Information-hiding Protocols as Opaque Channels

Catuscia Palamidessi

Based on joint work with
Kostas Chatzikokolakis and Prakash Panangaden

Supported by
INRIA/DREI project PRINTEMPS and INRIA/ARC project ProNoBiS

Plan of the talk

- Motivation
- Protocols as channels
- Preliminary notions of Information Theory
- Opacity as converse of channel capacity
- Intended leak of information
- Relation with other notions in literature
- Computing the capacity of the protocol/channel
- Statistical inference and Bayesian risk
- Conclusion and future work

Information-hiding Privacy

- Ability of an individual or group to stop information about themselves from becoming known to people other than those they choose to give the information to [Wikipedia]
- Protection of private data (credit card number, personal info etc.)
- Anonymity: protection of identity
- Unlinkability: protection of link between information and user
- Unobservability: impossibility to determine what the user is doing

More precise definition @ www.freehaven.net/anonbib/cache/terminology.pdf

Privacy in Global/Pervasive Computing

- Issue of privacy protection exacerbated by orders of magnitude:
- Electronic devices and their continuous interaction with users \Rightarrow possibility to gather and store a huge amount of information
- Profiling / data mining techniques \Rightarrow precise definition of the individual's preferences
- Personal information on consumers perceived as asset \Rightarrow often subject matter of commercial transactions
- Result:
- A tremendous amount of information on the individual is gathered, processed, exchanged, used
- The individual often has not consented to this processing
- In the worst scenario, he is not even aware of it

RFID tags may be everywhere..

... and at stake

Personal data Gathering
 Tracking

Can't kill the RFID tag when dealing with tagged cash...

Example: the dining cryptographers

Information-hiding protocols as opaque channels

$$
\begin{aligned}
& \text { Master }=\sum_{i=0}^{2} \tau . \bar{m}_{i} \mathrm{p} . \bar{m}_{i \oplus 1} \mathrm{n} . \bar{m}_{i \oplus 2} \mathrm{n} .0 \\
& +\tau \cdot \bar{m}_{0} \mathrm{n} \cdot \bar{m}_{1} \mathrm{n} \cdot \bar{m}_{2} \mathrm{n} .0 \\
& \text { Crypt }_{i}=m_{i}(x) \cdot c_{i, i}(y) \cdot c_{i, i \oplus 1}(z) . \\
& \text { if } x=\mathrm{p} \\
& \text { then } \overline{p a y}_{i} \text {. if } y=z \\
& \text { then } \overline{\text { out }}_{i} \text { disagree } \\
& \text { else } \overline{\text { out }}_{i} \text { agree } \\
& \text { else if } y=z \\
& \text { then } \overline{o u t}_{i} \text { agree } \\
& \text { else } \overline{\text { out }}_{i} \text { disagree } \\
& \text { Coin }_{i}=p_{h} \tau . \text { Head }_{i}+p_{t} \tau . \text { Tail }_{i} \\
& \text { Head }_{i}=\bar{c}_{i, i} \text { head. } \bar{c}_{i \ominus 1, i} \text { head. } 0 \\
& \text { Tail }_{i}=\bar{c}_{i, i} \text { tail. } \bar{c}_{i \ominus 1, i} \text { tail. } 0 \\
& D C P=(\nu \vec{m})(\text { Master } \\
& \left.\mid(\nu \vec{c})\left(\Pi_{i=0}^{2} \text { Crypt }_{i} \mid \Pi_{i=0}^{2} \operatorname{Coin}_{i}\right)\right)
\end{aligned}
$$

Crowds

- A crowd is a group of n nodes
- The initiator selects randomly a node (called forwarder) and forwards the request to it
- A forwarder:
- With prob. I-Df selects randomly a new node and forwards the request to him
- With prob. pf sends the request to the server

Common features of information-hiding protocols

- There is information that we want to keep hidden
- the user who pays in D.C.
- the user who initiates the request in Crowds
- There is information that is revealed
- agree/disagree in D.C.
- the users who forward messages to a corrupted user in Crowds
- Protocols often use randomization to hide the link between anonymous and observable events
- coin tossing in D.C.
- random forwarding in Crowds to a corrupted user in Crowds

Information-hiding protocols as opaque channels

Protocols as channels

Information-hiding protocols as opaque channels

Protocols as noisy channels

The protocol of the dining cryptographers

Protocols as noisy channels

- We consider a probabilistic approach
- Inputs: elements of a random variable A
- Outputs: elements of a random variable O
- For each input a_{i}, the probability that we obtain an observable o_{j} is given by $p\left(o_{j} \mid a_{i}\right)$
- We assume that the protocol receives exactly one input at each session
- We want to define the degree of protection independently from the input's distribution, i.e. the users

Information-hiding protocols as opaque channels

The conditional probabilities

Information-hiding protocols as opaque channels

The channel is completely characterized by the array of conditional probabilities

Preliminaries of Information Theory

- The entropy $H(A)$ measures the uncertainty about the anonymous events:

$$
H(A)=-\sum_{a \in \mathcal{A}} p(a) \log p(a)
$$

- The conditional entropy $H(A \mid O)$ measures the uncertainty about A after we know the value of O (after the execution of the protocol).
- The mutual information $I(A ; O)$ measures how much uncertainty about A we lose by observing O :

$$
I(A ; O)=H(A)-H(A \mid O)
$$

Opacity

- Necessity to give a quantitative measure of the degree of protection provided by a protocol
- We define Opacity as the converse of the Capacity of the channel:

$$
C=\max _{p(a)} I(A ; O)
$$

- Note that this definition is independent from the distribution on the inputs, as desired

Relative privacy

- Some information about A may be revealed intentionally
- Example: elections

- We model the revealed information with a third random variable R

$$
R=\text { number of users who voted for } c
$$

Relative privacy

- We use the notion of conditional mutual information

$$
I(A ; O \mid R)=H(A \mid R)-H(A \mid R, O)
$$

- And define the conditional capacity similarly

$$
C_{R}=\max _{p(a)} I(A ; O \mid R)
$$

Partitions: a special case of relative privacy

- We say that R partitions \mathcal{X} iff $p(r \mid x)$ is either 0 or 1 for every r, x
- Examples: elections, group anonymity

Theorem

If R partitions \mathcal{A} and \mathcal{O} then the transition matrix of the protocol is of the form

	\mathcal{O}_{1}	\mathcal{O}_{2}	\ldots	\mathcal{O}_{l}
\mathcal{A}_{1}	M_{1}	0	\ldots	0
\mathcal{A}_{2}	0	M_{2}	\ldots	0
\vdots	\vdots	\vdots	\ddots	\vdots
\mathcal{A}_{l}	0	0	\ldots	M_{l}

and

$$
C_{R} \leq d \quad \Leftrightarrow \quad C_{i} \leq d, \forall i \in 1 . . l
$$

where C_{i} is the capacity of matrix M_{i}.

Information-hiding protocols as opaque channels

Relation with existing notions

Strong probabilistic anonymity

$$
\begin{array}{ll}
p(a)=p(a \mid o) \quad \forall a, o \quad & \text { [Chaum, 88], aka "condit } \\
\text { anonymity" [Halpern and O'Neill, } \\
p\left(o \mid a_{i}\right)=p\left(o \mid a_{j}\right) \quad \forall o, i, j & {[\text { Bhargava and Palamidessi, 05] }}
\end{array}
$$

Proposition

An anonymity protocol satisfies strong probabilistic anonymity iff $C=0$.

Example: Dining cryptographers

	100	010	001	111
a_{1}	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$
a_{2}	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$
a_{3}	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$

How to compute the capacity of the channel associated to a protocol

- Express the protocol in your favorite formalism
- Establish the anonymous events (inputs) and the observable events (outputs)
- The matrix of the channel (i.e. the conditional probabilities) is completely determined by the protocol and can be computed either by hand or by model checking
- The capacity is completely determined by the matrix and can be approximated by using the Arimoto-Blahut algorithm. In some particular cases is given by a formula

Example: D.C. in the probabilistic asynchronous π-calculus

$$
\begin{aligned}
& \begin{array}{c|c}
\begin{array}{c}
\text { Master }=\sum_{i=0}^{2} \tau \cdot \bar{m}_{i} \mathrm{p} \cdot \bar{m}_{i \oplus 1} \mathrm{n} \cdot \bar{m}_{i \oplus 2} \mathrm{n} \cdot 0 \\
+\tau \cdot \bar{m}_{0} \mathrm{n} \cdot \bar{m}_{1} \mathrm{n} \cdot \bar{m}_{2} \mathrm{n} \cdot 0
\end{array} & \begin{array}{l}
\text { Nondeterministic } \\
\text { choice }
\end{array} \\
\begin{array}{cc}
\text { Crypt }_{i}= & m_{i}(x) \cdot c_{i, i}(y) \cdot c_{i, i \oplus 1}(z) .
\end{array} &
\end{array} \\
& \text { if } x=\mathrm{p} \\
& \text { Anonymous actions } \\
& \text { then } \overline{p a y}_{i} \text { if } y=z \\
& \text { then out }{ }_{i} \text { disagree } \\
& \text { else if } y=z \\
& \text { then out }{ }_{i} \text { agree } \\
& \text { else } \overline{o u t}_{i} \text { disagree } \\
& \text { Coin }_{i}=p_{h} \tau^{--} . \text {Héad }_{i}+\overline{p_{t}} \tau^{-} . \text {Tail }_{i} \text { Probabilistic choice } \\
& \text { Head }_{i}=\bar{c}_{i, i} \text { head } . \bar{c}_{i \ominus 1, i} \text { head } .0 \\
& \text { Tail }_{i}=\bar{c}_{i, i} \text { tail. } \bar{c}_{i \ominus 1, i} \text { tail. } 0 \\
& D C P=(\nu \vec{m})(\text { Master } \\
& \left.\mid(\nu \vec{c})\left(\Pi_{i=0}^{2} \text { Crypt }_{i} \mid \Pi_{i=0}^{2} \operatorname{Coin}_{i}\right)\right)
\end{aligned}
$$

Probabilistic automaton associated to the probabilistic π program for the D.C.

Examples of channel matrices

- Dining cryptographers, while varying the probability p of the coins to give heads
- $p=0.5$

	$d a a$	$a d a$	$a a d$	$d d d$	$a a a$	$d d a$	$d a d$	$a d d$
c_{1}	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$	0	0	0	0
c_{2}	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$	0	0	0	0
c_{3}	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$	0	0	0	0
m	0	0	0	0	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$

- $p=0.7$

	$d a a$	$a d a$	$a a d$	$d d d$	$a a a$	$d d a$	$d a d$	$a d d$
c_{1}	0.37	0.21	0.21	0.21	0	0	0	0
c_{2}	0.21	0.37	0.21	0.21	0	0	0	0
c_{3}	0.21	0.21	0.37	0.21	0	0	0	0
m	0	0	0	0	0.37	0.21	0.21	0.21

Computing the capacity from the matrix

- General case: using the Arimoto-Blahut algorithm
- Approximates the capacity to a given precision
- In particular cases we can exploit the protocol's symmetries
- Symmetric channel: all rows and all columns are permutations of each other
- In a symmetric channel: $C=\log |\mathcal{O}|-H(\mathbf{r})$
- Can be extended to weaker notions of symmetry

Test-case: dining cryptographers

- Fair coins: the protocol is strongly anonymous ($\mathrm{C}=0$)
- Totally biased coins: the payer can be always identified (maximum capacity $\mathrm{C}=\log 3$)

Privacy and Statistical Inference

- Opacity as converse of Capacity.

Ok, it seems 'reasonable'.
But is it the most natural notion?

- An uncontroversially natural notion is be the 'probability of error' of an adversary trying to infer the hidden information (input) from the observables (output)

Statistical inference

- $O=\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots, \mathrm{o}_{\mathrm{n}}:$ a sequence of n observations
- f : the function used by the adversary to infer the input from a sequence of observations
- Error region of f for input $a: \quad E_{f}(a)=\left\{\boldsymbol{o} \in \mathcal{O}^{n} \mid f(\boldsymbol{o}) \neq a\right\}$
- Probability of error for input a : $\quad \eta(a)=\sum_{o \in E_{f}(a)} p(\boldsymbol{o} \mid a)$
- Probability of error for f :

$$
P_{f_{n}}=\sum_{a \in A} p(a) \eta(a)
$$

MAP decision functions

- MAP: Maximum Aposteriory Probability
- Applicable when the input's distribution is known.

Use Bayes theorem:

$$
\mathrm{p}(a \mid o)=(\mathrm{p}(o \mid a) \mathrm{p}(a)) / \mathrm{p}(o)
$$

- f is a MAP decision function if $f(\boldsymbol{O})=a$ implies

$$
\mathrm{p}(O \mid a) \mathrm{p}(a)>=\mathrm{p}\left(O \mid a^{\prime}\right) \mathrm{P}\left(a^{\prime}\right) \quad \text { for all } a, a^{\prime} \text { and } O
$$

- Proposition: the MAP decision functions minimize the probability of error (which in this case is called Bayesian risk)

Independence from the input distribution

- Under certain conditions, for large sequences of observations the input distribution becomes negligible:
- Proposition: A MAP decision function f can be approximated by a function g such that $g(O)=a$ implies

$$
\mathrm{p}(o \mid a)>\mathrm{p}\left(o \mid a^{\prime}\right) \quad \text { for all } a, a^{\prime} \text { and } o
$$

- "approximated" means that the more observations we make, the smaller is the difference in the error probability of f and g

Bayesian Risk and Information Theory

- Object of study since decades
- Philosophical and practical motivations

- Relation with Conditional Entropy $\mathrm{H}(\mathrm{A} \mid \mathrm{O})$
- Bounds by Rény '66, Hellman-Raviv '70, Santhi-Vardy '06
- Tighter bound obtained by studying the 'corner points'

What about the relation between the Probability of error and Capacity ?

- p(a|o) vs $\mathrm{H}(\mathrm{A} \mid \mathrm{O})$
- $p(a \mid o) / p(a)$ vs $H(A \mid O)-H(A)$?

Future work

- Explore more in depth the relation between the capability of inferring info about the input and the capacity, or other quantitative notions depending on the channel's matrix.
- Inference of the input distribution without the power of forcing the input to remain the same through the observations
- Characterizations of other (weaker) notions of privacy which are easy to model check, in the sense that they do not require to analyze the capacity as a function of the input distribution
- Develop a logic for efficient model checking

Thank you!

