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Noetherian spaces

Defn. A space is Noetherian iff every open is compact.
Here compact does not entail any kind of separation.

Fact. The following are equivalent:

(1) X is Noetherian

(2) Every subspace of X is compact

(3) Ascending sequences U; € U> C ... C U, C ... of opens stabilize

(4) Descending sequences C1 2 C2 2 ... 2 C, 2 ... of closed sets stabilize

We shall see other characterizations later.
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Outlhine

* Characterizations of Noetherian spaces (half of them well-known)
* Transfering results from wqo theory to topology
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+ Conclusion
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Noetherian spaces, classically

* Defn. A space is Noetherian iff every open
1S compact.

* Prop. The spectrum of a Noetherian ring is
a Noetherian space.

* E.g., the spectrum of a
polynomial ring over 0, [, or . Noetherian
Not my first source of inspiration here. spaces
We shall see many (simpler) examples.

+ Note. Noetherian + Hausdorfl < finite,
so we shall definitely drop Hausdorffness.
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Well-quasi-orders

* Fact. The following are equivalent for a quasi-ordering <:
(1) Every sequence (x,)ueiv is good: x,, < x, for some m<n

(2) Every sequence (x,).c: is perfect: has a monotone subsequence

(3) < is well-founded and has no infinite antichain. A\ 8
EZERAY
Ay N
* Defn. Such a quasi-ordering < is RAZE &
called a well-quasi-order (wqo). = FY V{ b
forbidden
o | forbidden

* Applications:

classification of graphs (Kuratowski, Robertson-Seymour)

verification (computer science)
model theory (logic: Fraissé, Jullien, Pouzet)
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The starting observation

* Given a qo (X, <), its Alexandroff topology has as opens U all
upwards-closed subsets of X. .
U
* Prop. Let (X, <) be wqo.
With its Alexandroff topology, X is Noetherian.
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T'he starting observation

* Given a qo (X, <), its Alexandroff topology has as opens U all
upwards-closed subsets of X. .

* Prop. Let (X, <) be wqo.
With its Alexandroff topology, X is Noetherian.

* Proof. Consider an infinite ascending sequence
Uy cUz<...< Uy € ... of opens.
Pick x, in Uy, not in any previous U
By wqo, x < x, for some m<n.
Since x,, € U, upwards-closed, x, € U
contradiction.

* Plenty of wqos = plenty of Noetherian spaces.
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* Given a qo (X, <), its Alexandroff topology has as opens U all
upwards-closed subsets of X. i

* Prop. Let (X, <) be wqo. U\
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Noetherian + Alexandroff

* Prop. Let (X, <) be wqo.
With its Alexandroff topology, X is Noetherian.

* There are also Noetherian spaces that are not Alexandroft:
— spectra of rings, with the Zariski topology
— powersets (see later)

* Conversely, the qo sets (X, <) that are Noetherian
in their Alexandroff topology
are exactly the wqo sets.

+ Proof. From (x,)sen define U, = 1{x1, ..., X4}.
This stabilizes at n: U,.1= Uy, so x, € 1 {x1, ..., xn1).
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Noetherian + Alexandroft

* Prop. Let (X, <) be wqo.
With its Alexandroff topology, X is Noetherian.

* There are also Noetherian spaces that are not Alexandroft:
— spectra of rings, with the Zariski topology
— powersets (see later)
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Basic constructions

* Prop. (1) Every wqo is Noetherian in its Alexandroff topology
(2) The spectrum of a Noetherian ring is Noetherian
(3) Finite products of Noetherian spaces are Noetherian
(4) Finite coproducts of Noetherian spaces are Noetherian
(5) Subspaces of Noetherian spaces are Noetherian
(6) Topologies coarser than a Noetherian topology are Noetherian
(7) Continuous images of Noetherian spaces are Noetherian
(in particular, quotients)

* We shall see other constructions that preserve Noetherianness.

+ We need additional characterizations of Noetherianness.
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Cluster points

+ Prop. X is Noetherian iff every net (x;)ic; contains a cluster point x;.

(The important point is: the cluster point x; belongs to the net.)

& Proof.

(=)
=l

f X Noetherian, then subspace K={x; | i€l} is compact,

hence (x;)ier has a cluster point in K.

Let U be open in X.

Every net (x;)ic; inside U has a cluster point in U, viz. some x;.

So U is compact.

* Note: in Alexandroff spaces, x; cluster point means that for some i,
infinitely many entries x; are above x;. (Take the open 1x;.)

... hence all sequences are good.

10
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Self-convergent nets

* A net (x;)ies is self-convergent iff it converges to every x;.
(A very much non-Hausdorff notion!)

* Thm. X is Noetherian iff every net (x;)ict has a self-convergent subnet.

* Proof. (=) Let ] be {i€l | x;is a cluster point of the net}.
By previous Prop., | is non-empty.
Check: | is cofinal and directed in [; so (x;j)igsis a subnet.
By Kelley’s Theorem, (xj)icrhas a further subnet that is an ultranet.
Check that this ultranet is self-convergent.
(<) Obvious, using previous Prop.

* In Alexandroff spaces, (x;)icr self-convergent iff eventually monotone
... hence all sequences are perfect. 1

mardi 5 juillet 16



Ultratilters

+ A similar characterization (lim 7 =set of limits of %):
+ Thm. Xis Noetherian iff every ultrafilter  is compact: lim 7% € 7.

* Proof. (=) Let U be (open) complement of lim 7.
If lim Z not in %, then U is in Z (ultrafilter).
Since U is compact, 7 has a limit in U.
So lim 7 intersects U: contradiction.
(<) Fix an open U. Let 7 be an arbitrary ultrafilter containing U.
Sincelmze#z limzn UE% solim %« n UxD.

Hence 7 has a limit in U: U is compact.

12
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Application: finite products

* Well-known: finite products of Noetherian spaces are Noetherian.

Here is a simple proof.
(Warning: I'm lying a bit about what a subnet is.)

* Let X, Y be Noetherian.
Let (xi, vi)icr be a net in XXY.
Extract a self-convergent subnet (x;);e;.

From (y;)iey extract a further self-convergent subnet (yx)rex.
Then (xx, yi)rek is a self-convergent subnet of the original net.

* This is a topological version of the Ramsey argument behind the
classical wqo proofs.

13
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Stone duality in a nutshell

* There is a functor O : Top — Frame? that:
— maps each space X to its frame OX of opens

— maps fX — V'to Of : OV — OX : Vi fL(T).
+ O 1s left-adjoint to a functor pt : Frame®” — Top.
* S=pt O is the sobrification functor.

* Defn. A space X is sober iff it is of the form pt L for some frame L

iff it is of the form SY for some space Y
iff X=SX (all that, up to iso.)

14
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T'he specialization quasi-ordering

* Defn (specialization, <). In a space X, x<y
iff every open containing x also contains y
iff x € cl({y}).

+ Xis liff <is antisymmetric (an ordering). U

* Every open |/ is upwards-closed.
Every closed set C is downwards-closed. ¢

+ The closure cl({x})is {x = {z | z<x}.

15
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Sober spaces

* (Call C irreducible closed iff closed and:
if ¢ C U,=1" C;then ¢ C C; for some 1.

E.g., | x = cl({x}) is irreducible closed, for every point x.

+ Fact. X 1s sober iff 1o and all irreducible closed sets are of this
form.

* All Hausdortt spaces are sober, but there are more (e.g,,
continuous and quasi-continuous dcpos in domain theory).

16
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Sobrification

* The sobrification functor can be described more concisely as:
— SX = {irreducible closed subsets of X}

Opens CU={C | (¢ n U}, UE0OX
— For X — Y to, §f : SX — ST : (- cl(f(C)).
— X embeds into SX throughn: X = SX:x+~ |x

+ Fact. X 1s Noetherian iff SX 1s Noetheran.

* Proof. :0X — OSX 1s0, and Noetherianness 1s a property of
opens (ascending sequences of opens stabilize).

* Fact. '1'he Noetherian sober spaces X are the Stone duals pt L

of distributive lattices L with the ascending chamn condition.
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Sober Noetherian spaces

+* An order-theoretic characterization.
Call sets of the form |, {x1, ..., x,} finitary.

* Thm. A sober space X is Noetherian iff:
(1) < is well-founded, and
(2) the set of lower bounds of any finite set is finitary.
Then:
(3) The topology of X is the upper topology of <
(4) The closed sets are the finitary sets.

"Limits" 1N SX

* Proof. Folklore,
or see (JGL 2013)

or (Dickmann,Schwartz&Tressl).
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Higman’s l.emma

*

V/

a

b

3

INncrease letters

* Lemma (Higman 1954). If X, < is wqo, then so is the qoset X* of finite

words under subword relation <*.

* Thm (Topological Higman Lemma, JGL 2013). If X is Noetherian,
then so is X* with the subword topology.

* My aim here is to give you a proof of that, imitating Nash-Williams’
classic proof (1963) of Higman’s Lemma.

20
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T'he subword topology

* Defn. For opens Ui, Uy, ..., U, in X, let [U;1 U>... U,] be set of words
e dl... ... (etc.) ... ay ...
withamm € Uy, € Uy, ..., a, € U,.
The subword topology on X* is generated by those sets [U1 Us... UL].

* Specialization quasi-ordering is <*
* If X is Alexandroff, then subword topology=Alexandroff on X*,

so Higman’s Lemma is a special case
of the topological Higman Lemma.

24
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Bad sequences

+ Let X be a topological space, with subbase 2.
A bad sequence is a sequence (U, )11 of elements of & such that

no U,is included in a union U,.«, U, of previous elements.

* Lemma. If X is not Noetherian, then (whatever the subbase) it has a
bad sequence.

* Proof. Let U be non-compact open.
By Alexander’s Subbase Lemma, U has a cover (U;)ic; by elements of &
that has no finite subcover.

Pick some Uj. Some point x1 in U is not in Ui.
Pick Up containing x1. Some point x in U is not in U U Up.
Pick Ujs containing x2. Some point ... etc.

22
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Minimal bad sequences

* Assume additionally a well-founded C ordering on &.

A bad sequence (U,).er is minimal iff every
C-lexicographically smaller sequence (V,).ei1 is good (i.e., not bad).
li.e., Vo=Uo, V1=Uy, ..., Vyi=Uyua, and V,,c U, (strictly) for some #]

+ Lemma. If X is not Noetherian, then (whatever and C) it has a
minimal bad sequence.

* Proof. Find Uy C-minimal so that it starts a bad sequence.
Given Uy, find Ui C-minimal so that Uy, U start a bad sequence.
Given Uy, U;, find U C-minimal so that ... etc.

* Note: Similar to wqos, where bad sequences are sequences of points.
28
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Proof plan

+ On X*, let & consist of the subbasic opens [U1 U... U].
Let [U1 Up... U] E [V1 Va... V] iff
there is a (strictly) increasing map f:{1,2,...,m} = {1,2,...,n}
such that Ux= V).
(I.e., the Vs are obtained by inserting new opens in the list of Uss.)

* If X* is not Noetherian, then extract some minimal bad sequence.

* Using the zoom-in Lemma (next slide), find a smaller sequence: that
one must be good, leading to a contradiction.

24
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The zoom-1n L.emma

* Lemma. Let X be Noetherian, and a, € U, open for each n€l\.
There is a subsequence (an)k S.t. an) € Uno)N ... N Un) for every k.

* Proof. Pick a cluster point a,() (inside the sequence itself).

Infinitely many a,s with n>n(0) are in U, (), forming a subsequence.

Pick a cluster point a,(1) from that subsequence.

Infinitely many a,s with n>n(1) from that subsequence
are in Uy() N Uyxa), forming a sub-subsequence.
Pick a cluster point a,() from that sub-subsequence... etc.

23
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Proving the topological Higman L.emma

* Thm (Topological Higman Lemma, JGL 2013). If X is Noetherian,
then so is X* with the subword topology.

* Proof (1/3).
Imagine X* is not Noetherian, and let
%, = |Un Uy ... Uy ...] form a minimal bad sequence.
Pick a word wy, in %, that is in no previous %.

Let .= [Un2 ... Uym...] be « 2%, without its first open U,1».

By definition, w, = I, a, r» where a, € U1, 1, € .

By zoom-in, extract (@)« S.t. anw € Unon N ...N Uyn for every k.

By minimality, 7%, %, ..., %u0)1, Ru0), Ru), --- 1S good. So, for some k:
Ruk) © %U...U2u0)1 U Ru0) U ... U Ryk-1).

26
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Proving the topological Higman L.emma

* Thm (Topological Higman Lemma, JGL 2013). If X is Noetherian,
then so is X* with the subword topology.

+ Proof (2/3). Recall: 2, = [Un Unz ... Uy ...], Wy in 2, in no previous %,
2= [El UL ]
Wy =1, a, 1, where a, € U1, 1, € 2.
ank) € UnoyrN...N Un@on
k) © 20VU...UZy0)-1 U Zuo) U ... U Zyk-1).

* Note 1,0 € Ruk).

2%
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Proving the topological Higman L.emma

* Thm (Topological Higman Lemma, JGL 2013). If X is Noetherian,
then so is X* with the subword topology.

+ Proof (2/3). Recall: 2, = [Un Unz ... Uy ...], Wy in 2, in no previous %,

2= [El UL ]
Wn= 1, a, r» where a, € U1, 1, € 2.
An) € Un@)1 N ... N Ungn
Ru() & 2%0V...U2u0)-1 U Ru©) U ... U Ruk-1).
+ Note 0 € Zuw). Case 1: 7,4 E %y for some m in 0, ..., n(0)-1.
Then the larger wy)is in %y, too. (Opens are upwards-closed.)
Impossible since %, is previous (m<n(k)).

28
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Proving the topological Higman L.emma

* Thm (Topological Higman Lemma, JGL 2013). If X is Noetherian,
then so is X* with the subword topology.

+ Proof (3/3). Recall: 2, = [Un Upz ... Uy ...], Wy in 2, in no previous %,
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20,
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Kruskal’s Theorem

assuming
f<f
a<a

+ Thm (Kruskal 1960). If X, < is wqo, then so is the qoset T(X) of finite

trees labeled by X under homeomorphic embedding relation =..

* Thm (Topological Kruskal Theorem, JGL 2013). If X is Noetherian,
then so is T(X) with the tree topology.

* Admitted. Slightly more complex.

30
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Powersets

* Let "(X) come with the lower Vietoris topology,
with subbase CU={4 | A n U}, U €0X.

* Thm (JGL, 2007). It X 1s Noetherian, then so 1s P(X).

* Proof. It (X) not Noetherian, let (CU,) e be a bad sequence:
no ¢U,is included in U, OU,, = U,y U,.

Since < 1s monotonic, no U,1s included in U,.,, Up,.
T'heretore (U,) »e 1s bad: contradiction.

+ Specialization qo: A <P Biff every a € 4 is below some b € B.

Sl
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Powersets, or: beyond wqos

* Let "(X) come with the lower Vietoris topology,
with subbase CU={4 | A n U}, U €0X.

« Thm (JGL, 2007). If X1s Noetherian, then so 1s 7(X).

+ Specialization qo: A <? Biff every a € 4 is below some b € B.
Pretty remarkable, since: w

* Prop (Rado, 1957). There are wqos X, <
such that 7(X), <" is not wqo.

Xrado={(iy) | 1</}, (i) C (k) iff i=k andj<I
or J<k. |

mardi 5 juillet 16



A catalogue of Noetherian spaces

finite poset

natural numbers

products

sums

sobrification

powerset

non-empty powerset
extended Hoare powerspace
Hoare powerspace
spectrum of a ring

complex vector space (Zariski)
words / embedding

multisets

words / prefix

trees / embedding
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A catalogue of Noetherian spaces

finite poset
N natural numbers
D1 XDy x...xD, products
Di+Ds+...+Dyp  sums

Noetherian,
not wqo

o D) words / embedding

D® multisets
T(D trees / embedding
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Outlhine

* Characterizations of Noetherian spaces (half of them well-known)
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+ Conclusion
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Verification

* How do you ensure a software /hardware
system Sys 1s correct?

+ Testing: fine and useful, but not exhaustive

+ Verification: given a desirable property P, 2 ;1 gl
check that ' &Gp—{) Heszs :, h2 i
Sys kP & 055
¥ O (E=CF)
* That check should be done by an algorithm. P

35
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Verification

* A paradigmatic case is given by:
— Sys is a transition system
(a directed graph, vertices=states)
— P is a (non-)reachability property
«can Sys evolve from an initial state s
to a state in the set Bad?»

* Verification is undecidable in general.
Decidable for Sys finite.
But most systems are infinite.

* Classes of infinite-state systems/properties
for which verification would be decidable?

Bad=

mardi 5 juillet 16
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Well-Structured Transition Systems (WS'TS)

* A transition system: state space X, transition relation >
: r—=<—g
* with a wqo < (Finkel 1990,
) ) Abdulla,Cerans,
* satisfying monotonicity ; Jonsson&Tsay 2000,
Yool y’ Finkel&Schnoebelen 2001)

... and many other examples
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Topological WS'TS

* A transition system: state space X, transition relation >
* with a Noetherian topology

+ satisfying lower semi-continuity: for every open U, o-(U) open.

pﬂi""q ﬂD{'Q NADPH+HT  ATP CO-

Concurrent polynomial programs

while (*) { a=x% b=0;

]

recv (SIG_CALC) = if (*) {x=2;y=3;} while (*
else {x=3;y=2;} channel ¢; - recv (SIG_FUZZ) = send (SIG_CALC);

x=x*xy—6y=0; — ‘a‘b‘d‘a‘c‘ — b=b+1;

if (x2 —3%xxy==0) if (a#b){a=a+1;}
while (*) {x=x+Ly=y—-1; }; channel ¢ c=axb;

else send (SIG_FUZZ); -— [b]c] -— | recv (SIG_QUIT) = return;
x=x?+x*7y; }
| recv (SIG_QUIT) = return;
} I
ﬂ
T — e —————————— =
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T'he standard backward algorithm

* Defn (coverability).
INPUT: state s, and open state set Bad  fun pre* U =

QUESTION: s —s* Bad? lee W = pre U
in
. . . if VEU
* Prop. Given an effective topological then U
WSTS, coverability is decidable. else pre* (U U V)
end;

* Proof. The function pre* computes fun coverability (s, bad) =

Up=Bad, U,+1=U, U 6'1(1,[”). s in pre* (bad);
This terminates because Uy C U; C ... C — S
U, C .. stabilizes (Noetherianness). (Don't be fooled by the simplicity of the
Attheend, U,={s | s —s* Bad}. s

—and [ mean the complexity of the problem,

independently of the algorithm.) 39
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Effective?

* By an effective topological WSTS, we mean one where:
— opens U are representable by some data structure
— the inclusion test U C V is decidable

— one-step predecessors d1(U) of open sets are computable.

* When the Noetherian state space is Alexandroff (a wqo),
there is a standard representation of open (upwards-closed) sets:

* Prop. In a wqo, every upwards-closed subset
is the upward closure 1{x1, ..., X, }
of finitely many points.

* No longer true in more general Noetherian spaces.
40
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Sobrification and closed sets

, , Limits' in SX
+ Recall that, in a sober Noetherian space, % 7R

every closed set C is finitary:
C: \|/ {Xl, cees Xn}.

* Provides alternate representation of open sets
U in Noetherian X:
— U is also open in larger space SX
— represent U by its closed complement in SX,
— i.e., by finite sets of points in SX.

* = Find computable representations
of points of SX.

41
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A simple case

* Consider I\l with the (Alexandroff topology of) its ordering <.

+ Its closed subsets are &, [n]={0,1,...n} and the whole of I\l.

* All except @ are irreducible. Hence:

* Prop. A representation for SI\lis [\, i.e., I\l plus a top element w.
* This is an effective representation.

* I'm not giving the topology on [/
this must be the upper topology of its ordering.

43
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Products

* Another simple case.
We know that S([]; Xi) = [[;: SX;, up to iso (R.-E. Hoffmann 1979).
Hence:

* Prop. A representation of S(Xi X ... X Xj,) is
the Cartesian product of representations for SX;.

+ This is effective,
provided the representations for SX;are.

44
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Words and regular expressions

* Thm (Finkel&JGL 2009). A representation for S(X™)
is the space of word products,
i.e., regular expressions of the form:
R1 R ... Ry,
where each R; is of the form:
— ({a)? with a € S(X), or
— (| {ay, ..., ar})* with ay, ..., axr € S(X)

# Proof omitted. Again, effectivity is preserved.
Was already known for wqos (Kabil&Pouzet 1992).

* Embedding X* — S(X*) maps maz...a, to ({a1)’ ({a2)’ ... ({an)’
Limit elements include (| a1)’ ({{a2, a3})* ({a1)’, for example.

45
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Representations

* Thm (Finkel&]JGL, unpublished).
For all the spaces X in our catalogue 1 .
of Noetherian spaces,
SX has effective representations.

:1l:l|()guo of Noetherian spaces

D = A finite poset

R
N natural numbers

|
: Dy x Dy x...%x Dy products

D+ Dz +...+Dn  sums Noetherian,

not wqo

| D° words / embedding
multisets

trees / embedding

46
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D+ Dz +...+Dn  sums Noetherian,

not wqo

| D° words / embedding
multisets

trees / embedding
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Representations

* Thm (Finkel&]JGL, unpublished).
For all the spaces X in our catalogue ..
of Noetherian spaces,
SX has effective representations. D = A

K
N natural numbers

:1l:l|()guo of Noetherian spaces

|
| DixDz2x...xDy products
|

Di+Dy+...4 D, SUMS Nl‘(‘th(‘l'idn,

not wqo

* ... up to a small change: replace
Spec(R) and C* (Zariski) with some
concrete spectrum, say, D Worgs  embedding
Spec(Q[X1,Xa,...Xx]). ,

trees / embedding
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Representations

* Thm (Finkel&]JGL, unpublished).
For all the spaces X in our catalogue catalogue of Noetherian spaces
of Noetherian spaces,
SX has effective representations. D = 4

K
N natural numbers

|
| DixDz2x...xDy products
|

Di+Dy+...4 D, SUMS Nl‘(‘th(‘l'idn,

not wqo

* ... up to a small change: replace
Spec(R) and C* (Zariski) with some
concrete spectrum, say, D Worgs  embedding
Spec(Q[X1,Xa,...Xx]).

trees / embedding

* Including (infinite) powersets!
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Representing powersets?

+ Recall P(X) has subbase CU={4 | A n Uz}, UE0OX
Let (Y) be the set of finite subsets of Y, with subspace topology:.

* Prop. S("(X)) = [(SX), up to iso.
Hence a representation for S(/"(X)) is given by finite sets of elements
from a representation of SX.

* Proof. Let H(X) be subspace of closed subsets of X.
cl : P(X) = H(X) is a quasi-iso, i.e. O(cl) : OH(X) — O"(X) is iso.
(Exercise: use A N U iff cl(4d) n U#D.)
Hence S(IP(X)) = S(H(X)).
Since OX=0SX, H(X)=H(S(X)).
Now recall that all elements of H(S(X)) are finitary.

49

mardi 5 juillet 16



Outlhine

* Characterizations of Noetherian spaces (half of them well-known)
* Transfering results from wqo theory to topology

* Applications in software verification

* Representations

+ Conclusion
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* Characterizations of Noetherian spaces (half of them well-known)
* Transfering results from wqo theory to topology

* Applications in software verification

* Representations

+ Conclusion
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Conclusion

* There is more to Noetherian spaces than algebraic geometry.

A deep connection with wqos.
Basic theory in (JGL 2013), Section 9.7.

Non-Hausdorff Topology

and Domain Theory
Cied TOPKS In POt -Set Topo oy

* Any topological analogue of better quasi-orderings?

jean Goubait-Larmecq

* Any topological analogue of the Robertson-Seymour
theorem (for undirected finite graphs with labels in a
Noetherian space)?

* Any topological analogue of the theory of maximal order
types of wqos? (Hint: ordinal height of H(X), of SX.)
Application to complexity of WSTS algorithms (a la
Schnoebelen, Schmitz, Halfon).
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