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Abstract

A new construction of a pseudo-random generator based on a simple combination of three feedback shift
registers (FSRs) is introduced. The main characteristic of its structure is that the output of one of the three
FSRs controls the clocking of the other two FSRs. This construction allows users to generate a large family
of sequences using the same initial states and the same feedback functions of the three combined FSRs. The
construction is related to the Alternating Step Generator that is a special case of this construction. The period,
and the lower and upper bound of the linear complexity of the output sequences of the construction whose
control FSR generates a de Bruijn sequence and the other two FSRs generate m-sequences are established.
Furthermore, it is established that the distribution of short patterns in these output sequences occur equally
likely and that they are secure against correlation attacks. All these properties make it a suitable crypto-
generator for stream cipher applications.

Keywords. Feedback Shift Registers, Stream Ciphers, Clock-Controlled Registers, Alternating Step
Generator.

1. Introduction

A
�
-stage feedback shift register (FSR) is a device that generates binary sequences.

An FSR is made up of two parts: a shift register � , and a feedback function � . The shift register � consists
of

�
stages �����	��
���
�
�
���������
 which contains one bit 0 or 1. The contents of these stages at a given time � is

known as the state of the register � and is denoted by: � �������������	� ��
������	��
�
�
�� ������
������ . (Where at time �!�#"
the state � � �$�����%"&�	� �'
(�%"&�	�)
�
�
�� �*�(��
(�%"&� is called the initial state of � ).

The feedback function � is a function that maps the state of the register � to the bit 0 or 1. At time � ,�+�,���������	�)
�
�
�
��-���(�*
(�������.�/" or 0 .

The shift register � is clocked at a time interval, when this happens the contents of � are shifted one bit
to the left (i.e., the content of ��1 is transferred into ��1%�*
(��2��30�� 45��
�
�� �+6 0���� and the new content of �'�(��
 is
computed by applying the feedback function � to the old contents of � .

The above can be expressed as follows:7 �81 ����9:0��;� �81=<'
������ for 2'�/">��0?��
�
�
�� �@6 4���(�*
(����9:0��;� �A�,���������	�)
�
�
�
�� ������
(�������
The binary sequence �,� � � generated by this device is the sequence of contents of the " �%B stage ��� of � for

all � (i.e., the binary sequence �,� � �.�$�����-�'
��-��CD��
�
�
�
�
�
 where � � �$���������FEHGJI+�,4�� for �.�$">�)0�� 45��
�
�
 ).
The state sequence of this device is given by the sequence of states of the register � :

�,� � �K�$� � �-� 
 �)
�
�
�
�
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where � � �L���������	��
�
�
�� ������
������ for �.�$">�)0�� 45�)
�
�

Since the output sequence of a feedback shift register is the content of the " �%B stage of the register then

clearly each of the output sequence �,� � � and the state sequence �,� �M� determine the other.

If the feedback function � of a feedback shift register can be written in the form: �+�,�'�������	��
�
�
��-���(�*
(�������K��,NO�����������OPQ
�
�
RPSNT����
-������
(������� for a given time � , for some binary constants N��?� NU
���
�
�
��-NT����
 called the
feedback coefficients, then the shift register is called linear, where P denotes addition modulo 2.

The feedback coefficients NT�?��
�
�
��-NT����
 determine a polynomial NT�JPVN!
 W 
 P�
�
�
XPYNT����
 W �(��
 P$W � of
degree

�
associated with the feedback function � . We write ZK��W�� to denote this polynomial and call it the

characteristic feedback polynomial of the linear feedback shift register.

Any
�
-stage linear feedback shift register can be uniquely described by a characteristic feedback polynomialZK��W�� over the finite field of order 4 of the form: ZK��W��K�$NT�[P\N!
 W 
 P/
�
�
�P\NT����
�W �(�*
 P]W � .

1.1. Construction

Keystream sequence generators that produce sequences with large periods, high linear complexities and good
statistical properties are very useful as building blocks for stream cipher applications. The use of clock-
controlled generators in keystream generators appears to be a good way of achieving sequences with these
properties [1].

In this paper, a new clock-controlled generator that is called the Alternating Step( ^D�-_ ) Generator (and
referred to as ASG( ^D�	_ )) is introduced. The ASG( ^D�-_ ) is a sequence generator composed of three FSRs A, B
and C [2] which are interconnected such that B is clocked by the constant integer ^ and C is not clocked if the
content of the " �%B stage of A is 1, otherwise, B is not clocked and C is clocked by the constant integer _ . FSR
A is called the control register and FSRs B and C are called the generating registers. The output bits of the
ASG( ^D�	_ ) are produced by adding modulo 2 the output bits of FSRs B andC under the control of FSR A.

Suppose that the control register FSR A has
�

stages and feedback function ` . Similarly, suppose
that the generating registers FSRs B and C have a and b stages respectively and feedback functions �
and c respectively. Let d � �edU���%"��	� df
(�%"��	��
�
�
���dJ�(�*
��%"&� , g � �hg!���%"&�	� gf
(�%"&�	�)
�
�
�� g!ij��
(�%"&� and N � �NO���%"&�	� NU
(�%"&�	�)
�
�
��-NFk5�*
��%"&� be the initial states of A, B and C respectively.

The initial state of the ASG( ^D�-_ ) at time �K�/" is given by: � � �S�%d � � g � � N � � .
Define a function I that acts on the state of FSR A at a given time � to determine the number of times FSR

B or FSR C is clocked such that: at any time � , I+�%d ���.�:^?dU��������9l_��%dU��������P/0�� .
Define two cumulative functions of FSR A, Gnm and �fm : o(">�)0��-4p��
�
�
�qUrso(">�)0�� 45��
�
�
tq such that:

Gumv�����.� � �*
w
1=x�� dU����2M�yI+�%d 1 �K�:^ � �*
w

1=x�� dU����2M�	� for �vzl">� and Gfmv�%"��.�/">�
and

�umv�����.� � ��
w
1=x�� �%dU�?��2M��P/0��yI+�%d 1 �K�L_ � �*
w

1{x�� �%dU����2y��P:0��	� for �vzl">� and �fmO�%"&�.�/"5

Thus, with initial state � � �|�%d � � g � � N � � , at time � the state of the ASG( ^D�-_ ) is given by: � �\��%d � �-g }*~8� ��� � N �'~8� ��� � .
At any time � , the output of the ASG( ^D�-_ ) is the content of the " �%B stage of B added modulo 2 to the content

of the " �%B stage of C, i.e., gU���,GumF��������P\Nv���,�fmv�������	

The ASG( ^D�-_ ) may also be described in terms of the three output sequences �%d � �	�(�,g � � and �,N � � of the

feedback shift registers A, B and C respectively.

Acting on their own, suppose that FSR A, FSR B and FSR C produce output sequences �%d � �.�/dU����df
��)
�
�
 ,�,g � �[�YgU�?� gf
(�)
�
�
 , and �,N � �[�YNv��� N!
(�)
�
�
 respectively. The sequence �%d � � is called the control sequence, and
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the sequences �,g � � and �,N � � are called the generating sequences of the ASG( ^D�	_ ) respectively and referred to
as component sequences.

The output sequence ��� � � of the ASG( ^D�-_ ) whose control and generating sequences are �%d � � , �,g � � and �,N � �
respectively is given by: � � �$g }*~8� ��� P\N �'~8� ��� where:

GfmF�����.�:^ � ��
w
1{x�� d!1 and �fmv�����.�L_ � �*
w

1{x�� �%d!1�P:0��	� for �vzl">� and GfmF�%"&�.�$�fmv�%"&�.�/">


2. Properties of the Output Sequence �D� �(� of the ASG( �K�8� )

Suppose that A is an FSR with initial state d � and feedback function ` such that the output sequence �%d � � of A
is a de Bruijn sequence of span � and it has period ���$4p� [2]. Suppose that the feedback shift registers B and
C are primitive linear feedback shift registers (LFSRs) with non-zero initial states g � and N � respectively, and
primitive characteristic feedback polynomials �8��W�� of degree a and ����W�� of degree b respectively (where�8��W�� and ����W�� are associated with the feedback functions � and c respectively) [2]. Let �,g � � and �,N � �
denote the output sequences of LFSRs B and C respectively. Then �,g � � and �,N � � are m-sequences of periods� ���,4 i 6 0�� and �����,4 k 6 0�� respectively [2]. Let ��� � � be the output sequence of the ASG( ^D�-_ ) whose
component sequences are �%d � � , �,g � � and �,N � �	


Note that a de Bruijn sequence of span � can be easily obtained from an m-sequence generated by a � -stage
primitive LFSR by simply adding a " to the end of each subsequence of ��� 6 0�� 0s occurring in the m-sequence.

In a full period ����4�� of �%d � � the number of ones and zeroes is ��
����+�H��4�� ��
 [2]. Thus, after
clocking FSR A � times, LFSR B is clocked G@mv�,���.�:^�4�� �*
 times and LFSR C is clocked �@mv�,���.�L_(4�� �*

times.

In this section, some properties of the output sequences such as period and linear complexity are established.
It is shown that, when a and b are positive integers greater than 1 satisfying �5�	����a��Mb*�.��0 , and ^ and _ satisfy�5���R��^D�-4 i 6 0������5���R��_�� 4 k 6 0�����0 , then the period of the output sequences is exponential in � , a and b ,
and that the linear complexity is exponential in � . Finally, it is established that the distribution of short patterns
in the output sequences of this ASG( ^D�	_ ) turns out to be ideal.

2.1. Period and Linear Complexity of �-�u �¡
The output sequence ��� � � can be seen as two sequences added modulo 2, ��� � �K�S�,g }*~8� ��� �8P:�,N �'~�� ��� � , where�,g }*~�� ��� � and �,N �'~�� ��� � are generated by the sub-generators whose component sequences are �%d � � , �,g � � and�%d � � , �,N � � respectively.

In order to establish the period and the linear complexity of ��� � � one needs to first consider the periods and
the linear complexities of the two sequences �,g }*~�� ��� � and �,N �'~�� ��� � .

In the following two lemmas, the periods of the sequences �,g } ~ � ��� � and �,N � ~ � ��� � are considered. Tretter
[3] has considered this proof for the output sequences of the stop and go generator [4]. His proof is also valid
for the sequences �,g }*~8� ��� � and �,N �'~�� ��� � .
Lemma 1 If �5�	����^D� 4 i 6 0��.��0 , then the period ¢ } of the sequence �,g }�~8� ��� � is 4��X�,4 i 6 0�� .
Proof. The sequence �,g }*~8� ��� � will repeat whenever the states of the shift registers A and B return to their
initial states d � and g � respectively. The register A returns to its initial state once every ���$45� clock pulses.
Thus, for £ cycles of register A, register B is clocked £RGnmv�,��� times.

Therefore, if for some integers ¤ and £ , £RG@mF�,���!�Q¤ �
, then the feedback shift registers A and B will

simultaneously be in their initial states. The period of the sequence �,g }*~8� ��� � corresponds to the smallest integer
value that the integer ¤ can take.
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Now ¤L�L£�Gumv�,����¥ � . Therefore, if �5�	���,Gfmv�,�¦�	� � �.��0 i.e., �5�	����^�4 � ��
 � 4 i 6 0(�K�S0 , then the smallest
value that ¤ can take is when £§� �

. Clearly �5�	���,4&� ��
 � 4 i 6 0(�J�¨0 , hence, if �5�	����^D� 4 i 6 0��J�¨0 then�5���R�,Gfmv�,�¦�	� � �.��0 .

Thus, in
�

cycles of register A, register B cycles G@mv�,��� times and the period of �,g }*~�� ��� � is � � �4��X�,4 i 6 0�� .
Lemma 2 If �5�	����_�� 4 k 6 0��.��0 , then the period ¢ � of the sequence �,N �'~�� ��� � is 4��X�,4 k 6 0(�	

Proof. Similar to the proof of the above lemma.

Definition 3 The linear complexity of a purely periodic sequence is equal to the degree of its minimal
polynomial. The minimal polynomial is the characteristic feedback polynomial of the shortest LFSR that can
produce the given sequence.

In the following two lemmas, the minimal polynomials of �,g }*~8� ��� � and �,N �'~�� ��� � are considered.

Lemma 4 If �5�	����^D� 4 i 6 0��[��0 , then the minimal polynomial of the sequence �,g }�~8� ��� � is of the form ©R��W���ª
where 4�� �*
�«:¬§­ 4�� and ©R��W�� is an irreducible polynomial of degree a . In particular, the linear complexity
of �,g }�~8� ��� � is ®O
 such that: a¯4�� ��
�« ®O
 ­ a�4�� .

Proof. First, recall that if �5�	����^D� 4 i 6 0��K��0 then �5�	���,Gumv�,�¦�	� � �.�°�5�	����^�4�� 6 0�� 4 i 6 0(�K��0 .

Upper Bound on L1: If one starts at location 2 in the sequence �,g }*~�� ��� � for a fixed value of 2 with" ­ 2 « � and chooses every � �%B
element in the sequence �,g }*~�� ��� � , then this is equivalent to starting at

position ���#Gfmv��2y� in �,g � � and choosing every G@mF�,��� �%B element. Such a sequence is a G@mv�,��� -decimation
of �,g � � . All the Gfmv�,�¦� -decimation of �,g � � have the same minimal polynomial ©���W�� whose roots are theGfmv�,��� �%B powers of the roots of �8��W�� [5]. The final sequence �,g }*~8� ��� � consists of � such sequences
interleaved. (In other words, if �,g }*~�� ��� � is written by rows into an array � columns wide, then each column
is a sequence produced by ©���W�� ). Hence, the sequence �,g }*~8� ��� � may be produced by an LFSR constructed as
follows [6].

Take an LFSR with feedback polynomial ©R��W�� and replace each delay by a chain of � delays and only the
left most of each such group of � delays is tapped and input to the feedback function with a non-zero feedback
coefficient. Thus, �,g }�~8� ��� � is produced by an LFSR with the feedback polynomial ©R��W�±u� . Hence, the minimal
polynomial of �,g }*~8� ��� � divides ©���W ± �¦�s©R��W C	² �¦�s©���W�� C-² . Hence, �,g }*~�� ��� � has linear complexity ®T

bounded from above by a����:a¯4&� .

Furthermore, Chambers [6] has shown that, if �8��W�� is irreducible, with degree a and exponent
�

and�5���R�,Gfmv�,�¦�	� � �.��0 , then the polynomial ©R��W�� , like �8��W�� is irreducible of degree a and exponent
�

.

Lower Bound on L1: Let �A��W�� denote the minimal polynomial of �,g } ~ � ��� � . The sequence �,g } ~ � ��� �
satisfies ©��,³n� C ² �,g }*~8� ��� �O�Q�%"&� for all � , where �%"�� is the all-zero sequence and ³ is the shift operator. Since
the polynomial ©���W�� is irreducible then the polynomial �+��W�� must be of the form ©���W��-ª for ¬§­ 4�� .

Assume ¬/­ 4�� ��
 . Then �+��W�� divides ©���W�� C-²)´&µ . Since ©���W�� is an irreducible polynomial of degree a it
divides the polynomial �M0�9¯W�¶�� . Therefore, �A��W�� divides �M0*9¯W�¶�� C	²�´&µ �S�M0*9¯W C-²)´&µ ¶�� , but then the period
of �,g } ~ � ��� � is at most 4�� ��
 � [5] contradicting lemma 1. Therefore ¬ zY4p� �*
 and the lower bound follows.

Lemma 5 If �5�	����_�� 4 k 6 0(�v��0 , then the minimal polynomial of the sequence �,N �'~�� ��� � is of the form ·[��W��y¸
where 4�� ��
U«°¹]­ 4�� and ·K��W�� is an irreducible polynomial of degree b . In particular, the linear complexity
of �,N �'~�� ��� � is ®[C such that: b�4�� ��
�« ®[C ­ b�4�� .

Proof. Similar to the proof of the above lemma.
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Therefore, if �5�	����^D� 4 i 6 0��]�º�5�	����_�� 4 k 6 0��]�;0 then the periods of �,g }*~8� ��� � and �,N �'~�� ��� � are¢ } �$4��X�,4 i 6 0�� and ¢ � �$4��X�,4 k 6 0�� respectively and the minimal polynomials of �,g }*~�� ��� � and �,N �'~�� ��� �
are equal to ©���W���ª and ·[��W��»¸ respectively where 4&� ��
�«°¬ � ¹¼­ 4�� and ©���W�� , ·[��W�� are irreducible polynomials
of degree a and b respectively.

Theorem 6 If a , b are positive integers greater than 1 satisfying �5�	����a���b*�.�S0 and ^ , _ satisfy �5�	����^D� 4 i 6
0��u�½�5�	����_�� 4 k 6 0(�u��0 , then the output sequence ��� � � has period ¢.¾/��4 � �,4 i 6 0����,4 k 6 0(� and linear
complexity ® such that: ��a½9]b*�M4&� �*
T« ® ­ ��a½9]b*�M4�� .

Proof. From the above lemmas, the minimal polynomials of �,g }*~�� ��� � is ©���W��Mª and that of �,N �'~�� ��� � is ·[��W��»¸
where 4&� �*
!«:¬ � ¹§­ 4�� . Since ©���W�� and ·[��W�� are irreducible of different degrees then �5���R�%©���W��	�	·[��W����K�S0 ,
hence �5�	���%©R��W���ª��	·[��W��»¸X���¿0 [5]. Therefore, the period of ��� � � is ¢.¾]��À��-a¼�,¢ } � ¢ � � [5, theorem 3.9] and
the minimal polynomial of ��� � � is ©R��W��Mª8·K��W��»¸ of degree ®]�S��a ¬ 9§b ¹ � [5, theorem 6.57].

Hence, the period of ��� � � is ¢�¾H�LÀ��-a��,4��>�,4 i 6 0��	�-4��>�,4 k 6 0(���.��opÁ 4��X�,4 i 6 0����,4 k 6 0���Â{¥5�,4DÃ�Ä�Å � ijÆ k � 6 0��-q
[7, lemma 5.9]. Thus, the period of ��� � � is ¢�¾��Y4��X�,4 i 6 0����,4 k 6 0��	� and the linear complexity of ��� � � is ®
such that: ��a½9]b*�M4�� ��
T« ® ­ ��aQ9§b*�M4�� .

2.2. The Statistical Properties of �-�u �¡
In this section, the number of ones and zeroes in a full period ¢[¾¦�$4��X�,4 i 6 0����,4 k 6 0�� of the sequence ��� � �
are counted. It also shown that when a and b are positive integers greater than 1 satisfying �5���R��a��Mb*�J�Ç0
and the positive integers ^ and _ satisfy �5�	����^D� 4 i 6 0��+�¨�5�	����_�� 4 k 6 0��+�È0 , then any pattern of lengthÉ ­lÊAË�Ì ��ÍU� Î?� where ÍU� Î are positive integers such that Í\�½Ïy��a 6 0(��¥�^'9¼0�Ð and ÎJ�3Ïy��b 6 0���¥�_�9�0)Ð occurs
with probability 4 ��Ñ 9HÒÓ�M0(¥?4 ij��Ñ �59¦Ò+�M0�¥?4 k>��Ñ � , where Ï,ÔLÐ is the integer part of Ô for any real number Ô .

Since �,g � � and �,N � � are m-sequences then in a full period
� ���,4 i 6 0�� of �,g � � the number of ones and

zeroes is
� 
+�Õ4 ij��
 and

� ���Ö�,4 iU�*
 6 0�� respectively, and in a full period �×�Ö�,4 k 6 0(� of �,N � � the
number of ones and zeroes is �Ó
v�$4 k5�*
 and �f�!�#�,4 k5��
 6 0�� respectively [2].

If the period of ��� � � attains its maximum value ¢K¾H�$4��>�,4 i 6 0(���,4 k 6 0(� , then it is obvious that the number
of ones and zeroes in a full period of ��� � � is 4��XÁ��,4 i 6 0��M4 k5�*
 6 4 ij��
 Â and 4��RÁ��,4 i 6 0��M4 k5��
 6 �,4 iU�*
 6 0���Â
respectively.

In the following theorem, similar techniques to the ones used by Gunther [8] are applied to determine the
distribution of short patterns in the output sequences of the ASG( ^D�-_ ).

Theorem 7 Let a��Mb be positive integers greater than 1 satisfying �5�	����a���b*�L�Ø0 and let ^ , _ satisfy�5���R��^D�-4 i 6 0��n�3�5�	����_�� 4 k 6 0��n�Ö0 . Let Í and Î be positive integers such that Í¿��ÏM��a 6 0���¥�^f9�0JÐ
and Îj�3ÏM��b 6 0���¥�_F9:0)Ð�


The probability of occurrence of any pattern Ù��½�%Ù8����Ù�
(�)
�
�
�
�� ÙRÑ���
��TE]o(">�)0?q Ñ of length É ­:ÊAËÚÌ ��ÍU� Î?� in
the sequence ��� � � is 4 ��Ñ up to an error of order Ò+�M0�¥?4 iU�8Ñ ��9\Ò+�M0�¥?4 k>��Ñ � .
Proof. The proof is given in the appendix.

Clearly, the smaller the values for ^ and _ compared to a and b are, the better the above result is. This
does not mean that it is suggested to take ^ and _ to be very small, for example ^Û�S_u�½0 . For more security
it is better to irregularly clock the generating registers by large values, so that the gap between the bits selected
from the generating sequences is large.

Experiments have shown that if �5�	����a���b*�.��0 , then for any values of ^ and _ satisfying �5�	����^D� 4 i 6 0��K��5���R��_�� 4 k 6 0��.��0 , the output sequences of the ASG( ^D�-_ ) have good statistical properties.

Therefore, when a and b are positive integers greater than 1 satisfying �5���R��a��Mb*�+�Ü0 and ^D�-_ satisfy�5���R��^D�-4 i 6 0��.�°�5���R��_�� 4 k 6 0��K��0 , then an ASG( ^D�-_ ) with a de Bruijn sequence as the control sequence and
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m-sequences as the generating sequences generates sequences with period ¢F¾Ý��4 � �,4 i 6 0����,4 k 6 0�� , linear
complexity ® such that ��aS9�b*�M4&� ��
�« ® ­ ��a#9�b*�M4�� , and these sequences have good statistical properties.

In practice, one can choose ^ and _ to be powers of 2 in which case �5�	����^D� 4 i 6 0(�K�°�5�	����_�� 4 k 6 0(�K��0 .

In the following section, some correlation attacks on the ASG( ^D�-_ ) are considered.

3. Attacks

A suitable stream cipher should be resistant against a “known-plaintext” attack. In a known-plaintext attack the
cryptanalyst is given a plaintext and the corresponding cipher-text (in another word, the cryptanalyst is given a
keystream), and the task is to reproduce the keystream somehow.

The most important general attacks on LFSR-based stream ciphers are correlation attacks. Basically, if a
cryptanalyst can in some way detect a correlation between the known output sequence and the output of one
individual LFSR, this can be used in a divide and conquer attack on the individual LFSR [9, 10, 11, 12].

The output sequence of the ASG( ^D�	_ ) is an addition modulo 2 of its two irregularly decimated generating
sequences �,g }*~8� ��� � and �,N �'~�� ��� � . Thus, one would not expect a strong correlation to be obtained efficiently,
especially, if primitive feedback polynomials of high Hamming weight are associated with the feedback
functions of the registers B and C [11], and the values of ^ and _ which are used to clock the generating
registers are considered as part of the key (i.e., ^ and _ are kept secret).

If the characteristic feedback functions of A, B and C are known then a cryptanalyst can exhaustively
search for initial state of A, each such state can be expanded to a prefix of the control sequence �%d � � using the
characteristic feedback function of A. Suppose that one expands the sequence �%d � � until its Þ �%B 0 and " are
produced where Þ¦� ÊÓß�à ��a��Mb*� . From this prefix, and from the knowledge of a corresponding Þ -long prefix
of the output sequence of ��� � � , one can derive the value of Þ non-consecutive bits of the generating sequences�,g � � and �,N � � using the following relation:

� � P\� � <'
O� 7 g }*~8� ��� P\g }*~8� � <'
 � if d � ��0��N �'~�� ��� PÝN �'~�� � <'
 � if d � �/">

Since the characteristic feedback functions of B and C are known, then the initial states of B and C can

be revealed given these non-consecutive Þ -bits of �,g � � and �,N � � respectively by solving a system of linear
equations, but first one has to reveal the values of ^ and _ in order to determine the locations of these non
consecutive Þ -bits in �,g � � and �,N � � . Therefore, the attack takes approximately Ò+��áO4p�Da�â)b�â�� steps whereáY�½á!
	áOC , á!
 is the number of possible values for ^ such that �5�	����^D� 4 i 6 0����¿0 and áOC is the number of
possible values for _ such that �5���R��_�� 4 k 6 0��.��0 .

The probability of two random numbers being relatively primes is 60.8% [13]. Thus, áu
�ãÖ4 ij��
 andáOC!ã$4 k5��
 , and the above attack takes approximately Ò+�,4 � <8i�<8k5��C a â b â � steps.

For �°ã�äDå , a×ã�äDå and bVã�äDå , the attack takes approximately Ò+�,4 C CMæ � steps. Thus, this ASG( ^D�	_ )
appears to be secure against this attack. Moreover, it appears to be secure against all correlation attacks
introduced in [9, 10,11,12,14, 15, 16, 17,18,19].

There is also another attack that can be applied to the ASG( ^D�	_ ) through the linear complexity, but this
attack requires ��a½9]b*�M4�� consecutive bits of the output sequence.

For maximum security, the ASG( ^D�	_ ) should be used with secret initial states, secret characteristic feedback
functions, secret ^D�	_ satisfying �5�	�R��^D�-4 i 6 0��ç�è�5�	����_�� 4 k 6 0(���s0 , and a���b greater than 1 satisfying�5���R��a��Mb*�j�Õ0 . Subject to these constraints, an ASG( ^D�	_ ) with �¼ã¿ä�å , aéã¿äDå and b\ã�ä�å appears to be
secure against all presently known attacks.
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4. Related Work

An interesting example of existing FSR-based construction for comparison with the ASG( ^D�	_ ) is the Alternating
Step Generator (ASG) of Gunther [8].

The ASG is a special case of the ASG( ^D�-_ ); it is actually an ASG( 0��)0 ). Although the ASG( ^D�-_ ) is slower
than the ASG, its advantage is that it provides more security. For an ASG with �§ã3À , asã�À and b°ã�À , if
the characteristic feedback functions of A, B and C are known, then in order to reveal the initial states of the
three registers the attack mentioned in section 3 takes approximately Ò+�,4pêÚÀ æ � steps, whereas for the ASG( ^D�-_ ),
the attack takes approximately ÒÓ��áO4 ê À æ � steps. Moreover, for the ASG in order to produce a new sequence,
one has to choose a new initial state and/or a new characteristic feedback function for at least one of the FSRs,
whereas for the ASG( ^D�-_ ) in order to produce a new sequence, it suffices to assign new value(s) for ^ and/or _ .

5. Conclusion

From the theoretical results established, it is concluded that an ASG( ^D�	_ ) whose control FSR generates a de
Bruijn sequence and generating FSRs generate m-sequences produces sequences with large periods, high linear
complexities, good statistical properties, and they are secure against correlation attacks. Furthermore, using the
same initial states and the same characteristic feedback functions, the ASG( ^D�	_ ) produces a new sequence each
time one assigns new value(s) for ^ and/or _ . These characteristics and properties enhance its use as a suitable
crypto-generator for stream cipher applications.
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A. Proof of Theorem 7

Proof. Since �5���R��a��Mb*�S� 0 and �5�	����^D� 4 i 6 0��S�ë�5�	�R��_��-4 k 6 0��#� 0 , then the period of ��� � �¢.¾H�$4��X�,4 i 6 0����,4 k 6 0��	

Let �YEéo(">�)0��)
�
�� ¢�¾���
�q be represented in the form �:�íì]9Õ��î¦9�ï � �M4&� , ìÈEso("5��0��)
�
��-� 6 0?q ,îðE�o(">�)0���
�
�� � 6 0?q , ïÓE�o�">��0?��
�
�� � 6 0Dq and let us first consider the frequency of patterns among subsequences� � �-� � <'
(�)
�
�
�
��-� � <�Ñ��*
 for a fixed ìHE�o("5��0��)
�
�
�
��-� 6 0?q .

Let ñÛ�/ñ���ì�� and òf�$ò>��ì�� be defined by:

ñ&�Ø� " (1)ò��Ø� ÙR�ñ&1=<'
ó� ñ&1�P]d!ô�<81��%ÙX1{<'
'PÝÙX1»�ò�1=<'
ó� ò�1�P$�M0FP]d!ô�<81����%ÙX1=<�
'P]ÙX1»�
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for 2FE¦o(">�)0��)
�
�
�� É 6 4pq .

Then Ù can be written as

ÙX1h� ñ�18PÝò�1 (2)

for 2FE¦o(">�)0��)
�
�
�� É 6 0?q .

The matching condition at time � is:

� � <81õ� ÙX1 (3)

for 2FE¦o(">�)0��)
�
�
�� É 6 0?q .

This is equivalent to:

g }*~8� � <81 � PÝN � ~&öø÷Úù�ú�û � ñ�18PÝò�1 (4)

for 2FE¦o(">�)0��)
�
�
�� É 6 0?q .

Using the following relations:

Gumv��ìÛ9§2�9/0��í� Gumv��ìÛ9]2y��9§^?d!1 (5)�fmv��ìÛ9§2�9/0��í� �umO��ìn9]2y��9l_��%d!1RP/0��
the sum of Equation (4) and of the corresponding equation for ��289/0�� becomes:

g }*~8� � <�1=<'
 � PÝg }*~8� � <81 � � ñ&1=<'
�P§ñ&1 (6)N �'~8� � <81=<�
 � P\N �'~8� � <81 � � ò�1=<'
�PÝò�1
since, when dU1°�ü0 , ò�1=<�
fP¿ò�1l�|N �'~R� � <81=<'
 � P¿N �'~�� � <81 � �ý" , and when dU1°�þ" , ñ&1=<'
@P�ñ�1:�g } ~ � � <81=<�
 � P\g } ~ � � <81 � �/" .

This has two solutions:

g } ~ � � <81 � � ñ�1 (7)N �'~8� � <81 � � ò�1
and

g }*~8� � <81 � � 0FP]ñ�1 (8)N �'~8� � <81 � � 0FP\ò)1
for 2FE¦o(">�)0��)
�
�
�� É 6 0?q .

The number of solutions to this equation is equal to the number of occurrences of the pattern Ù in the
sequence ��� � � (where �F�Lì+9L��îu9]ï � �M4 � , î�E§o("5��0��)
�
�� � 6 0?q , ï�E§o("5��0��)
�
��-� 6 0?q ), i.e., to the quantity
we want to determine.

Without restricting ourselves we consider the solution of Equation (7). Making use of the fact that ���$4X�
and that Gfmv�,���.�:^�4 � �*
 and �fmF�,���.�L_(4 � ��
 , this equation becomes:

g }*~8� ô?<�1 � <8ÿ��	C ²)´&µ � ñ�1 (9)

where 2FE�o("5��0��)
�
�� É 6 0?q . (The term ï � is omitted since �,g � � has period
�

.)

N �'~�� ô�<81 � < � ÿ)<�� ¶ ��� C ²�´&µ � ò�1 (10)

Let �v��ì��°� Á Gfmv��ì§9 É 6 0�� 6 Gfmv��ì���Â{¥�^ which is less than a since É ­×ÊAË�Ì ��Í!�-Î?� where Íe�ÏM��a 6 0���¥�^f9#0)Ð and Î��×ÏM��b 6 0(��¥�_j9#0�Ð , then the assumptions that �,g � � is an m-sequence imply that
Equation (9) has 4 iU��� � ô � ��
 solutions if ñ
	�$" .
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Let �U��ì��.�#Á �fmv��ìÛ9 É 6 0�� 6 �fmF��ì���Â�¥�_ , then similarly, �,N � � is an m-sequence and �5�	����a���b*�.��0 imply
that Equation (10) has 4 k5��� � ô � �*
 solutions if ò
	�/" .

This remains true for ñH��" and/or òç�½" if we accept an error at most Ò+�M0�¥?4 ij��Ñ �'9:Ò+�M0�¥?4 k5��Ñ � . Note
that �F��ì���9��U��ì��.�S� É 6 0�� .

Clearly, the same result also holds for Equation (8).

Hence, the total number of solutions to Equation (3) is:

4>�,4 iU��� � ô � ��
 ���,4 k5��� � ô � �*
 �.�$4 i�<8k5�8Ñ
which is independent of ì .

This finally implies that the frequency of the pattern Ù is given by:

4 i�<8k5��Ñ� � 9\Ò+�M0�¥?4 iU�8Ñ ��9ÝÒ+�M0�¥?4 k5��Ñ �
Therefore, in a full period of ��� � � any pattern of length É ­ýÊAË�Ì ��ÍU� Î?� occurs with a probability�M0�¥?4 Ñ ��9ÝÒÓ�M0(¥?4 ij��Ñ ��9\Ò+�M0�¥D4 k5�8Ñ � .

38


