxT|VT

oT1T...=FC|O—T , , ,
bc-domains/continuous lattices

U converts from bc-domains to continuous coherent dcpos: [UT]=[C]

F converts from continuous coherent dcpos to bc-domains: [FO]=Q . [CT]

M NI =l [abortrs] = O
i [M® N] = [M] A [N]

abortes
Mo N [produce M] = n(IM])

produceM (o0~ Fg) [MtoxsinN]=
M to xo in N (V > [NT[xo:=V])* (IMI)




U AND F

continuous (coherent) dcpos

O,T,...:=int|unit |Ug |oxT|VT

oT1T...=FC|O—T , , ,
bc-domains/continuous lattices

U converts from bc-domains to continuous coherent dcpos: [UT]=[C]

F converts from continuous coherent dcpos to bc-domains: [FO]=Q . [CT]

M NI =l [abortrs] = O
i [M® N] = [M] A [N]

abortes
Mo N [produce M] = n(IM])

produceM (o0~ Fg) [MtoxsinN]=
M to xo in N (V > [NT[xo:=V])* (IMI)

(produce M) to xgc iIn N = N[xs:=M] + etc.
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OPERATIONAL SEMAN TICS

A Krivine machine for deterministic
operations, working on configurations

cC.M

C-EM]|—-CE-M C[-N] - Xzo.M — C - M|z, := N]
C[-to z, in N] - produce M — C' - N[z, := M] C[force_|-thunk M — C - M
[-] - produce M — [produce _| - M

Clpred ] - n - C-n—1 Clsuce ] -n—-C-n+1
Clifz_N P]-0—-C-N Clifz_NP]-n—C-P (n#0)
C|5N]-*—C-N
Clri]- (M,N) = C-M Clr2] - (M,N) = C-N

Cldozs < _;N]-ret M — C - N[zs := M] [produce _| - ret M/ — [produceret |- M
C-recxs. M — C - Mz, :=recz,.M]




OPERATIONAL SEMAN TICS

A Krivine machine for deterministic
operations, working on configurations

cC.M

Prob. must-termination judgments

C.Mla

(« whichever way you resolve the
demonic non-deterministic choices,
the probability that C . M terminates

is >a. »)

C-EM]—CE-M

C[.N] - A\zo.M — C - M|z, := N]
C[-to z, in N] - produce M — C' - N[z, := M]

Clforce ] - thunk M — C - M
[-] - produce M — [produce _| - M
Clpred ] - n - C-n—1 Clsuce ] -n—-C-n+1
Clifz_NP]-0—»C-N Clifz_NP]-n—C-P (n#0)
C|5N]-*—C-N
Clmi] - (M,N)y - C-M Clra]-(M,N) - C-N
Cldozs < _;N]-ret M — C - N[zs := M] [produce _| - ret M — [produ t |- M
C -reczo.M — C - Mlzs := ZTo.M]
(a€Qnlo,1)) (a€Qnjo,1))
[produceret |- x| a C-M|O C - abortg, a
C'-M la

C-Mla C-Nlb
(fC-M—C M)
C-M|la

C-M|la C-Nla
C-M@&N/|(a+b)/2

C-M®Nla
[1-Mib C-xla

C-ifzM N Pla C-Nla C-Pla

C-OspMla C-pifz M N Pla C-pifz M N Pla




OPERATIONAL SEMAN TICS

C-EM]—-CE-M C[.N] - Azs.M — C - M[zs := N]
C[-to z, in N] - produce M — C' - N[z, := M]

Clforce ] - thunk M — C - M .
[] - produce M — [produce | - M
operations, working on configurations

Clpred | - n—C-n—1

Clsuce ] -n—-C-n+1
Clifz_N P]-0—C-N
C.M

Clifz_NP|-n—C-P
C|5N]-*—C-N

A Krivine machine for deterministic

Clm]-(M,N) = C-M

Clra] - (M,NY = C-N
Cldozs < _;N]-ret M — C - N[z, :

= M] [produce _| - ret M/ — [produceret |- M
C-recz,.M — C - M[z, := rec z,.M]
Prob. must-termination judgments

C.Mla
(« whichever way you resolve the

C-Mla C-Nlia
demonic non-deterministic choices,

C-M®N | (a+b)/2 C-MON la
[]-M{b C-xla C-ifzMNPla C-Nla C-Pla

of ¢ : C-OspMla C-pifzM N Pla
the probability that C . M terminates

is >a. »)

C-pifz M N Pla

(a€Qnlo,1))
[produceret |- x| a

(e €Qnl0,1))
C-M|O C - abortg, a
C'-M la

C-Mla C-Nlb
(fC-M—C M)
C-M|la

Let Pr(C . M!l)=sup{a|C.M{ a}, Pr(iMl)=Pr([ ].M])




ADEQUACY

Prop (adequacy).
For every M : FVunit,

— [M]=L and Pr(M!1)=0, or
— [M]=@ and Pr(Ml)=1, or else
— Pr(M1)=min {v({T}) | v € [MI}

[zo] p = p(zs)
[\eo. M]p=V € [o] = [M] (plzs = V])  [MN]p=[M]p([N]p)
[produce M] p = 1°([M] p)
[M to z, in N]p = (V € [o] = [N] plzo = V])*([M] p)
[thunk M ] p = [M] p [force M]p =[M]p
[lp=T [n]p=n

[ n+1l n=[M]p#L
[suce M] p = { AL otherwise

L [n—1 ifn=[M]p#L
[pred M] _{ A otherwise

[N]p if[M]p=0

[[iszNP]]p:{ [Plp if[M]p#0,L
1 if[M]p=1L

. _J [Nlp if[M]p=T
[M; N] o= { A otherwise

[r1M] p=m,[maM] p =n where [M]p= (m,n)
[(M, N)] p = (IM] p, [N] p)
[ret M] p = opary,
[doz, = M;N]p= (V € [o] = [N] plas = V]) ([M] p)

[N p = 5([M]p+[Np)

[MoN]p=[M]pA[N]p [aborte.] p =0
[rec z,.M] p = lp(V € [o] — [M] plzs — V])




ADEQUACY

Prop (adequacy).
For every M : FVunit,

— [M]=L and Pr(M!1)=0, or
— [M]=@ and Pr(Ml)=1, or else
— Pr(M1)=min {v({T}) | v € [MI}

l.e., Pr(M1)=h*([M])
where h(V) = v({T})

[[xo]] p= P(ma)

[Aeo-M]p=V € o] = [M] (plzo = V])  [MN]p=[M]p([N]p)

[produce M] p = 1°([M] p)
[M to x5 in N]p = (V € [o] = [N] plzo = V])*([M] p)

[thunk M p = [M] p [force M| p = [M] p
[xlp=T [nlp=n
[succ M]p = { 7}_"’_ 1 gtﬁer:w[gé\g]]p# 1

reato={ 17! e
[N]p i[M]p=0

[ifz M N P]p=1< [P]lp if[M]p#0,L
1 if[M]p=1L

. _J [Nlp if[M]p=T
[M; N] o= { A otherwise

[r1M] p=m,[maM] p =n where [M]p= (m,n)
[(M, N)] p = (IM] p, [N] p)
[ret M] p = opary,
[doz, = M;N]p= (V € [o] = [N] plas = V]) ([M] p)

[N p = 5([M]p+[Np)

[MoN]p=[M]pA[N]p [aborte.] p =0
[rec z,.M] p = lp(V € [o] — [M] plzs — V])




ADEQUACY

Prop (adequacy).
For every M : FVunit,

— [M]=L and Pr(M!1)=0, or
— [M]=@ and Pr(Ml)=1, or else
— Pr(M1)=min {v({T}) | v € [MI}

l.e., Pr(M1)=h*(IMI)

where h(V) = v({T})

Proof: by suitable logical relations.

[zo] p = p(zs)
[\zo.M]p=V € [o] = [M] (plzo = V])  [MN]p=[M]p([N]p)
[produce M] p = 1 ([M] p)
[M to x5 in N]p = (V € [o] = [N] plzo = V])*([M] p)

[thunk M p = [M] p [force M| p = [M] p
[x]p=T [n]p=n

S

reato={ 17! e

[N]p i[M]p=0
[ifz M N P]p=1< [P]lp if[M]p#0,L
1 if[M]p=1L

[[M;N]]p:{ [[LN]]p #[M]p=T

[r1M] p=m,[maM] p =n where [M]p= (m,n)

[{(M, N)] p = ([M] p, [N] p)
[ret M]p = 5[[M]]p

[doz, + M; N p = (V € [o] = [N] plzze = V]) ([M] p)
[M &N p =3 (IM]p+ V)

[MoN]p=[M]pA[N]p [aborte.] p =0
[rec z,.M] p = lp(V € [o] — [M] plzs — V])

otherwise




NOTE

None of that yet requires CCCs of
continuous (or algebraic) domains HORE PQS”%ELY:

continuous
coherent dcpos

FS-domains

RB-domains
Look for a category of

continuous dcpos that is L-domains

bifinite domains

bc-domains

Cartesian-closed
algebraic

bc-domains continuous

closed under V .
complete lattices

algebraic complete
lattices



NOTE

None of that yet requires CCCs of
continuous (or algebraic) domains I POS”%ELY:

-domains

Soundness/adequacy works
even for non-call-by-push-value
probabilistic languages,
working in the CCC Dcpo

Look for a category of
continuous dcpos that is

Cartesian-closed

closed under V

attices



NOTE

None of that yet requires CCCs of
continuous (or algebraic) domains I POS”%ELY:

-domains

Soundness/adequacy works
even for non-call-by-push-value
probabilistic languages,
working in the CCC Dcpo

Look for a category of
continuous dcpos that is

Cartesian-closed

closed under V

attices

Continuity is only needed for more advanced applications:

— full abstraction (next)
— commutativity of the V monad (Fubini) at higher types
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THE CONTEXTUAL PREORDER

Let M =< N iff for every context C of output type FVunit,
Pr(C.Ml) < Pr(C.Nl)

M = N iff for every context C of output type FVunit,
h*([CIM]T) < h*(ICIN]I) (adequacy)

Corollary. If [M] < [N] then M = N.
Proof. [C[M]] = [C] (IM1) < [CI (INT) = [C[N]1

since [C] (= [Ax . C[x]]) is Scott-continuous hence monotonic.
Then apply h*, which is monotonic as well. O
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THE APPLICATIVE PREORDER

Let M =< N iff for every context C of output type FVunit,
Pr(C.Ml) < Pr(C.Nl)

Let M =<2pp N iff for every term P : T = FVunit,
Pr(PM!) < Pr(PN!)

Proposition (« Milner’s context lemma » in PCF):
M = N iff M =app N.

Proof: based on an idea of A. Jung (Streicher 06), reusing our
previous logical relation.
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FULL ABSTRACTION?

Conjecture (full abstraction): [M] < [N] iff M < N.

Wrong. (As in (Plotkin 77).) Using another logical relation,
for every P :int — int — Fint, if [P](L)(0)=[P](0)(L)={0}
then [P](L)(L)={0}

Hence with M = AP . PQ0==0 && P0QO)==0
N = AP . MP && PQQO==0 (and some syntactic sugar)
we have M = N.

But [M]£[N] since [M](por)=T, [NI(por)=_L.
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FULL ABSTRACTION?

Add parallel if pifz:

[pifz M N P] = [N] if [M]=0

[P] if [M]=O0, L

[NIALP] (not L!) if [M]=L

Conjecture (full abstraction): [M] < [N] iff M < N.

Still wrong. As in (GL |5), missing statistical termination
testers.
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to L otherwise.



STATISTICAL TERMINATION TESTERS

Let M = AP.P(Q) ® ret *)

N =MAP. P(Q) ® ret * (modulo some missing force, produce, etc.)
Then M =< N, even with pifz

But [M]£[NT] since [MI([>b])=T0, INI([>b])=L for all b<I/2,
where [>b] : [Vunit] — [FVunit]
maps every V to ‘termination’ (T0+) if v({T})>b,
to L otherwise.

[>b] tests whether the prob. that its argument terminates is > b.
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FULL ABSTRACTION

Add pifz + Q>b (with the semantics of [>b], 0<b<I dyadic)

Theorem (full abstraction): with pifz and Q>b,
[M] < [N] iff M < N.

And now a glimpse of the argument...
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FULL ABSTRACTION: PROOF

We assume [M] £ [N], and we wish to prove not (M < N).

There is a subbasic openset U/ [M] € U,[N] ¢ U

(because < is the specialization ordering of the Scott topology)

If U is definable by a term P
(i.e., [P] maps each x € U to 10+ and each x ¢ U to 1)

then [PM] = 10+, [PN] = 1, so not (M =ap N).
Conclude by Milner’s context lemma.

Challenge: show that each [T] has a subbase of definable opens.
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PROBABILISTIC TYPES

[VCO]: subbasic opens [U>b]
where U is a basic open of [O], b dyadic in (O,1)

l.e. (requires [0] continuous!) Scott=weak topology (Kirch 93)

test ve[U>b]: iff v(U)>b, implemented through
‘©>b (do xg < V; (test xg € U))

Note: [VO] also has a basis of
> x dx Ox, dx dyadic, each x from a basis of [T]]
implementable using ret and ®
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B Y REDS

[FO]: subbasic opens COOU
where U is a basic open of [O]

l.e. (requires [0] continuous!) Scott=upper Vietoris topology

test Q € O U:iff QCU, implemented through
‘Q to xg in (test xg € U)’

Note: [FoT] also has a basis of T{xi, ..., xn},
(each x; from a basis of [CO]), plus L,
implementable using produce, abort, and @
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FUNCTION TYPES (1/2)

[O — T]: subbasic opens [x ~ V],
where x is from some basis of [T,
V is a subbasic open of [T]

l.e. (uses [O] be-domain!) Scott=top. of pointwise convergence

test fin [x = V]:iff f(x) €V, implemented straightforwardly

Note we need to also define a basis of each type [O] now.
We have them for V and F types, and the difficult case is for —.
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FUNCTION TYPES (2/2)

Basis for [0 — T]: step functions Vi<i<n Ui M i
mapping each x to V{yi| x € U}...
but that sup is hard to implement — we only have infs.

Trick: for each subset | of {I, ..., n},
let U) = intersection of U,,i in |,
yi= sup of y,iin .
Then Vi<i<n Ui M yi (x) = inf{y | I 2 I} where Ix= {i| x € U}

Additional difficulties (need for pifz notably)... omitted. Done!




SUMMARY

Circumventing the trouble with V
by using two classes of types,
as provided by call-by-push-value

We obtain (inequational) full
abstraction with prob. choice +
demonic non-determinism

Questions!?

continuous

Look for a category of
continuous dcpos that is

Cartesian-closed

;
closed under V.~ NGt it

attices

CALL-BY-PUSH-VALUE

No such problem with two kinds of types

O,T,...:=int |unit |Uc |oXxT | VT
oT..:=Fo|o—T

computation types
This is the type structure of Paul B. Levy's call-by-push-value

.

(Levy 1999)




