Operational and Denotational Semantics

Please turn in by April 5, 2011 (-1 point penalty per day late)

Solution.

We consider an enriched, typeecalculus with constants for arithmetic expressions acdre
sion. Note that the essential question is question 9. Thieisne that takes the longest to answer,
and the one that will really tell me whether you understaratié@nts of) techniques we have seen
in the A-calculus.

Thetypesareo, T ::= Nat | o — 7. All the terms in the language come with explicit types.
In particular, we assume an infinite, countable set of végmbf each type, and writex, for a
variable of typer.

The termg of type (in short,t : 7) are defined by induction on their size by :

— every variabler, is of typer;

— if N : 7,then\z, - N is aterm of typer — 7;

—ifM:0— 7andN : o,thenM N is a term of typer;

— for eachn € N, there is a distinct constant: Nat ;

— there are distinct constanised : Nat — Nat (subtract one)succ : Nat (add one)ifz, :
Nat — 7 — 7 — 7 (test if first argument equal®), andY, : (- — 1) — 7 (fixpoint,
recursion).

As in the A-calculus, the terms are understood upvtoenaming. This takes the special form

thatx, can be replaced by any fresh variapleof thesametypeo in Az, - t. We drop type indices
whenever they are irrelevant or can be reconstructed framesd.

We define its semantics not through reduction, but by bui@dimachine directly.

The contextsare defined by the grammds := _ | EN | succE | pred F | ifz E N P,
where N, P denote terms. . We see contexts as particular terms, withcuermccurrence of a
specific variable that does not occur in any term, called thale A contextFE is of typeo + 7
when £ is of typer, assuming the holeof types. E[M] denotes the replacement of the hole by
M (of typeo).

Our machine is a transition system whose configurationsairs p - M. Intuitively, in such a
configuration, the machine is in the process of evaluaiity|, and the focus is currently on the
subterm/.



The machine rules come into two groups. The first form rémex discoveryules. E.g., in
(DApp), the machine tries to evaluafd NV, and proceeds by pushing the arguméhinto the
context and focusing on the function patt.

(D App) E-MN = E[N]-M (DIf) E[LMNP]-ifz — Elifz N P]-M
(DPred) E[.-N]-pred — FElpred_|-N (DSucc) E[_N]-succ — F[succ_|- N

The second group of rulesomputes

(8) E[N]-\t-P—>E-Plz:=N] (Y)  E[LN]-Y = E-N(YN)
(pred) Elpred | -n+1—FE-n (succ)  Elsucc | n—FE-n+1
(1£z0) Elifz _N P]-0—- E-N (ifzl) FElifz_NP]-n+1—FE-P

We donottake the closure of> under contexts, whatever this may mean. The relatiois entirely
specified by the rules above.

We also consider denotational semantiasf the above terms. First, we define the dpd of

all valuesof typer :

— [Nat] isN,, the set of all natural numbers plus an added, so-caligtmelementL. These
are ordered byn < n iff m = L orm = n. (Think as all element N being incomparable
and abovel .)

— [o — 7] is the dcpd[e] — [7]] of all continuous maps frorfv] to [7]. They are ordered
by f < giff f(z) < g(x)in [r] foreveryz € [o].

1. Show that every termhas exactly one type.

This is by induction on the size @fusing the fact that every term has at least one type

by definition, and conversely that the type is determined fanique typing rule. E.g.,
if our term isM N, thenM has a unique type)N has a unique type, and sinceg N
has a type at all, it must be obtained by the rule 8if : ¢ — 7 and N : o thenM N
is a term of typer”, which determines uniquely. If our term iS\z,, - IV, then N has
a unique typer, and therefore the unique type dt, - N isoc — 7. This is the only
interesting case, and justifies why we explicitly decoragevariablex, with its type.
Finally, the types of variables and constants are uniquelgdnined.

2. Show thaf/7] has a least element,, for every typer. By abuse of language, we shall write
1 instead ofL ., and call it “bottom”. It is useful to think of_ as non-termination.

By induction onr. N has_L as its least element, and. if; is the least element ¢f],
then the constant map with value. is the bottom element ¢§& — 7].

Then we define the semantifg p of termst : 7 as values irff7] in environmentg mapping
each variabler, to an element ofo], by :

= [zo]p= p(zs);
— [MN]p=[M]p([N]p);

— [Az, - NJ pis the function that maps eache [o] to [N] (plz, := v]);
— [n] p = n, for everyn € N;



— [pred] pis the map that sends+ 1 ton € N, and0 and_L to L ;

— [succ] pis the map that sendse Nton + 1, and_L to L ;

— [ifz,] pis the map that sends v, w to L if u = L, tovif u =0, and tow if u # 0, L;
— [Y7] pis the map that sends< [[7] — [7]] tosup,,en f™(L).

3. Given any continuous map € [[7] — [7]], show that fp(f) = sup,cy f™"(L,) €xists in
[7], and is thdeast fixpointof f. A fixpoint of f is an element such thatf(v) = v. Itis
least iff v < w for every other fixpointw. (This is meant to explain the definition pf.] p.)

We first check thatf"™(L-)),cy is achain, i.e. fo(L;) < f1(L;) <... < f"(L;) <
... Itis enough to check that*(L,) < f"*!(L,) for everyn € N, and this is done by
induction onn. If n = 0, this is becausg®(_L,) = L, is least. Otherwisef"(L,) =
FOY(L) < f(f"(L,)) = f~(L,) by induction hypothesis and the fact thyais
monotonic.

Now Ifp(f) is a fixpoint : f(Ifp(f)) = f(supnen ["(Ls) = suppey [ (Lr),
because f is continuous and(f"(L:)),cy iS a chain; we conclude because
SUPpen f"(Lr) = sup(fO(Ls), suppey [ (Lr)) = sup(Ls, sup,ey [ (L)) =
sup,en S"TH(LL).

We claim that fp(f) is the least one. Assumeis another fixpoint. By induction on
n, f*(L,) < x :thisis clear ifn = 0, since L, is least, otherwisef"*'(L,) =
f(f"(L;)) < f(x) (by induction hypothesis, and sin¢eés monotonic)= x (sincez is

a fixpoint). Taking sups on each sidép(f) < x.

4. Establishsoundnessif £ - M —* _-n, then[E[M]] p = n, for everyn € N, and every
environment.

We first show that: (1) if£ - M — E’- M, then[E[M]] p = [E'[M']] p- By induction

on the number of-» steps, it will follow that ifE - M —* _-n, then[E[M]]p =
[-[n]] p = n.

Claim (1) is obvious in the cases of the rulésApp), (DI f), (DPred) and(DSucc),
since in these casds|M| = E'[M'].

For the other rules, we note that for any configuratidéif - M"”, [E" - M"]p =

[E"] (p[- — [M"] p]). This is a form of the substitution lemma we have seen in the
lectures, and is proved by induction on the sizé 6f

It remains to show that :

(8) [(Ax-P)N]p = [Plx:= N]]p : the left-hand side iSv — [P](p[z =
) ([N] p) = [P] (plx := [IN] p]), which is equal to the right-hand side by the
substitution lemma.

(Y) [YN] p=[N(YN)] p:theleft-hand side isfp(f), wheref = [N] p, while the
right-hand side isf(Lfp(f)). These two are equal becaus®( f) is a fixpoint of
f, as we have seen.

(pred) [predn + 1] p = [n] p : both sides equaib.
(succ) [succn]p = [n+ 1] p: both sides equals + 1.
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(ifz0) [ifz 0 N P]p = [N] p: obvious.
(ifzl) [ifzn+1 N P]p = [P] p: obvious.

The rest of the questions aim at establishing the conversewidness, a property known as
computational adequacy his is harder : notice in particular that computationa@uaiacy entails
that if [E[M]] p = n for everyn € N, and every environment, thenE - M must terminate (on
the configuration - n).

We first show that we can only hope to prove computational aaeyjin a limited setting.
First, we only consideground configurations call a termgroundiff it has no free variable, and
a configuration®' - M groundiff E[M] is ground. Ther]{ E[M]] p does not depend on and we
shall write it[E[M]].

5. One might think of proving computational adequacy atevwgpe 7, i.e., that if £ - M is

ground, and E[M]] is a valuev € 7] (the same for every environmep), thenE - M —*

_+ M’ for some canonical ground terdd’ : 7 with [M'] = v. By “canonical”, we mean
that there is a unique canonical tef/ such thatffM'] = v. Show that this is hopeless :
canonicality fails, at least for some typeother thariat.

TakeE = _, M, = Az, - succl and M, = Az, - 2. These two terms have the same
value, namely the constaxfunction. Canonicality would imply that M; and_- M,
would rewrite to the same- M’. But_- M, and_- M, do not rewrite at all.

Define=, on ground terms by/ =, N iff for every contextE of typeo + Nat, if - M —*
_-nthenE - N —* _-n.

Extend=, to non-ground terms by/ =, N iff M6 =, N6 for every well-typed substitution
0 of ground terms for all variables in/ and N. A substitutiond is well-typediff x.6 is a term of
typeo for every variabler, in its domain.

6. Show that :
— M|z, := N| Z; (Ax, - M)N wheneverM : 7, N : o ;
- M(YM) =, YM providedM : 7 — 7;
— ifn Syae M thenn + 1 Zya succ M
— ifn+1 Zyae M thenn Zy.. pred M ;
— if 0 Syae M thenN =, ifz M N P (whereN : 7, P: 1),
—ifn+1 g MthenP 2, ifz M N P (whereN : 7, P : 7).

We show the claims assuming each side of the inequalitiasadrorhe general case

follows by applying some well-typed substitutibthroughout.

— Mxy :=N|Z; Az, - M)N :if E- M|z, := N| =* _-n,thenE - (A\x, - M)N —
E[N]-\x,-M (by (DApp)) — E - M[z, := N] (by (5)) —* _-n (by assumption).

— M(YM) 3, YM :similarly, E-YM — E[_M]Y — E- M (Y M) by (DApp) and
(V).

— Ifn 4+ 1 Zyae M thenn =Zy.. pred M. Thisis slightly different. Assume thatn —*
_-m for somem € N. SoE[pred_|-n+1 — E - n (by (pred)) —* _- m. Since
n+ 1 Zyae M, and using the context|[pred |, E[pred | - M —* _-m. But then
E-pred M — E[_M]-pred (by (DApp)) — Elpred_|- M (by (DPred)) —* _-m.
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— Ifn+1 Zyae M thenn Zya: pred M. Similar, using(succ) and (DSucc) instead.
— If0 Zyar M thenN =, ifz M N P. AssuméZ - N —* _-m, and use the context
Elifz - N PJ.Since) Zy.e M andE[ifz - N P]-0 — E-N (by(ifz0)) —=* _-m,
we musthav&[ifz - N P|-M —* _-m,soE-ifz M N P — E[_P|-ifzMN —
E[LNP]-ifzM — E[_LMNP]-ifz — Elifz _N P]-M — E-N —* _-m,

using (D App) three times, theQDI f).
— Ifn+1 Zyae M thenP 3, ifz M N P. Similar, using(ifz1) instead.

The main tool in the proof of computational adequacy is theeafsa so-calledogical relation
This is a notion similar to the reducibility seig? D.. defined in the lectures, except there are now
binary relations, i.e., sets of pairs.

Here, a logical relation is a family of binary relatiofs, indexed by types, between values
in [7] and ground termd/ : 7. These are defined by induction on types as follows. For shert
say “for all N R, v" instead of “for every termV : o, every valuev € [o], if N R, v then”.

— M Ryae wiff w = 1, oruis a natural numbet andn =y.. M.

- MR, fiffforall N R, v, MN R, f(v).

7. GivenM : 7,let M R, be the se{u € [7] | M R, u}. Show thatV R, is Scott-closedli.e.,
bothdownward closedif « < vandM R, vthenM R, u) and stable under directed sups (if
(u;),c; is a directed family iff7], andM R, u, for everyi € I, thenM R sup,c; u;). Show
also thatM R, is non-empty, i.e., contains.

By induction on typesM Ry.. is { L} U{n € N | n Zy.. M, so it containsl and is
downward closed (the only elements below N aren and ). It is also closed under
directed sups because every non-empty subsetN , is : either A = {_L} and this is
clear, or A contains some € N, then everyn € A is below some element above both
n andm by directedness, which implies < n sincen is maximal inN .

MR,_,, containsl, .., since for allN R, v, MN R. 1, ,.(v) = L., by induction
hypothesis on.

If f € MR,,, andg < f, thenforallN R, v, MN R. f(v) by definition hence
MN R, g(v) sinceM N R, is downward closed by induction hypothesisorsog €
MR,_...

If (fi),c; is adirected family inV/ R, then for allN R, v, M N R- f;(v). SinceM N R,
is closed under directed sups by induction hypothesis,d N R sup,;(fi(v)) =
(sup;e; fi)(v). SOM Ry supes fi-

8. Show that ifM/ <. N andM R. u, thenN R, u. In other words, the se®,u = {M : 7 |
M R, u} is upward closedn =,.

By induction on types again. f/ =y.. N and M Ry.. u, then eitheru = 1 and
N Ry.. w is by definition, ot = n € N, n Syae M. NOw, Zy.. IS transitive. Precisely,
for every E' of the right type, and every well-typed substituttbaf ground terms for
variables, for everyn € N, the latter states that it - n —* _-mthenE - M —* _-m,
andM Zy.. N thenimpliesthaty- N —* _-m. Son Syt N. Sinceu = n, N Ry.; u.



On function types — 7, the key argument is that whenever =, ., N, then for
everyP : o, MP =, NP, i.e., that for everyy of the right type, and every well-typed
substitutiord of ground terms for variables, forevery € N, if E- M P —* _-m then
E- NP —* _-m. The only reductiorf? - M P —* _- m must us€ D App) as the first
rule, hence be of the fordd- M P — E[_P]- M —* _-m. SinceM =,_,, N one must
haveE[_P|- N —* _-m, henceE - NP —* _-m, using(DApp).

So assume tha¥/ =, NandM R,_,. f. Forall P R, v, MP R, f(v). We have
seen thatV/ P <. NP, so by induction hypothesis an NP R, f(v). SON R,_,, f.

9. Given a well-typed substitutiofy and an environment, write 0 R, p iff z,0 R, p(z,) for
every variabler, in the domain of.

Prove theBasic Lemmaif 6 R, p, andM is a term of typer, thenM 6 R [M] p.

By induction on the size @ff this time.

— If M is a variablez,, then this is the induction hypothesis.

— If M is an applicationN P, with P : ¢, then by induction hypothesiéd R, _,. [N] p
and P R, [P] p, SOM6O = (N6)(PO) R, [N] p([P] p) = [M] p by definition of
R, -

— If M is an abstraction\z, - N, andT = ¢ — ¢/, then we must show that for all
PR,v ((Ama : N)Q)P Ry [[N]] (p[xa = U])

Using a-renaming, we may assume fresh, and thereforé U [z, := P] to be
a meaningful well-typed substitutigh such thatN¢’ = N6[z, := P]. Note that
for every variabley in the domain of/’, y#' is in logical relation to,'(y), where
p' = plz, := v]. This is by assumption if is in the domain of), and follows from
PR,vify=x,.

So by induction hypothesiS¢’ R, [N]p'. We conclude sinc&¢’ = N[z, =

P] Zo ((Ax, - N)O)P (Question 6, first item) and using Question 8.

— If M is a constani, n € N, then we must show that <y.. n. This is obvious.

— If M is the constanpred, then we must show that for alt Ry.. v, pred P Rya
[pred] p(v).

If v = L orif v = 0, then[pred] p(v) = L, so this results from the fact that
pred P Ry, containsl (Question 7, last item).

Otherwisep = n + 1 for somen € N, and we must show thated P Ry, n under
the assumption tha® Ry.. n + 1. Equivalently, we must show=y.. pred P under
the assumption + 1 Xy, P. This is Question 6, item 4.

— The caséVl = succ similarly follows from Question 6, item 3.

— The caseV/ = ifz similarly follows from Question 6, item 5 (if= 0) or item 6 (if
v =mn+ 1for somen € N).

— Finally, we deal with the cas&/ = Y,. We must show thatforalP R, .. f,YP R,
sup,en f*(L). SinceY PR, is Scott-closed (Question 7), it is enough to show that
YP R, f"(L) for everyn € N. We show this by induction one N. If n = 0, this
is obvious sinc&@” PR, contains L (Question 7, last item). Otherwise, by induction
hypothesist P R, f"~!(L). SinceP R._,, f, by definition ofR. ., P(YP) R,



fM(L).ButP(YP) 3, Y P by Question 6, item 2. Sinde. (L) is upward-closed
(Question 8)Y' P R, f*(L), and we conclude.

10. Conclude thatomputational adequadyolds : given a ground configuratian- M such that
E[M]:Nat, [E[M]] =n e Nifandonly if £ - M —* _- n.

One direction is Question 4. Conversely,[[M]] = n € N, then E[M] Ry n

by Question 9, using the identity substitution (siri¢e M is ground). By definition,
n Syat F[M]. Using an empty context, E[M] —* _- n. Now the first machine rules
in the latter reduction must be redex discovery rules, umélreach the configuration

E-M.
Formally, we show that if?’ - E[M] —* _-n, thenE'[E] - M —* _- n, by induction
on the size oF. If £ = _, this is clear. IfE = E; N, then the only applicable rule is

(DApp),yieldingE’ - E[M]| — E'[_N]- E;[M] —* _-n. If E = succ Ej, then the first
two rules must béD App) and (D Pred), yieldingE’ - E[{M| — E'[_E1[M]] - succ —
FE'[succ |- E1[M] —* _-n;if E = pred E;, then these aréD App) and (D Succ) ; if
E =ifz F; N P, then these aréD App) (three times) andD1 f).



