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A (Finite) Markov Chain
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A Stochastic Game (Demonic Case)

0.5 0.5

0.5

0.5

0.5

0.5

0.5 0.5

0.3

0.7

0.6

0.4

0.7 0.1

0.2

0.2

0.4

0.4

Non−deterministic
(demonic) choice
(by adversary)

Probabilistic choice
(by program)

Start

Flip Flip21

Halt

GoodBiased



Introduction. Results Conclusion

Both

Start

0.5 0.5

0.5

0.5

0.5

0.5

0.5 0.5

0.3

0.7

0.6

0.4

0.7 0.1

0.2

0.2

0.4

0.4

Non−deterministic
(demonic) choice
(by adversary)

Probabilistic choice
(by program)

Start

Flip Flip21

Halt

GoodBiased



Introduction. Results Conclusion

Both

C’s Turn: Malevolently Chooses Biased Side

0.5 0.5

0.5

0.5

0.5

0.5

0.5 0.5

0.3

0.7

0.6

0.4

0.7 0.1

0.2

0.2

0.4

0.4

Non−deterministic
(demonic) choice
(by adversary)

Probabilistic choice
(by program)

Start

Flip Flip21

Halt

GoodBiased



Introduction. Results Conclusion

Both

P’s Turn: Flipping a Coin

0.5 0.5

0.5

0.5

0.5

0.5

0.5 0.5

0.3

0.7

0.6

0.4

0.7 0.1

0.2

0.2

0.4

0.4

Non−deterministic
(demonic) choice
(by adversary)

Probabilistic choice
(by program)

Start

Flip Flip21

Halt

GoodBiased



Introduction. Results Conclusion

Both

P’s Turn: Advancing

0.5 0.5

0.5

0.5

0.5

0.5

0.5 0.5

0.3

0.7

0.6

0.4

0.7 0.1

0.2

0.2

0.4

0.4

Non−deterministic
(demonic) choice
(by adversary)

Probabilistic choice
(by program)

Start

Flip Flip21

Halt

GoodBiased



Introduction. Results Conclusion

Both

C’s Turn: Picking Most Biased Side

0.5 0.5

0.5

0.5

0.5

0.5

0.5 0.5

0.3

0.7

0.6

0.4

0.7 0.1

0.2

0.2

0.4

0.4

Non−deterministic
(demonic) choice
(by adversary)

Probabilistic choice
(by program)

Start

Flip Flip21

Halt

GoodBiased



Introduction. Results Conclusion

Both

P’s Turn

0.5 0.5

0.5

0.5

0.5

0.5

0.5 0.5

0.3

0.7

0.6

0.4

0.7 0.1

0.2

0.2

0.4

0.4

Non−deterministic
(demonic) choice
(by adversary)

Probabilistic choice
(by program)

Start

Flip Flip21

Halt

GoodBiased



Introduction. Results Conclusion

Cryptographic Protocols

Outline

1 Introduction.
Non-Deterministic Choice Only
Probabilistic Choice Only
Both
Cryptographic Protocols

2 Results
Infinite (topological) state spaces
A Probabilistic Applied π-Calculus
Anonymity

3 Conclusion



Introduction. Results Conclusion

Cryptographic Protocols

Anonymity

Goal: C should not be able to link agent to her actions.
6= secret!

Applications:

e-voting: voter identities are public, candidate names are
public. . .

but C should not be able to tell who voted for whom.

Secret sharing, file sharing (Freenet), auctions, etc.
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Cryptographic Protocols

Anonymization

Implementations: Crowds ([ReiterRubin98], sender anonymity),
Onion Routing ([SyversonGoldschlagReed97], communication
anonymity), Freenet ([Clarke et al.01], anonymous data
storage/retrieval).
Our focus: verifying anonymity properties.

Previous models are either:
purely non-deterministic (CSP [SchneiderSidiropoulos96],
epistemic logic [SyversonStubblebine99], views
[HughesShmatikov04]);
or purely probabilistic (epistemic logic [HalpernONeill04])

. . . to the exception of
[CanettiCheungKaynarLiskovLynchPereiraSegala’06],
where non-determinism is heavily constrainted
(“task-structured”).
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Cryptographic Protocols

Our Canonical Example: Chaum’s Dining
Cryptographers [1988]

Problem:

N ≥ 3 cryptographers share a meal;

The meal is paid either by the organization (master) or one
of them. The master decides who pays.

Each cryptographer is informed by the master whether he
has to pay or not.

Goal:

The cryptographers would like to decide whether one of
them or the master paid.

The master cannot be involved.

If one of the cryptographers paid, he should remain
anonymous.
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Cryptographic Protocols

Chaum’s Solution

Cryptographers are organized in a ring;

Two adjacent cryptographers share a coin, which they flip
secretly;
Each cryptographer A examines the two coins he shares
with his neighbors:

If A is paying, A announces “agree” if the two coins agree,
“disagree” otherwise.
If A is not paying, A says the opposite.

Fact: One of the cryptographers is paying ⇔ the number of
“disagree” announced is odd .

(Think in Z/2Z.)
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Modelling the Dining Cryptographers (N = 3)
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Cryptographic Protocols

Modeling Dining Cryptographers in the Probabilistic
π-Calculus
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Cryptographic Protocols

Remarks

Chaum’s dining cryptographers is finite-state (“easy case”).

Hence the probabilistic π-calculus is enough here.

However we need models/process algebras for the case of
infinitely many states (see next example).
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Cryptographic Protocols

1-Out-Of-2 Oblivious Transfer

Introduced in [Rabin81, EvenGoldreichLempel85]. Used in
e-contract signing, in secure multi-party computation.

S has two secrets M0 and M1 (M0 6= M1);

R will choose i ∈ {0, 1}: wishes to receive Mi from S;

Constraints:
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Cryptographic Protocols

1-Out-Of-2 Oblivious Transfer

Introduced in [Rabin81, EvenGoldreichLempel85]. Used in
e-contract signing, in secure multi-party computation.

S has two secrets M0 and M1 (M0 6= M1);

R will choose i ∈ {0, 1}: wishes to receive Mi from S;

Constraints:

R should not receive the other message M1−i ;

R should receive Mi with probability ≥ 1/2;

S should not be able to tell which
(i.e., to tell the value of i !)
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Cryptographic Protocols

1-Out-Of-2 Oblivious Transfer

Use:

An asymmetric encryption scheme
(enc( , K ), dec( , K−1));

(e.g., the RSA scheme, with modulus N.)

Two operations ⊞, ⊟ (e.g., x ⊞ y = x + y mod N.)

Protocol:

S → R: fresh public key K , and fresh tokens m0, m1;

R → S: Req=̂enc(fresh ℓ, K ) ⊞ mi ;
(i ∈ {0, 1} chosen by R.)

S → R: A0=̂M0 ⊞ dec(Req ⊟ mj , K−1),
A1=̂M1 ⊞ dec(Req ⊟ m1−j , K−1), j ;

(j ∈ {0, 1} flipped at random, uniformly.)

R emits Ai ⊟ ℓ if j = 0, A1−i ⊟ ℓ if j = 1.

(Works as expected when j = i .)
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Results (until now)

Models for non-determinism + probabilistic choice in the
case of infinite state spaces (topological spaces, cpos).

New process calculi: PAPi.

Modeling anonymity, and its many pitfalls.

Bisimulations are defined in each case which imply
observational equivalence, hence security.
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Infinite (topological) state spaces

Relax the axioms defining probabilities:

Belief functions:

are strict, monotonic set functions ν : Ω(X ) → R
+ satisfying a

relaxed inclusion-exclusion principle:

ν
(
⋃n

i=1 Ui
)

≥
∑

I⊆{1,...,n},I 6=∅(−1)|I|+1ν
(
⋂

i∈I Ui
)
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Infinite (topological) state spaces

Relax the axioms defining probabilities:

Belief functions:

ν
(
⋃n

i=1 Ui
)

≥
∑

I⊆{1,...,n},I 6=∅(−1)|I|+1ν
(
⋂

i∈I Ui
)

Semantic models

A simple notion that allows one to give semantic models of both
(demonic) non-determinism and probabilistic choice

• Applies to playful transition systems, where the “set of next states”
function is replaced by a belief-function “distribution” of next states.
• Notion of strong (bi)simulation [ICALP’07], even for 2 1

2 -player
games on topological spaces.
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Infinite (topological) state spaces

Previsions

Belief functions only model one probabilistic step followed
by one non-deterministic step;

But. . . No transitivity (composition);
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Infinite (topological) state spaces

Previsions

Belief functions only model one probabilistic step followed
by one non-deterministic step;

But. . . No transitivity (composition);

Continuous previsions solve the problem [CSL’07]. . .

and also give a sound and complete semantics for
higher-order functional languages with non-deterministic
and probabilitic choice.
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Infinite (topological) state spaces

Previsions = Choice, in Continuation Passing Style

In Continuation Passing Style, you evaluate a program M in a
continuation h:

h takes the value of M,

proceeds along. . .

and eventually returns an answer.

Formally:

JvalMK ρ(h) = h(JMK ρ)

Jletval x = M in NK ρ(h) = JMK ρ(λv · JNK (ρ[x := v ])(h))

JcaseK ρ(b, v0, v1) =

{

v0 if b = false
v1 if b = true

(Er, in fact, our calculus is direct-style except for the monadic part, which is in CPS, as above.)
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Now imagine answers are money. (“utility” to economists).
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Payoffs, in the Purely Probabilistic Case

Now imagine answers are money. (“utility” to economists).
I.e., evaluating a term M in continuation h gives you some
amount of money JMK ρ(h).
Flipping a boolean value b at random (uniformly) is:

If b = false, then you get h(false) dollars;

If b = true, then you get h(true) dollars.

The average payoff is

1
2

h(false) +
1
2

h(true)
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Payoffs, in the Purely Probabilistic Case

Now imagine answers are money. (“utility” to economists).
I.e., evaluating a term M in continuation h gives you some
amount of money JMK ρ(h).
Flipping a boolean value b at random (uniformly) is:

If b = false, then you get h(false) dollars;

If b = true, then you get h(true) dollars.

The average payoff is

1
2

h(false) +
1
2

h(true)

In other words, drawing at random = taking a mean =
integrating.
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Infinite (topological) state spaces

A Continuation Semantics. . . With Choice(s)

In an environment ρ, with continuation h : JτK → R
+,

JvalMK ρ(h) = h(JMK ρ)

Jletval x = M in NK ρ(h) = JMK ρ(λv · JNK (ρ[x := v ])(h))

JcaseK ρ(b, v0, v1) =

{

v0 if b = false
v1 if b = true
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(This is for demonic non-det.; take sup for angelic non-determinism.)



Introduction. Results Conclusion

Infinite (topological) state spaces

A Continuation Semantics. . . With Choice(s)

In an environment ρ, with continuation h : JτK → R
+,

JvalMK ρ(h) = h(JMK ρ)

Jletval x = M in NK ρ(h) = JMK ρ(λv · JNK (ρ[x := v ])(h))

JcaseK ρ(b, v0, v1) =

{

v0 if b = false
v1 if b = true

Jflip : TboolK ρ(h) =
1
2

h(false) +
1
2

h(true) (mean payoff)

Jamb : TboolK ρ(h) = inf(h(false), h(true)) (min payoff)

(This is for demonic non-det.; take sup for angelic non-determinism.)
Oh well, but then JMK ρ is no longer linear as a functional... we
characterize which properties they should have [CSL’07].
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A Probabilistic Applied π-Calculus

PAPi: A Calculus for Cryptographic Systems

Expressive
power

CCS

add mobility (channel passing)

pi−calculus [Milner]

spi−calculus [AbadiGordon97]

add message passing,
encryption.

applied pi−calculus [AbadiFournet00]

add equational theories
(more versatility)

probabilistic pi−calculus [HerescuPalamidessi00]

add probabilistic
choice

PAPi [ProNoBis07]
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A Probabilistic Applied π-Calculus

PAPi: Syntax

Terms (∼= values ∼= messages):

M, N ::= a, b, c, . . .
∣

∣ x , y , z, . . .
∣

∣ f (M1, . . . , Ml)

. . . interpreted modulo an equational theory E
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A Probabilistic Applied π-Calculus

PAPi: Syntax

Terms (∼= values ∼= messages):

M, N ::= a, b, c, . . .
∣

∣ x , y , z, . . .
∣

∣ f (M1, . . . , Ml)

. . . interpreted modulo an equational theory E
Processes (∼= programs ∼= systems):

P, Q ::= 0
∣

∣ u〈M〉.P
∣

∣ u(x).P
∣

∣ P+Q
∣

∣ P⊕p Q
∣

∣

P |Q
∣

∣ !P
∣

∣ νn.P
∣

∣ if M = N thenP elseQ

Extended processes (∼= programs-in-context):

A, B ::= P
∣

∣ νn.A
∣

∣ νx .A
∣

∣ A |B
∣

∣ {M/x}

Note: Active substitutions (∼= adversarial knowledge ∼= contexts):
special case where P = 0.
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A Probabilistic Applied π-Calculus

PAPi: Weak Bisimulation

Use schedulers to resolve non-determinism.

Weak bisimulation

The largest symmetric relation R s.t. ARB implies:
1 A ≈E B (static equivalence);
2 ∀ scheduler F · ∃ scheduler F ′ · ∀ R∗-equivalence class C,

ProbF
A (C) = ProbF ′

B (C);
3 ∀ scheduler F · ∃ scheduler

F ′ · ∀α, C · [. . .] ⇒ ProbF
A (α, C) = ProbF ′

B (τ∗ατ∗, C).

Note: infinite state space (infinitely many terms, to start
with).

However, we have not used previsions to this end (yet).
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A Probabilistic Applied π-Calculus

PAPi: Main Theorem [APLAS’07]

Define contextual equivalence ≈ for two closed extended
processes A, B, iff no adversary (context) can tell the difference
between A and B by interacting with each.

Theorem

A ≈ B iff there is a weak bisimulation R such that ARB.

Application:
1-out-of-2 Oblivious Transfer with R picking i at random ≈
“R gets M0”⊕0.5 “R gets M1”.

(Unfeasible to show directly. Build a weak bisimulation.)
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Anonymity

Defining Anonymity

Let S be a system (e.g., the prob. π-calculus implementation of
Chaum’s dining cryptographers).
An observer I may deduce probabilistic information about the S
by interacting with it:

not captured by any purely non-deterministic model;

cannot (usually) apply methods from statistics:
Repeating experiments is nonsense. . .

since I may keep track of past experiments
and change behaviors (i.e., change distributions).
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Anonymity

Early Definitions of Anonymity [ReiterRubin98]

A suspect X is:
beyond suspicion: to I, X is not more likely of being the
culprit than any other agent;
probable innocence: X is less likely of being the culprit
than all the other agents;
possible innocence: I cannot be sure that X is the culprit
(purely non-deterministic, weakest notion).

(There are 4 configs when one cryptographer payed; assume the
following 3 configurations are seen more often than the 4th, but the

4th still happens. This is a breach of anonymity that possible
innocence does not detect.)
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Anonymity

Anonymity through Evidence

Through Evidence, let:

Evidence(“i paid”, obs) =
P(obs|“i paid”)

∑

j P(obs|“j paid”)

Then S is strongly anonymous iff for every observable obs,
for every i , j ,

Evidence(“i paid”, obs) = Evidence(“j paid”, obs)

Beautiful connection to channel capacity [TGC’06].
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Anonymity

Nasty Schedulers

For any reasonable (fixed) scheduler, Chaum’s
implementation is then strongly anonymous.

Note that fixing the scheduler means we are back in the
purely probabilistic case.

However, the probabilistic π-calculus implementation is not
(even weakly) anonymous. . .

Problem: among all schedulers, there is a
(non-computable) scheduler that ⋆magically⋆ schedules
the cryptographer who paid (if any) first.
Then I simply observes who answered first.
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(. . . And they always restrict to some hand-crafted,
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Three different solutions published in 2007, from different
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Anonymity

Separating Nasty from Nice Schedulers

Problem was folklore in the cryptographers’ world.
(. . . And they always restrict to some hand-crafted,

behind-the-scenes scheduler.)

Three different solutions published in 2007, from different
groups [ProNoBiS, van Rossum et al., Mullins et al.].

Instrument processes with labeled non-deterministic
choice, and make schedulers explicit:

S ::= L.S
∣

∣ (L, L).S
∣

∣ if L thenS elseS
∣

∣ 0

Some choice labels are private (just like channel names)
and model internal non-determinism, which schedulers
cannot have control over [CONCUR’07].

(Done for CCS + probabilities, not yet for PAPi.)
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www.lsv.ens-cachan.fr/∼goubault/ProNobis/index.html

Publications:
7 intl. journals (incl. 5 TCS, 1 SIAM J. Computing);
17 intl. confs (incl. 2 LICS, 2 CONCUR, 1 ICALP, 1 CSL, 1
FOSSACS, 2 CSF, 1 FCC).

Some negative (unpublishable...) results too: our initial
hope of relating theories of evidence to belief function
semantics is doomed [HalpernFagin92].

More questions now than we had at the beginning. . .

www.lsv.ens-cachan.fr/~goubault/ProNobis/index.html
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Future

Applying previsions to questions of numerical accuracy in
reactive programs (with CEA, Dassault Aviation,
Hispano-Suiza, Supélec).
Relating the (strategy-less) approach of previsions with
random/deterministic strategies (ongoing work with R.
Segala).
(Hemi-)distances between probabilistic+non-deterministic
systems, and bisimulations up to some error.
Belief function semantics of CCP (concurrent constraint
programming), and connection to Dolev-Yao-style
adversaries.

Note: parallel composition=Dempster-Shafer combination rule!
Model-checking (done for probabilistic pi-calculus
[QEST’07], a few ideas in [ICALP’07] for general
topological case).
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