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Noetherian spaces

✤ Defn.  A space is Noetherian iff every open is compact.

✤ Here compact does not entail any kind of separation.

✤ Fact.  The following are equivalent:
(1) X is Noetherian
(2) Every subspace of X is compact
(3) Ascending sequences U1 ⊆ U2 ⊆ ... ⊆ Un ⊆ ... of opens stabilize
(4) Descending sequences C1 ⊇ C2 ⊇ ... ⊇ Cn ⊇ ... of closed sets stabilize

✤ We shall see other characterizations later.
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Outline

✤ Characterizations of Noetherian spaces (half of them well-known)

✤ Transfering results from wqo theory to topology

✤ Applications in software verification

✤ Representations

✤ Conclusion
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Noetherian spaces, classically

✤ Defn.  A space is Noetherian iff every open 
is compact.

✤ Prop.  The spectrum of a Noetherian ring is 
a Noetherian space.

✤ E.g., the spectrum of a
polynomial ring over Q, R, or C.
Not my first source of inspiration here.
We shall see many (simpler) examples.

✤ Note.  Noetherian + Hausdorff ⇔ finite,
so we shall definitely drop Hausdorffness.
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Well-quasi-orders

✤ Fact.  The following are equivalent for a quasi-ordering ≤:
(1) Every sequence (xn)n∈N is good: xm ≤ xn for some m<n
(2) Every sequence (xn)n∈N is perfect: has a monotone subsequence
(3) ≤ is well-founded and has no infinite antichain.

✤ Defn.  Such a quasi-ordering ≤ is
called a well-quasi-order (wqo).

✤ Applications:
classification of graphs (Kuratowski, Robertson-Seymour)
verification (computer science)
model theory (logic: Fraïssé, Jullien, Pouzet)
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The starting observation

✤ Given a qo (X, ≤), its Alexandroff topology has as opens U all 
upwards-closed subsets of X.

✤ Prop. Let (X, ≤) be wqo.
With its Alexandroff topology, X is Noetherian.
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The starting observation

✤ Given a qo (X, ≤), its Alexandroff topology has as opens U all 
upwards-closed subsets of X.

✤ Prop. Let (X, ≤) be wqo.
With its Alexandroff topology, X is Noetherian.

✤ Proof.  Consider an infinite ascending sequence
    U1 ⊊ U2 ⊊ ... ⊊ Un ⊊ ... of opens.
    Pick xn in Un, not in any previous Um.
    By wqo, xm ≤ xn for some m<n.
    Since xm ∈ Um upwards-closed, xn ∈ Um:
    contradiction.  ☐

✤ Plenty of  wqos ➩ plenty of  Noetherian spaces. 7
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Noetherian + Alexandroff

✤ Prop. Let (X, ≤) be wqo.
With its Alexandroff topology, X is Noetherian.

✤ There are also Noetherian spaces that are not Alexandroff:
— spectra of rings, with the Zariski topology
— powersets (see later)

✤ Conversely, the qo sets (X, ≤) that are Noetherian
in their Alexandroff topology
are exactly the wqo sets.

✤ Proof.  From (xn)n∈N define Un = ↑{x1, ..., xn}.
   This stabilizes at n: Un-1 = Un, so xn ∈ ↑{x1, ..., xn-1}.  ☐
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Basic constructions

✤ Prop. (1) Every wqo is Noetherian in its Alexandroff topology
(2) The spectrum of a Noetherian ring is Noetherian
(3) Finite products of Noetherian spaces are Noetherian
(4) Finite coproducts of Noetherian spaces are Noetherian
(5) Subspaces of Noetherian spaces are Noetherian
(6) Topologies coarser than a Noetherian topology are Noetherian
(7) Continuous images of Noetherian spaces are Noetherian
     (in particular, quotients)

✤ We shall see other constructions that preserve Noetherianness.

✤ We need additional characterizations of Noetherianness.
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Cluster points

✤ Prop. X is Noetherian iff every net (xi)i∈I contains a cluster point xi.
             (The important point is: the cluster point xi belongs to the net.)

✤ Proof.
(⇒) If X Noetherian, then subspace K={xi | i∈I} is compact,
        hence (xi)i∈I has a cluster point in K.
(⇐) Let U be open in X.
        Every net (xi)i∈I inside U has a cluster point in U, viz. some xi.
        So U is compact.   ☐

✤ Note: in Alexandroff spaces, xi cluster point means that for some i, 
infinitely many entries xj are above xi.  (Take the open ↑xi.)
           ... hence all sequences are good.
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Self-convergent nets

✤ A net (xi)i∈I is self-convergent iff it converges to every xi.
                              (A very much non-Hausdorff notion!)

✤ Thm.  X is Noetherian iff every net (xi)i∈I has a self-convergent subnet.

✤ Proof.  (⇒) Let J be {i∈I | xi is a cluster point of the net}.
   By previous Prop., J is non-empty.
   Check: J is cofinal and directed in I; so (xj)j∈J is a subnet.
   By Kelley’s Theorem, (xj)j∈J has a further subnet that is an ultranet.
   Check that this ultranet is self-convergent.
(⇐) Obvious, using previous Prop.   ☐

✤ In Alexandroff spaces, (xi)i∈I self-convergent iff eventually monotone
   .... hence all sequences are perfect. 11
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Ultrafilters

✤ A similar characterization (lim U =set of limits of U):

✤ Thm.  X is Noetherian iff every ultrafilter U is compact: lim U ∈ U.

✤ Proof.  (⇒) Let U be (open) complement of lim U.
     If lim U not in U, then U is in U (ultrafilter).
     Since U is compact, U has a limit in U.
     So lim U intersects U: contradiction.
(⇐) Fix an open U. Let U be an arbitrary ultrafilter containing U.
     Since lim U ∈ U, lim U ⋂ U ∈ U, so lim U ⋂ U≠∅.
     Hence U has a limit in U: U is compact.   ☐
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Application: finite products

✤ Well-known: finite products of Noetherian spaces are Noetherian.
Here is a simple proof.
               (Warning: I’m lying a bit about what a subnet is.)

✤ Let X, Y be Noetherian.
Let (xi, yi)i∈I be a net in X⨉Y.
  Extract a self-convergent subnet (xj)j∈J.
     From (yj)j∈J extract a further self-convergent subnet (yk)k∈K.
Then (xk, yk)k∈K is a self-convergent subnet of the original net.

✤ This is a topological version of the Ramsey argument behind the 
classical wqo proofs.
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Stone duality in a nutshell

✤ There is a functor O : Top → Frameop that:
— maps each space X to its frame OX of opens
— maps f:X → Y to Of  : OY → OX : V ↦ f-1(V).

✤ O is left-adjoint to a functor pt : Frameop → Top.

✤ S=pt O is the sobrification functor.

✤ Defn.  A space X is sober iff it is of the form pt L for some frame L
                                              iff it is of the form SY for some space Y
                                              iff X=SX    (all that, up to iso.)
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The specialization quasi-ordering

✤ Defn (specialization, ≤).  In a space X, x≤y
     iff every open containing x also contains y
     iff x ∈ cl({y}).

✤ X is T0 iff ≤ is antisymmetric (an ordering).

✤ Every open U is upwards-closed.
Every closed set C is downwards-closed.

✤ The closure cl({x}) is ↓x = {z | z≤x}.

15
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Sober spaces

✤ Call C irreducible closed iff closed and:
            if  C ⊆ ∪i=1n Ci then C ⊆ Ci for some i.
E.g., ↓x = cl({x}) is irreducible closed, for every point x.

✤ Fact. X is sober iff  T0 and all irreducible closed sets are of  this 
form.

✤ All Hausdorff  spaces are sober, but there are more (e.g., 
continuous and quasi-continuous dcpos in domain theory).
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Sobrification

✤ The sobrification functor can be described more concisely as:
— SX = {irreducible closed subsets of X}
      Opens ◇U={C | C ⋂ U≠∅}, U ∈OX
— For f:X → Y to, Sf  : SX → SY : C ↦ cl(f(C)).
— X embeds into SX through 𝜂 : X → SX : x ↦ ↓x.

✤ Fact.  X is Noetherian iff  SX is Noetherian.

✤ Proof. ◇:OX → OSX iso, and Noetherianness is a property of  
opens (ascending sequences of  opens stabilize).   ☐

✤ Fact.  The Noetherian sober spaces X are the Stone duals pt L 
of  distributive lattices L with the ascending chain condition.
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Sober Noetherian spaces

✤ An order-theoretic characterization.
Call sets of the form ↓{x1, ..., xn} finitary.

✤ Thm.  A sober space X is Noetherian iff:
(1) ≤ is well-founded, and
(2) the set of lower bounds of any finite set is finitary.
Then:
(3) The topology of X is the upper topology of ≤
(4) The closed sets are the finitary sets.

✤ Proof.  Folklore,
or see (JGL 2013)
or (Dickmann,Schwartz&Tressl).   ☐
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Outline

✤ Characterizations of Noetherian spaces (half of them well-known)
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Higman’s Lemma

✤ Lemma (Higman 1954).  If X, ≤ is wqo, then so is the qoset X* of finite 
words under subword relation ≤*.

✤ Thm (Topological Higman Lemma, JGL 2013).  If X is Noetherian, 
then so is X* with the subword topology.

✤ My aim here is to give you a proof of that, imitating Nash-Williams’ 
classic proof (1963) of Higman’s Lemma.
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The subword topology

✤ Defn.  For opens U1, U2, ..., Un in X, let [U1 U2... Un] be set of words
                    ... a1 ... a2 ... (etc.) ... an ...
            with a1 ∈ U1, a2 ∈ U2, ..., an ∈ Un.
The subword topology on X* is generated by those sets [U1 U2... Un].

✤ Specialization quasi-ordering is ≤*

✤ If X is Alexandroff, then subword topology=Alexandroff on X*,
so Higman’s Lemma is a special case
of the topological Higman Lemma.
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Bad sequences

✤ Let X be a topological space, with subbase B.
A bad sequence is a sequence (Un)n∈N of elements of B such that

no Un is included in a union ∪m<n Un of previous elements.

✤ Lemma.  If X is not Noetherian, then (whatever the subbase) it has a 
bad sequence.

✤ Proof.  Let U be non-compact open.
By Alexander’s Subbase Lemma, U has a cover (Ui)i∈I by elements of B 
that has no finite subcover.
Pick some Ui1.                Some point x1 in U is not in Ui1.
Pick Ui2 containing x1.  Some point x2 in U is not in Ui1 ∪ Ui2.
Pick Ui3 containing x2.  Some point ... etc.   ☐
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Minimal bad sequences

✤ Assume additionally a well-founded ⊑ ordering on B.
A bad sequence (Un)n∈N is minimal iff every
⊑-lexicographically smaller sequence (Vn)n∈N is good (i.e., not bad).
       [i.e., V0=U0, V1=U1, ..., Vn-1=Un-1, and Vn⊏Un (strictly) for some n]   

✤ Lemma.  If X is not Noetherian, then (whatever B and ⊑) it has a 
minimal bad sequence.

✤ Proof.  Find U0 ⊑-minimal so that it starts a bad sequence.
Given U0, find U1 ⊑-minimal so that U0, U1 start a bad sequence.
Given U0, U1, find U2 ⊑-minimal so that ...  etc.   ☐

✤ Note: Similar to wqos, where bad sequences are sequences of points.
23
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Proof plan

✤ On X*, let B consist of the subbasic opens [U1 U2... Um].
Let [U1 U2... Um] ⊑ [V1 V2... Vn] iff
      there is a (strictly) increasing map f:{1,2,...,m} → {1,2,...,n}
      such that Uk = Vf(k).
(I.e., the Vps are obtained by inserting new opens in the list of Uks.)

✤ If X* is not Noetherian, then extract some minimal bad sequence.

✤ Using the zoom-in Lemma (next slide), find a smaller sequence: that 
one must be good, leading to a contradiction.
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The zoom-in Lemma

✤ Lemma.  Let X be Noetherian, and an ∈ Un open for each n∈N.
There is a subsequence (an(k))k s.t. an(k) ∈ Un(0) ∩ ... ∩ Un(k) for every k.

✤ Proof.  Pick a cluster point an(0) (inside the sequence itself).

Infinitely many ans with n>n(0) are in Un(0), forming a subsequence.
Pick a cluster point an(1) from that subsequence.

Infinitely many ans with n>n(1) from that subsequence
are in Un(0) ∩ Un(1), forming a sub-subsequence.
Pick a cluster point an(2) from that sub-subsequence... etc.   ☐
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Proving the topological Higman Lemma

✤ Thm (Topological Higman Lemma, JGL 2013).  If X is Noetherian, 
then so is X* with the subword topology.

✤ Proof (1/3).
     Imagine X* is not Noetherian, and let
     Un = [Un1 Un2 ... Unm ...] form a minimal bad sequence.
Pick a word wn in Un that is in no previous Um.
Let Rn = [Un2 ... Unm ...] be « Un without its first open Un1».

By definition, wn = ln an rn where an ∈ Un1, rn ∈ Rn.
By zoom-in, extract (an(k))k s.t. an(k) ∈ Un(0)1 ∩ ... ∩ Un(k)1 for every k.
By minimality, U0, U1, ..., Un(0)-1, Rn(0), Rn(1), ... is good.   So, for some k:
                        Rn(k) ⊆ U0⋃...⋃Un(0)-1 ⋃ Rn(0) ⋃ ... ⋃ Rn(k-1).
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Proving the topological Higman Lemma

✤ Thm (Topological Higman Lemma, JGL 2013).  If X is Noetherian, 
then so is X* with the subword topology.

✤ Proof (2/3).  Recall: Un = [Un1 Un2 ... Unm ...], wn in Un, in no previous Um.
                        Rn = [Un2 ... Unm ...]
                        wn = ln an rn where an ∈ Un1, rn ∈ Rn.
                        an(k) ∈ Un(0)1 ∩ ... ∩ Un(k)1
                        Rn(k) ⊆ U0⋃...⋃Un(0)-1 ⋃ Rn(0) ⋃ ... ⋃ Rn(k-1).

✤ Note rn(k) ∈ Rn(k).
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Proving the topological Higman Lemma

✤ Thm (Topological Higman Lemma, JGL 2013).  If X is Noetherian, 
then so is X* with the subword topology.

✤ Proof (2/3).  Recall: Un = [Un1 Un2 ... Unm ...], wn in Un, in no previous Um.
                        Rn = [Un2 ... Unm ...]
                        wn = ln an rn where an ∈ Un1, rn ∈ Rn.
                        an(k) ∈ Un(0)1 ∩ ... ∩ Un(k)1
                        Rn(k) ⊆ U0⋃...⋃Un(0)-1 ⋃ Rn(0) ⋃ ... ⋃ Rn(k-1).

✤ Note rn(k) ∈ Rn(k).  Case 1: rn(k) ∈ Um for some m in 0, ..., n(0)-1.
         Then the larger wn(k) is in Um, too.  (Opens are upwards-closed.)
         Impossible since Um is previous (m<n(k)).
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Proving the topological Higman Lemma

✤ Thm (Topological Higman Lemma, JGL 2013).  If X is Noetherian, 
then so is X* with the subword topology.

✤ Proof (3/3).  Recall: Un = [Un1 Un2 ... Unm ...], wn in Un, in no previous Um.
                        Rn = [Un2 ... Unm ...]
                        wn = ln an rn where an ∈ Un1, rn ∈ Rn.
                        an(k) ∈ Un(0)1 ∩ ... ∩ Un(k)1
                        Rn(k) ⊆ U0⋃...⋃Un(0)-1 ⋃ Rn(0) ⋃ ... ⋃ Rn(k-1).

✤ Note rn(k) ∈ Rn(k).  Case 2: rn(k) ∈ Rn(j) for some j in 0, ..., k-1.
         Note that an(k) ∈ Un(j)1.
         Hence wn(k) = ln(k) an(k) rn(k) is in Un(j), too.
         Impossible since Un(j) is previous (j<k).   ☐
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Kruskal’s Theorem

✤ Thm (Kruskal 1960).  If X, ≤ is wqo, then so is the qoset T(X) of finite 
trees labeled by X under homeomorphic embedding relation ⪯≤.

✤ Thm (Topological Kruskal Theorem, JGL 2013).  If X is Noetherian, 
then so is T(X) with the tree topology.

✤ Admitted.  Slightly more complex.
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The statement of Theorem 2 seems very far from Higman’s Lemma. Call
constructive Noetherian space any tuple pX,T,†, "q, where † is a well-founded
ordering on the set T (T is the cotopology) whose reflexive closure ® makes T

a distributive lattice (this much implies classically that pT,®q is the lattice of
closed subsets of some Noetherian space, up to isomorphism), and " Ñ X ˆ T

(membership) is a binary relation such that for all A,B P T , A ® B iff for every
x " A, x " B. We observe the following:

paq Given a constructive S-representation pS,Ä, ⌧,^q, we think of elements of S
as irreducible closed subsets of some Noetherian space X, and we can build all
closed sets as finite unions thereof. We encode the latter as finite antichains,
hence as multisets. Letting T “ MpSq, † “ Ä`

mul

then defines the canonical

cotopology on pS,Ä, ⌧,^q. Any subset X of S then gives rise to a constructive
Noetherian space pX,MpSq,Ä`

mul

, "q, where x " M iff t|x|u pÄ
mul

q˚
M .

pbq Conversely, every cotopology pT,†q gives rise to a trivial constructive S-
representation pS,Ä, ⌧,^q where S “ T , Ä is †, ⌧ “ tJu where J is the top
element of T , and A ^ B “ tA [ Bu where [ is meet in T .

Given paq and pbq, Theorem 2 and Lemma 1 then imply:

Corollary 1 (Topological Higman Lemma, Constructively). For every

constructive Noetherian space pX,T,†, "q, pX˚
,MpTwq, p†w

mul

q`
, "

wq is a con-

structive Noetherian space, with w "

w
M iff t|⌘wpwq|u p†w

mul

q˚
M , where ⌘

wpx1

x2 . . . xmq “ x

?
1x

?
2 . . . x

?
m.

This implies the usual form of Higman’s Lemma, by similar arguments as
in [37]. Assuming a decidable constructive wqo § on a set X, one can show,
constructively, that the antichains E “ tx1, . . . , xnu (interpreted as the down-
ward closed set X r ÒE) are the elements of a cotopology, where † is the strict
part of ®; we let E ® E

1 iff X r ÒE Ñ X r ÒE1, iff for every y P X

1, there
is an x P E such that x § y; and x " E iff x P X r ÒE, iff for every y P E,
y ¶ x. Recall that a finite sequence w1, . . . , wn in X

˚ is bad iff wi §˚
wj for

no i † j. Following Murthy and Russell, we show that the converse of the prefix
ordering on bad sequences w1, . . . , wn is well-founded, by p†w

mul

q`-induction on
the closed subset X

˚ r Òtw1, . . . , wnu—this induction principle is given to us
by Corollary 1. The set X

˚ r Òtw1, . . . , wnu is represented, constructively, as
the finite intersection of the sets X r Òwi, using the J and [ operations of the
cotopology; writing wi as the word x1x2 . . . xm, X r Òwi is the word-product
pXrÒx1q˚

X

?pXrÒx2q˚
X

?
. . . X

?pXrÒxmq˚ if m • 1, the empty set otherwise
[22, Lemma 6.1]. This is the core of Murthy and Russell’s proof:

Theorem 3 (Murthy-Russell). Let X be a set with a decidable constructive

wqo §. Then §˚
is a (decidable) constructive wqo on X

˚
.

5 A constructive proof of Kruskal’s Theorem

We use the same strategy for trees, i.e., first-order terms. Given a set X with a
quasi-ordering §, the (tree) embedding quasi-ordering ®§ is inductively defined
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Powersets

✤ Let P(X) come with the lower Vietoris topology,
with subbase ◇U={A | A ⋂ U≠∅}, U ∈OX.

✤ Thm (JGL, 2007).  If  X is Noetherian, then so is P(X).

✤ Proof.  If  P(X) not Noetherian, let (◇Un) n∈N be a bad sequence:
              no ◇Un is included in ∪m<n ◇Um = ◇∪m<n Um.
    Since ◇ is monotonic, no Un is included in ∪m<n Um.
    Therefore (Un) n∈N is bad: contradiction.   ☐

✤ Specialization qo: A ≤♭B iff  every a ∈ A is below some b ∈ B.
31
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Powersets, or: beyond wqos

✤ Let P(X) come with the lower Vietoris topology,
with subbase ◇U={A | A ⋂ U≠∅}, U ∈OX.

✤ Thm (JGL, 2007).  If  X is Noetherian, then so is P(X).

✤ Specialization qo: A ≤♭B iff  every a ∈ A is below some b ∈ B.
Pretty remarkable, since:

✤ Prop (Rado, 1957).  There are wqos X, ≤
such that P(X), ≤♭ is not wqo.
XRado={(i,j) | i<j}, (i,j) ⊑ (k,l) iff  i=k and j≤l
                                              or j<k.
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A catalogue of Noetherian spaces
WSTS I: COMPLETIONS 15

D ::= A (finite poset; Theorem 4.3)
| N (natural numbers; Theorem 4.4)
| D

1

⇥D

2

⇥ . . .⇥D

n

(product; Theorem 4.5)
| D

1

+D

2

+ . . .+D

n

(coproduct; Theorem 4.6)
| S(D) (sobrification; Theorem 4.7) ⇤
| P(D) (powerset; Theorem 4.8) ⇤
| P⇤

(D) (non-empty powerset; Theorem 4.8) ⇤
| H(D) (Hoare powerdomain; Theorem 4.9) ⇤
| H;(D) (lifted Hoare powerdomain; Theorem 4.9) ⇤
| Spec(R) (spectrum of ring R; Proposition 5.1) ⇤
| Ck (complex space; Theorems 5.2, 5.3) ⇤
| D

⇤ (finite words; Theorem 6.14)
| D

~ (finite multisets; Theorem 7.6)
| .+1

n=1

D

n

(words, prefix; Theorem 8.8) ⇤
| T (D) (finite trees; Theorem 9.26)

Figure 1: An algebra of Noetherian datatypes

Definition 4.1 (S-Representation). Let X be a topological space. An S-representation of X is a
tuple (S,S J_K ,⇥, ⌧,^) where:
(A) S is a recursively enumerable set of so-called codes (of irreducible closed subsets);
(B) S J_K is a surjective map from S to S(X);
(C) ⇥ is a decidable relation such that, for all codes a, b 2 S, a⇥ b iff S JaK  S JbK;
(D) ⌧ is a finite subset of S, such that X =

S
a2⌧ S JaK;

(E) ^ is a computable map from S ⇥ S to Pfin(S), (and we write a ^ b for ^ (a, b)) such that
S JaK \ S JbK =

S
c2a^b S JcK.

We call ^ the intersection map.

Above, Pfin(S) denotes the collection of all finite subsets of S. The idea is that codes represent
irreducible closed subsets, through the semantic function S J_K, that ⇥ implements inclusion, ⌧
denotes the whole set X , and ^ implements intersection.

We justify this below, in a more precise way. One key ingredient is the following result.

Proposition 4.2 ([24], Proposition 13.20). Let X be a Noetherian space. Every closed subset F of
X is a finite union of irreducible closed subsets C

1

, . . . , C

m

.
If C 0

1

, . . . , C

0
n

are also irreducible closed, then C

1

[ . . . [ C

m

✓ C

0
1

[ . . . [ C

0
n

if and only if
{C
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, . . . , C
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} ✓[ {C 0
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, . . . , C

0
n

}, i.e., iff for every i (1  i  m), there is a j (1  j  n) with
C

i

✓ C

0
j

.

In general, [ is the Hoare quasi-ordering on subsets, also called the domination quasi-ordering:
A [

B iff for every a 2 A, there is a b 2 B such that a  b.
While codes a denote irreducible closed subsets S JaK, we shall represent arbitrary closed sub-

sets F through finite sets {a
1

, . . . , a

m

} of codes. The denotation of such a finite set is the unionS
m

i=1

S Ja
i

K. When X is Noetherian, every closed set F can be written this way; namely, as the
union of finitely many irreducible closed subsets. This is what the first part of Proposition 4.2
states.

While ⇥ allows us to test two (codes of) irreducible closed subsets for inclusion, one can extend
the inclusion test to arbitrary closed subsets: this is what the second part of Proposition 4.2 states.

finite poset
natural numbers
products
sums
sobrification
powerset
non-empty powerset
extended Hoare powerspace
Hoare powerspace
spectrum of a ring
complex vector space (Zariski)
words / embedding
multisets
words / prefix
trees / embedding
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| D

1

⇥D

2

⇥ . . .⇥D
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(product; Theorem 4.5)
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n
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| T (D) (finite trees; Theorem 9.26)

Figure 1: An algebra of Noetherian datatypes

Definition 4.1 (S-Representation). Let X be a topological space. An S-representation of X is a
tuple (S,S J_K ,⇥, ⌧,^) where:
(A) S is a recursively enumerable set of so-called codes (of irreducible closed subsets);
(B) S J_K is a surjective map from S to S(X);
(C) ⇥ is a decidable relation such that, for all codes a, b 2 S, a⇥ b iff S JaK  S JbK;
(D) ⌧ is a finite subset of S, such that X =

S
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(E) ^ is a computable map from S ⇥ S to Pfin(S), (and we write a ^ b for ^ (a, b)) such that
S JaK \ S JbK =

S
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We call ^ the intersection map.

Above, Pfin(S) denotes the collection of all finite subsets of S. The idea is that codes represent
irreducible closed subsets, through the semantic function S J_K, that ⇥ implements inclusion, ⌧
denotes the whole set X , and ^ implements intersection.

We justify this below, in a more precise way. One key ingredient is the following result.

Proposition 4.2 ([24], Proposition 13.20). Let X be a Noetherian space. Every closed subset F of
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.

In general, [ is the Hoare quasi-ordering on subsets, also called the domination quasi-ordering:
A [

B iff for every a 2 A, there is a b 2 B such that a  b.
While codes a denote irreducible closed subsets S JaK, we shall represent arbitrary closed sub-

sets F through finite sets {a
1

, . . . , a

m

} of codes. The denotation of such a finite set is the unionS
m

i=1

S Ja
i

K. When X is Noetherian, every closed set F can be written this way; namely, as the
union of finitely many irreducible closed subsets. This is what the first part of Proposition 4.2
states.

While ⇥ allows us to test two (codes of) irreducible closed subsets for inclusion, one can extend
the inclusion test to arbitrary closed subsets: this is what the second part of Proposition 4.2 states.
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natural numbers
products
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sobrification
powerset
non-empty powerset
extended Hoare powerspace
Hoare powerspace
spectrum of a ring
complex vector space (Zariski)
words / embedding
multisets
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Verification

✤ How do you ensure a software/hardware 
system Sys is correct?

✤ Testing: fine and useful, but not exhaustive

✤ Verification: given a desirable property P, 
check that
           Sys ⊧ P

✤ That check should be done by an algorithm.

35

⊧ ☐ (E⇒⃟F)

Sys

P
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Verification

✤ A paradigmatic case is given by:
— Sys is a transition system
       (a directed graph, vertices=states)
— P is a (non-)reachability property
       «can Sys evolve from an initial state s
         to a state in the set Bad?»

✤ Verification is undecidable in general.
Decidable for Sys finite.
But most systems are infinite.

✤ Classes of infinite-state systems/properties 
for which verification would be decidable?

36

⊧ ¬⃟Bad

Sys

Bad=
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Well-Structured Transition Systems (WSTS)

✤ A transition system: state space X, transition relation

✤ with a wqo ≤

✤ satisfying monotonicity

x ≤ !!

δ

""

x′

δ
""

y ≤ !! y′

Forward Analysis for WSTS I. Completions

Introduction

WSTS

Well-Structured Transition Systems
WSTS: an extremely successful paradigm
[F87,FS01,AJ93,ACJY96], including Petri nets, LCS, etc.
Ingredients:

A transition relation δ ⊆ X × X ;

A well quasi-ordering (wqo) ≤ on X ;

+ monotonicity:

x ≤ !!

δ

""

x′

δ
""

y ≤ !! y′

(slightly simplifying, by assuming strong monotonicity.)

Angelic Non-Determinism, and The Hoare Powerdomain Non-Deterministic Choice
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Figure 2.1: A Petri Net Example in Biochemistry

2.1.2 An Example: Petri Nets
One of the most important examples of a (topological) well-structured transition system, with an
infinite state space, is given by Petri nets.

There are several ways of presenting Petri nets. The most concrete one is graphical, see Fig-
ure 2.1. This displays a collection of chemical reactions that are part of the mechanisms that
plants use to produce sugar (glucose C6H12O6) from carbon dioxide (CO2) and water (H2O),
and called the Calvin-Benson cycle. The circles, called places, correspond to chemical com-
pounds, while the fat, black bars are called transitions, and model chemical reactions. For
instance, there is a transition near the top right corner that takes 3 molecules of carbon diox-
ide CO2, 3 molecules of ribulose-1,5-diphosphate (nicknamed RuDP, and sometimes written
C5H8P2O11), and produces 6 molecules of 3-phosphoglycerate 3PG (C3H3PO6) and 3 molecules
of water (H2O). RuDP and CO2 are consumed in the process, but note that RuDP is regenerated
in the end by another transition that consumes 3 molecules of adenosine triphosphate ATP, 3
molecules of ribulose-5-phosphate Ru5P (C5H8PO7), and produces back 3 molecules of RuDP,
plus 3 molecules of adenosine diphosphate ADP. In the course of the process, there is a transi-
tion (shown leftmost) that generates 1 molecule of glucose C6H12O6, 3 of oxygen O2, and 1 of
phosphoric acid Pi.

Petri nets are used more pervasively in computer science (Reutenauer, 1993), and specifically
in the verification of complex, concurrent systems. But chemical examples probably convey the
idea more naturally.

Mathematically, Petri nets are transition systems on a state space of the form Nk, for some
k P N: k is the number of places (types of chemical compounds), and a state ~x P Nk specifies
how many molecules we have of each type. E.g., in the Calvin-Benson cycle example, k “ 17,
and states are of the form pnCO2 , nRuDP, n3PG, nH2O, . . . , nC6H12O6 , nO2q, where nCO2 is the number
of molecules of CO2 in the current state, nRuDP is the number of molecules of RuDP in the current

20 Preliminary version of December 18, 2011

Petri nets

Bisimulation and Other Undecidable
Equivalences for Lossy Channel Systems

Ph. Schnoebelen

Lab. Spécification & Vérification, ENS de Cachan & CNRS UMR 8643,
61, av. Pdt. Wilson, 94235 Cachan Cedex France,

phs@lsv.ens-cachan.fr

Abstract. Lossy channel systems are systems of finite state automata
that communicate via unreliable unbounded fifo channels. Today the
main open question in the theory of lossy channel systems is whether
bisimulation is decidable.
We show that bisimulation, simulation, and in fact all relations between
bisimulation and trace inclusion are undecidable for lossy channel sys-
tems (and for lossy vector addition systems).

1 Introduction

Channel Systems, also called Finite State Communicating Machines, are systems
of finite state automata that communicate via asynchronous unbounded fifo
channels. Fig. 1 displays an example. Channel systems are a natural model for
asynchronous communication protocols and constitute the semantical basis for
ISO protocol specification languages such as SDL and Estelle.

Fig. 1. A channel system with two automata and two channels

Automated verification of channel systems. Formal verification methods for chan-
nel systems are important since even the simplest communication protocols can
have tricky behaviors and hard-to-find bugs. But channel systems are Turing
powerful, and no verification method for them can be general and fully algorith-
mic. For example, existing methods only check sufficient but not necessary con-
ditions for correctness (e.g. [JJ93]), or only terminate in some cases (e.g. [PP91]),
or only deal with channel systems of a certain type (e.g. [CF97]).

N. Kobayashi and B.C. Pierce (Eds.): TACS 2001, LNCS 2215, pp. 385–399, 2001.
c⃝ Springer-Verlag Berlin Heidelberg 2001

Lossy channel systems

... and many other examples

(Finkel 1990,
 Abdulla,Čerāns,
   Jonsson&Tsay 2000,
 Finkel&Schnoebelen 2001)
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2.1.2 An Example: Petri Nets
One of the most important examples of a (topological) well-structured transition system, with an
infinite state space, is given by Petri nets.

There are several ways of presenting Petri nets. The most concrete one is graphical, see Fig-
ure 2.1. This displays a collection of chemical reactions that are part of the mechanisms that
plants use to produce sugar (glucose C6H12O6) from carbon dioxide (CO2) and water (H2O),
and called the Calvin-Benson cycle. The circles, called places, correspond to chemical com-
pounds, while the fat, black bars are called transitions, and model chemical reactions. For
instance, there is a transition near the top right corner that takes 3 molecules of carbon diox-
ide CO2, 3 molecules of ribulose-1,5-diphosphate (nicknamed RuDP, and sometimes written
C5H8P2O11), and produces 6 molecules of 3-phosphoglycerate 3PG (C3H3PO6) and 3 molecules
of water (H2O). RuDP and CO2 are consumed in the process, but note that RuDP is regenerated
in the end by another transition that consumes 3 molecules of adenosine triphosphate ATP, 3
molecules of ribulose-5-phosphate Ru5P (C5H8PO7), and produces back 3 molecules of RuDP,
plus 3 molecules of adenosine diphosphate ADP. In the course of the process, there is a transi-
tion (shown leftmost) that generates 1 molecule of glucose C6H12O6, 3 of oxygen O2, and 1 of
phosphoric acid Pi.

Petri nets are used more pervasively in computer science (Reutenauer, 1993), and specifically
in the verification of complex, concurrent systems. But chemical examples probably convey the
idea more naturally.

Mathematically, Petri nets are transition systems on a state space of the form Nk, for some
k P N: k is the number of places (types of chemical compounds), and a state ~x P Nk specifies
how many molecules we have of each type. E.g., in the Calvin-Benson cycle example, k “ 17,
and states are of the form pnCO2 , nRuDP, n3PG, nH2O, . . . , nC6H12O6 , nO2q, where nCO2 is the number
of molecules of CO2 in the current state, nRuDP is the number of molecules of RuDP in the current
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have tricky behaviors and hard-to-find bugs. But channel systems are Turing
powerful, and no verification method for them can be general and fully algorith-
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... and many other examples

Topological WSTS

✤ A transition system: state space X, transition relation

✤ with a Noetherian topology

✤ satisfying lower semi-continuity: for every open U, δ-1(U) open.

Forward Analysis for WSTS I. Completions

Introduction

WSTS

Well-Structured Transition Systems
WSTS: an extremely successful paradigm
[F87,FS01,AJ93,ACJY96], including Petri nets, LCS, etc.
Ingredients:

A transition relation δ ⊆ X × X ;

A well quasi-ordering (wqo) ≤ on X ;

+ monotonicity:

x ≤ !!

δ

""

x′

δ
""

y ≤ !! y′

(slightly simplifying, by assuming strong monotonicity.)

Concurrent polynomial programs

' ::= P (t) ground atom

| s < t order atom

| 9x · '
| ' ^ '

| ' _ '

t ::= x variable

| c constant

{D1, D2, . . . , Dn}

Di v D

x0 bad

x0, x1 bad

x0, x1, x2 bad

.

.

.

x0, x1, x2, . . . , xn bad

! stop

8x, y · x  y _ x 6 y

~a ! ~

b+ ~

d|{z}
in Zk

" {x1, x2, . . . , xm}

xi

" t # v

while (*) {

recv (SIG_CALC) ) if (*) { x = 2; y = 3; }

else { x = 3; y = 2; }

x = x ⇤ y� 6; y = 0;
if (x

2 � 3 ⇤ x ⇤ y == 0)
while (*) { x = x+ 1; y = y� 1; };

else send (SIG_FUZZ);
x = x

2 + x ⇤ y;
| recv (SIG_QUIT) ) return;

}
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a = ⇤; b = 0;
while (*) {

recv (SIG_FUZZ) ) send (SIG_CALC);
b = b+ 1;
if (a 6= b) { a = a+ 1; }

c = a ⇤ b;
| recv (SIG_QUIT) ) return;

}
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The standard backward algorithm

✤ Defn (coverability).
INPUT: state s, and open state set Bad
QUESTION: s ➝δ* Bad?

✤ Prop.  Given an effective topological 
WSTS, coverability is decidable.

✤ Proof. The function pre* computes
          U0 =Bad, Un+1 = Un ⋃ δ-1(Un).
This terminates because U0 ⊆ U1 ⊆ ... ⊆ 
Un ⊆ .. stabilizes (Noetherianness).
    At the end, Un = {s | s ➝δ* Bad}. ☐

39

fun pre* U =
    let V = pre U
    in
       if V⊆U
          then U
       else pre* (U ⋃ V)
    end;

fun coverability (s, bad) =
    s in pre* (bad);

(Don’t be fooled by the simplicity of the
algorithm: complexity is not even
primitive recursive in general
—and I mean the complexity of the problem, 
independently of the algorithm.)
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Effective?

✤ By an effective topological WSTS, we mean one where:
— opens U are representable by some data structure
— the inclusion test U ⊆ V is decidable
— one-step predecessors δ-1(U) of open sets are computable.

✤ When the Noetherian state space is Alexandroff (a wqo),
there is a standard representation of open (upwards-closed) sets:

✤ Prop. In a wqo, every upwards-closed subset
is the upward closure ↑{x1, ..., xn}
of  finitely many points.

✤ No longer true in more general Noetherian spaces.
40

x

x

x

x

x

5

4

3
2

1

mardi 5 juillet 16



Sobrification and closed sets

✤ Recall that, in a sober Noetherian space,
every closed set C is finitary:
         C=↓{x1, ..., xn}.

✤ Provides alternate representation of open sets 
U in Noetherian X:
— U is also open in larger space SX
— represent U by its closed complement in SX,
— i.e., by finite sets of points in SX.

✤ ➩ Find computable representations
         of points of SX.

41

X

"Limits"

x2
x3 x4

x1
in SX
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Outline

✤ Characterizations of Noetherian spaces (half of them well-known)

✤ Transfering results from wqo theory to topology

✤ Applications in software verification

✤ Representations

✤ Conclusion
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A simple case

✤ Consider N with the (Alexandroff topology of) its ordering ≤.

✤ Its closed subsets are ∅, [n]={0,1,...,n} and the whole of N.

✤ All except ∅ are irreducible.  Hence:

✤ Prop.  A representation for SN is Nω, i.e., N plus a top element ω.

✤ This is an effective representation.

✤ I’m not giving the topology on Nω:
this must be the upper topology of its ordering.

43
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Products

✤ Another simple case.
We know that S(∏i Xi) = ∏i SXi, up to iso (R.-E. Hoffmann 1979).
Hence:

✤ Prop.  A representation of S(X1 ⨉ ... ⨉ Xn) is
the Cartesian product of representations for SXi.

✤ This is effective,
provided the representations for SXi are.

44
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Words and regular expressions

✤ Thm (Finkel&JGL 2009). A representation for S(X*)
is the space of word products,
i.e., regular expressions of the form:
                                              R1 R2 ... Rn
where each Ri is of the form:
— (↓a)? with a ∈ S(X), or
— (↓{a1, ..., ak})* with a1, ..., ak ∈ S(X)

✤ Proof omitted.  Again, effectivity is preserved.
Was already known for wqos (Kabil&Pouzet 1992).

✤ Embedding X* → S(X*) maps a1a2...an to (↓a1)? (↓a2)? ... (↓an)?

Limit elements include (↓a1)? (↓{a2, a3})* (↓a1)?, for example.
45
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Representations

✤ Thm (Finkel&JGL, unpublished).  
For all the spaces X in our catalogue 
of Noetherian spaces,
SX has effective representations.

✤ ...

46
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Representations

✤ Thm (Finkel&JGL, unpublished).  
For all the spaces X in our catalogue 
of Noetherian spaces,
SX has effective representations.

✤ ...
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Representations

✤ Thm (Finkel&JGL, unpublished).  
For all the spaces X in our catalogue 
of Noetherian spaces,
SX has effective representations.

✤ ... up to a small change: replace 
Spec(R) and Ck (Zariski) with some 
concrete spectrum, say, 
Spec(Q[X1,X2,...,Xn]).

47

Spec(Q[X1,X2,...,Xn])
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Representations

✤ Thm (Finkel&JGL, unpublished).  
For all the spaces X in our catalogue 
of Noetherian spaces,
SX has effective representations.

✤ ... up to a small change: replace 
Spec(R) and Ck (Zariski) with some 
concrete spectrum, say, 
Spec(Q[X1,X2,...,Xn]).

✤ Including (infinite) powersets!

48

Spec(Q[X1,X2,...,Xn])
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Representing powersets?

✤ Recall P(X) has subbase ◇U={A | A ⋂ U≠∅}, U ∈OX.
Let F(Y) be the set of finite subsets of Y, with subspace topology.

✤ Prop. S(P(X)) = F(SX), up to iso.
Hence a representation for S(P(X)) is given by finite sets of elements 
from a representation of SX.

✤ Proof.  Let H(X) be subspace of closed subsets of X.
         cl : P(X) → H(X) is a quasi-iso, i.e. O(cl) : OH(X) → OP(X) is iso.
               (Exercise: use A ⋂ U≠∅ iff  cl(A) ⋂ U≠∅.)
         Hence S(P(X)) = S(H(X)).
         Since OX=OSX, H(X)=H(S(X)).
         Now recall that all elements of H(S(X)) are finitary.     ☐

49
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Conclusion

✤ There is more to Noetherian spaces than algebraic geometry.
                 A deep connection with wqos.
          Basic theory in (JGL 2013), Section 9.7.

✤ Any topological analogue of better quasi-orderings?

✤ Any topological analogue of the Robertson-Seymour 
theorem (for undirected finite graphs with labels in a 
Noetherian space)?

✤ Any topological analogue of the theory of maximal order 
types of wqos?  (Hint: ordinal height of H(X), of SX.)
Application to complexity of WSTS algorithms (à la 
Schnoebelen, Schmitz, Halfon).
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