
Implementing H1 by Resolution ∗

Jean Goubault-Larrecq (goubault@lsv.ens-cachan.fr)
LSV/UMR 8643, CNRS & ENS Cachan; INRIA Futurs projet SECSI

Abstract. The h1 tool is an implementation of a theorem prover dedicated to
solving Nielson, Nielson and Seidl’s decidable class H1 of first-order Horn clauses.
This is based on ordered resolution with selection, eager ε-splitting—a special case of
Riazanov and Voronkov’s splitting with naming rule—, and several additional rules.
We tested h1 on a few examples coming from cryptographic protocol verification,
and in particular some produced by the csur static code analyzer, due to Parrennes
and the author, a tool to detect leakage of secrets in C programs. We also tested
h1 on a collection of about 800 problems without equality originating from Sutcliffe
and Suttner’s TPTP library. We use these examples and report on the efficiency
of h1. Particularly, we investigate the merits of several optimizations built into h1,
which appear to be new. In each case, we try to understand why they fare well or
fail. These include naive static soft typing, on-the-fly abbreviation of deep terms,
and detecting fully-defined predicates. Of the latter three, on-the-fly abbreviation of
deep terms, a variant of the rule of definition introduction known in Prolog program
transformation circles, offers drastic speedups in specific applications.

Keywords: resolution, splitting, H1, Horn clauses, abstract interpretation, static
soft typing, abbreviation, definition introduction, TPTP, cryptographic protocol
verification

∗ Partially supported by the ACI Rossignol, and the RNTL projects EVA and
PROUVÉ.

c© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

implem.tex; 13/12/2005; 16:22; p.1

Keywords: resolution, splitting, H1, Horn clauses, abstract interpretation, static
soft typing, abbreviation, definition introduction, TPTP, cryptographic protocol
verification

1. Introduction

Nielson, Nielson and Seidl [16] introduced the class H1 of first-order
Horn clause sets to model reachability in the spi-calculus. They showed
that H1 satisfiability is decidable and DEXPTIME-complete, and that
H1 clause sets can be converted to equivalent tree automata in expo-
nential time—so H1 defines regular tree languages. Further subclasses
of H1, in particular H3, have polynomial time complexity.

This was further refined in [9], where it was shown that H1 could
be decided by fairly standard automated deduction techniques, with
optimal complexity, that is, in no more than deterministic exponential
time. The basic rule is ordered resolution with selection [2], with a
suitable ordering and a suitable selection function, supplemented by a
form of Riazanov and Voronkov’s splitting with naming rule [18].

While this would seem to indicate that off-the-shelf resolution provers
could be used to decide H1, the ones that we tested resisted using the
particular selection function that is required here. On the other hand,
it is an interesting question in itself whether the particular form of H1

clauses lends itself to more efficient proof procedures.
This prompted the initial impetus to implement a dedicated res-

olution prover for the H1 class. The resulting tool, called h1, was
implemented and optimized by the author during the years 2003–2004.
Some of the lessons learned indeed apply specifically to H1, but some
of the optimizations we found to be most useful are likely to find ap-
plication in more general situations as well. In this paper, we wish to
report on the experience we gained during this effort.

1.1. A word on methodology.

When some implementation effort such as h1 is initiated by an aca-
demic researcher, there is always some confusion as to what the goals
of this effort should be. You may want to understand whether some
optimization or some deduction rule is useful, and why; or you may
strive for, say, the fastest prover you can. Hooker [12] observes that,

c© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

implem.tex; 13/12/2005; 16:22; p.2

3

while the former is probably the most useful to science, the latter is
what most researchers attempt to do.

The second approach is what Hooker calls competitive testing : spend
some time implementing, optimizing, tuning your code, then compare it
against other state-of-the-art provers, e.g., by entering some well-known
competition such as the yearly CASC, held at the CADE and IJCAR
conferences. Hooker observes that this is essentially useless from the
point of view of the advancement of science. You may have won, this
may be because of some particularly clever algorithm, or because you
are a particularly skillful programmer (what is the part of each?). You
may have won because the particular blend of rules and optimizations
you used is indeed efficient. In each case, winning a competition does
not explain why a particular algorithm, rule, or optimization has any
benefit, and in which situations.

The first approach is based on controlled experimentation, see Hooker
(op.cit.). This is the age-old principle at the root of scientific experimen-
tation. The intent is that you run experiments not to boast about your
particular algorithm, but to confirm or refute hypotheses. E.g., Hooker
exemplifies this approach by showing how a controlled experiment could
state which of the following hypothesis were likely to explain the effi-
ciency of branching rules in Davis-Putnam-like SAT solvers: a) better
branching rules try to maximize the probability that subproblems are
satisfiable, and b) better branching rules simplify the subproblems as
much as possible. Hooker claims that predictions following from hy-
pothesis a) were consistenly refuted by experiment, so that hypothesis
a) had to be abandoned.

We largely agree with Hooker. Nonetheless, we still made the ini-
tial mistake of trying to get the most efficient algorithm possible to
decide H1. The h1 tool was, in our opinion, rather successful from this
point of view. During 2003-2004, we concentrated on a few (about 20)
problems coming from the application domain we were interested in,
cryptographic protocol verification, and specifically, verification that
sensitive data remained confidential in C programs [11]. We describe
the most prominent examples below. A few weeks before we submitted
this paper, we decided that it would be natural to deal with exam-
ples coming from the now well-established TPTP collection [20]. More
specifically, the H1 clause sets we picked to test h1 were:

− Five among the problems coming from cryptographic protocol ver-
ification, which were relatively or even extremely challenging at
some steps of the development of h1. We call them the Parrennes

examples, since they were communicated to us by Fabrice Par-
rennes. The examples alice full1.h1.p, alice full2.h1.p, and

implem.tex; 13/12/2005; 16:22; p.3

4

alice full3.h1.p that we shall repeatedly refer to later were
produced by an early implementation of csur, our C code analyzer
[11]. The latter files are in fact not in H1, but they are close. There
is a standard approximation procedure (see Section 3.2 below) that
converts any first-order clause set S without equality to an H1

clause set S0 that over-approximates it, meaning in particular that
if S0 is satisfiable then so is S, and the least Herbrand model of
S0 (which can be presented as a regular tree language) is a model
of S.

The files we consider here have gone through this approximation
procedure after being generated by csur. The early implementa-
tion of csur we used contained some bugs which, interestingly,
generated relatively hard H1 clause sets. (As the names indicate
partly, the examples cited above encode Alice’s role in a working
C implementation of the Needham-Schroeder public-key protocol
[15]. The first too are unsatisfiable—there is an attack—, the third
one is satisfiable—no attack.)

The last two examples, which we name needham preuve.h1.p and
needham saturation.h1.p, come from the analysis of the same C
code, only produced by a later, corrected version of csur. Here is
an indication of the size of these problems, see Figure 1: we abbre-
viate, and shall continue to abbreviate, alice full1.h1.p as a1,
alice full2.h1.p as a2, alice full3.h1.p as a3, needham preuve.h1.p

as np, and needham saturation.h1.p as ns. Clause size is mea-
sured as the number of symbols in it, either constants or variables.
But beware that size is essentially independent of the actual diffi-
culty of the problem. (Side note: yes, the names of needham preuve.h1.p

File # of #functions #predicates avg. avg. Sat?

clauses per arity total per arity total #lits/ clause

0 1 2 0 1 2 3 4 5 clause size

a1 1161 349 5 6 360 1 711 3 9 4 2 730 1.63 5.54 No

a2 1150 349 5 6 360 0 710 5 9 4 2 730 1.63 5.53 No

a3 1153 349 5 5 359 0 715 5 7 5 2 734 1.63 5.55 Yes

np 398 98 5 4 107 0 262 7 4 3 2 278 1.71 5.69 Yes

ns 397 97 5 4 106 0 260 5 5 3 2 275 1.71 5.71 No

Figure 1. The Parrennes examples

(“proof”) and needham saturation.h1.p (“saturation”) were un-
fortunately swapped.)

implem.tex; 13/12/2005; 16:22; p.4

5

− 808 problems extracted from the TPTP library, version 3.0.1 [20].
Almost none of the problems from the TPTP library are in the H1

class: only 2 from the COM category (COM001-1.p and COM002-1.p),
1 from KRS (KRS004-1.p), 1 from MGT (MGT036-3.p), 1 from MSC

(MSC005-1.p), and 10 from PUZ, totalling 15.

To compensate, we again used the approximation procedure in-
dicated above. We selected those problems without equality from
the COM (computation theory), FLD (fields), KRS (knowledge rep-
resentation systems), LCL (logic calculi), MGT (management, or-
ganization theory), MSC (miscellaneous), NLP (natural language
processing), and PUZ (puzzles). We ignored the other categories,
which rest heavily on equality. Finding problems without equality
was done by executing the Unix command grep -l ’ 0 equa’,
profiting from the fact that each TPTP file comes with extensive
descriptions of its properties.

1.2. A Word on Precision

When we build over-approximations of clause sets, a risk is that we lose
too much precision. In other words, it might be that the approximated
clause set S0 is unsatisfiable, while S is in fact satisfiable. This didn’t
happen in the Parrennes examples, which was to be expected since the
generated clause sets are already close to H1 clause sets, i.e., almost
all clauses are in H1. Among the TPTP examples, we sum up our
investigations in Figure 2; the “#defin. coarse” row refers to the number
of TPTP problems where this loss of precision definitely occurred. This
was measured by taking all those sets S0 judged unsatisfiable by h1

(therefore ignoring the 16 problems that h1 didn’t decide, one in COM

and 15 in PUZ) and where the corresponding S was judged satisfiable
by SPASS v 2.0 [25]. The “#possib. coarse” row counts those additional
problems where S0 was judged unsatisfiable by h1 but we do not know
(using SPASS again) whether the corresponding S is satisfiable or not.

COM FLD KRS LCL MGT MSC NLP PUZ

#defin. coarse 0 0 6 23 0 1 15 7

#possib. coarse 0 113 0 6 0 0 0 0

Total # 7 279 17 297 22 12 103 71

Figure 2. How often we lose precision via the standard over-approximation

implem.tex; 13/12/2005; 16:22; p.5

6

1.3. Competitive Testing

As far as competitive testing is concerned, h1 does not fare too badly.
On the 808 TPTP H1 clause sets, h1 solves 792, while SPASS 2.0 solves
795. In both cases, we ran each tool with a 5 minute time limit and a
400 000 Kb memory limit, reflecting reasonable limits on our patience
and on the memory capacity of our machine, respectively. These were
enforced by using the Unix memtime utility with the -m 400000 and
-c 300 options. All times that we report are user times, not wallclock
times, and all memory usage is virtual memory usage.

All problems solved by h1 are solved by SPASS, too; only 3 problems
are solved by SPASS and not by h1. (In passing, the main reason why
we compare h1 with SPASS specifically, and not to other provers, is that
the sort resolution rule of SPASS decides linear shallow Horn theories
specifically [24], and that it turns out that the latter are exactly H1

clause sets [9].) On the machine on which we tested all implementations,
a Pentium IV class machine (1.6 GHz, 512Mb main memory) running
Linux 2.6.8-1.521 (Fedora Core 2), statistics are reported in Figure 3 for
h1, and in Figure 4 for SPASS. “Avg.” means average, “St.Dev” stands

Cat. #problems Time (s.) Memory (Mb)

solved Total Avg. St.Dev. Avg. St.Dev.

COM 6 0.790 0.132 0.015 13.0 1.7

FLD 279 46.520 0.167 0.014 14.1 1.4

KRS 17 2.210 0.130 0.008 13.0 1.3

LCL 297 36.890 0.124 0.005 13.2 1.4

MGT 22 2.820 0.128 0.005 12.3 1.2

MSC 12 1.520 0.127 0.006 12.5 1.2

NLP 103 44.500 0.432 1.190 14.5 1.9

PUZ 56 7.390 0.132 0.020 13.2 1.5

Total 792 142.64

Figure 3. Statistics of h1 on TPTP Examples

for standard deviation. It should be noted that, certainly because h1 is
implemented in HimML [8], and HimML spends some time at start-up
(mainly doing run-time linking of code and data), h1 always spends a
minimum of 0.12 s. per problem, and 12 072 Kb, i.e., 11.79 MB. (This
was measured by calling the Unix utility memtime on h1 -h; the latter
starts up, prints a usage banner and exits.)

implem.tex; 13/12/2005; 16:22; p.6

7

Cat. #problems Time (s.) Memory (Mb)

solved Total Avg. St.Dev. Avg. St.Dev.

COM 7 0.350 0.050 0.079 2.9 0.3

FLD 279 2.650 0.009 0.004 2.7 0.4

KRS 17 0.570 0.034 0.035 2.7 0.7

LCL 297 1.150 0.004 0.047 2.1 7.6

MGT 22 0.870 0.040 0.042 2.9 0.2

MSC 12 0.100 0.008 0.009 2.2 1.1

NLP 103 213.480 2.073 6.197 3.3 0.5

PUZ 58 486.740 8.392 41.922 2.7 2.7

Total 795 705.91

Figure 4. Statistics of SPASS on TPTP Examples

A graphical view of these results is presented in Figure 5 (times in
seconds on the x axis, logarithmic scale with 21/4 as multiplier between
any two consecutive x values; number of problems solved within time
x on the y axis) and in Figure 6 (memory in Mb on the x axis).

On the Parrennes examples, the h1 statistics are given in Figure 9.
It is probably the right time to say a word on the precision of these
measures. We report means µ and typical variation σ/µ, where σ is
standard deviation, over 3 runs on the Parrennes examples, in Fig-
ure 10. This indicates that time and memory statistics are to be taken
with a grain of salt—typically, times may vary in a ±15% interval
around the mean time—while numbers of generated and “automaton”
clauses are precise. The “automaton” column counts the number of
clauses generated (including those later backward-subsumed) where no
literal is selected. These are possibly productive, and describe the least
Herbrand model as a tree automaton in the H1 case (see [16] or [9])
when saturation is reached.

SPASS did not terminate on any of the Parrennes examples, even
when allotted 60 minutes of computation time. Remember that the
Parrennes examples are approximated problems S0, stemming from
some initial clause set S. SPASS did not terminate on the original,
unapproximated problems S either, again within a 60 minute time limit.

We might compare the relative efficiency of h1 and SPASS (or other
provers, for that matter), and propose hypotheses. One of these is that
H1 is a much simpler class to decide than full first-order logic. As
we shall see from the rules used in h1 (Figure 11 below), almost no

implem.tex; 13/12/2005; 16:22; p.7

8

 0

 50

 100

 150

 200

 250

 0.0625 0.125 0.25 0.5 1 2 4 8 16

PUZ
NLP
MSC
MGT
LCL
KRS
FLD

COM

Figure 5. Breakdown of h1 Times on TPTP Examples

 0

 50

 100

 150

 200

 250

 300

 350

 400

 16 32

PUZ
NLP
MSC
MGT
LCL
KRS
FLD

COM

Figure 6. Breakdown of h1 Memory Usage on TPTP Examples

implem.tex; 13/12/2005; 16:22; p.8

9

 0

 100

 200

 300

 400

 500

 600

 700

 0.0625 0.25 1 4 16 64 256 1024

PUZ
NLP
MSC
MGT
LCL
KRS
FLD

COM

Figure 7. Breakdown of SPASS Times on TPTP Examples

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1 2 4 8 16 32 64 128 256

PUZ
NLP
MSC
MGT
LCL
KRS
FLD

COM

Figure 8. Breakdown of SPASS Memory Usage on TPTP Examples

implem.tex; 13/12/2005; 16:22; p.9

10

File Time Memory #clauses

(s.) (Mb) generated subsumed automaton

a1 358.3 262.1 2 912 977 707 816 84 578

a2 273.4 254.3 3 063 812 738 512 85 444

a3 7.6 27.1 83 159 19 223 5 617

np 2.9 19.6 25 062 4 603 2 978

ns 2.2 20.7 28 110 4 665 3 134

Figure 9. Running h1 on the Parrennes Examples

File Time Memory #clauses

(s.) (Mb) generated subsumed automaton

a1 336 249 2.91 106 764 103 84.5 103

±12% ±3.9% ±0.2% ±5.2% ±0.1%

a2 352 275 3.07 106 796 103 86.1 103

±15.8% ±7.0% ±0.2% ±5.1% ±0.5%

a3 7.3 29.1 0.083 106 22.3 103 5.6 103

±7.5% ±6.4% ±0.3% ±9.9% ±0.5%

np 2.8 20.4 0.028 106 7.2 103 3.3 103

±16.2% ±3.2% ±6.4% ±25.7% ±6.8%

ns 2.9 20.3 0.030 106 7.3 103 3.4 103

±28.1% ±4.6% ±3.7% ±25.7% ±6.1%

Figure 10. Evaluating Variations in Measurements, on the Parrennes Examples

unification is ever needed in deciding H1. Also, finding and erasing
subsumed clauses is probably much easier and faster than in full first-
order logic. This may explain that h1 generates roughly about 8 500
clauses per second, while SPASS typically generates about up to 70
per second only, on typical examples. (We should also note that h1

is implemented in HimML, using a prototype HimML bytecode to C
compiler, which is currently so bad that the produced C code is roughly
only 20 percent faster than the input HimML interpreted bytecode.)
One might also argue that h1 has an advantage over competing provers
precisely because it is implemented in HimML, where hash-consing [7]

implem.tex; 13/12/2005; 16:22; p.10

11

is systematically applied to data of equality-admitting types [8]; in
particular, all structures are systematically shared (one may make a
parallel with the efficiency of BDDs [3]). This is a hint as to how h1 in
fact just manages to store about 3 million clauses, and all supporting
tables and auxiliary data, in just about 300 Mb (see Figure 9 again)—
but see the discussion on memory in Section 5.

However, this is not the end of the story. We have actually designed
specific rules and techniques to make h1 run faster. Some of these were
tested and found to indeed give some speed or space advantage. This
includes our over-approximation scheme (see Section 4) for example.
Some others were specifically designed to address specific redundancies.
The most notable one is our deep abbreviation scheme (see Section 5).
The purpose of this paper is to describe these techniques, examine their
efficiency, and attempt to explain why they do work.

Before we end this long introduction, we stress the fact that we do
not wish to boast the good performance of h1 per se. While SPASS 2.0
does not terminate either on the approximated or the original, unap-
proximated Parrennes examples (at least within one hour), SPASS does

terminate on the original problems, when run with the -RSSi=1 (en-
able sort simplification), -FuncWeight=999999 (compare terms mainly
by function count and ignore predicates), and -Select=2 (select all
negative literals) options. This is how we know for certain the values
in the rightmost column of Figure 1. Times are good, too: 45.8 s. for
alice full1.p, 62.8 s. for alice full2.p, 0.29 s. for alice full3.p,
0.20 s. for needham preuve.p, 0.27 s. for needham saturation.p. Note
that the same options to SPASS are however of no help on the approx-
imated problems: SPASS -RSSi=1 -FuncWeight=999999 -Select=2

still does not terminate in less than 60 minutes on the (approximated)
Parrennes examples. This fact should be taken as a warning that, con-
trary to commonsense, taking approximations of a problem does not
always result in simpler problems. (Although the “#possib. coarse”
row in Figure 2 shows that taking approximations indeed resulted in
definitely simpler problems on 116 of the 808 TPTP examples.) Our hy-
pothesis that “H1 is a much simpler class to decide than full first-order
logic” above therefore has to be rejected.

1.4. Outline.

We review some related work in Section 2, and give a brief overview of
the resolution and splitting techniques at the core of h1 in Section 3.
This is of course needed to understand the rest of the paper, but is not
particularly new (see [9]). We also describe more precisely the general
clause approximation scheme that we use: this was only outlined in [9,

implem.tex; 13/12/2005; 16:22; p.11

12

rules (1), (2)]. We then switch to the core of the paper. Two of the
optimizations used in h1 are particularly effective. The first one com-
putes an over-approximation of the least Herbrand model of the input
clause set, and uses it to prune inference steps that stand no chance
of being useful. This is described in Section 4. The second consists in
introducing fresh predicate symbols to abbreviate deep terms in clause
bodies, and is described in Section 5. We consider another optimiza-
tion, of comparatively lesser importance, in Section 6, full definition
subsumption. We conclude in Section 7.

The implementation and provisional documentation of h1 and its
accompanying tools is available from the author’s Web page, http:
//www.lsv.ens-cachan.fr/∼goubault/.

2. Related Work

2.1. H1, Linear Shallow Horn Theories

The H1 class of Nielson, Nielson, and Seidl [16], was used to decide
some (over-approximated) reachability properties in the spi-calculus
[1]. In [9], the author made the simplifying observation that the H1

class was equivalent, both in terms of models and with respect to
polynomial-time reducibility, to the subclass [H1 (“flat H1”), a class
with a particularly simple definition:

DEFINITION 1. A [H1 clause is any Horn clause H ⇐ P1(t1), . . . ,
Pn(tn), where t1, . . . , tn are arbitrary terms, and the head H is either
⊥, of the form P (X) or of the form P (f(X1, . . . ,Xk)) where X1, . . . ,
Xk are distinct.

As usual, we fix a first-order signature. Terms are denoted s, t, u, v,
. . . , predicate symbols P , Q, . . . , variables X, Y , Z, . . . We assume
there are finitely many predicate symbols, and that they are all unary.
The latter is fairly innocuous, since we can always replace P (t1, . . . , tk)
where k ≥ 1 with P (f(t1, . . . , tk)) for some fresh function symbol f . One
consequence of this is that, in Figure 1, a1 should in fact be considered
to contain 730 unary predicate symbols, and 379, not 360, function
symbols. Horn clauses C are of the form H ⇐ B where the head H is
either an atom or ⊥, and the body B is a finite set A1, . . . , An of atoms.
If B is empty (n = 0), then C = H is a fact. If H = ⊥, then C is a
goal , otherwise C is a definite clause. Note that [H1 clauses are fairly
general: only the heads are restricted.

It turns out that Weidenbach had already identified the same class as
an interesting, large decidable class of first-order formulas [24]. There,

implem.tex; 13/12/2005; 16:22; p.12

13

[H1 clause sets are called “monadic Horn theories where all positive lit-
erals are linear and shallow”. That [H1 can be decided by sort resolution
is the topic of [24, Lemma 4]. That [H1 can be decided in deterministic
exponential time was shown in [16], and the fact that this optimal upper
bound can be achieved with fairly standard resolution techniques was
shown in [9].

H1 and [H1 are robust classes, in the sense that essentially any
interesting extension of them is undecidable. (The term robust used in
this empirical sense is attributed to the author by H. Seidl and K. N.
Verma. The author thought it was due to K. N. Verma.) The tip of the
iceberg is the fact that allowing just one clause with a non-linear head
(i.e., with two occurrences of the same variable) produces an undecid-
able class, see [9, Theorem 11] or [24, end of Section 3]. Unpublished
results by the author and by H. Seidl show that various other extensions
are undecidable; most of them reduce to the particular encoding of [9,
Theorem 11] (mixing H1 and one-variable clauses; stratified clauses in
the style of [13]; etc.)

2.2. Over-approximations, Static Soft Typing

In Section 4 we shall describe a technique to compute an approximation
of the least Herbrand model of the initial Horn clause set S. This
approximation is used to prune the search space, and can itself be
computed rapidly. Using approximations is an old idea, which predates
computer science by several centuries. Using an approximation to prune
the search space in saturation-based theorem proving is often referred
to as static soft typing [23].

This preserves completeness. This was proved by C. Weidenbach in
the context of ordered resolution with sorts [22, Section 6.7].

2.3. Splitting, Abbreviation, Definition Introduction

We shall use various replacement rules, in addition to resolution. One of
them is Riazanov and Voronkov’s particular splitting rule [18], which
replaces a disjunction C1 ∨ C2 of clauses, where C1 and C2 have no
variable in common, by the two clauses C1 ∨ −q and +q ∨ C2, where
q is a fresh predicate constant. (Given any atom A, we write +A for
A as a literal, −A for its negation. Any clause is a finite disjunction of
literals.) This rule, and in particular the refinement called splitting with

naming , was shown to give some performance improvement in general
first-order theorem proving tasks [18]. We used the latter refinement to
give a second proof that H1 was decidable and DEXPTIME-complete
in [9].

implem.tex; 13/12/2005; 16:22; p.13

14

The idea of splitting with naming is that q is an abbreviation for
the negation of C2. We replace the disjunction C1 ∨ C2, read as the
implication “if C2 is false, then C1 is true”, by the two implications “if
C2 is false, then q is true” and “if q is true then C1 is true”. (Here we
understand C1 and C2 as being universally quantified.) One may think
of several other, similar, abbreviation schemes. For example, if C1 and
C2 do share some variables, say X and Y , we may replace C1 ∨ C2 by
C1∨−P (X,Y) and +P (X,Y)∨C2, where P is fresh. The atom P (X,Y)
abbreviates the fact that, fixing the values of X and Y , but whatever
the values of the other variables in C2, C2 is false. This is non-ground

splitting , a rule that was extensively used in efficient implementations
of the MACE finite-model finding procedure [21, 4].

Another related rule is definition introduction, used in the field
of logic program transformation [17]. This rule replaces every clause
C1 ∨ C2, where C1 and C2 share no variable, and C2 is not just a
single linear negative literal without function symbols −P (X1, . . . ,Xk),
by the two clauses C1 ∨ −P (X1, . . . ,Xk) and +P (X1, . . . ,Xk) ∨ C2,
where P is a fresh predicate symbol, and X1, . . . , Xk are the variables
occurring in C2. As in splitting with naming, we actually reuse the
same P whenever we apply definition introduction to clauses with the
same C2 part, up to renaming: P (X1, . . . ,Xk) abbreviates the fact that
C2 is false for the particular given choice of values for X1, . . . , Xk. The
definition introduction rule was used, together with unfolding (a form
of resolution with selection), by Limet and Salzer [14], to obtain decid-
ability results for for inductive definitions over language expressions,
and quasi-cs logic programs, which are the largest known decidable
classes of set constraints over tree tuple languages.

Our deep abbreviation rule is yet another variation on this theme,
see Section 5.

3. Deciding H1 by Resolution, A Quick Tour

3.1. Ordered Resolution with Selection, ε-Splitting

Ordered resolution with selection, with eager ε-splitting provides a
decision procedure for H1 [9].

In the case of Horn clauses, ordered resolution with selection can
be stated thus: from the main premise A ⇐ B, A1, . . . , Am (where A1,
. . . , Am, m ≥ 1, is the set of selected atoms if any atom is selected
at all, or m = 1 and A1 is �-maximal in the whole clause if no atom
is selected), and the m side premises A′

i ⇐ B′
i, 1 ≤ i ≤ m (where

no atom is selected and A′
i is �-maximal in each), infer the resolvent

implem.tex; 13/12/2005; 16:22; p.14

15

Aσ ⇐ Bσ,B′
1σ, . . . ,B

′
mσ (where σ is the simultaneous most general

unifier of A1 with A′
1, . . . , Am with A′

m).
On the other hand, ε-splitting is a particular case of splitting with

naming [18]. This can be described as follows, refining the intuition
of Section 2.3. Call an ε-block any finite set of atoms of the form
P1(X), . . . , Pm(X) (with the same X, and m ≥ 0); it is non-empty

iff m ≥ 1. We shall abbreviate ε-blocks B(X) to make the variable X
explicit. We say that B(X) is a block of the clause A⇐ B, B(X) iff X
occurs neither in A nor in B. For each non-empty ε-block B(X), create
a fresh nullary predicate symbol qB; if B(X) is a non-empty block of
A ⇐ B, B(X), then replace the latter by the two clauses A ⇐ B, qB
and qB ⇐ B(X). Intuitively, the latter defines qB to hold whenever the
intersection of the languages of predicates in B is non-empty, and will
be called a defining clause. The former allows one to conclude A from
B, as soon as the splitting atom qB holds.

This replacement rule can be applied anytime without breaking
completeness, provided A or B contains at least one atom of the form
P (t) (for any t), and the ordering � is extended so that P (t) � qB for
every unary predicate symbol P , every term t, and every splitting atom
qB . This is an easy consequence of Bachmair and Ganzinger’s standard
redundancy criterion [2, Section 4.2.2].

The ordering � of [9] is defined by P (s) � Q(t) iff s is a proper
superterm of t, regardless of P and Q. Define the selection function as
follows. Let a simple atom be any atom of the form P (X), or ⊥ by
extension. If 1. the clause body contains some splitting atom qB, select
one; otherwise, if 2. it contains a non-simple atom, select one; otherwise,
if 3. the head is not simple, then select all atoms in the body; else 4.:
none.

It is shown in [9] that these two rules decide the satisfiability of sets
of [H1 clauses in exponential time. But we have some freedom in the
definition of the selection function. In particular, in case 2., we may
choose to select just one non-simple atom, or some of them, or all of
them. The h1 tool selects all non-simple atoms (unless some predicates
in the body of the clause are fully defined, see Section 6).

These rules can be presented in the form shown in Figure 11; we

explain them below. We write X
k

for the sequence of pairwise dis-
tinct variables X1, . . . , Xk. Note that side premises can only be either
alternating automaton clauses of the form

P (f(X1, . . . ,Xk)) ⇐ B1(X1), . . . , Bk(Xk) (1)

where B1(X1), . . . , Bk(Xk) are possibly empty ε-blocks, or universal

clauses of the form P (X), or ne-facts qB (stating that B recognizes an
non-empty intersection). This is because side premises have no selected

implem.tex; 13/12/2005; 16:22; p.15

16

atom in their bodies, and because we can assume that ε-splitting does
not apply to them. In the benchmark results presented in the sequel, we
shall call “automaton” clauses all alternating automaton and universal
clauses alike. These are the ones counted in the “automaton” column
of Figure 9 and other similar tables.

Resolution takes different forms, according to the form of the main
premise. If the main premise contains a splitting symbol q (case 1. of
the selection function), then it must unify with some ne-fact, this is
rule (5) of Figure 11. Otherwise, the main premise may be in case 2.
of the selection function, where there are m ≥ 1 selected non-simple
atoms P1(f1(t11, . . . , t1k1

)), . . . , Pm(fm(tm1, . . . , tmkm)). Some of them,
say the first `, will unify with heads of alternating automata clauses,
and the others will unify with universal clauses. This is rule (2) when
` ≥ 1, and is rule (6) when ` = 0. In case 3. of the selection function,
the selected literals must be all (simple) atoms in the body, and the
main premise must be of the form H ⇐ P1(X), . . . , Pm(X) where H is
⊥, a splitting atom, or an atom P (X) for the same variable X, because
of our eager use of ε-splitting. In case we unify with ` ≥ 1 alternating
automaton clauses, either H is ⊥ or a splitting atom, and we apply
rule (3), or H = P (X), and we apply rule (4). If ` = 0, then we again
apply rule (6).

One of the things to notice in these rules is the fact that unification
and instantiation always takes a very simple form. The role of alter-
nating automaton clauses in rule (2) is to peel off one layer of function
symbols f1, . . . , fm, and to replace variables Xi by immediate subterms
tij of terms appearing in the selected atoms of the main premise. The
other rules are even simpler. A nice byproduct is that no unification
procedure is really needed in implementing these rules.

3.2. The Standard Approximation, Converting H1 to [H1

A nice feature of H1 and [H1 is that any set of Horn clauses admits
a standard approximation, in the form of [H1 clauses. (In fact any set
of clauses, Horn or not, by first approximating non-Horn clauses such
as C ∨ +A1 ∨ . . . ∨ +An by the clauses C ∨ +A1, . . . , C ∨ +An, as
done in Flotter [26].) Recall that we use the letter B to denote finite
sets of atoms—clause bodies. In the sequel, B{X := t} denotes B with
t substituted for X. Define the rewrite relation ; on Horn clause sets
by:

P (C[t]) ⇐ B ;

{
P (C[Z]) ⇐ B, Q(Z) (Z fresh)

Q(t) ⇐ B
(7)

where t is not a variable, Q is a fresh predicate symbol,

implem.tex; 13/12/2005; 16:22; p.16

17

1≤j≤`,`≥1︷ ︸︸ ︷
Pj(fj(X

kj
)) ⇐ Bj1(X1), . . . , Bjkj

(Xkj
)

`+1≤j≤m︷ ︸︸ ︷
Pj(X)

H ⇐ P1(f1(t11, . . . , t1k1
)), . . . , Pm(fm(tm1, . . . , tmkm

)),B

H ⇐ B, B11(t11), . . . , B1k1
(t1k1

), . . . , B`1(t`1), . . . , B`k`
(t`k`

)

(2)

1≤j≤`,`≥1︷ ︸︸ ︷
Pj(f(X

k
)) ⇐ Bj1(X1), . . . , Bjk(Xk)

`+1≤j≤m︷ ︸︸ ︷
Pj(X)

H ⇐ P1(X), . . . , Pm(X)

H ⇐ B11(X1), . . . , B`1(X1), . . . , B1k(Xk), . . . , B`k(Xk)

(3)

where H = ⊥ or H is a splitting literal q
1≤j≤`,`≥1︷ ︸︸ ︷

Pj(f(X
k
)) ⇐ Bj1(X1), . . . , Bjk(Xk)

`+1≤j≤m︷ ︸︸ ︷
Pj(X)

P (X) ⇐ P1(X), . . . , Pm(X)

P (f(X
k
)) ⇐ B11(X1), . . . , B`1(X1), . . . , B1k(Xk), . . . , B`k(Xk)

(4)

q H ⇐ B, q

H ⇐ B
(5)

P1(X) . . . Pm(X) H ⇐ B, P1(t1), . . . , Pm(tm)

H ⇐ B
(6)

Figure 11. Specializing resolution to [H1 clauses

and C[] is a non-trivial one-hole context

P (C[X]) ⇐ B ; P (C[Y]) ⇐ B,B{X := Y } (8)

where X occurs at least twice in C[X], Y is a fresh variable

A one-hole context C[] is a term with a distinguished occurrence of
the hole []. C[u] is C[] with u in place of the hole. C[] is non-trivial iff
C[] 6= []. In (8), we requireX to occur at least twice, with one occurrence
distinguished by the hole in C[].

The following is shown in [9]. Start from a finite set of Horn clauses
S0. Any ;-normal form of S0 is an [H1 clause set S∗ that logically
implies S0. The relation ; terminates in polynomially many steps,
although not in polynomial time in general. However, it does terminate
in polynomial time if we start from clauses having linear heads, such
as those already in H1, as defined by Nielson, Nielson, and Seidl [16].
S∗ implies S0, so, if S∗ is satisfiable, then so is S0, and the least

Herbrand model of S∗ is a model of S0. So S0 is satisfiable, too, and
its least Herbrand model is included in that of S∗: it is traditional to
call S∗ an over-approximation (or upper approximation) of S0.

implem.tex; 13/12/2005; 16:22; p.17

18

Using this style of over-approximation is not new, and dates back to
[6]. A notable difference, though, is that the above approximation pro-
cedure will keep some dependencies between variables which would be
thrown away in traditional approximation schemes. This was stressed
by [16]. E.g., approximating P (f(X,Y)) ⇐ Q(g(X, f(Y,X)))—call this
clause C—as above will produce the same clause C, thus keeping the
relations between X and Y intact; the approximation of [6] would have
produced three clauses

P (f(X,Y)) ⇐ type-of-X-in-C(X), type-of-Y-in-C(Y)

type-of-X-in-C(X) ⇐ Q(g(X, f(Y,X)))

type-of-Y-in-C(Y) ⇐ Q(g(X, f(Y,X)))

losing the precise relationship between X and Y in the process. The
latter style of approximation is achieved by using the -monadic=2 op-
tion in Flotter [26], today called dfg2dfg, and we shall call it the type

proxy approximation in the sequel.
It is easy to show that we can actually refine rules (7) and (8) so

as to eliminate spurious dependencies. Given two variables X and Y ,
and a clause body B, say that X and Y are connected in B [16] if and
only if X and Y both occur in the same atom of B, or X and Z are
connected and Z and Y are connected for some variable Z, inductively.

We can replace (7) by the following rule

P (C[t]) ⇐ B ;

{
P (C[Z]) ⇐ B1, Q(Z) (Z fresh)

Q(t) ⇐ B2
(9)

obeying the same conditions as (7), and where this time B1 contains
the subset of atoms of B containing at least one variable connected in B
to some free variable of C[Z], and B2 contains at least all other atoms,
as well as those containing at least one variable connected to some free
variable in t.

Similarly, we can replace (8) by

P (C[X]) ⇐ B ; P (C[Y]) ⇐ B1,B2{X := Y } (10)

with the same side-condition as (8), where B2 contains all atoms
containing X free, and B1 contains the remaining atoms in B.

The h1 preprocessor, as well as the dfg2dfg tool, implement variants
of this; with dfg2dfg, use the -monadic=1, -linear, and -shallow=3

options.
One can go a bit further. Instead of choosing Q fresh in (9), we

may allocate the same Q whenever we come up with the same pair
(t,B2). Again, this is implemented in the h1 preprocessor. This benefits

implem.tex; 13/12/2005; 16:22; p.18

19

subsequent proof search: if we had generated k fresh symbols for the
same pair, then any resolution inference involving Q(t) ⇐ B2 as the
main premise would have to be done k times, a clear loss of time. The
abbreviation rule of Section 5 is in the same spirit.

In general, one may think that coarser approximations should lead to
faster proof search. We have seen in Section 1.3 that this was certainly
true for 116 of the 808 TPTP examples, whose unapproximated form
is not known to be satisfiable or not, but whose approximated form
was (easily) decidable. This was certainly wrong for the Parrennes
examples, which are hard, but whose original unapproximated form
is reasonably easy (using SPASS with the right options). We should
not conclude that there is such a formal connection between precision
of an approximation and subsequent efficiency of proof search.

One may also think that coarser approximations will result in extra
loss of precision. While this is true, formally, Figure 2 shows that not
much precision is lost in general. We do not lose more in general in
passing to the type proxy approximation: all of the H1 clause sets from
the Parrennes and TPTP examples whose type proxy approximation
was found to be unsatisfiable were indeed unsatisfiable.

4. Quickly Finding Over-approximations of the Least

Herbrand Model

Before h1 starts to saturate a given [H1 clause set using ordered resolu-
tion with selection and ε-splitting, it computes an over-approximation
of the least Herbrand model of the subset of definite clauses.

The first algorithm we implemented to do so was very naive. Strangely
enough, and although we tested many variants or even different ideas,
the one algorithm that seems to work best is very close to this initial
algorithm. Here it is.

4.1. Pathsets

The main data structure is the pathset . A pathset is either the special
catch-all constant Ω, or a finite map (i.e., a table) from pairs (f, i) to
pathsets π; the pairs (f, i) consist of a function symbol f , say of arity
n, and an integer i, which must be 0 if n = 0 (i.e., f is a constant),
and otherwise is such that 1 ≤ i ≤ n. We require that pathsets are
normalized: if i = 0, then (f, i) can only be mapped to Ω; moreover,
any pair (f, i) is mapped to a non-empty pathset π, i.e., either Ω or a
non-empty map.

Pathsets are concise representations of sets of paths through ground
terms. A path is just a finite non-empty sequence of pairs (f, i) as above,

implem.tex; 13/12/2005; 16:22; p.19

20

where only the final pair has i = 0. Given a ground term t, the paths

through t are defined as follows. If t is a constant c, then (c, 0) is the
only path through t. Otherwise, say t = f(t1, . . . , tn), with n ≥ 1; then
the paths through t are all sequences (f, i).π, where 1 ≤ i ≤ n, and π
ranges over the paths through ti.

In general, the semantics paths(ψ) of pathsets ψ is given as follows:
paths(Ω) is the set of all ground terms, while for any ψ 6= Ω, paths(ψ) =
{(f, i).π|(f, i) ∈ domψ, i 6= 0, π ∈ terms(ψ(f, i))} ∪ {(c, 0)|(c, 0) ∈
domψ}.

Computing intersections and unions of pathsets is easy to do, recur-
sively. Matching a non-empty pathset ψ against a term t is defined as
follows. First, let a pathset environment % be any map from variables
to non-empty pathsets. Define matching by the rules in Figure 12. The
judgment % ` t : ψ ⇒ %′ means that t successfully matches pathset
ψ in environment %, producing the refined environment %′. We write
%[X 7→ ψ] the pathset environment mapping X to ψ, and all other
variables Y ∈ dom % to %(Y).

X ∈ dom % %(X) ∩ ψ 6= ∅

% ` X : ψ ⇒ %[X 7→ %(X) ∩ ψ]

X 6∈ dom %

% ` X : ψ ⇒ %[X 7→ ψ]

% ` t : Ω ⇒ %

ψ 6= Ω, (c, 0) ∈ domψ

% ` c : ψ ⇒ %
ψ 6= Ω, (f, 1), . . . , (f, n) ∈ domψ

% ` t1 : ψ(f, 1) ⇒ %1 . . . %n−1 ` tn : ψ(f, n) ⇒ %n

% ` f(t1, . . . , tn) : ψ ⇒ %n

Figure 12. Matching pathsets

It is easy to see that, for any ground term u such that tσ = u for
some matching substitution σ, the following holds. Assume that all
paths through u are in paths(ψ), then [] ` t : ψ ⇒ %′ is derivable for
some pathset environment %′. Moreover, %′ is unique and every path
through Xσ is in paths(%′(X)), for every X ∈ domσ. (If X 6∈ dom %′,
we agree that %′(X) denotes Ω.) Moreover, if [] ` t1 : ψ1 ⇒ %1 and
[] ` t2 : ψ2 ⇒ %2 are derivable and %1(X)∩%2(X) 6= ∅ for every variable
X, then %1 ` t2 : ψ2 ⇒ %1 ∩ %2, where %1 ∩ %2 denotes the environment
mapping each variable X to %1(X) ∩ %2(X).

Given an environment %, and any term t, we may compute the
pathset t% in the obvious way: if t is a variable X, then t% = %(X); if t
is a constant c, then t% = {(c, 0) 7→ Ω}; if t is of the form f(t1, . . . , tn),
n ≥ 1, then t% = {(f, i) 7→ ti%|1 ≤ i ≤ n}. The pathset t% is the instance

implem.tex; 13/12/2005; 16:22; p.20

21

of t by %. Clearly, if every path through Xσ is in paths(%(X)), for every
variable X ∈ domσ, then every path through tσ is in paths(t%).

The final operation we need is chopping . In general, we require chop
to be a function from pathsets to pathsets such that paths(chop(ψ)) ⊇
paths(ψ), and such that the range of chop is finite. In practice, chop(ψ)
replaces any sub-pathset at depth greater than some fixed bound k ∈ N

by Ω. Formally, chop = chopk, where chop0(ψ) = Ω, and if ψ 6= Ω then
chopk+1(ψ) = {(f, i) 7→ chopk(ψ(f, i))|(f, i) ∈ domψ}.

We then approximate least Herbrand models by pathset structures,
which are by definition finite maps from predicate symbols to pathsets.
Intuitively, if P (u) is in the least Herbrand model of a given set of
clauses, we wish to compute a pathset structure Ψ∞ that will map P
to a pathset ψ such that paths(ψ) contains at least all paths through u.
Any pathset structure Ψ can also be seen as the set of all pairs (P, π),
P ∈ domΨ, π ∈ paths(Ψ(P)); implementing unions of pathsets is then
formally defined, and again easy to implement.

A clause body B = P1(t1), . . . , Pn(tn) matches a pathset structure
Ψ, yielding the matcher %, if and only if

[] ` t1 : Ψ(P1) ⇒ %1 . . . %n−1 ` tn : Ψ(Pn) ⇒ %n

and %n = %. We shall write this Ψ
 B ⇒ %. In case no such derivation
is possible, we write Ψ 6
 B ⇒.

The desired over-approximation Ψ∞ can be computed as a least
fixpoint of an operator resembling the TP operator of Prolog semantics.
Let S be a set of Horn clauses, and assume for the sake of readability
that ⊥ is just another predicate, so that ⊥% is well-defined and equal
to ⊥. For any pathset structure Ψ, define

T]
S(Ψ) = Ψ ∪ {chop(H%)|∃(H ⇐ B) ∈ S · Ψ
 B ⇒ %}

The least fixpoint of T]
S is the Ψ∞ we longed for. It is computable,

by standard fixpoint iteration algorithms. E.g., let Ψ0 be the empty

pathset, then compute Ψn+1 = Ψn ∪ T]
S(Ψn) until Ψn+1 = Ψn. This

terminates because chop has finite range. Also, it is clear that Ψ∞ is
sound , in that: first, if ⊥ is derivable from S, then ⊥ is in the domain
of Ψ∞; and second, if the ground atom P (u) is derivable from S, then
paths(Ψ(P)) contains all paths through u.

In particular, if ⊥ is not in the domain of Ψ∞, then S is satisfiable.
This very rarely happens in practical situations. The main purpose of
Ψ∞ is different.

implem.tex; 13/12/2005; 16:22; p.21

22

4.2. Using Pathsets Profitably

Pathsets can then be used to do static soft typing. Typically, if resolu-
tion generates a clause H ⇐ B, and Ψ∞ 6
 B ⇒, then remove H ⇐ B.
Call this rule naive static soft typing—naiveté refers to the fact that
Ψ∞ was computed rather naively.

We observe that this preserves completeness in all calculi that can be
proved complete by Bachmair and Ganzinger’s forcing technique: see
[22, Section 6.7]. And ordered resolution with selection, and all forms of
splitting we use, are complete by Bachmair and Ganzinger’s technique.

In the presence of ε-splitting, this involves a subtle point: since the
language of predicates is augmented whenever a fresh ne-fact qB is
produced, we need to recompute Ψ∞. Remember that such ne-facts are
generated when ε-splitting clauses of the form A⇐ B, B(X), where X
is not free in A, B. To recompute Ψ∞, we need to adjust Ψ∞ against the
fresh defining clause qB ⇐ B(X) in particular. It is easy to see that
doing so merely amounts to adding {qB 7→ Ω} to Ψ∞ whenever the
intersection

⋂
P∈B Ψ∞(P) is non-empty. When

⋂
P∈B Ψ∞(P) is empty,

then Ψ∞ 6
 B(X) ⇒, so Ψ∞ 6
 B, B(X), and we remove A⇐ B, B(X)
from the current clause set instead.

Call ne-fact pruning the special case of naive static soft typing that
consists in removing clauses A ⇐ B, B(X) such that

⋂
P∈B Ψ∞(P) is

empty, and generating qB only when
⋂

P∈B Ψ∞(P) is not empty. The
ne-fact pruning rule initially seemed very effective. We have observed,
during early stages of the development of h1, that ne-fact pruning
accounted for a great majority of the cases where naive static soft
typing applied. In old versions, naive static soft typing accounted for
massive reductions in the search space. In the current version of h1,
other optimizations muddy the picture.

We have therefore tried to evaluate the impact of naive static soft
typing by comparing the results of Section 1.1 with those obtained on
the same clause sets, this time with naive static soft typing deactivated.
Technically, it suffices to call h1 with the -path-refine 0 option,
which implements chop as chop0, hence computes path structures that
map each predicate to Ω. We estimate the overhead of computing with
pathsets restricted to Ω (instead of really excising the pathset code) to
be negligible.

The results are shown in Figure 13 for the TPTP examples. The
number of problems solved is the same. (Previous experiments have
exhibited a variation of ±1 problem solved.) And the total running time
was identical, too. However, observe that total running time is a poor
indicator of performance, not only because, as we have already seen,
we should expect variations of about ±15%, but also because running

implem.tex; 13/12/2005; 16:22; p.22

23

Cat. #problems Time (s.) Memory (Mb)

solved Total Avg. St.Dev. Avg. St.Dev.

COM 6 0.800 0.133 0.016 13.8 1.5

FLD 279 35.840 0.128 0.004 12.4 1.1

KRS 17 2.230 0.131 0.013 12.4 1.0

LCL 297 37.080 0.125 0.005 12.3 1.0

MGT 22 2.830 0.129 0.005 12.7 1.4

MSC 12 1.530 0.127 0.006 12.7 1.3

NLP 103 52.740 0.512 1.647 13.9 2.1

PUZ 56 7.980 0.142 0.065 13.0 1.6

Total 792 141.03

Figure 13. Statistics of h1 on TPTP Examples, without Naive Static Soft Typing

times include both search time and the time to compute Ψ∞. The safest
interpretation of Figure 13 is to say that the decrease in efficiency due
to not using naive static soft typing must have compensated exactly
the decrease in computing time due to our not having to compute Ψ∞.

It is hard to conclude anything here. In two previous benchmark
runs, call them (a) and (b), we observed on the contrary that naive
static soft typing resulted in some measurable speedup. In (a), the total
times were 42 s. (with naive static soft typing) vs. 147 s. (without).
In (b), the corresponding times were 178 s. vs. 271 s. Most of the
disparity came from the NLP examples, and PUZ to a lesser extent, which
consistently ran faster with naive static soft typing. The NLP problem
that took longest in run (a) was NLP234-1.h1.p, about 2 minutes. In
run (b), this problem took only 1.3 s. In our current experiments, 2.92
s. with naive static soft typing, 0.67 s. without. (Yes, this is faster with-
out.) The NLP problem that took longest in run (b) was NLP237-1.h1.p,
which took 57.4 s. without naive static soft typing, 20.8 with static
naive soft typing. In our current experiments, the figures were 5.9 s.
(without) and 9.6 s. (with naive static soft typing; yes, this is again
faster without). As is apparent, variations in running times are erratic.
Variations in numbers of clauses generated are, too, and are in general
not even correlated with running times.

The most likely assumption is that the difference between using
naive static soft typing and not using it may have had an influence on
our clause selection strategy, which classifies clauses according to their
weights, for some scale of weights with integer values, and picks clauses

implem.tex; 13/12/2005; 16:22; p.23

24

non-deterministically amongst those of equal weights. (We briefly de-
scribe our weight system in Section 6.) To be precise, clauses of equal
weight are stored in a HimML map [8]. Depending on memory layout,
and the history of memory allocation, the order in which elements
of a HimML map are stored can vary wildly. Any change in memory
allocation may result in a different clause selection strategy. This must
have obscured any effect that static soft typing may have had by itself.

On the other hand, most of the TPTP examples are easy. On aver-
age, they are solved within 0.178 s., from which, remember, we must
discount 0.12 of startup time. To really evaluate naive static soft typing,
we should turn to more complex examples, and possibly ones on which
clause selection has little effect. The Parrennes examples fit the bill.

Look at Figure 14. Computation times are slower by 0 to 50%
without naive static soft typing: 18% for a1, 52% for a2, 6.5% for
a3, 0% for np, 50% for ns. However, we have noticed several times
that computation times were a poor indicator of performance. Naive
static soft typing does not make much difference in number of clauses
generated: only 6% more for the hard examples a1 and a2, 10% more
for a3, around 20% more for np and 40% more for ns. (Similarly for
number of clauses subsumed on the hard examples; figures are probably
less significant on easy examples. In fact, the percentages indicated were
consistently the same, up to 1%, on several experiments, except on ns

where we usually only got 20% more clauses.) The difference is clearer
in terms of “automaton” clauses. Remember that “automaton” clauses
are those where no literal is selected, and are those that participate in
resolution as side premises. Remember also that, although resolution
only uses one main premise, it uses as many side premises as there are
selected literals in the main premise. So a small increase in “automaton”
clauses may result in dramatic loss of performance. Here, naive static
soft typing resulted in generating about 30% less “automaton” clauses
(a1, a2), resp. 20% less (a3), resp. 40% less (np, ns). (All percentages
given in this paragraph were the same in previous experiments again,
except for np and ns, where the percentage used to be in the region
around 20%.)

One figure that does not appear in the above tables is the number of
ne-facts generated. With naive static soft typing, they are respectively
658 (1 456 696 clauses split), 718 (1 550 665 clauses split), 173 (36 052
clauses split), 148 (11 713 clauses split), 160 (13 229 clauses split).
Without, these numbers become 663 (1 575 574), 715 (1 661 714), 173
(40 834), 151 (16 644), and 162 (18 185). Again, these figures were
remarkably impervious to benchmark reruns. We conclude that ne-fact
pruning has no measurable impact. Note however that, while only very
few ne-facts are generated, the number of clauses split, hence of clauses

implem.tex; 13/12/2005; 16:22; p.24

25

File Time Memory #clauses

(s.) (Mb) generated subsumed automaton

a1 421.2 290.7 3 083 535 849 035 110 853

a2 416.7 289.1 3 241 243 874 230 111 604

a3 8.1 31.6 91 022 26 543 6 550

np 2.9 20.7 34 502 10 335 4 183

ns 3.3 20.3 36 176 10 419 4 341

Figure 14. Running h1 on the Parrennes Examples without Naive Static Soft Typing

generated with a splitting symbol qB in its body, is impressive. One
might think of the latter as frozen clauses H ⇐ B, q, which cannot
resolve until rule (5) applies, i.e., until the corresponding ne-fact q is
proved. Doing so may then wake up quite a number of clauses H ⇐
B, as the numbers above indicate (from 100 to 2 000 on average).
However, experience contradicts this opinion: while the number of ne-
facts derived varies, no huge variations in the numbers of Figure 14 can
be observed.

To conclude this section, we observe that naive static soft typing,
using pathsets, offer some moderate benefits, hardly apparent on easy
examples, but yielding an improvement in number of “automaton”
clauses generated of roughly 30%, and of 20-50% in execution times, on
hard examples. More importantly, using naive static soft typing is never
detrimental to the efficiency of proof search, at least in any measurable
quantity.

4.3. Computing Pathsets Fast

To be effective, the benefits of naive static soft typing should be com-
plemented with a fast algorithm for computing Ψ∞ initially. This is
surprisingly hard to achieve, although the obvious fixpoint algorithm
runs in polynomial time.

Our first algorithm was the stupidest possible: let Ψ0 be the empty

pathset, then for n = 0, 1, . . ., compute Ψn+1 = Ψn ∪ T]
S(Ψn) until

Ψn+1 = Ψn. This naive algorithm terminated in roughly 20 seconds on
the a1 example, on an older machine running roughly 3 times slower
(the machine we had in 2003, when we evaluated this algorithm).

The current implementation is only moderately less naive. The only
difference with the above is that it tries to avoid recomputing facts
chop(H%) somewhat. Let S be the input clause set. We first build a
table cindex mapping each predicate P to the set of clauses in S that

implem.tex; 13/12/2005; 16:22; p.25

26

contain an atom of the form P (t) in their body. At each step n of the
fixpoint algorithm, we also maintain a set changed of predicates P such
that Ψn+1(P) changes compared to Ψn(P). Concretely, our algorithm
is given in Figure 15, in pseudo-code.

fun eval-clause (H ⇐ B) {
add chop(H%) to Ψ if Ψ
 B ⇒ %;
if H is of the form P (t) then add P to changed;

}
/* main algorithm */
Ψ := ∅; changed := ∅;
for each C ∈ S do eval-clause (C);
while changed 6= ∅ {

S1::=
⋃

P∈changed cindex(P); changed := ∅;
for each C ∈ S1 do eval-clause (C);

}

Figure 15. Computing the Pathset Structure Ψ∞

With this implementation, we have not seen yet an instance of a
problem where computing Ψ∞ took more than 0.1 s.

Don’t be fooled: we didn’t just write the algorithm of Figure 15 and
declared ourselves content. Rather, we spent a few months trying to find
more clever algorithms, but all of them were desperately inefficient. The
most disappointing were worklist algorithms, such as those used at the
heart of h1’s resolution engine itself. The algorithm of Figure 15 makes a
crude attempt at avoiding to recompute already computed expressions
chop(H%) by indexing these by their head predicate. Worklist algo-
rithms should be more efficient, because only the really new pathsets
have to be considered. So we were surprised to realize that standard
worklist algorithms just didn’t give any answer after 20 minutes on a1

(still on a machine roughly 3 times slower than the machine we used
in this paper). Looking at traces, we realized that worklist algorithms
completely miss the point. Let us illustrate.

Imagine S contains two clauses P (f(a, b)) and P (f(b, a)), plus a
collection of clauses with P in their body. Say there are N of the latter.
The worklist algorithm will add both P (f(a, b)) and P (f(b, a)) to the
worklist. Then it will pop one, say P (f(a, b)). Given this, it will resolve
P (f(a, b)) (possibly losing some precision through pathset matching)
with all N clauses containing P in their body, pushing up to N new
clauses on the worklist. Then it will pop the other atom P (f(b, a)), and
do the same. Until now, the worklist algorithm took about 2N steps.

implem.tex; 13/12/2005; 16:22; p.26

27

In general, if there were m unit clauses, not just 2, with head P , the
worklist algorithm would take about mN steps until now.

The algorithm of Figure 15, instead, takes P (f(a, b)) and P (f(b, a)),
adds them both to Ψ. This yields a pathset structure mapping P to the
four paths (f, 1).(a, 0).Ω, (f, 2).(b, 0).Ω, (f, 1).(b, 0).Ω, and (f, 2).(a, 0).Ω.
(In particular, we lose precision: we cannot rule out matching P (f(a, a))
or P (f(b, b)) against Ψ.) Next, there are N clauses with P in their
bodies. Examining them takes N units of time, for a total of N + 2—
N +m in the general case where there are m, not just 2, initial clauses
to consider.

We have therefore replaced mN operations by m + N . This holds
initially, i.e., at step 0 of the fixpoint algorithm, but in fact at every
step of this algorithm. At later steps, the number m of facts to consider
in worklist algorithms usually grows as a polynomial in the number
of function symbols in the signature (whose degree depends on the
level at which terms are chopped), while m is bounded by the number
of clauses nC in the algorithm of Figure 15. Precisely, let nf be the
number of function symbols and np the number of predicate symbols, a
the maximal arity of function symbols, and k the level at which terms
are chopped. Then m can be as large as np(1 + nf (1 + nf (. . . (1 +

nf)a . . .)a) ≤ np(1 + nf)ak
in the worklist algorithm, while m ≤ np in

the algorithm of Figure 15. We have therefore reduced the complexity

of finding Ψ∞ from roughly np(1 + nf)ak
N to nC + N at each step.

In the a1 example, nf is large but only 11 functions are not constants.
The number of possible pathsets is however at least np11kN . With
np = 730, N ≈ nC = 1 161, and k = 3, the worklist algorithm may
have to consider about 109 pathsets at each step while the algorithm
of Figure 15 only has to consider at most 2 322. . . quite a reduction.

4.4. Less Naive Static Soft Typing

Instead of using ad hoc pathset structures, an easy way to compute a
more precise over-approximation is to use type proxies. In other words,
compute the type proxy approximation Sproxy of the given [H1 clause
set S, then run h1 itself a first time on Sproxy. Hopefully, this should
run faster than on S directly. If Sproxy is satisfiable, then S is, too, and
we are done. Otherwise, h1 will output an alternating automaton (i.e.,
sets of clauses of the form (1), plus universal clauses) that describes a
finite model M of the subset of definite clauses in Sproxy. (To get the
model explicitly, determinize and complete the automaton; the states
of the resulting automaton A form the domain of the model, and the
value of f on values q1, . . . , qn is the unique state q such that there is
a transition q(f(X1, . . . ,Xn)) ⇐ q1(X1), . . . , qn(Xn) in A. More details

implem.tex; 13/12/2005; 16:22; p.27

28

in [10].) Using M, a collection of regular tree languages, as an over-
approximation of the least Herbrand model of S if any, is closer to the
original spirit of static soft typing for resolution.

However, computing M is slow. One can guess so already, consid-
ering that M will be computed by using a worklist algorithm. In fact,
computing M is roughly as slow, or as fast, as deciding the [H1 clause
set S directly: the results on the TPTP examples are given in Figure 16,
which we invite the reader to compare with those of Figure 3.

Cat. #problems Time (s.) Memory (Mb)

solved Total Avg. St.Dev. Avg. St.Dev.

COM 6 0.810 0.135 0.008 12.5 1.3

FLD 279 46.250 0.166 0.015 13.6 1.5

KRS 17 2.240 0.132 0.012 12.6 1.3

LCL 297 36.640 0.123 0.005 12.3 1.0

MGT 22 2.810 0.128 0.005 12.4 1.0

MSC 12 1.560 0.130 0.004 12.7 1.1

NLP 103 30.790 0.299 0.424 13.6 2.1

PUZ 56 8.150 0.146 0.092 12.8 1.4

Total 792 129.25

Figure 16. Statistics of h1 on TPTP Examples, with the Type Proxy Approach

As far as times are concerned, the type proxy approach appears to be
roughly 10% faster (30% and 7% respectively in previous experiments).
Compensating for startup times, totalling 95 s., the acceleration can
be evaluated to 40% (resp. 90% and 30% on previous experiments).
Considering that we would like to use the type proxy approach as a
first approximation before actual resolution takes place, we would gain
some advantage only if total computation time 1/1.4t + 1/αt (resp.
1/1.9t + 1/αt, 1/1.3t + 1/αt in previous experiments) were at most
t, where t is the time taken by the direct approach: as we have just
seen, 1/1.4t (resp. 1/1.9t, 1/1.3t) is roughly the time taken by the type
proxy approach, and we let α be the expected speedup expected from
using static soft typing guided by M. It follows that using the type
proxy approach for static soft typing can only start to be competitive
provided the speedup α is at least 3.5 (resp. 2.1, 4.3).

On the Parrennes examples, figures are much more contrasted, see
Figure 17, which should be compared with those of Figure 9. The sur-
prise here is that running the type proxy approach, i.e., deciding Sproxy,

implem.tex; 13/12/2005; 16:22; p.28

29

is sometimes slower than deciding S directly. Here, this is faster for a1
by 26%, for a2 by 1%, and slower for the remaining, easier examples.
(A previous experiment showed figures of 38%, and 13% respectively.
A further previous experiment showed the type proxy approach to be
slower in all cases except for a2.) Anyway, computation times of the
type proxy and the direct approaches are of the same order of mag-
nitude. This is surprising in the a1 case, since we derived about half
as many clauses in the type proxy approach as in the direct approach.
Also, we generated only about 6 times less “automaton” clauses, but we
still required about the same time (26% less time here; 38% less time
and 25% more time our previous experiments) to do this. This can
be explained by looking at the number of ne-facts and corresponding
frozen clauses. In the case of a1, we required to derive 658 ne-facts,
and 16 336 clauses were awaken with the direct approach; with the
type proxy approach, 1 045 ne-facts were derived, waking up 53 959
clauses.

File Time Memory #clauses

(s.) (Mb) generated subsumed automaton

a1 283.6 160.3 1 443 569 314 771 14 562

a2 269.8 150.7 1 346 493 272 201 13 482

a3 10.4 32.6 114 711 12 790 3 172

np 7.0 22.8 52 289 7 372 2 142

ns 9.1 23.2 57 690 7 382 2 321

Figure 17. Running h1 on the Parrennes Examples, with the Type Proxy Approach

Worse than that: in the examples discussed until now, we have called
h1 in order to find a refutation. In the unsatisfiable examples a1, a2,
and ns, finding a model M of the definite clauses of Sproxy requires one
to continue to resolve even after some contradiction has been found.
(Or to saturate just the subset of definite clauses.) This can be obtained
with the -all option to h1, see Figure 18. While we could discuss the
differences with Figure 17, we shall only observe that, even on the large
examples a1 and a2, h1 -all announces a contradiction, then stops
with a saturated set of clauses less than two seconds later. In short, we
have observed no significant difference in performance between finding a
contradiction and saturating the clause set on the Parrennes examples;
and any difference between Figure 17 and Figure 18 only indicates how
much variability is to be expected in the conducted experiments. We
take this as a vindication that, indeed, the Parrennes examples are

implem.tex; 13/12/2005; 16:22; p.29

30

necessarily insensitive to the clause selection strategy, as claimed in
Section 4.2, in the sense that randomly changing clause selection does
not appear to make h1 find a contradiction faster, with any amount of
luck.

File Time Memory #clauses

(s.) (Mb) generated subsumed automaton

a1 358.8 146.6 1 302 746 286 224 14 577

a2 389.2 174.6 1 671 334 356 566 15 348

ns 9.1 25.4 58 203 7 766 2 266

Figure 18. The Type Proxy Approach, Continuing after the First Contradiction

0ne would still need to evaluate whether the model M (if any)
gotten from the type proxy approach helps in any way guide the search
for a refutation or a model in the direct approach. (In case Sproxy is
unsatisfiable. By the way, on the Parrennes examples, Sproxy was found
to be satisfiable exactly when S was a3 or np. In other words, the type
proxy approximation incurs no loss of precision on these examples.)
We have not pursued this. Looking at the figures above, computing M
would have to very significantly reduce the proof search effort through
static soft typing against M before any advantage can be obtained this
way. The prospect does not look good.

Out of curiosity, we conducted the following one-shot experiment in
2004. The code of h1 was hacked up so as to accept an alternating tree
automaton M to guide proof search. We ran this on a1. At that time,
the optimizations described in Section 5 and later were lacking, and h1

could not solve a1, whether in direct mode or in type proxy mode. So
we had another version of h1 hacked up in such a way that any clause
having more than a predefined number of atoms in its body would
be reduced by dropping some of its atoms at random. This produced,
as above, a model M for the subset of all definite clauses. By eye
inspection, the model looked informative enough, and in any case more
informative than the naive pathset approach of Section 4.2. It then
turned out that no clause was removed whose body was false in M
that had not already been removed by the naive pathset approach.
In other words, static soft typing using the type proxy approach was
inefficient, and did not help. Naturally, we can hardly claim any definite
conclusion from this experiment.

This is an example where losing precision does not offer any signif-
icant performance advantage, and may even be detrimental. We have
already seen that approximating a first-order clause set to an [H1 clause

implem.tex; 13/12/2005; 16:22; p.30

31

set may result in more difficult problems, and should therefore not be
too surprised.

Instead of computing full automata to guide search, one may return
to the pathset approach, and improve it only slightly. Instead of com-
puting sets of paths, compute sets of trees. This would avoir the loss
of precision mentioned above: when we add P (f(a, b)) and P (f(b, a))
to the current pathset Ψ, we in fact add the four paths (f, 1).(a, 0).Ω,
(f, 2).(b, 0).Ω, (f, 1).(b, 0).Ω, and (f, 2).(a, 0).Ω. In particular, there is
no way to tell that we didn’t want to add P (f(a, a)) or P (f(b, b)).

A cure is too replace pathsets by a suitable representation of sets
of ground terms, of depth at most k, on an extended signature with a
fresh constant Ω denoting any ground term. We let the reader figure out
for herself how to adapt the constructions above. The basic construc-
tion, replacing pathsets, would be the treeset : either Ω, or a map from
function symbols f , of arity n, to n-tuples of treesets. We tried this in
2003, and thought at that time that the only way to implement the
corresponding fixpoint computation was by using a worklist algorithm.
As we saw earlier, this is doomed to failure.

It would therefore, at least in principle, be interesting to implement
the naive fixpoint algorithm of Figure 15 on treesets rather than path-
sets. Although we didn’t conduct any experiment meant to evaluate
the treeset approach, we convinced ourselves that this would probably
not be worth the trouble. The Parrennes examples are based on the
idea [11] that points-to analysis can profitably be described by clauses.
In particular, value(c(s, t)) means that the value stored at address
s is t (possibly). The csur analyzer of [11] generates a good deal of
addresses, which are denoted by constants (whence the large number
of constants in the Parrennes examples), and addresses may point to
pointer values containing further addresses. Even if we consider only
constants for values of s, t, the treeset approach will necessarily derive
a collection of facts value(c(a1, a2)), where a1 and a2 denote addresses
such that a1 points to a2. In other words, the treeset approach would
necessarily build a graph on around 350 nodes (remember there are
349 constants in the examples a1, a2, a3). Worse, some clauses com-
pute operations such as transitive closures, e.g., value(c(X,Z)) ⇐
value(c(X,Y)), value(c(Y,Z)). (They shouldn’t, considering the se-
mantics of pointers. But remember these examples came from an early
buggy implementation of csur.) In effect, the treeset approach would
compute the transitive closure of a 350-vertex graph. This is pro-
hibitive. In comparison, the pathset approach just computes over-app-
roximations of the domain and codomain of the value(c(,)) relation.
We have therefore also relinquished the treeset approach.

To sum up: naiveté matters.

implem.tex; 13/12/2005; 16:22; p.31

32

5. Abbreviating Deep Atoms On-the-Fly

The ε-splitting rule is a special case of Riazanov and Voronkov’s split-
ting with naming rule [18]. In turn, this rule can be generalized in the
following way. Given any clause

H ⇐ B,B′

where we have split the body into two disjoint conjunctions of atoms
B and B′, and where the free variables of B are X1, . . . , Xm, create a
fresh predicate symbol TB and a fresh function symbol abbrvB of arity
m, and replace the above clause by the two clauses

H ⇐ TB(abbrvB(X1, . . . ,Xm)),B′

TB(abbrvB(X1, . . . ,Xm)) ⇐ B

As for ε-splitting, and following the splitting with naming philosophy,
we reuse the same predicate TB and the same function symbol abbrvB
when we encounter the same conjunction B. It is even profitable to
rename variables in B so as to maximize the chances to reuse the same
symbols.

We call this rule the abbreviation rule.
This rule is sound. Using Bachmair and Ganzinger’s general redun-

dancy elimination criterion, this rule is complete provided the two
generated clauses are smaller than the premise H ⇐ B,B′, in a so-
called admissible clause ordering [2]. Given our ordering � on atoms,
an admissible clause ordering is given by, first, comparing literals by
±A � ±′B if and only if A � B, or ± is −, ±′ is +, and A � B;
second, by considering clauses as multisets of literals, compared by the
multiset extension �mul of �.

One way to achieve completeness is to extend the � ordering on
atoms so that P (t) � TB(t′) � qB for each predicate symbol already
present in the original clause set, for each ne-fact qB , and for every
symbol TB. Then completeness obtains if B contains at least one atom
not headed by a T or qB symbol, and H,B′ contains at least an atom
not headed by a T or qB symbol.

The most classical use of such rules is when B is a non-empty con-
junction of atoms that has no free variable in common with the rest
H ⇐ B′ of the clause H ⇐ B,B′. This allows one to simulate splitting
in the general case [18]. This was known in the field of logic program
transformation as the rule of definition introduction [17]. The latter
was notably used to obtain decidability results for inductive definitions
over language expressions, and quasi-cs logic programs [14].

The particular case of the abbreviation rule that we will be interested
in is the case where B is reduced to a single deep atom P (t). We say

implem.tex; 13/12/2005; 16:22; p.32

33

that P (t) is deep if and only if it is not shallow; P (t) is shallow if
and only if t is a variable of the application f(Y1, . . . , Yn) of a function
symbol f to variables Y1, . . . , Yn, not necessarily distinct.

It is probably not clear what can be gained from such a rule. We
address this in a jiffy. Meanwhile, let us formalize it.

First, we need to find a canonical term t̂ for each term t, so that
if t and t′ are renamed versions of each other, then t̂ = t̂′. This can
be obtained as follows. Fix a countable enumeration of variables X0

1 ,
. . . , X0

m, . . . , once and for all. Standardize the set of free variables
of each term t by enumerating the free variables of t from left to right
without duplication, say X1, . . . , Xm; e.g., enumerate the free variables
of f(X, g(X, f(Y,X), Y, Z,X)) as X, Y , Z. Then replace X1, . . . , Xm

by X0
1 , . . . , X0

m, that is, define t̂ as t{X1 := X0
1 , . . . ,Xm := X0

m}.
Let P be the set of predicate symbols and F the set of function

symbols of the original clause set. Let Q be the set of splitting symbols
qB . For any atom P (t) where P ∈ P and t is built from function symbols
taken from F , create a predicate symbol TP (bt) outside P ∪ Q, and a

function symbol abbrvP (bt) outside F . We assume that the functions

P (t̂) 7→ TP (bt) and P (t̂) 7→ abbrvP (bt) are one-to-one.

DEFINITION 2. The abbreviation of deep atoms rule is the abbrevi-
ation rule restricted to the case where B is a single deep atom P (t).
Concretely, this is the rule that replaces any clause

H ⇐ P (t),B

where P (t) is deep, P ∈ P, all function symbols of t are in F , and there
is at least one atom of the form Q(u) with Q ∈ P in H ⇐ B, by the
two clauses

H ⇐ TP (bt)(abbrvP (bt)(X1, . . . ,Xm)),B

TP (bt)(abbrvP (bt)(X1, . . . ,Xm)) ⇐ P (t)

where X1, . . . , Xm are the free variables of t from left to right, enu-
merated without duplication.

This is sound, and complete by Bachmair and Ganzinger’s general
redundancy elimination criterion, provided we take an ordering � such
that P (t) � TQ(bu)(t

′) � qB for every P ∈ P, as discussed above.
To illustrate the speedups that can be achieved with this rule, run h1

with the -no-deep-abbrv option, which disables it, on the Parrennes
examples.

This is summed up in Figure 19. The > x entries mean that the h1

process had to be killed because it exceeded the allotted space limit of

implem.tex; 13/12/2005; 16:22; p.33

34

File Time Memory #clauses

(s.) (Mb) generated subsumed automaton

a1 > 137.6 > 391 > 1 354 191 > 165 245 > 1 531

a2 > 175.9 > 391 > 1 481 786 > 205 391 > 2 661

a3 > 87.9 > 391 > 1 054 217 > 37 254 1 321

np 355.5 298.5 1 249 194 357 266 2 052

ns 360.2 241.2 1 262 224 360 445 2 112

Figure 19. No Deep Abbreviations on the Parrennes Examples

400 000Kb= 391Mb. We still report how much was derived when the
process was killed. E.g., on a1, when the h1 process was killed, it had
produced 1 531 “automaton” clauses.

None of the problems a1, a2, a3 could be solved within the space
limit we required, without deep abbreviation. In fact, all three required
more than 400 000Kb, and were far from solved. On a3, the h1 process
without deep abbreviation was killed when only one fourth of the “au-
tomaton” clauses were produced. On a1 and a2 this happened while
only one over 55, resp. 32, was produced.

The other two problems, np and ns, were solved without deep ab-
breviation, however in roughly 120-140 times more time and roughly
11-15 times more memory. Many more clauses were generated: roughly
45-50 times more on np and ns. On the other hand, the number of “au-
tomaton” clauses was reduced by about 45-50%. The latter may seem
paradoxical, however note that deep abbreviation not only generates
new function symbols, but also, necessarily, new alternating automa-
ton clauses. Not using the deep abbreviation rule necessarily produces
smaller sets of “automaton” clauses.

These drastic improvements in time and space are obtained by ap-
plying the deep abbreviation rule in surprisingly very few places. In-
deed, the results of Figure 9, with deep abbreviation enabled, were
obtained while generating only 178 TP (bt) symbols in the a1 case, 178

also for a2, 177 for a3, 73 for np, and 71 for ns.
Let us explain these figures, which are admittedly rather surprising.

Essentially, they tend to support the view that deep abbreviation is a
miracle: it costs nothing, and gives you speedups of several orders of
magnitude.

We obtained the explanation by looking at a trace of the proof
obtained by h1 on the a1 example, and comparing with a trace of the
(partial) proof obtained by h1 without the deep abbreviation rule. (Out

implem.tex; 13/12/2005; 16:22; p.34

35

of curiosity, the complete proof obtained by h1 with deep abbreviation
on a1 contains 9 460 000 steps. The trace occupies 119Mb in a gzip-
compressed file, which takes 5min. 40 just to decompress, to a 3 Gb
file. The h1logstrip utility can be used to extract the subset of clauses
actually used in deriving the empty clause, and yields a 2 205 step proof,
which can be translated using the h1trace utility into a 828 step unit
resolution proof.)

Look at what happens without the deep abbreviation rule. At some
point during proof search, some deep atom P (t) may occur in the
bodies of several (non-frozen) clauses, say H1 ⇐ P (t),B1, . . . , H` ⇐
P (t),B`. In the case of a1, we concentrated on a given deep atom P (t)
taken arbitrarily, and realized that, at the point where h1 exceeded the
memory limit, there were roughly 10 000 clauses containing P (t); i.e.,
` ≈ 10 000.

Since the clauses H1 ⇐ P (t),B1, . . . , H` ⇐ P (t),B` are not frozen,
i.e., do not contain any splitting symbol qB, our selection function
will necessarily select P (t), possibly among others. This is because
P (t), being deep, is not simple. These clauses can therefore only be
used as main premises. Write t as f(t1, . . . , tk). The corresponding side
premises are either the universal clause P (X), which is easily dealt with,
or a collection of alternating automaton clauses P (f(X1, . . . ,Xk)) ⇐
B11(X1), . . . , B1k(Xk), . . . , P (f(X1, . . . ,Xk)) ⇐ Bn1(X1), . . . , Bnk(Xk).
Assuming, for the sake of simplicity, that we resolve only on P (t) (only
P (t) is selected). The resolvents are Hi ⇐ Bj1(t1), . . . , Bjk(tk),Bi.
There may be up to `n of them. More importantly, t1, . . . , tk may
themselves be deep, so that more resolvents can be generated from
each of the resolvents we have computed.

In the presence of deep abbreviation, the ` clauses H1 ⇐ P (t),B1,
. . . , H` ⇐ P (t),B` will generate the m abbreviated clauses

H1 ⇐ TP (bt)(abbrvP (bt)(X1, . . . ,Xm)),B1 (11)

. . .

H` ⇐ TP (bt)(abbrvP (bt)(X1, . . . ,Xm)),B`

plus just one clause defining TP (bt) and abbrvP (bt):

TP (bt)(abbrvP (bt)(X1, . . . ,Xm)) ⇐ P (t) (12)

The n alternating automaton clauses P (f(X1, . . . ,Xk)) ⇐ B11(X1),
. . . , B1k(Xk), . . . , P (f(X1, . . . ,Xk)) ⇐ Bn1(X1), . . . , Bnk(Xk) can now
only be resolved with (12). Note that since t is deep, P (t) is selected.
This implies, first, that we can indeed produce the n resolvents with
the n alternating automaton clauses above. More importantly, this
disallows resolving (12) against any of the ` clauses (11).

implem.tex; 13/12/2005; 16:22; p.35

36

The ` clauses (11) will only be used as main premises when enough
alternating automaton clauses have been resolved against (12). E.g.,
let t be f(X, g(X, f(Y,X), Y, Z,X)), and consider the alternating au-
tomaton clauses

P (f(X1,X2)) ⇐ P1(X1), P2(X2) (13)

P2(g(Y1, Y2, Y3, Y4, Y5)) ⇐ P3(Y1), P4(Y2), P5(Y3), P6(Y4), P7(Y5)(14)

P4(f(Z1, Z2)) ⇐ P8(Z1), P9(Z2) (15)

Then the only possible resolution steps between the latter and the
clauses (11) and (12) are

(12)
(13)

TP (bt)(abbrvP (bt)(X1, . . . , Xm)) ⇐ P1(X), P2(g(X, f(Y,X), Y, Z,X))
(14)

TP (bt)(abbrvP (bt)(X1, . . . , Xm)) ⇐ P1(X), P3(X), P4(f(Y,X)), P5(Y), P6(Z), P7(X)
(15)

TP (bt)(abbrvP (bt)(X1, . . . , Xm)) ⇐ P1(X), P3(X), P8(Y), P9(X), P5(Y), P6(Z), P7(X)

and only then we can resolve the latter against each of the ` clauses
(11).

Using the deep abbreviation rule therefore implements some sharing

of computations: all `n resolution steps that were needed without deep
abbreviation are summed up by just n resolution steps with a single
clause (11). Remember that ` was of the order of 10 000, at least, on the
a1 example. On this particular example, we conclude that the speedup
gained by deep abbreviation is at least 10 000.

This is a general fact for [H1 clause sets. Observe that ordered
resolution with selection may produce a number of clauses that is
exponential in the size of the initial [H1 clause set S0. More precisely,
this may produce at most

(1 + 2np + np + npnf)2npNe2nfa

clauses that are not alternating automaton clauses, and at most npnf2npa

alternating automaton clauses, where np is the number of predicate
symbols in S0, nf is the number of function symbols, a is the maximal
arity of function symbols, and N is the number of distinct subterms of
terms in S0 [9, proof of Theorem 6]. On the other hand, it is shown in
op.cit. that all terms that occur in non-alternating automaton clauses
must be subterms of terms in S0. In particular, there are at most N
of them. One easy consequence is that we can expect the number of
non-alternating automaton clauses that contain the same given atom
P (t) to grow to about

(1 + 2np + np + npnf)2npNe2nfa

npN

implem.tex; 13/12/2005; 16:22; p.36

37

which is clearly an exponential in the size of S0.This is all the more
critical as npN grows, in particular as there are deep atoms in S0. For
large clause sets containing deep atoms, deep abbreviation is bound to
yield dramatic improvements in performance.

Not every [H1 problem reaches the exponential upper bound in the
numerator above. But, even on problems in the smaller class H3 (we
shall argue later that the Parrennes examples, despite their apparent
difficulty, are in fact close to an H3 clause set), the numerator would
be cubic in the size of the input clauses, and we can still expect the
average number of non-alternating automaton clauses that contain the
same given atom P (t) to be quadratic in N . Since h1 produced about
180 abbreviation symbols on a1, there were at least 180 subterms in
the input clause set a1, i.e., N ≥ 180. The square of this is 32 400,
which confirms our early speedup estimate on a1 of at least 10 000.

This much explains why deep abbreviation may result in some speed-
up, but remember that a1, a2, a3 failed by exceeding our fixed space

limit, not the time limit. One paradox is that running h1 without deep
abbreviation fails by consuming more that 391Mb while generating only
1.35 million clauses, with about 1.2 million kept, whereas h1 with deep
abbreviation succeeds, consumes only 262.1Mb while generating 2.9
million clauses, with about 2.2 million kept. This is more mysterious.
Our best explanation is that all resolvents of the defining clause (12)
with automata clauses share the same head TP (bt)(abbrvP (bt)(X1, . . . ,Xm)),

and have no additional literals in the body. Remember that h1 is coded
in HimML, a language where all equality-admitting data is hash-consed.
So h1 automatically shares identical parts of clauses. Any resolvent ob-
tained this way, say TP (bt)(abbrvP (bt)(X1, . . . ,Xm)) ⇐ P1(t1), . . . , Pn(tn),

would give rise, without deep abbreviation, to resolvents of the form
Hi ⇐ P1(t1), . . . , Pn(tn),Bi, 1 ≤ i ≤ `, with different heads Hi and
different additional literals Bi, therefore reducing the impact of hash-
consing.

So the combination of hash-consing and deep abbreviation is likely to
be responsible for the dramatic space advantage deep abbreviation of-
fers us in h1. Quantifying this advantage, i.e., predicting memory usage
is rather arduous, much as in the case of BDDs [3]—where space usage
is essentially unpredictable, and is in any case completely uncorrelated
to the size of the input problem [5].

This unpredictability can be illustrated in our setting. One should
observe that in other situations, no or little sharing actually happens:
e.g., h1 run on the PUZ052-1 example from the TPTP library runs out
of memory (even in the presence of the deep abbreviation rule, which
it uses only once), although only 186 162 non-“automaton” clauses and

implem.tex; 13/12/2005; 16:22; p.37

38

57 994 “automaton” clauses were generated, and 12 171 erased, for a
total of only about 232 thousand kept clauses.

Evaluating the effect of deep abbreviation on the TPTP exam-
ples was again done by running h1 on these examples, disabling deep
abbreviation again. See Figure 20.

Cat. #problems Time (s.) Memory (Mb)

solved Total Avg. St.Dev. Avg. St.Dev.

COM 6 0.810 0.135 0.015 11.8 0.3

FLD 279 46.250 0.166 0.015 13.6 1.6

KRS 17 2.200 0.129 0.011 12.2 1.0

LCL 297 36.610 0.123 0.005 12.3 1.0

MGT 22 2.810 0.128 0.004 12.4 1.0

MSC 12 1.490 0.124 0.008 12.2 0.8

NLP 103 69.250 0.672 2.559 13.6 2.1

PUZ 57 13.130 0.230 0.665 12.8 1.9

Total 793 172.55

Figure 20. Statistics of h1 on TPTP Examples, without Deep Abbreviation

Judging from these results, it would seem that deep abbreviation
is in fact counter-productive on average. One more example is dealt
with by disabling deep abbreviation. (Again, this is not significant: if
one problem takes 5 minutes, up to a typical variation of 10 seconds
around this mean value, it will be killed or not essentially at random.)
But using deep abbreviation results in an overall 21% speedup (62% if
we take startup times into account). This is not really significant: as we
have already noticed, times should be taken with a rough ±15% error
margin.

However, look at Figure 21, where we have collected the number
of TPTP examples (on the y-axis) requiring n instances of the deep
abbreviation rule, for n = 0, 1, 2, . . . (on the x-axis). (The x values 0.25
and 0.5 are meaningless, but are produced automatically by gnuplot:
the leftmost column corresponds to 0 abbreviation [59 problems], the
next one corresponds to 1 abbreviation [221 problems], etc. Note that
the x-axis is again plotted with a logarithmic scale. The next peaks
are n = 3, with 284 problems, and n = 4 with 114 problems.) The
conclusion is clear: almost no abbreviation of deep atoms ever occurs
in the TPTP examples. In other words, almost all terms in bodies of

implem.tex; 13/12/2005; 16:22; p.38

39

clauses in these examples are shallow. It is therefore unsurprising that
deep abbreviation does not yield much improvement on these examples.

 0

 50

 100

 150

 200

 250

 300

 0.25 0.5 1 2 4 8 16 32 64 128 256

PUZ
NLP
MSC
MGT
LCL
KRS
FLD

COM

Figure 21. Breakdown of TPTP Examples According to Number of Abbreviated
Deep Atoms

We end this section with two remarks. First, introducing abbrevia-
tion symbols requires one to recompute Ψ∞. As for splitting symbols,
this is easy: for each defining clause (12) TP (bt)(abbrvP (bt)(X1, . . . ,Xm)) ⇐

P (t), let % be such that [] ` t : Ψ∞(P) ⇒ %, then add {TP (bt) 7→

abbrvP (bt)(X1, . . . ,Xm)%} to Ψ∞. If % does not exist, then naive static

soft typing will have erased the parent clause H ⇐ P (t),B.
Second, one might wonder whether other variants of the abbrevia-

tion rule could offer similar speedups. It is probably futile to abbreviate
atoms that are not deep, because this would amount to abbreviate
shallow atoms P (t) by atoms TP (bt)(abbrvP (bt)(X1, . . . ,Xm)) that are no

deeper. But we might design rules that abbreviate groups of more than
one atom. However, there is some reason to believe that this won’t
bring as many benefits. Recall that the efficiency of abbreviation is
proportional to the expected number of clauses containing any given
atom P (t). If we are to abbreviate, say, unordered pairs P1(t1), P2(t2)
of atoms, this expected number will be an exponential in N divided by
about N2 in the worst case—about N 3 over N2 in the H3 case. There

implem.tex; 13/12/2005; 16:22; p.39

40

may still be some opportunity to gain some speedup here, but they will
occur N times more rarely. When N ≥ 180 as in the a1 example, it is
probably not worth the trouble; and when N is small, as we have seen
on the TPTP examples, abbreviation is useless anyway.

5.1. Removing Alternation

We still conducted an experiment which may give an idea of the effi-
ciency of another variant of the abbreviation rule. Our purpose here
was not in evaluating variants of the abbreviation rule per se. Rather,
we originally wished to implement a rule that would convert alternating
automata to non-deterministic automata—which we take here as mean-
ing clauses (1) where each block Bi(Xi) contains at most one predicate
symbol. This is implemented as follows.

DEFINITION 3. The abbreviation of non-trival blocks rule is the
abbreviation rule restricted to the case where B is an non-trivial ε-
block, i.e., an ε-block B(X) containing at least two predicate symbols.
Concretely, this is the rule that replaces any clause

H ⇐ P1(X), . . . , Pn(X),B

where n ≥ 2, P1, . . . , Pn ∈ P, X is not free in H ⇐ B, and there is at
least one atom of the form Q(u) with Q ∈ P in H ⇐ B, by the two
clauses

H ⇐ TP1(X0

1
),...,Pn(X0

n)(X),B (16)

TP1(X0

1
),...,Pn(X0

n)(X) ⇐ P1(X), . . . , Pn(X) (17)

Call TP1(X0

1
),...,Pn(X0

n) an intersection predicate, and (17) its defining

clauses.

Recall that X0
1 is the first in the series of variables that we used to

define the canonical form t̂ of terms t. Note that we do not introduce
any abbrvP1(X0

1
),...,Pn(X0

n) function symbol, which would have only one

argument anyway. (So, formally, this is not a special case of the abbre-
viation rule. It differs rather deeply from the abbreviation rule in that
TP1(X0

1
),...,Pn(X0

n)(X) will in general not be selected in clause (16).) We

have implemented the abbreviation of non-trivial blocks rule restricted
to the case where the parent clause H ⇐ P1(X), . . . , Pn(X),B is an
alternating automaton clause. This is enough to convert alternating
tree automata to non-deterministic tree automata.

The results on the TPTP examples are shown in Figure 22. Less
problems were solved (22 remained unsolved, compared to 16), in more
time: 3.6 more time, 8.8 if we take startup times into account.

implem.tex; 13/12/2005; 16:22; p.40

41

Cat. #problems Time (s.) Memory (Mb)

solved Total Avg. St.Dev. Avg. St.Dev.

COM 7 1.790 0.256 0.262 15.2 2.2

FLD 279 46.140 0.165 0.015 13.8 1.5

KRS 17 2.180 0.128 0.012 13.3 1.3

LCL 297 36.890 0.124 0.005 12.4 1.1

MGT 22 2.780 0.126 0.006 13.4 1.3

MSC 12 1.500 0.125 0.006 13.2 1.3

NLP 96 414.460 4.317 26.154 20.3 38.5

PUZ 56 8.180 0.146 0.094 13.3 1.7

Total 786 513.92

Figure 22. Statistics of h1 on TPTP Examples, with Abbreviation of Non-Trivial
Blocks

This should, in fact, not be too surprising. Remember that conver-
sion from alternating tree automata to non-deterministic tree automata
takes exponential time in general. In fact, while testing the emptiness of
alternating tree automata is DEXPTIME-complete, testing the empti-
ness of non-deterministic tree automata is doable in polynomial-time;
and P6=DEXPTIME: this conversion is provably not polynomial-time.

We counted the number of intersection predicates TP1(X0

1
),...,Pn(X0

n)

generated on each TPTP problem, and plotted the number of problems
that required us to generate n = 0, 1, 2, . . . intersection predicates, see
Figure 23. To this end, we used the -no-alternation option to h1,
which enables the use of the abbreviation of non-trivial blocks rule on
generated alternating automaton clauses. Note that only problems on
which h1 with the -no-alternation option succeeded are reported.

The figure should make it clear that, among the problems that h1

still succeeded in solving with the abbreviation of non-trivial blocks
rule, a huge majority (700 among 786) never used the rule. It is a typical
property of the cubic-time subclass H3 of H1 that the abbreviation of
non-trivial blocks rule never applies to H3 clauses, because no variable
can occur more than once in the body of H3 clauses. This suggests that
the great majority of the TPTP problems is close to H3 in this sense.
Together with our earlier remark that almost no deep atom occurs in
the TPTP examples, this indicates that most of the TPTP examples
are, in fact, easy.

implem.tex; 13/12/2005; 16:22; p.41

42

 0

 100

 200

 300

 400

 500

 600

 700

 1 4 16 64 256 1024

PUZ
NLP
MSC
MGT
LCL
KRS
FLD

COM

Figure 23. Breakdown of TPTP Examples According to Number of Intersection
Predicates

The remaining TPTP problems, which were solved by h1 but failed
in the presence of the abbreviation of non-trivial blocks rule, had gener-
ated 600 intersection predicates on average, with a standard deviation
of 250, before failing.

Curiously, two problems were much easier to solve with the ab-
breviation of non-trivial blocks rule, PUZ038-1 and COM006-1, which
terminated in 0.8 s. and 0.9 s. respectively, generated 4 325, resp.
22 924 clauses, erasing 1 179, resp. 10 904 clauses, and producing 197,
resp. 110 “automaton” clauses. The first applied the abbreviation of
non-trivial blocks rule to generate 5 intersection predicates, the second
generated 62 intersection predicates. The PUZ038-1 case seems to be
pure luck, and is hard to reproduce. The COM006-1 case is stranger:
while a contradiction was found, the 462 step refutation does not use
any of the 5 defining clauses produced. The reason is that none of the
defining clauses resolves again any group of side premises that are ever
produced; apparently this behavior is not simulated by h1 without the
abbreviation of non-trivial blocks rule.

The results on the Parrennes examples are shown in Figure 24. Up
to inevitable variations, times and memory consumption are about the
same as in Figure 1. The number of clauses generated is the same, up

implem.tex; 13/12/2005; 16:22; p.42

43

to a small 2% difference for a1, a2, a3. More clauses are generated in
the case of np (18%) and ns (11%). But the most notable difference is
in the number of “automaton” clauses, which grew by 17% for a1, 18%
for a2, 8% for a3, 17% for np, and 16% for ns. Indeed, necessarily new
alternating automaton clauses must be generated whose head starts
with intersection predicate symbols.

File Time Memory #clauses #intersection

(s.) (Mb) generated subsumed automaton predicates

a1 324.2 322.8 2 982 708 687 122 98 977 93

a2 310.6 251.5 3 155 531 721 101 100 856 93

a3 7.5 30.7 86 255 18 466 6 063 93

np 4.4 20.8 29 644 5 308 3 473 51

ns 3.8 21.1 31 103 5 417 3 645 49

Figure 24. Abbreviation of Non-Trivial Blocks on the Parrennes Examples

We conclude this section by observing that deep abbreviation is
remarkably successful on [H1 clause sets. We have demonstrated that
this was due to a cardinality argument: it implements sharing of a poly-
nomial number of atoms among possibly exponentially many clauses.
We have also observed that apparently similar rules such as abbrevi-
ation of non-trivial blocks could not be as efficient, or could even be
detrimental to proof search. Now, it is an interesting question whether
deep abbreviation could fare as well on general clause sets, where our
cardinality argument above cannot apply.

6. Resolving on Fully-Defined Predicates

The h1 tool is a blend of many algorithms, data structures, tricks
and optimizations. It is futile to describe them all; at this level of
detail, the source code would probably be the best documentation. We
would like, nonetheless, to address an optimization that appears to be
new, whose purpose is not to accelerate proof-search but to save space,
full definition subsumption. To address this, we have to describe the
implementation of h1 in slightly more detail.

The h1 tool rests on a classic loop. It operates on two variables
containing clause sets: Wo contains the set of worked off clauses, and is
initially empty; Us is a priority queue of usable clauses, and is initialized
to the initial set of clauses, minus all tautologies. Priorities, a.k.a.,

implem.tex; 13/12/2005; 16:22; p.43

44

weights, are assigned to each clause in Us so that clauses with smallest
weights are selected first.

The basic loop—not quite the h1 loop, but close—works as the
following pseudo-code (we use “resolvent” to mean the conclusion of
the ordered resolution with selection rule):

1.while Us 6= ∅ {
2. pick some clause C with smallest weight from Us,
3. and remove it from Us;
4. if C is the empty clause ⊥ then return “Unsatisfiable”;
5. if C is subsumed by some clause from Wo then continue;
6. remove all clauses subsumed by C from Wo;
7. for each resolvent C ′ of C with some clauses in Wo,
8. for each clause H ⇐ B obtained from C ′ by ε-splitting

and deep abbreviation,
9. if H ⇐ B is not a tautology

10. and Ψ∞
 B ⇒ % for some %
11. then add H ⇐ B to Us;
12. add C to Wo;
13.}
14.return “Satisfiable”;

This loop is relatively naive by today’s standards. E.g., no clause in Us
is ever removed before it is picked at line 2, or is ever used to subsume
the clause C gotten at line 2.

The weight assigned to C when it is inserted into Wo at line 12 is
simple, and the result of trial and error: alternating automaton clauses
have weight 0, goal clauses ⊥ ⇐ B are assigned weight 1, clauses of
the form qB ⇐ B, where qB is a splitting symbol, and clauses whose
body contain some splitting symbol, get weight 2; clauses whose head
starts with an abbreviation symbol TP (bt) have weight 3; clauses of the

form P (X) ⇐ B have weight 4. The weight of all other clauses H ⇐ B
is 4 plus the size of the body B. This reflects the order in which we
prefer to consider each kind of clause. However, this is again rather
naive by today’s standards. In particular, we only select clauses by
weight, not depth. This is also far from the sophistication displayed in
recent studies [19]. However, remember our goal here is not so much in
competitive testing (see Section 1.1).

One improvement to the above algorithm, implemented in h1, re-
places line 12 by: add C to Wo if C is not strictly subsumed by any of
the clauses H ⇐ B added to Us at line 11. This implements a form of
resolution subsumption, see [2].

At any given stage of this algorithm, say that a predicate symbol P
is fully defined if and only if all “automaton” clauses with head starting

implem.tex; 13/12/2005; 16:22; p.44

45

with P that will ever be produced are already in Wo. In other words, if
and only if P (X) will not be added later to Wo, nor any alterating au-
tomaton clause of the form P (f(X1, . . . ,Xk)) ⇐ B1(X1), . . . , Bk(Xk).
This can be estimated as follows. Maintain an additional table ∆,
mapping each predicate symbol P to the number of clauses of the
form P (t) ⇐ B for some t and B, that lie in Us, or that are in Wo
but are neither alternating automaton nor universal clauses. It is easy
in principle (although it is hard to implement without bugs, in our
experience) to maintain these counts, by a reference counting style
algorithm. If ∆(P) drops to 0, then P is fully defined.

The point in fully defined symbols is that they arise naturally from
the approximation procedure of Section 3.2. The predicate symbol Q
in rule (7), notably, will be classified as fully defined as soon as the
defining clause Q(t) ⇐ B is picked at line 2. This is natural: Q(t) is
indeed completely defined by the latter clause, as an abbreviation for
B. The deep abbreviation symbols TP (bt) will also profit from this rule,

at some later time.
Assume that P is fully defined. If the clause C picked at line 2 is

of the form H0 ⇐ P (t0),B0 where P (t0) is selected, then (assuming,
for the sake of simplicity, that we resolve on P (t) only, amongst all
possible atoms in the body P (t0),B0) all the resolvents between C as
main premise and side premises P (ti) ⇐ Bi (which must be universal
or alternating automaton clauses) that will ever be generated must be
generated at line 7, and not at any later turn of the loop. We can
therefore remove C after lines 7-11; in other words, in this case, we
do not add C to Wo at line 12. We call this removal rule straight full

definition subsumption.
There is another, symmetric case where knowing that P is fully

defined helps, namely when C at line 2 is the last “automaton” clause
to consider before P is fully defined. Formally, when ∆(P) = 1 just
before line 2, where C is an “automaton” clause with a head of the
form P (s) for some s. Then all the clauses H0 ⇐ P (t0),B0 against
which C will be resolved at line 7 can be removed from Wo. Call this
removal rule backward full definition subsumption.

We go a bit further, and choose to resolve on atoms starting with a
fully defined symbol prioritarily. In other words, we exploit the freedom
in the definition of the selection function that we had observed in
Section 3.1. Here is the real definition of our selection function, in the
case 2. where the body B of the given clause contains at least some non-
simple atom: if some non-simple atom P (t) in B is such that P is fully
defined, then select all non-simple atoms P (t) with P fully defined from
B; otherwise, select all non-simple atoms from B. This is implemented
in h1.

implem.tex; 13/12/2005; 16:22; p.45

46

Contrarily to other rules of h1, we have not made a detailed com-
parison between using the above selection function, with straight and
backward full definition subsumption, and not using it. This indeed
requires quite some recoding effort. However, we can get some intuition
as to how much straight and backward full definition subsumption
helps, by looking at h1 statistics. On the Parrennes examples, figures
are shown in Figure 25.

File #clauses #clauses removed

generated forward backward full def. subsumption

subsumption subsumption straight backward

a1 2 912 977 593 550 12 709 101 557 0

a2 3 063 812 619 287 12 554 106 671 0

a3 83 159 13 574 510 5 139 0

np 25 062 2 944 20 1 639 0

ns 28 110 3 019 16 1 630 0

Figure 25. Full Definition Subsumtion on the Parrennes Examples

The effect of full definition subsumption is not completely negligible:
we remove about 3% of all subsumed clauses this way in the hard
examples a1 and a2, about 30% in a3, about half in np, and about 20%
in ns. However, backward full definition subsumption is totally useless.

Note finally that full definition subsumption is useful to save space,
but does not help as far as speed is concerned. With ordinary subsump-
tion, removing subsumed clauses also decreases the number of (useless)
subsequent resolution steps that can be done. No such thing happens,
by definition, with full definition subsumption.

7. Conclusion

We have described three optimizations that contribute to the good
general performance of h1. While full definition subsumption is likely
to save some space, and naive static soft typing contributes to speedups
of the order of 30% (naiveté matters!), the single real rule that makes
h1 efficient is deep abbreviation. We have shown that this rule imple-
mented, at negligible cost, a form of sharing both of clauses and of
computations. Speedups of at least 4 orders of magnitude could then
be obtained this way on clause sets with deep atoms. By investigating
how this could be at all possible, we realized that, in [H1 clause sets,

implem.tex; 13/12/2005; 16:22; p.46

47

only polynomially many atoms could ever be produced, but up to an
exponential number of clauses could be generated. Consequently, some
atoms must be shared in the proportion of an exponential divided by
a polynomial. While this is true for [H1, it is an interesting ques-
tion whether a similar phenomenon is bound to happen on general
first-order clause sets, and whether deep abbreviation would profit to
general-purpose theorem provers.

Acknowledgements.

We wish to thank Helmut Seidl for several interesting discussions,
Julien Olivain for raising the question of the interaction of deep abbre-
viation with memory consumption, and Fabrice Parrennes for providing
the clause sets mentioned in the paper.

References

1. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The
spi calculus. In Fourth ACM Conference on Computer and Communications
Security. ACM Press, 1997.

2. L. Bachmair and H. Ganzinger. Resolution theorem proving. In J. A. Robin-
son and A. Voronkov, editors, Handbook of Automated Reasoning, volume I,
chapter 2, pages 19–99. North-Holland, 2001.

3. R. E. Bryant. Graph-based algorithms for boolean functions manipulation.
IEEE Trans. Comp., C35(8):677–692, 1986.

4. K. Claessen and N. Sörensson. New techniques that improve MACE-style finite
model building. Proc. CADE-19 Workshop W4, July 2003.

5. O. Coudert. SIAM : Une Bôıte à Outils Pour la Preuve Formelle de Systèmes
Séquentiels. PhD thesis, Ecole Nationale Supérieure des Télécommunications,
Paris, Oct. 1991.

6. T. Frühwirth, E. Shapiro, M. Y. Vardi, and E. Yardeni. Logic programs as
types for logic programs. In Proc. 6th Symp. Logic in Computer Science, pages
300–309. IEEE Computer Society Press, 1991.

7. E. Goto. Monocopy and associative algorithms in an extended Lisp. Technical
report, U. Tokyo, 1974.

8. J. Goubault-Larrecq. HimML: Standard ML with fast sets and maps. In
Proc. 5th ACM SIGPLAN Workshop on Standard ML and its Applications
(ML’94), pages 62–69, Orlando, Florida, USA, 1994. Implementation available
on http://www.lsv.ens-cachan.fr/∼goubault/himml-dwnld.html.

9. J. Goubault-Larrecq. Deciding H1 by resolution. Information Processing
Letters, 95(3):401–408, Aug. 2005.

10. J. Goubault-Larrecq. Determinization and models. Information Processing
Letters, 2006. Submitted.

11. J. Goubault-Larrecq and F. Parrennes. Cryptographic protocol analysis on real
C code. In R. Cousot, editor, Proceedings of the 6th International Conference on

implem.tex; 13/12/2005; 16:22; p.47

48

Verification, Model Checking and Abstract Interpretation (VMCAI’05), Paris,
France, Jan. 2005. Springer-Verlag LNCS 3385.

12. J. N. Hooker. Testing heuristics: We have it all wrong. Journal of Heuristics,
1:33–42, 1996.

13. F. Jacquemard, M. Rusinowitch, and L. Vigneron. Tree automata with equality
constraints modulo equational theories. Research report, INRIA Futurs, 2005.

14. S. Limet and G. Salzer. Manipulating tree tuple languages by trans-
forming logic programs. Electronic Notes in Theoretical Computer Sci-
ence, 86(1), 2003. Proceedings of the 4th Intl. Workshop on First-Order
Theorem Proving (FTP’2003), Valencia, Spain, June 2003. Long version,
LIFO Research Report RR-2004-01, March 2004, Orléans, France, avail-
able from http://www.univ-orleans.fr/SCIENCES/LIFO/prodsci/rapports/

RR/RR2004/RR-2004-01.ps.gz.
15. R. M. Needham and M. D. Schroeder. Using encryption for authentication in

large networks of computers. Communications of the ACM, 21(12):993–999,
1978.

16. F. Nielson, H. R. Nielson, and H. Seidl. Normalizable Horn clauses, strongly
recognizable relations and Spi. In Proc. 9th Static Analysis Symposium, pages
20–35. Springer Verlag LNCS 2477, 2002.

17. A. Pettorossi and M. Proietti. Transformation of logic programs. In D. Gabbay,
C. Hogger, and J. Robinson, editors, Handbook of Logic in Artificial Intelligence
and Logic Programming, volume 5, pages 697–787. Oxford University Press,
1998.

18. A. Riazanov and A. Voronkov. Splitting without backtracking. In B. Nebel,
editor, Proc. 17th Intl. Joint Conf. Artificial Intelligence, volume 1, pages 611–
617. Morgan Kaufmann, Aug. 2001.

19. A. Riazanov and A. Voronkov. Limited resource strategy in resolution theorem
proving. Journal of Symbolic Computation, 36(1-2):101–115, July 2003.

20. G. Sutcliffe and C. B. Suttner. The TPTP problem library: CNF release v1.2.1.
Journal of Automated Reasoning, 21(2):177–203, 1998.

21. T. Tammet. Finite model building: Improvements and comparisons. Proc.
CADE-19 Workshop W4, July 2003.

22. C. Weidenbach. Computational Aspects of a First-Order Logic with Sorts.
PhD thesis, Technische Fakultät der Universität des Saarlandes, Saarbrücken,
Germany, 1996.

23. C. Weidenbach. Sorted unification and tree automata. In W. Bibel and
P. Schmitt, editors, Applied Logic, volume 1, chapter 9, pages 291–320. Kluwer,
1998.

24. C. Weidenbach. Towards an automatic analysis of security protocols in first-
order logic. In Proc. 16th Intl. Conf. Automated Deduction, pages 314–328.
Springer-Verlag LNAI 1632, 1999.

25. C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. Theobald, and
D. Topić. SPASS version 2.0. In A. Voronkov, editor, Proceedings of the
18th International Conference on Automated Deduction. Springer-Verlag LNAI
2392, 2002.

26. C. Weidenbach, B. Gaede, and G. Rock. SPASS & FLOTTER version 0.42. In
M. A. McRobbie and J. K. Slaney, editors, Proc. 13th Intl. Conf. Automated
Deduction, pages 141–145. Springer-Verlag LNCS 1104, 1996.

Address for Offprints: ENS Cachan
61 avenue du président-Wilson,
F-94235 Cachan Cedex

implem.tex; 13/12/2005; 16:22; p.48

