

Jean Goubault-Larrecq

PCF, probabilistic choice, and the trouble with \mathbf{V}

- Curing the trouble using call-by-push-value
- Semantics, adequacy, full abstraction

PLOTKIN'S PCF (I977)

Theoretical Computer Science 5 (1977) 223-255.
© North-Holland Publishing Company

LCF CONSIDERED AS A PROGRAMMING LANGUAGE
G.D. PLOTKiN

cial Intelligence, University of Edinburgh, Hope Park Square, Meadow Lane, W, Scotland

Robin Milner
r studies connections between denotational and operational semantics for a
r studies connections between denotational and operational semantics for a gg language based on LCF. It begins with the connection between the
ram and its denotation. It turns out that a program denotes \perp in any of severai ff it does not terminate. From this it follows that if two terms have the same ff it does not terminate. From this it follows that if two terms have the same
ithese semantics, they have the same behaviour in all contexts. The converse These semantics, they have the same behaviour in all contexts. The converse
ntics. If, however, the language is extended to allow certain parallel facilities lence does coincide with denotational equivalence in one of the semantics. nay therefore be called "fulty abstract". Next a connection is given which ne semantics up to isomorphism from the behaviour alone. Conversely, by allowing further parallel facilities, every r.e. element of the fully abstract semantice becomes definable, thus claracterising the programming language, up to interdefinability, from the set of r.e. elemints of he domains of the semantics.

1. Introduction

We present here a stidy of some connections between the operational and denotational semantics of a simple programming language based on LCF [3,5]. While this language is itself rather far from the commonly used languages, we do hope that the kind of connections studied will be illuminating in the study of these languages too.

The first connection is the relation between the behaviour of a program and the

- Types $\sigma, \mathrm{T}, \ldots::=$ int $\mid \sigma \rightarrow \mathrm{T}$
- Terms M, N, \ldots :: $=x_{T}$

MN
$\lambda x_{\sigma} . M$
rec $x_{\sigma} . M$
n
succ M
pred M
ifz M N P

- (All terms are typed. Call by name.)

PLOTKIN'S PCF (I977)

- Types $\sigma, T, \ldots::=$ int $\mid \sigma \rightarrow T$
- Terms M, N, \ldots ::= x_{T}
| MN
$\mid \lambda x_{\sigma} . M$
| rec $x_{\sigma} . M$
| n
| succ M
| pred M
| ifz M N P
- An operational semantics:
$M \rightarrow * N$
- A denotational semantics:【M】
- Adequacy: for every ground M : int, $\llbracket M \rrbracket=n$ iff $M \rightarrow * \underline{n}$
- (All terms are typed. Call by name.)

PLOTKIN'S PCF (I977)

- An operational semantics:

$$
M \rightarrow * N
$$

- A denotational semantics:【M】
- Adequacy: for every ground M : int, $\llbracket M \rrbracket=n$ iff $M \rightarrow * \underline{n}$
- Contextual preordering:
$M \leq N$ iff
for every context C : int,

$$
C[M] \rightarrow * \underline{n} \Rightarrow C[N] \rightarrow^{*} \underline{n}
$$

- Fact: if $\llbracket M \rrbracket \leq \llbracket N \rrbracket$ then $M \leq N$
- Converse is full abstraction. Fails for PCF, works for PCF+por

DCPOS

- Every type T interpreted as a dcpo $\llbracket T \rrbracket \ldots$ = poset in which every directed family D has a supremum VD

DCPOS

- Every type T interpreted as a dcpo $\llbracket T \rrbracket \ldots$ = poset in which every directed family D has a supremum $V D$
- \llbracket int $\rrbracket=\mathbb{Z}_{\perp}(\perp \leq n$, all n incomparable $)$

DCPOS

- Every type T interpreted as a dcpo $\llbracket T \rrbracket \ldots$
= poset in which every directed family D has a supremum $\vee D$
- \llbracket int $\rrbracket=\mathbb{Z}_{\perp}(\perp \leq n$, all n incomparable $)$
- $\llbracket \sigma \rightarrow \mathrm{T} \rrbracket=[\llbracket \sigma \rrbracket \rightarrow \llbracket T \rrbracket]$,
 dcpo of Scott-continuous maps: $\llbracket \sigma \rrbracket \rightarrow \llbracket T \rrbracket$ (monotonic + preserves directed sups)

THE SEMANTICS OF PCF

- Types $\sigma, T, \ldots::=$ int $\mid \sigma \rightarrow T$
- Terms M, N, \ldots ::= x_{T}

$$
\in \llbracket \sigma \rightarrow \mathrm{T} \rrbracket \quad \in \llbracket \sigma \rrbracket
$$

- $\llbracket M N \rrbracket=\llbracket M \rrbracket(\llbracket N \rrbracket)$
$\llbracket \lambda x_{\sigma} \cdot M \rrbracket=\left(V \mapsto \llbracket M \rrbracket\left[x_{\sigma}:=V\right]\right)$

$$
\in \llbracket \sigma \rrbracket \quad \in \llbracket T \rrbracket
$$

- Meaningful since Dcpo is a Cartesian-closed category

CARTESIAN-CLOSEDNESS

$$
\in \llbracket \sigma \rightarrow \mathbb{T} \rrbracket \quad \in \llbracket \sigma \rrbracket
$$

- $\llbracket M N \rrbracket=\llbracket M \rrbracket(\llbracket N \rrbracket)$

$$
\llbracket \lambda x_{\sigma} \cdot M \rrbracket=\left(V \mapsto \llbracket M \rrbracket\left[x_{\sigma}:=V\right]\right)
$$

$$
\in \llbracket \sigma \rrbracket \quad \in \llbracket \tau \rrbracket
$$

- Meaningful since Dcpo is a Cartesian-closed category
- In order to prove full abstraction (with por), we require to be able to approximate elements of $\llbracket T \rrbracket$ by definable elements $\llbracket M \rrbracket$.
- In the case of PCF, each $\llbracket \tau \rrbracket$ is an algebraic bc-domain, making that possible.
- Cartesian-closed... good.

CCCS OF CONTINUOUS DCPOS

- In order to prove full abstraction (with por), we require to be able to approximate elements of $\llbracket T \rrbracket$ by definable elements $\llbracket M \rrbracket$.
- In the case of PCF, each $\llbracket \tau \rrbracket$ is an algebraic bc-domain, making that possible.
- Cartesian-closed... good.

CCCS OF CONTINUOUS DCPOS

- In order to prove full abstraction (with por), we require to be able to approximate elements of $\llbracket T \rrbracket$ by definable elements $\llbracket M \rrbracket$.
- In the case of PCF, each $\llbracket \tau \rrbracket$ is an algebraic bc-domain, making that possible.
- Cartesian-closed... good.
- Many other CCCs would fit.

CONTINUOUS DCPOS

- Approximation (way-below):
$x \ll y$ iff for every directed D such that $y \leq \vee D$, x is already below some element of D

CONTINUOUS DCPOS

- Approximation (way-below):
$x \ll y$ iff for every directed D such that $y \leq \vee D$, x is already below some element of D

CONTINUOUS DCPOS

- Approximation (way-below): $x \ll y$ iff for every directed D such that $y \leq V D$, x is already below some element of D

CONTINUOUS DCPOS

- Approximation (way-below):
$x \ll y$ iff for every directed D such that $y \leq \vee D$, x is already below some element of D
- A basis B of a dcpo X iff for every x, $\{b \in B \mid b<x\}$ directed and has x as sup A dcpo X is continuous iff has a basis

CONTINUOUS DCPOS

- Approximation (way-below):
$x \ll y$ iff for every directed D such that $y \leq V D$, x is already below some element of D
- A basis B of a dcpo X iff for every x, $\{b \in B \mid b<x\}$ directed and has x as sup A dcpo X is continuous iff has a basis
- Ex: the finite subsets of A form a basis of $\mathbf{P}(A)$ with inclusion
\mathbb{N} forms a basis of $\mathbb{N} \cup\{\infty\}$
$\mathbb{Q}+$ forms a basis of $\mathbb{R}+\cup\{\infty\} \quad(x \ll y$ iff $x=0$ or $x<y$ here $)$

ADDING PROBABILITIES

- Types
$\sigma, \mathrm{T}, \ldots::=\mathrm{int}|\sigma \rightarrow \mathrm{T}| \mathbf{V} \mathrm{T}$
- Terms M, N, \ldots ::= ...
$\mid M \oplus N$
| ret M
| do $x_{\sigma} \leftarrow M ; N$

ADDING PROBABILITIES

Monadic type of subprobability valuations over T

- Types
$\sigma, \mathrm{T}, \ldots::=$ int $|\sigma \rightarrow \mathrm{T}| \mathbf{V}_{\mathrm{T}}$
- Terms M, N, \ldots ::= ...
$\mid M \oplus N$
| ret M
| do $x_{\sigma} \leftarrow M$; N

ADDING PROBABILITIES

| ret M
| do $x_{\sigma} \leftarrow M ; N$

- Types

$$
\sigma, \mathrm{T}, \ldots::=\text { int }|\sigma \rightarrow \mathrm{T}| \mathrm{V}_{\mathrm{T}}
$$

- Terms M, N, \ldots ::= ...
$\mid M \oplus N$
with $M, N: V T$,
choose between M and N with probability I/2
Monadic type of subprobability valuations over T

ADDING PROBABILITIES

- Types

$$
\sigma, \mathrm{T}, \ldots::=\text { int }|\sigma \rightarrow \mathrm{T}| \mathbf{V}_{\mathrm{T}}
$$

- Terms M, N, \ldots ::= ...

$$
\mid M \oplus N
$$

Monadic type of subprobability valuations over T
| ret M
| do $x_{\sigma} \leftarrow M$; N
monadic constructions:

M:T \Rightarrow ret $M: V_{T}$
$M: V \sigma \quad N: V T \Rightarrow d o x_{\sigma} \leftarrow M ; N: V T$
(Moggi I 99 I)

THETROUBLE

 WITH V
continuous dcpos

(Jung, Tix 19

- Look for a category of continuous dcpos that is
bifinite domains
RB-domains
L-domains
bc-domains
algebraic
bc-domains
algebraic complete lattices

THETROUBLE WITH V
 (Jung, Tix 19°

 8

- Look for a category of continuous dcpos that is
- Cartesian-closed
bifinite domains
algebraic
bc-domains

FS-domains

RB-domains
bc-domains
contiauous coherent dcpos

L-domains
continuous
complete lattices
algebraic complete lattices

WITH V

THE TROUBLE

(Jung, Tix 19

- Look for a category of continuous dcpos that is
- Cartesian-closed
- closed under \mathbf{V}
continus:Is dcpos

MORE POSITIVELY:
continuous dcpos

(Jung, Tix 19^{9}

- Look for a category of continuous dcpos that is
- Cartesian-closed
- closed under \mathbf{V}

MORE POSITIVELY:
continuous dcpos

continuous coherent dcpos

RB-domains

- Look for a category of continuous dcpos that is
- Cartesian-closed
- closed under \mathbf{V}

bifinite domains	RB-domains ?
algebraic bc-domains	continuous complete lattices

L-domains

OTHER
 SOLUTIONS (I)

- Change categories entirely. E.g., reason in probabilistic coherence spaces
- Equationally fully abstract semantics
(Ehrhard, Pagani, Tasson 14)
- also for call-by-push-value (Ehrhard,Tasson 19)
- probabilistic choice 'built-in'

OTHER SOLUTIONS (2)

- Change categories, and opt for QCB spaces/predomains (Battenfeld 06)
... Cartesian-closed, and has a probabilistic choice monad

OTHER SOLUTIONS (2)

- Change categories, and opt for QCB spaces/predomains (Battenfeld 06)
... Cartesian-closed, and has a probabilistic choice monad
- Changes categories, and opt for quasi-Borel spaces/ domains
(Heunen, Kammar, Staton, Yang 17;Vákár, Kammar, Staton 19)
... Cartesian-closed, and closed under a 'laws of random variables' functor

BACKTO DOMAINS

- There is no need to leave domain theory after all
- An easy solution using call-by-push-value
- will also handle the mix with demonic non-determinism

MORE POSITIVELY:

(Jung, Tix 19

- Look for a category of continuous dcpos that is
- Cartesian-closed
- closed under \mathbf{V}
bc-domains

PCF, probabilistic choice, and the trouble with \mathbf{V}

- Curing the trouble using call-by-push-value
- Semantics, adequacy, full abstraction
- PCF, probabilistic choice, and the trouble with \mathbf{V}

Curing the trouble using call-by-push-value

- Semantics, adequacy, full abstraction

TWO KINDS OFTYPES?

- No such problem with two kinds of types: continuous (coherent) dcpos $\sigma, \mathrm{T}, \ldots::=$ int $|\ldots| \sigma \times \mathrm{T} \mid \mathbf{V} \mathrm{T}$
$\underline{\sigma}, \underline{I}, \ldots::=\ldots \mid \sigma \rightarrow \underline{I}$

CALL-BY-PUSH-VALUE

- No such problem with two kinds of types:

continuous (coherent) dcpos

 $\sigma, \mathrm{T}, \ldots$::= int | unit | U $\underline{\sigma}|\sigma \times \mathrm{T}| \mathbf{V} \mathrm{T}$ $\underline{\sigma}, \underline{I}, \ldots::=\mathrm{F} \sigma \mid \sigma \rightarrow$ I- This is the type structure of Paul B. Levy's call-by-push-value (except for the \mathbf{V} construction)

Call-By-Push-Value: A Subsuming Paradigm (extended abstract)

Paul Blain Levy*
Department of Computer Science, Queen Mary and Westficld College LONDON E1 4NS pbledcs.qmu.ac.uk

Abstract. Call-by-push-valuc is a now paradigm that subsumes the call-by-name and cell-by-value paradigms, in the following scmse: both operational and denotational semantics for those paradigns can be seen as arising, via translations that we will provide, from similar scmantics for call-by-push-valuc.
To cxplain call-by-push-valuc, we first discuss gencral operational ideas, espocially the distinction betwecn valucs and computations, using the principle that " $\mathrm{a}_{\text {a }}$ valuc is, a computation docs". Using an cxample program, we sec that the lambda-calculus primitives can be understood as push/pop commands for an operand-stack.
We provide operational and denotational semantics for a range of computational effects and show their agreement. We hence obtain semantics for call-by-name and call-by-valuc, of which some are familiar, some are now and some were known but proviously appeared mysterious.

(Levy 1999)

CALL-BY-PUSH-VALUE

- No such problem with two kinds of types:

value types

 $\sigma, \mathrm{T}, \ldots$:: int | unit | U $\underline{\sigma}|\sigma \times \mathrm{T}| \mathbf{V} \mathrm{T}$ $\underline{\sigma}, \underline{I}, \ldots::=F \sigma \mid \sigma \rightarrow$ I- This is the type structure of Paul B. Levy's call-by-push-value (except for the \mathbf{V} construction)

Call-By-Push-Value: A Subsuming Paradigm (extended abstract)

Paul Blain Levy*

Department of Computcr Science, Qucen Mary and Westficld Colloge LONDON E1 4NS pbledcs.qmu.ac.uk

Abstract. Call-by-push-walue is a now paradigm that subsumes the call-by-name and cell-by-value paradigms, in the following scmse: both operational and denotational semantics for those paradigns can be secn as arising, via translations that we will provide, from similar scmantics for call-by-push-valuc.
To cxplain call-by-push-valuc, we first discuss gencral operational ideas, espocially the distinction betwecn valucs and computations, using the principle that " $\mathrm{a}_{\text {a }}$ valuc is, a computation docs". Using an cxample program, we sec that the lambda-calculus primitives can be understood as push/pop commands for an operand-stack.
We provide operational and denotational semantics for a range of computational effects and show thoir agreement. We hence obtain semantics for call-by-name and call-by-valuc, of which some are familiar, some are now and some were known but proviously appeared mysterious.

(Levy 1999)

CALL-BY-PUSH-VALUE

- No such problem with two kinds of types:

value types

 $\sigma, \mathrm{T}, \ldots::=$ int \mid unit $|\mathbf{U} \underline{\sigma}| \sigma \times \mathrm{T} \mid \mathbf{V}_{\mathrm{T}}$ $\underline{\sigma}, \underline{I}, \ldots::=\mathrm{F} \sigma \mid \sigma \rightarrow$ I
computation types

- This is the type structure of Paul B. Levy's call-by-push-value (except for the \mathbf{V} construction)

Call-By-Push-Value: A Subsuming Paradigm
(extended abstract)

Paul Blain Levy*
Department of Computer Science, Queen Mary and Westficld College LONDON E1 4NS pbledcs.qmu.ac.uk

Abstract. Call-by-push-value is a now paradigm that subsumes the call-by-name and call-by-value paradigms, in the following sense: both operational and denotational semantics for those paradigns can be secn as arising, via translations that we will provide, from similar scmantics for call-by-push-valuc.
To cxplain call-by-push-valuc, we first discuss gencral operational ideas, especially the distinction betwecn values and computations, using the principle that " $\mathrm{a}_{\text {a }}$ valuc is, a computation docs". Using an cxample program, we see that the lambda-calculus primitives can be understood as push/pop commands for an opcrand-stack.
We provide operational and denotational semantics for a range of computational cffects and show thoir agreement. We hence obtain semantics for call-by-name and call-by-valuc, of which some are familiar, some are now and some were known but proviously appeared mysterious.

(Levy 1999)

\mathbf{U} AND F

$$
\begin{array}{l|}
\sigma, \mathrm{T}, \ldots::=\text { int } \mid \text { unit } \mid \\
\underline{\sigma}, \underline{I}, \ldots::=\quad \sigma \rightarrow \underline{I}
\end{array}
$$

\mathbf{U} AND F

-

- U converts from bc-domains to continuous coherent dcpos
... semantically the identity: $\llbracket \mathbf{U} \underline{\sigma} \rrbracket=\llbracket \underline{\sigma} \rrbracket$

\mathbf{U} AND F

-

$\underline{\sigma}, \underline{T}, \ldots::=\quad \sigma \rightarrow$ I
bc-domains/continuous lattices

- U converts from bc-domains to continuous coherent dcpos
... semantically the identity: $\llbracket \mathbf{U} \underline{\sigma} \rrbracket=\llbracket \underline{\sigma} \rrbracket$
- M, N, \ldots ::= ...
| force $M \quad(\mathbb{U} \underline{\sigma} \rightarrow \underline{\sigma})$
| thunk $M \quad(\underline{\sigma} \rightarrow \mathbf{U} \underline{\sigma})$

\mathbf{U} AND F

```
continuous (coherent) dcpos
\sigma,\tau,\ldots ::= int | unit | U\underline{\sigma}|\sigma\times\tau | VT
\sigma,I,\ldots::=}\quad\sigma->\mathrm{ I
- U converts from bc-domains to continuous coherent dcpos
... semantically the identity: \(\llbracket \mathbf{U} \underline{\sigma} \rrbracket=\llbracket \underline{\sigma} \rrbracket\)
- \(M, N, \ldots\) ::= ...
| force \(M \quad(\mathbb{U} \underline{\sigma} \rightarrow \underline{\sigma})\)
| thunk \(M \quad(\underline{\sigma} \rightarrow \mathbf{U} \underline{\sigma})\)
- \(\llbracket\) force \(M \rrbracket=\llbracket M \rrbracket\)
\(\llbracket\) thunk \(M \rrbracket=\llbracket M \rrbracket\)
- force thunk \(M \rightarrow M\)

\section*{\(\mathbf{U}\) AND F}
\(\sigma, \mathrm{T}, \ldots::=\) int \(\mid\) unit \(|\cup \underline{\sigma}| \sigma \times \mathrm{T} \mid \mathbf{V}_{\mathrm{T}}\)
\(\underline{\sigma}, \underline{I}, \ldots::=\mathrm{F} \mathrm{\sigma} \mid \sigma \rightarrow \underline{I}\)
- U converts from bc-domains to continuous coherent dcpos
... semantically the identity: \(\llbracket \mathbf{U} \underline{\sigma} \rrbracket=\llbracket \underline{\sigma} \rrbracket\)
- F converts from continuous coherent dcpos to bc-domains
... Ershov's bounded complete hull would be the canonical choice
- (but is too intricate for our purposes.)

The bounded-complete hull of an \(\alpha\)-space Yu.L. Ershov*.

Research Institute for Imformatics and Mathematics, Nowosibirsk State University, 630090 Novosibirsk, Russia

\section*{THE SMYTH POWERDOMAIN}
- \(\mathbf{Q} X=\{\) compact saturated subsets of \(X\}\), reverse inclusion \(\supseteq\)
- Fact. For \(X\) continuous coherent dcpo, Ershov's bc-hull of \(X\) is a subspace of \(\mathbf{Q} X\).
- \(\mathbf{Q X}\) is itself a bc-domain (even a continuous complete lattice), and is much easier to use.
- Serves as a model of demonic non-determinism.

\section*{THE SMYTH POWERDOMAIN}
- \(\mathbf{Q} X=\{\) compact saturated subsets of \(X\}\), reverse inclusion \(\supseteq\) defines a(nother) monad on the cat. of cont. coh. dcpos.
- Unit: \(\eta: X \rightarrow \mathbf{Q} X: x \mapsto \uparrow x\) (continuous)
- Extension: for \(f: X \rightarrow L\) where \(L\) continuous complete lattice,
\[
\text { let } f^{*}: \mathbf{Q X} \rightarrow L: Q \mapsto \inf \{f(x) \mid x \in Q\}
\]
- if \(f\) is continuous then \(f^{*}\) is continuous
- \(f^{*} \circ \eta=f\)
\(-f^{*} \circ g^{*}=\left(f^{*} \circ g\right)^{*}\)

\section*{THE SMYTH \({ }_{\perp}\) POWERDOMAIN}
- \(\mathbf{Q}_{\perp} X=\mathbf{Q} X\) plus a fresh bottom \(\perp\) defines a(nother) monad on the cat. of cont. coh. dcpos.
- Unit: \(\eta: X \rightarrow \mathbf{Q}_{\perp} X: x \mapsto \uparrow x\) (continuous)
- Extension: for \(f: X \rightarrow L\) where \(L\) continuous complete lattice,
\[
\text { let } f^{*}: \mathbf{Q}_{\perp} X \rightarrow L: Q \mapsto \inf \{f(x) \mid x \in Q\}, \perp \mapsto \perp
\]
— if \(f\) is continuous then \(f^{*}\) is continuous - and \(f^{*}\) is strict now
- \(f^{*} \circ \eta=f\)
\(-f^{*} \circ g^{*}=\left(f^{*} \circ g\right)^{*}\)

\section*{\(\mathbf{U}\) AND F}
-
```

continuous (coherent) dcpos
\sigma,T, .. ::= int | unit | U\sigma|\sigma\timesT|VT
\sigma,I, ..::= F\sigma|\sigma 任

- U converts from bc-domains to continuous coherent dcpos: $\llbracket \mathbf{U} \underline{\sigma} \rrbracket=\llbracket \underline{\sigma} \rrbracket$
- \mathbf{F} converts from continuous coherent dcpos to bc-domains: $\llbracket \mathbf{F} \sigma \rrbracket=\mathbf{Q}_{\perp} \llbracket \sigma \rrbracket$

\mathbf{U} AND F

-

continuous (coherent) dcpos

$\sigma, \mathrm{T}, \ldots::=$ int $|\mathbf{u n i t}| \mathbf{U} \underline{\sigma}|\sigma \times \mathrm{T}| \mathbf{V}_{\mathrm{T}}$

$\underline{\sigma}, \underline{I}, \ldots::=F \sigma \mid \sigma \rightarrow \underline{I}$
bc-domains/continuous lattices

- U converts from bc-domains to continuous coherent dcpos: $\llbracket \mathbf{U} \underline{\sigma} \rrbracket=\llbracket \underline{\sigma} \rrbracket$
- \mathbf{F} converts from continuous coherent dcpos to bc-domains: $\llbracket \mathbf{F} \sigma \rrbracket=\mathbf{Q}_{\perp} \llbracket \sigma \rrbracket$
- M, N, \ldots ::= ...
choice
| abort $_{\text {F }}$
$M \otimes N$
| produce $M \quad(\sigma \rightarrow F \sigma)$
monad
| M to x_{σ} in N

\mathbf{U} AND F

- U converts from bc-domains to continuous coherent dcpos: $\llbracket \mathbf{U} \underline{\sigma} \rrbracket=\llbracket \underline{\sigma} \rrbracket$
- F converts from continuous coherent dcpos to bc-domains: $\llbracket \mathbf{F} \sigma \rrbracket=\mathbf{Q}_{\perp} \llbracket \sigma \rrbracket$

\mathbf{U} AND F

- U converts from bc-domains to continuous coherent dcpos: $\llbracket \mathbf{U} \underline{\sigma} \rrbracket=\llbracket \underline{\sigma} \rrbracket$
- F converts from continuous coherent dcpos to bc-domains: $\llbracket \mathbf{F} \sigma \rrbracket=\mathbf{Q}_{\perp} \llbracket \sigma \rrbracket$

- PCF, probabilistic choice, and the trouble with \mathbf{V}
- Curing the trouble using call-by-push-value
- Semantics, adequacy, full abstraction
- PCF, probabilistic choice, and the trouble with \mathbf{V}
- Curing the trouble using call-by-push-value
- Semantics, adequacy, full abstraction

OPERATIONAL SEMANTICS

- A Krivine machine for deterministic operations, working on configurations C. M

$\begin{aligned} C \cdot E[M] & \rightarrow C E \cdot M \\ C\left[\text { to } x_{\sigma} \text { in } N\right] \cdot \text { produce } M & \rightarrow C \cdot N\left[x_{\sigma}:=M\right. \\ {[-] \cdot \text { produce } M } & \rightarrow[\text { produce }] \cdot M \\ C[\text { pred }] \cdot \underline{n} & \rightarrow C \cdot \underline{n-1} \\ C[\text { iff }-N P] \cdot \underline{0} & \rightarrow C \cdot N \\ C[-; N] \cdot \underline{*} & \rightarrow C \cdot N \\ C\left[\pi_{1}\right] \cdot\langle M, N\rangle & \rightarrow C \cdot M \\ C\left[\mathbf{d o} x_{\sigma} \leftarrow-; N\right] \cdot \mathbf{r e t} M & \rightarrow C \cdot N\left[x_{\sigma}:=M\right. \\ C \cdot \mathbf{r e c} x_{\sigma} \cdot M & \rightarrow C \cdot M\left[x_{\sigma}:=\mathbf{r e}\right. \end{aligned}$	$\begin{aligned} & C[-N] \cdot \lambda x_{\sigma} \cdot M \rightarrow C \cdot M\left[x_{\sigma}:=N\right] \\ & C\left[\text { force }_{-}\right] \cdot \text { thunk } M \rightarrow C \cdot M \\ & C[\text { succ }-] \cdot \underline{n} \rightarrow C \cdot \underline{n+1} \\ & C\left[\mathbf{i f z}_{-} N P\right] \cdot \underline{n} \rightarrow C \cdot P \quad(n \neq 0) \\ & C\left[\pi_{2}\right] \cdot\langle M, N\rangle \rightarrow C \cdot N \\ & {\left[\text { produce }_{-}\right] \cdot \text { ret } M } \rightarrow[\text { produce ret }] \cdot M \\ &\left.x_{\sigma} \cdot M\right] \end{aligned}$

OPERATIONAL SEMANTICS

- A Krivine machine for deterministic operations, working on configurations C. M

```
\(C \cdot E[M] \rightarrow C E \cdot M\)
\(C[-N] \cdot \lambda x_{\sigma} \cdot M \rightarrow C \cdot M\left[x_{\sigma}:=N\right]\)
\(C\left[\right.\) - to \(x_{\sigma}\) in \(\left.N\right] \cdot\) produce \(M \rightarrow C \cdot N\left[x_{\sigma}:=M\right] \quad C[\) force \(] \cdot\) thunk \(M \rightarrow C \cdot M\)
[-] • produce \(M \rightarrow\) [produce _] \(\cdot M\)
\(C[\) pred \(] \cdot \underline{n} \rightarrow C \cdot \underline{n-1}\)
\(C[\) succ -\(] \cdot \underline{n} \rightarrow C \cdot \underline{n+1}\)
\(C[\mathbf{i f z}-N P] \cdot \underline{0} \rightarrow C \cdot N\)
\(C[-; N] \cdot \underset{ }{*} \rightarrow C \cdot N\)
\(C\left[\pi_{1-}\right] \cdot\langle M, N\rangle \rightarrow C \cdot M\)
\(C[\mathbf{i f z}-N P] \cdot \underline{n} \rightarrow C \cdot P \quad(n \neq 0)\)
\(C\left[\pi_{2}\right] \cdot\langle M, N\rangle \rightarrow C \cdot N\)
\(C\left[\mathbf{d o} x_{\sigma} \leftarrow \_; N\right] \cdot \operatorname{ret} M \rightarrow C \cdot N\left[x_{\sigma}:=M\right] \quad[\) produce \(] \cdot\) ret \(M \rightarrow\) [produce ret ] \(]\).
\(C \cdot \mathbf{r e c} x_{\sigma} \cdot M \rightarrow C \cdot M\left[x_{\sigma}:=\mathbf{r e c} x_{\sigma} \cdot M\right]\)
```

- Prob. must-termination judgments

$$
C . M \downarrow a
$$

(« whichever way you resolve the demonic non-deterministic choices, the probability that C.M terminates

$$
\begin{aligned}
& \frac{C \text { produce ret }] \cdot \underline{*} \downarrow a}{}(a \in \mathbb{Q} \cap[0,1)) \\
& \frac{C^{\prime} \cdot M^{\prime} \downarrow a}{C \cdot M \downarrow a}\left(\text { if } C \cdot M \rightarrow C^{\prime} \cdot M^{\prime}\right)
\end{aligned} \frac{C \cdot M \downarrow a \quad C \cdot N \downarrow b}{C \cdot M \oplus N \downarrow(a+b) / 2} \quad \frac{C \cdot M \downarrow a \quad C \cdot N \downarrow a}{C \cdot M \otimes N \downarrow a}(a \in \mathbb{Q} \cap[0,1))
$$

OPERATIONAL SEMANTICS

- A Krivine machine for deterministic operations, working on configurations C.M

$\begin{aligned} C \cdot E[M] & \rightarrow C E \cdot M \\ C\left[- \text { to } x_{\sigma} \text { in } N\right] \cdot \text { produce } M & \rightarrow C \cdot N\left[x_{\sigma}:=M\right] \\ {[-] \cdot \text { produce } M } & \rightarrow[\text { produce }] \cdot M \\ C[\text { pred }] \cdot \underline{n} & \rightarrow C \cdot \underline{n-1} \\ C[\mathbf{i f z}-N P] \cdot \underline{0} & \rightarrow C \cdot N \\ C[-; N] \cdot \underline{*} & \rightarrow C \cdot N \\ C\left[\pi_{1-}\right] \cdot\langle M, N\rangle & \rightarrow C \cdot M \\ C\left[\operatorname{dos} x_{\sigma} \leftarrow-; N\right] \cdot \mathbf{r e t} M & \rightarrow C \cdot N\left[x_{\sigma}:=M\right] \\ C \cdot \mathbf{r e c} x_{\sigma} \cdot M & \rightarrow C \cdot M\left[x_{\sigma}:=\mathbf{r e}\right. \end{aligned}$	$\begin{aligned} & C[-N] \cdot \lambda x_{\sigma} \cdot M \rightarrow C \cdot M\left[x_{\sigma}:=N\right] \\ & C\left[\text { force }_{-}\right] \cdot \text { thunk } M \rightarrow C \cdot M \\ & C[\text { succ }-] \cdot \underline{n} \rightarrow C \cdot \underline{n+1} \\ & C\left[\mathbf{i f \mathbf { z } _ { - }} N P\right] \cdot \underline{n} \rightarrow C \cdot P \quad(n \neq 0) \\ & C\left[\pi_{2}\right] \cdot\langle M, N\rangle \rightarrow C \cdot N \\ & {[\text { produce }] \cdot \text { ret } M } \rightarrow[\text { produce ret }] \cdot M \\ &\left.\sigma_{\sigma} \cdot M\right] \end{aligned}$

- Prob. must-termination judgments

$$
C . M \downarrow a
$$

(« whichever way you resolve the demonic non-deterministic choices, the probability that C.M terminates

$$
\begin{aligned}
& \overline{[\text { produce ret }] \cdot \underline{*} \downarrow a}(a \in \mathbb{Q} \cap[0,1)) \quad \overline{C \cdot M \downarrow 0} \quad \overline{C \cdot \mathbf{a b o r t}_{\mathbf{F} \tau} \downarrow a}(a \in \mathbb{Q} \cap[0,1)) \\
& \frac{C^{\prime} \cdot M^{\prime} \downarrow a}{C \cdot M \downarrow a}\left(\text { if } C \cdot M \rightarrow C^{\prime} \cdot M^{\prime}\right) \quad \frac{C \cdot M \downarrow a \quad C \cdot N \downarrow b}{C \cdot M \oplus N \downarrow(a+b) / 2} \quad \frac{C \cdot M \downarrow a \quad C \cdot N \downarrow a}{C \cdot M \otimes N \downarrow a} \\
& \frac{[-] \cdot M \downarrow b \quad C \cdot \underline{*} \downarrow a}{C \cdot \bigcirc_{>b} M \downarrow a} \quad \frac{C \cdot \mathbf{i f z} M N P \downarrow a}{C \cdot \mathbf{p i f z} M N P \downarrow a} \quad \frac{C \cdot N \downarrow a \quad C \cdot P \downarrow a}{C \cdot \mathbf{p i f z} M N P \downarrow a}
\end{aligned}
$$ is >a. »)

- Let $\operatorname{Pr}(C . M \downarrow)=\sup \{a \mid C . M \downarrow a\}, \operatorname{Pr}(M \downarrow)=\operatorname{Pr}([] . M \downarrow)$

ADEQUACY

- Prop (adequacy).

For every M : FVunit,

- $\llbracket M \rrbracket=\perp$ and $\operatorname{Pr}(M \downarrow)=0$, or
- $\llbracket M \rrbracket=\varnothing$ and $\operatorname{Pr}(M \downarrow)=1$, or else
$-\operatorname{Pr}(M \downarrow)=\min \{v(\{T\}) \mid v \in \llbracket M \rrbracket\}$
$\llbracket x_{\sigma} \rrbracket \rho=\rho\left(x_{\sigma}\right)$
$\llbracket \lambda x_{\sigma} \cdot M \rrbracket \rho=V \in \llbracket \sigma \rrbracket \mapsto \llbracket M \rrbracket\left(\rho\left[x_{\sigma} \mapsto V\right]\right) \quad \llbracket M N \rrbracket \rho=\llbracket M \rrbracket \rho(\llbracket N \rrbracket \rho)$【produce $M \rrbracket \rho=\eta^{\mathcal{Q}}(\llbracket M \rrbracket \rho)$
$\llbracket M$ to x_{σ} in $N \rrbracket \rho=\left(V \in \llbracket \sigma \rrbracket \mapsto \llbracket N \rrbracket \rho\left[x_{\sigma} \mapsto V\right]\right)^{*}(\llbracket M \rrbracket \rho)$
\llbracket thunk $M \rrbracket \rho=\llbracket M \rrbracket \rho \quad \llbracket$ force $M \rrbracket \rho=\llbracket M \rrbracket \rho$
$\llbracket \approx \rrbracket \rho=T$
$\llbracket n \rrbracket \rho=n$
\llbracket succ $M \rrbracket \rho= \begin{cases}n+1 & \text { if } n=\llbracket M \rrbracket \rho \neq \perp \\ \perp & \text { otherwise }\end{cases}$
$\llbracket \operatorname{pred} M \rrbracket \rho= \begin{cases}n-1 & \text { if } n=\llbracket M \rrbracket \rho \neq \perp \\ \perp & \text { otherwise }\end{cases}$
$\llbracket i f \mathbf{z} M N P \rrbracket \rho= \begin{cases}\llbracket N \rrbracket \rho & \text { if } \llbracket M \rrbracket \rho=0 \\ \llbracket P \rrbracket \rho & \text { if } \llbracket M \rrbracket \rho \neq 0, \perp \\ \perp & \text { if } \llbracket M \rrbracket \rho=\perp\end{cases}$
$\llbracket M ; N \rrbracket \rho= \begin{cases}\llbracket N \rrbracket \rho & \text { if } \llbracket M \rrbracket \rho=\top \\ \perp & \text { otherwise }\end{cases}$
$\llbracket \pi_{1} M \rrbracket \rho=m, \llbracket \pi_{2} M \rrbracket \rho=n$ where $\llbracket M \rrbracket \rho=(m, n)$
$\llbracket\langle M, N\rangle \rrbracket \rho=(\llbracket M \rrbracket \rho, \llbracket N \rrbracket \rho)$
\llbracket ret $M \rrbracket \rho=\delta_{\llbracket M \rrbracket}$
$\llbracket \mathbf{d o} x_{\sigma} \leftarrow M ; N \rrbracket \rho=\left(V \in \llbracket \sigma \rrbracket \mapsto \llbracket N \rrbracket \rho\left[x_{\sigma} \mapsto V \rrbracket\right)^{\dagger}(\llbracket M \rrbracket \rho)\right.$
$\llbracket M \oplus N \rrbracket \rho=\frac{1}{2}(\llbracket M \rrbracket \rho+\llbracket N \rrbracket \rho)$
$\llbracket M \otimes N \rrbracket \rho=\llbracket M \rrbracket \rho \wedge \llbracket N \rrbracket \rho$
$\llbracket \mathbf{r e c} x_{\sigma} \cdot M \rrbracket \rho=\operatorname{lfp}\left(V \in \llbracket \sigma \rrbracket \mapsto \llbracket M \rrbracket \rho\left[x_{\sigma} \mapsto V\right]\right)$

ADEQUACY

- Prop (adequacy).

For every M : FVunit,

- $\llbracket M \rrbracket=\perp$ and $\operatorname{Pr}(M \downarrow)=0$, or
- $\llbracket M \rrbracket=\varnothing$ and $\operatorname{Pr}(M \downarrow)=1$, or else
$-\operatorname{Pr}(M \downarrow)=\min \{v(\{T\}) \mid v \in \llbracket M \rrbracket\}$
- I.e., $\operatorname{Pr}(M \downarrow)=h^{*}(\llbracket M \rrbracket)$
where $h(v)=v(\{T\})$
$\llbracket x_{\sigma} \rrbracket \rho=\rho\left(x_{\sigma}\right)$
$\llbracket \lambda x_{\sigma} \cdot M \rrbracket \rho=V \in \llbracket \sigma \rrbracket \mapsto \llbracket M \rrbracket\left(\rho\left[x_{\sigma} \mapsto V\right]\right) \quad \llbracket M N \rrbracket \rho=\llbracket M \rrbracket \rho(\llbracket N \rrbracket \rho)$
\llbracket produce $M \rrbracket \rho=\eta^{\mathcal{Q}}(\llbracket M \rrbracket \rho)$
$\llbracket M$ to x_{σ} in $N \rrbracket \rho=\left(V \in \llbracket \sigma \rrbracket \mapsto \llbracket N \rrbracket \rho\left[x_{\sigma} \mapsto V\right]\right)^{*}(\llbracket M \rrbracket \rho)$
\llbracket thunk $M \rrbracket \rho=\llbracket M \rrbracket \rho \quad \llbracket$ force $M \rrbracket \rho=\llbracket M \rrbracket \rho$
$\llbracket \star \rrbracket \rho=\mathrm{T}$
$\llbracket \underline{n} \rrbracket \rho=n$
$\llbracket \mathbf{s u c c} M \rrbracket \rho= \begin{cases}n+1 & \text { if } n=\llbracket M \rrbracket \rho \neq \perp \\ \perp & \text { otherwise }\end{cases}$
$\llbracket \operatorname{pred} M \rrbracket \rho= \begin{cases}n-1 & \text { if } n=\llbracket M \rrbracket \rho \neq \perp \\ \perp & \text { otherwise }\end{cases}$
$\llbracket i f \mathbf{z} M N P \rrbracket \rho= \begin{cases}\llbracket N \rrbracket \rho & \text { if } \llbracket M \rrbracket \rho=0 \\ \llbracket P \rrbracket \rho & \text { if } \llbracket M \rrbracket \rho \neq 0, \perp \\ \perp & \text { if } \llbracket M \rrbracket \rho=\perp\end{cases}$
$\llbracket M ; N \rrbracket \rho= \begin{cases}\llbracket N \rrbracket \rho & \text { if } \llbracket M \rrbracket \rho=\top \\ \perp & \text { otherwise }\end{cases}$
$\llbracket \pi_{1} M \rrbracket \rho=m, \llbracket \pi_{2} M \rrbracket \rho=n$ where $\llbracket M \rrbracket \rho=(m, n)$
$\llbracket\langle M, N\rangle \rrbracket \rho=(\llbracket M \rrbracket \rho, \llbracket N \rrbracket \rho)$
\llbracket ret $M \rrbracket \rho=\delta_{\llbracket M \rrbracket}$
$\llbracket \mathbf{d o} x_{\sigma} \leftarrow M ; N \rrbracket \rho=\left(V \in \llbracket \sigma \rrbracket \mapsto \llbracket N \rrbracket \rho\left[x_{\sigma} \mapsto V \rrbracket\right)^{\dagger}(\llbracket M \rrbracket \rho)\right.$
$\llbracket M \oplus N \rrbracket \rho=\frac{1}{2}(\llbracket M \rrbracket \rho+\llbracket N \rrbracket \rho)$
$\llbracket M \otimes N \rrbracket \rho=\llbracket M \rrbracket \rho \wedge \llbracket N \rrbracket \rho$
$\llbracket \mathbf{a b o r t}_{\mathbf{F} \tau} \rrbracket \rho=\emptyset$
$\llbracket \mathbf{r e c} x_{\sigma} \cdot M \rrbracket \rho=\operatorname{lfp}\left(V \in \llbracket \sigma \rrbracket \mapsto \llbracket M \rrbracket \rho\left[x_{\sigma} \mapsto V\right]\right)$

ADEQUACY

- Prop (adequacy).

For every M : FVunit,

- $\llbracket M \rrbracket=\perp$ and $\operatorname{Pr}(M \downarrow)=0$, or
- $\llbracket M \rrbracket=\varnothing$ and $\operatorname{Pr}(M \downarrow)=1$, or else
$-\operatorname{Pr}(M \downarrow)=\min \{v(\{T\}) \mid v \in \llbracket M \rrbracket\}$
- I.e., $\operatorname{Pr}(M \downarrow)=h^{*}(\llbracket M \rrbracket)$ where $h(v)=v(\{T\})$
$\llbracket x_{\sigma} \rrbracket \rho=\rho\left(x_{\sigma}\right)$
$\llbracket \lambda x_{\sigma} \cdot M \rrbracket \rho=V \in \llbracket \sigma \rrbracket \mapsto \llbracket M \rrbracket\left(\rho\left[x_{\sigma} \mapsto V\right]\right) \quad \llbracket M N \rrbracket \rho=\llbracket M \rrbracket \rho(\llbracket N \rrbracket \rho)$
\llbracket produce $M \rrbracket \rho=\eta^{\mathcal{Q}}(\llbracket M \rrbracket \rho)$
$\llbracket M$ to x_{σ} in $N \rrbracket \rho=\left(V \in \llbracket \sigma \rrbracket \mapsto \llbracket N \rrbracket \rho\left[x_{\sigma} \mapsto V\right]\right)^{*}(\llbracket M \rrbracket \rho)$
\llbracket thunk $M \rrbracket \rho=\llbracket M \rrbracket \rho \quad \llbracket$ force $M \rrbracket \rho=\llbracket M \rrbracket \rho$
$\llbracket * \rrbracket \rho=\top$
$\llbracket \underline{n} \rrbracket \rho=n$
$\llbracket \mathbf{s u c c} M \rrbracket \rho= \begin{cases}n+1 & \text { if } n=\llbracket M \rrbracket \rho \neq \perp \\ \perp & \text { otherwise }\end{cases}$
$\llbracket \operatorname{pred} M \rrbracket \rho= \begin{cases}n-1 & \text { if } n=\llbracket M \rrbracket \rho \neq \perp \\ \perp & \text { otherwise }\end{cases}$
$\measuredangle \begin{array}{lll}\llbracket N \rrbracket \rho & \text { if } \llbracket M \rrbracket \rho=0 \\ \lfloor\Gamma\end{array}$
$\llbracket \mathbf{i f z}$ M N $P \rrbracket \rho= \begin{cases}\llbracket N \rrbracket \rho & \text { if } \llbracket M \rrbracket \rho=0 \\ \llbracket P \rrbracket \rho & \text { if } \llbracket M \rrbracket \rho \neq 0, \perp \\ \perp & \text { if } \llbracket M \rrbracket \rho=\perp\end{cases}$
$\llbracket M ; N \rrbracket \rho= \begin{cases}\llbracket N \rrbracket \rho & \text { if } \llbracket M \rrbracket \rho=\top \\ \perp & \text { otherwise }\end{cases}$
$\llbracket \pi_{1} M \rrbracket \rho=m, \llbracket \pi_{2} M \rrbracket \rho=n$ where $\llbracket M \rrbracket \rho=(m, n)$
$\llbracket\langle M, N\rangle \rrbracket \rho=(\llbracket M \rrbracket \rho, \llbracket N \rrbracket \rho)$
\llbracket ret $M \rrbracket \rho=\delta_{\llbracket M \rrbracket}$
$\llbracket \mathbf{d o} x_{\sigma} \leftarrow M ; N \rrbracket \rho=\left(V \in \llbracket \sigma \rrbracket \mapsto \llbracket N \rrbracket \rho\left[x_{\sigma} \mapsto V\right]\right)^{\dagger}(\llbracket M \rrbracket \rho)$
$\llbracket M \oplus N \rrbracket \rho=\frac{1}{2}(\llbracket M \rrbracket \rho+\llbracket N \rrbracket \rho)$
$\llbracket M \otimes N \rrbracket \rho=\llbracket M \rrbracket \rho \wedge \llbracket N \rrbracket \rho$
$\llbracket \mathbf{a b o r t}_{\mathbf{F} \tau} \rrbracket \rho=\emptyset$
$\llbracket \mathbf{r e c} x_{\sigma} \cdot M \rrbracket \rho=\operatorname{lfp}\left(V \in \llbracket \sigma \rrbracket \mapsto \llbracket M \rrbracket \rho\left[x_{\sigma} \mapsto V\right]\right)$
- Proof: by suitable logical relations.

NOTE

- None of that yet requires CCCs of continuous (or algebraic) domains

NOTE

- None of that yet requires CCCs of continuous (or algebraic) domains
- Soundness/adequacy works even for non-call-by-push-value probabilistic languages, working in the CCC Dcpo

NOTE

- None of that yet requires CCCs of continuous (or algebraic) domains
- Soundness/adequacy works even for non-call-by-push-value probabilistic languages, working in the CCC Dcpo

- Continuity is only needed for more advanced applications:
- full abstraction (next)
- commutativity of the \mathbf{V} monad (Fubini) at higher types

THE CONTEXTUAL PREORDER

- Let $M \leq N$ iff for every context C of output type FVunit,

$$
\operatorname{Pr}(C . M \downarrow) \leq \operatorname{Pr}(C . N \downarrow)
$$

THE CONTEXTUAL PREORDER

- Let $M \leq N$ iff for every context C of output type FVunit,

$$
\operatorname{Pr}(C . M \downarrow) \leq \operatorname{Pr}(C . N \downarrow)
$$

- $M \leq N$ iff for every context C of output type FVunit,

$$
h^{*}(\llbracket C[M] \rrbracket) \leq h^{*}(\llbracket C[N] \rrbracket)
$$

THE CONTEXTUAL PREORDER

- Let $M \leq N$ iff for every context C of output type FVunit,

$$
\operatorname{Pr}(C . M \downarrow) \leq \operatorname{Pr}(C . N \downarrow)
$$

- $M \leq N$ iff for every context C of output type FVunit,

$$
h^{*}(\llbracket C[M] \rrbracket) \leq h^{*}(\llbracket C[N] \rrbracket)
$$

(adequacy)

- Corollary. If $\llbracket M \rrbracket \leq \llbracket N \rrbracket$ then $M \leq N$.

THE CONTEXTUAL PREORDER

- Let $M \leq N$ iff for every context C of output type FVunit,

$$
\operatorname{Pr}(C . M \downarrow) \leq \operatorname{Pr}(C . N \downarrow)
$$

- $M \leq N$ iff for every context C of output type FVunit,

$$
h^{*}(\llbracket C[M] \rrbracket) \leq h^{*}(\llbracket C[N] \rrbracket)
$$

- Corollary. If $\llbracket M \rrbracket \leq \llbracket N \rrbracket$ then $M \leq N$.
- Proof. $\llbracket C[M] \rrbracket=\llbracket C \rrbracket(\llbracket M \rrbracket) \leq \llbracket C \rrbracket(\llbracket N \rrbracket)=\llbracket C[N] \rrbracket$ since $\llbracket C \rrbracket(=\llbracket \lambda x . C[x] \rrbracket)$ is Scott-continuous hence monotonic.
Then apply h^{*}, which is monotonic as well. \square

THE APPLICATIVE PREORDER

- Let $M \leq N$ iff for every context C of output type FVunit, $\operatorname{Pr}(C . M \downarrow) \leq \operatorname{Pr}(C . N \downarrow)$
- Let $M \leq a p p$ iff for every term $P: T \rightarrow$ FVunit,

$$
\operatorname{Pr}(P M \downarrow) \leq \operatorname{Pr}(P N \downarrow)
$$

THE APPLICATIVE PREORDER

- Let $M \leq N$ iff for every context C of output type FVunit, $\operatorname{Pr}(C . M \downarrow) \leq \operatorname{Pr}(C . N \downarrow)$
- Let M sapp N iff for every term $P: T \rightarrow$ FVunit, $\operatorname{Pr}(P M \downarrow) \leq \operatorname{Pr}(P N \downarrow)$
- Proposition (« Milner’s context lemma » in PCF):

$$
M \leq N \text { iff } M \leq \text { app } N .
$$

THE APPLICATIVE PREORDER

- Let $M \leq N$ iff for every context C of output type FVunit, $\operatorname{Pr}(C . M \downarrow) \leq \operatorname{Pr}(C . N \downarrow)$
- Let $M \leq \operatorname{app} N$ iff for every term $P: T \rightarrow$ FVunit,

$$
\operatorname{Pr}(P M \downarrow) \leq \operatorname{Pr}(P N \downarrow)
$$

- Proposition (« Milner’s context lemma » in PCF):

$$
M \leq N \text { iff } M \leq \operatorname{app} N .
$$

- Proof: based on an idea of A. Jung (Streicher 06), reusing our previous logical relation.

FULL ABSTRACTION?

- Conjecture (full abstraction): $\llbracket M \rrbracket \leq \llbracket N \rrbracket$ iff $M \leq N$.

FULL ABSTRACTION?

- Conjecture (full abstraction): $\llbracket M \rrbracket \leq \llbracket N \rrbracket$ iff $M \leq N$.
- Wrong. (As in (Plotkin 77).) Using another logical relation, for every P : int \rightarrow int \rightarrow Fint, if $\llbracket P \rrbracket(\perp)(0)=\llbracket P \rrbracket(0)(\perp)=\{0\}$ then $\llbracket P \rrbracket(\perp)(\perp)=\{0\}$

FULL ABSTRACTION?

- Conjecture (full abstraction): $\llbracket M \rrbracket \leq \llbracket N \rrbracket$ iff $M \leq N$.
- Wrong. (As in (Plotkin 77).) Using another logical relation, for every P : int \rightarrow int \rightarrow Fint, if $\llbracket P \rrbracket(\perp)(0)=\llbracket P \rrbracket(0)(\perp)=\{0\}$ then $\llbracket P \rrbracket(\perp)(\perp)=\{0\}$
- Hence with $M=\lambda P \cdot P \Omega 0==0 \& \& P 0 \Omega==0$

$$
N=\lambda P . M P \& \& P \Omega \Omega==0
$$

we have $M \leq N$.

FULL ABSTRACTION?

- Conjecture (full abstraction): $\llbracket M \rrbracket \leq \llbracket N \rrbracket$ iff $M \leq N$.
- Wrong. (As in (Plotkin 77).) Using another logical relation, for every P : int \rightarrow int \rightarrow Fint, if $\llbracket P \rrbracket(\perp)(0)=\llbracket P \rrbracket(0)(\perp)=\{0\}$ then $\llbracket P \rrbracket(\perp)(\perp)=\{0\}$
- Hence with $M=\lambda P \cdot P \Omega 0==0$ \&\& $P 0 \Omega==0$

$$
N=\lambda P \cdot M P \& \& P \Omega \Omega==0
$$

(and some syntactic sugar)
we have $M \leq N$.

- But $\llbracket M \rrbracket \nsubseteq \llbracket N \rrbracket$ since $\llbracket M \rrbracket(p o r)=T, \llbracket N \rrbracket(p o r)=\perp$.

FULL ABSTRACTION?

- Add parallel if pifz:
$\llbracket p i f z M N P \rrbracket=\llbracket N \rrbracket$ if $\llbracket M \rrbracket=0$
$\llbracket P \rrbracket$ if $\llbracket M \rrbracket \neq 0, \perp$
$\llbracket N \rrbracket \wedge \llbracket P \rrbracket($ not $\perp!$) if $\llbracket M \rrbracket=\perp$

FULL ABSTRACTION?

- Add parallel if pifz:
$\llbracket p i f z M N P \rrbracket=\llbracket N \rrbracket$ if $\llbracket M \rrbracket=0$
$\llbracket P \rrbracket$ if $\llbracket M \rrbracket \neq 0, \perp$
$\llbracket N \rrbracket \wedge \llbracket P \rrbracket($ not $\perp!$) if $\llbracket M \rrbracket=\perp$
- Conjecture (full abstraction): $\llbracket M \rrbracket \leq \llbracket N \rrbracket$ iff $M \leq N$.

FULL ABSTRACTION?

- Add parallel if pifz:
\llbracket pifz $M N P \rrbracket=\llbracket N \rrbracket$ if $\llbracket M \rrbracket=0$
$\llbracket P \rrbracket$ if $\llbracket M \rrbracket \neq 0, \perp$
$\llbracket N \rrbracket \wedge \llbracket P \rrbracket($ not $\perp!$) if $\llbracket M \rrbracket=\perp$
- Conjecture (full abstraction): $\llbracket M \rrbracket \leq \llbracket N \rrbracket$ iff $M \leq N$.
- Still wrong. As in (GL I5), missing statistical termination testers.

STATISTICALTERMINATIONTESTERS

- Let $M=\lambda P \cdot P(\Omega \oplus$ ret *)

$$
N=\lambda P \cdot P(\Omega) \oplus \text { ret } *
$$

(modulo some missing force, produce, etc.)
Then $M \leq N$, even with pifz

sTATISTICALTERMINATIONTESTERS

- Let $M=\lambda P \cdot P(\Omega \oplus$ ret $*)$

$$
N=\lambda P \cdot P(\Omega) \oplus \text { ret }^{*}
$$

(modulo some missing force, produce, etc.)
Then $M \leq N$, even with pifz

- But $\llbracket M \rrbracket \nsubseteq \llbracket N \rrbracket$ since $\llbracket M \rrbracket([>b])=\uparrow \delta_{T}, \llbracket N \rrbracket([>b])=\perp$ for all $b<1 / 2$, where $[>b]: \llbracket$ Vunit】 $\rightarrow \llbracket$ FVunit】 maps every V to 'termination' $\left(\uparrow \delta_{T}\right)$ if $V(\{T\})>b$, to \perp otherwise.

sTATISTICALTERMINATIONTESTERS

- Let $M=\lambda P \cdot P(\Omega \oplus$ ret $*)$ $N=\lambda P \cdot P(\Omega) \oplus$ ret *
(modulo some missing force, produce, etc.)
Then $M \leq N$, even with pifz
- But $\llbracket M \rrbracket \nsubseteq \llbracket N \rrbracket$ since $\llbracket M \rrbracket([>b])=\uparrow \delta_{T}, \llbracket N \rrbracket([>b])=\perp$ for all $b<1 / 2$, where $[>b]: \llbracket$ Vunit $\rrbracket \rightarrow$ [FVunit】 maps every V to 'termination' $\left(\uparrow \delta_{T}\right)$ if $V(\{T\})>b$, to \perp otherwise.
- $[>b]$ tests whether the prob. that its argument terminates is $>b$.

FULL ABSTRACTION

- Add pifz $+\bigcirc_{>b}$ (with the semantics of $[>b], 0<b<1$ dyadic)

FULL ABSTRACTION

- Add pifz $+\bigcirc_{>b}$ (with the semantics of $[>b], 0<b<1$ dyadic)
- Theorem (full abstraction): with pifz and $\bigcirc_{>b}$, $\llbracket M \rrbracket \leq \llbracket N \rrbracket$ iff $M \leq N$.

FULL ABSTRACTION

- Add pifz $+\bigcirc_{>b}$ (with the semantics of $[>b], 0<b<1$ dyadic)
- Theorem (full abstraction): with pifz and $\bigcirc_{>b}$, $\llbracket M \rrbracket \leq \llbracket N \rrbracket$ iff $M \leq N$.
- And now a glimpse of the argument...

FULL ABSTRACTION: PROOF

- We assume $\llbracket M \rrbracket \nsubseteq \llbracket N \rrbracket$, and we wish to prove not $(M \leq N)$.

FULL ABSTRACTION: PROOF

- We assume $\llbracket M \rrbracket \nsubseteq \llbracket N \rrbracket$, and we wish to prove not $(M \leq N)$.
- There is a subbasic open set $U / \llbracket M \rrbracket \in U, \llbracket N \rrbracket \notin U$ (because \leq is the specialization ordering of the Scott topology)

FULL ABSTRACTION: PROOF

- We assume $\llbracket M \rrbracket \nsubseteq \llbracket N \rrbracket$, and we wish to prove not $(M \leq N)$.
- There is a subbasic open set $U / \llbracket M \rrbracket \in U, \llbracket N \rrbracket \notin U$ (because \leq is the specialization ordering of the Scott topology)
- If U is definable by a term P (i.e., $\llbracket P \rrbracket$ maps each $x \in U$ to $\uparrow \delta_{T}$ and each $x \notin U$ to \perp) then $\llbracket P M \rrbracket=\uparrow \delta_{T}, \llbracket P N \rrbracket=\perp$, so not $(M \leq a p p ~ N)$.
Conclude by Milner's context lemma.

FULL ABSTRACTION: PROOF

- We assume $\llbracket M \rrbracket \nsubseteq \llbracket N \rrbracket$, and we wish to prove not $(M \leq N)$.
- There is a subbasic open set $U / \llbracket M \rrbracket \in U, \llbracket N \rrbracket \notin U$ (because \leq is the specialization ordering of the Scott topology)
- If U is definable by a term P (i.e., $\llbracket P \rrbracket$ maps each $x \in U$ to $\uparrow \delta_{T}$ and each $x \notin U$ to \perp) then $\llbracket P M \rrbracket=\uparrow \delta_{T}, \llbracket P N \rrbracket=\perp$, so not $(M \leq a p p ~ N)$.
Conclude by Milner's context lemma.
- Challenge: show that each $\llbracket \llbracket \rrbracket$ has a subbase of definable opens.

PROBABILISTIC TYPES

- 【V \quad 』! subbasic opens [U>b]
where U is a basic open of $\llbracket \sigma \rrbracket, b$ dyadic in $(0, I)$

PROBABILISTIC TYPES

- 【V \quad 』: subbasic opens [U>b] where U is a basic open of $\llbracket \sigma \rrbracket, b$ dyadic in $(0, I)$
- I.e. (requires $\llbracket \sigma \rrbracket$ continuous!) Scott=weak topology (Kirch 93)

PROBABILISTIC TYPES

- 【V \quad 』: subbasic opens [U>b] where U is a basic open of $\llbracket \sigma \rrbracket, b$ dyadic in $(0, I)$
- I.e. (requires $\llbracket \sigma \rrbracket$ continuous!) Scott=weak topology (Kirch 93)
- test $v \in[U>b]$: iff $v(U)>b$, implemented through
$` \bigcirc_{>b}\left(\right.$ do $x_{\sigma} \leftarrow v ;\left\langle\right.$ test $\left.\left.x_{\sigma} \in U\right\rangle\right)$ '

PROBABILISTIC TYPES

- 【V \quad 』: subbasic opens [U>b] where U is a basic open of $\llbracket \sigma \rrbracket, b$ dyadic in $(0, I)$
- I.e. (requires $\llbracket \sigma \rrbracket$ continuous!) Scott=weak topology (Kirch 93)
- test $v \in[U>b]$: iff $v(U)>b$, implemented through
$` \bigcirc_{>b}\left(\right.$ do $x_{\sigma} \leftarrow v ;\left\langle\right.$ test $\left.\left.x_{\sigma} \in U\right\rangle\right)$ '
- Note: $\llbracket \mathbf{V} \sigma \rrbracket$ also has a basis of
$\sum_{x} a_{x} \delta_{x}, a_{x}$ dyadic, each x from a basis of $\llbracket \sigma \rrbracket$ implementable using ret and \oplus

FTYPES

【Fб】: subbasic opens $\square U$
where U is a basic open of $\llbracket \sigma \rrbracket$

FTYPES

－【Fの】：subbasic opens $\square U$ where U is a basic open of $\llbracket \sigma \rrbracket$
－I．e．（requires $\llbracket \sigma \rrbracket$ continuous！）Scott＝upper Vietoris topology

■TYPES

－【Fの】：subbasic opens $\square U$ where U is a basic open of $\llbracket \sigma \rrbracket$
－I．e．（requires $\llbracket \sigma \rrbracket$ continuous！）Scott＝upper Vietoris topology
－test $Q \in \square U$ ：iff $Q \subseteq U$ ，implemented through
＇Q to x_{σ} in 〈test $x_{\sigma} \in U$＇

FTYPES

- 【Fஏ】: subbasic opens $\square U$ where U is a basic open of $\llbracket \sigma \rrbracket$
- I.e. (requires $\llbracket \sigma \rrbracket$ continuous!) Scott=upper Vietoris topology
- test $Q \in \square U$: iff $Q \subseteq U$, implemented through

$$
\text { ' } Q \text { to } x_{\sigma} \text { in }\left\langle\text { test } x_{\sigma} \in U\right\rangle \text { ' }
$$

- Note: $\llbracket \mathbf{F} \sigma \rrbracket$ also has a basis of $\uparrow\left\{x_{1}, \ldots, x_{n}\right\}$,
(each x_{i} from a basis of $\llbracket \sigma \rrbracket$), plus \perp, implementable using produce, abort, and \otimes

FUNCTIONTYPES (I/2)

- $\llbracket \sigma \rightarrow T \rrbracket$: subbasic opens $[x \mapsto V]$,
where x is from some basis of $\llbracket \sigma \rrbracket$,
V is a subbasic open of $\llbracket T \rrbracket$

FUNCTIONTYPES (I/2)

- $\llbracket \sigma \rightarrow T \rrbracket$: subbasic opens $[x \mapsto V]$, where x is from some basis of $\llbracket \sigma \rrbracket$, V is a subbasic open of $\llbracket T \rrbracket$
- I.e. (uses $\llbracket \sigma \rrbracket \mathbf{b c - d o m a i n !}$) Scott=top. of pointwise convergence

FUNCTIONTYPES (I/2)

- $\llbracket \sigma \rightarrow T \rrbracket$: subbasic opens $[x \mapsto V]$, where x is from some basis of $\llbracket \sigma \rrbracket$, V is a subbasic open of 【T】
- I.e. (uses $\llbracket \sigma \rrbracket \mathbf{b c - d o m a i n !}$) Scott=top. of pointwise convergence
- test f in $[x \mapsto V$]: iff $f(x) \in V$, implemented straightforwardly

FUNCTIONTYPES (I/2)

- $\llbracket \sigma \rightarrow T \rrbracket$: subbasic opens $[x \mapsto V]$, where x is from some basis of $\llbracket \sigma \rrbracket$, V is a subbasic open of $\llbracket T \rrbracket$
- I.e. (uses $\llbracket \sigma \rrbracket \mathbf{b c - d o m a i n !}$) Scott=top. of pointwise convergence
- test f in $[x \mapsto V$]: iff $f(x) \in V$, implemented straightforwardly
- Note we need to also define a basis of each type $\llbracket \sigma \rrbracket$ now. We have them for \mathbf{V} and \mathbf{F} types, and the difficult case is for \rightarrow.

FUNCTIONTYPES (2/2)

- Basis for $\llbracket \sigma \rightarrow T \rrbracket$: step functions $V_{I \leq i \leq n} U_{i} \searrow y_{i}$ mapping each x to $\vee\left\{y_{i} \mid x \in U_{i}\right\} .$. but that sup is hard to implement - we only have infs.

FUNCTIONTYPES (2/2)

- Basis for $\llbracket \sigma \rightarrow T \rrbracket$: step functions $\vee_{I \leq i \leq n} U_{i} \searrow y_{i}$ mapping each x to $\vee\left\{y_{i} \mid x \in U_{i}\right\} .$. but that sup is hard to implement - we only have infs.
- Trick: for each subset I of $\{1, \ldots, n\}$, let $U_{I}=$ intersection of U_{i}, i in I,

$$
y_{l}=\sup \text { of } y_{i} ; i \text { in } l \text {. }
$$

Then $V_{1 \leq i \leq n} U_{i} \searrow y_{i}(x)=\inf \left\{y_{1} \mid I \supseteq I_{x}\right\}$ where $I_{x}=\left\{i \mid x \in U_{i}\right\}$

FUNCTIONTYPES (2/2)

- Basis for $\llbracket \sigma \rightarrow T \rrbracket$: step functions $\vee_{I \leq i \leq n} U_{i} \searrow y_{i}$ mapping each x to $\vee\left\{y_{i} \mid x \in U_{i}\right\} . .$. but that sup is hard to implement - we only have infs.
- Trick: for each subset I of $\{1, \ldots, n\}$, let $U_{I}=$ intersection of U_{i}, i in I,

$$
y_{l}=\sup \text { of } y_{i} ; i \text { in } l \text {. }
$$

Then $V_{1 \leq i \leq n} U_{i} \searrow y_{i}(x)=\inf \left\{y_{1} \mid I \supseteq I_{x}\right\}$ where $I_{x}=\left\{i \mid x \in U_{i}\right\}$

- Additional difficulties (need for pifz notably)... omitted. Done! \square

SUMMARY

- Circumventing the trouble with \mathbf{V} by using two classes of types, as provided by call-by-push-value
- We obtain (inequational) full abstraction with prob. choice + demonic non-determinism
- Questions?


```
CALL-BY-PUSH-VALUE
```


