
GLEX(1) GLEX(1)

NAME
glex − lexical analyzer generator for GimML, derived from flex

SYNOPSIS
glex [−hisvwLTV? −ooutput −Pprefix] [−−help −−version] [filename ...]

OVERVIEW
This manual describesglex,a tool for generating programs that perform pattern-matching on text. Thistool
is very close toflex,from which it was derived. Themanual includes both tutorial and reference sections:

Description
a brief overview of the tool

Some Simple Examples

Format Of The Input File

Patterns
the extended regular expressions used by glex

How The Input Is Matched
the rules for determining what has been matched

Actions
how to specify what to do when a pattern is matched

The Generated Scanner
details regarding the scanner that glex produces;
how to control the input source

Start Conditions
introducing context into your scanners, and
managing "mini-scanners"

Multiple Input Buffers
how to manipulate multiple input sources; how to
scan from strings instead of files

End-of-file Rules
special rules for matching the end of the input

Miscellaneous Functions
a summary of functions available to the actions

Interfacing With Gyacc
connecting glex scanners together with gyacc parsers

Options
glex command-line options, and the "%option"
directive

Performance Considerations
how to make your scanner go as fast as possible

Diagnostics
those error messages produced by glex (or scanners

Version 2.5 May 2000 1



GLEX(1) GLEX(1)

it generates) whose meanings might not be apparent

Files
files used by glex

Deficiencies / Bugs
known problems with glex

See Also
other documentation, related tools

Author
includes contact information

DESCRIPTION
glex is a tool for generatingscanners:programs which recognized lexical patterns in text. glex reads the
given input files, or its standard input if no file names are given, for a description of a scanner to generate.
The description is in the form of pairs of regular expressions and GimML code, calledrules. glex generates
as output a GimML source file,lexyy.ml, which defines a routineyylex. When yylex is run on some
machine state (of typeglex_data), it analyzes its input for occurrences of the regular expressions. When-
ev er it finds one, it executes the corresponding GimML code.

SOME SIMPLE EXAMPLES
First some simple examples to get the flavor of how one usesglex. The following glex input specifies a
scanner which whenever it encounters the string "username" will replace it with the user’s login name:

%%
username #putstdout (getlogin ())

wheregetlogin is defined as follows on Unix systems, for instance:
fun getlogin () =

let val |[getline, kill, ...]| =
inprocess "/usr/bin/whoami"

val id = getline () before kill ()
in

substr (id, 0, size id-1)
end;

By default, any text not matched by aglex scanner is copied to the output, so the net effect of this scanner
is to copy its input file to its output with each occurrence of "username" expanded. (Seefile example1.lfor
the full definition.) In this input, there is just one rule."username" is thepatternand the "#put stdout ..." is
theaction. The "%%" marks the beginning of the rules.

Here’s another simple example:
%{

val num_lines = ref 0;
val num_chars = ref 0;

%}

%%
\n incnum_lines; inc num_chars; continue
. inc num_chars; continue

%%
fun wc filename =

let val f = infile filename

Version 2.5 May 2000 2



GLEX(1) GLEX(1)

val yyd = glex_data (f, fn _ => true)
in

num_lines := 0;
num_chars := 0;
yylex yyd;
#close f ();
#put stdout "# of lines = ";
print stdout (pack (!num_lines));
#put stdout ", # of chars = ";
print stdout (pack (!num_chars));
#put stdout "\n";
#flush stdout ()

end;
This scanner counts the number of characters and the number of lines in its input (it produces no output
other than the final report on the counts). The first line declares two globals, "num_lines" and
"num_chars", which are accessible both insideyylex and in thewc routine declared after the second "%%".
There are two rules, one which matches a newline ("\n") and increments both the line count and the charac-
ter count, and one which matches any character other than a newline (indicated by the "." regular expres-
sion). Seefile example2.lfor the full example.

A somewhat more complicated example:

(* scanner for a toy Pascal-like language *)

DIGIT [0-9]
ID [a-z][a-z0-9]*

%%

{DIGIT}+ { #put stdout "An integer: ";
#put stdout (glex_text yyd);
#put stdout "\n";
continue
}

{DIGIT}+"."{DIGIT}* {
#put stdout "A float: ";
#put stdout (glex_text yyd);
#put stdout "\n";
continue
}

if|then|begin|end|procedure|function {
#put stdout "A keyword: ";
#put stdout (glex_text yyd);
#put stdout "\n";
continue
}

{ID} { #put stdout "An identifier: ";
#put stdout (glex_text yyd);
#put stdout "\n"; continue }

"+"|"-"|"*"|"/" { #put stdout "An operator: ";
#put stdout (glex_text yyd);

Version 2.5 May 2000 3



GLEX(1) GLEX(1)

#put stdout "\n"; continue }

"{"[ˆ}\n]*"}" (* eat up one-line comments *) continue

[ \t\n]+ (* eat up whitespace *) continue

. { #put stdout "Unrecognized character: ";
#put stdout (glex_text yyd);
#put stdout "\n"; continue }

%%

fun tokenize filename =
let val f = infile filename

val yyd = glex_data (f, fn _ => true)
in

yylex yyd;
#flush stdout ()

end;
This is the beginnings of a simple scanner for a language like Pascal. Itidentifies different types oftokens
and reports on what it has seen.

The details of this example (available in fileexample3.l) will be explained in the following sections.

FORMAT OF THE INPUT FILE
Theglex input file consists of three sections, separated by a line with just%% in it:

definitions
%%
rules
%%
user code

The definitionssection contains declarations of simplenamedefinitions to simplify the scanner specifica-
tion, and declarations ofstart conditions,which are explained in a later section.

Name definitions have the form:

name definition

The "name" is a word beginning with a letter or an underscore (’_’) followed by zero or more letters, digits,
’_’, or ’-’ (dash). The definition is taken to begin at the first non-white-space character following the name
and continuing to the end of the line. The definition can subsequently be referred to using "{name}", which
will expand to "(definition)".For example,

DIGIT [0-9]
ID [a-z][a-z0-9]*

defines "DIGIT" to be a regular expression which matches a single digit, and "ID" to be a regular expres-
sion which matches a letter followed by zero-or-more letters-or-digits. Asubsequent reference to

{DIGIT}+"."{DIGIT}*

is identical to

([0-9])+"."([0-9])*

Version 2.5 May 2000 4



GLEX(1) GLEX(1)

and matches one-or-more digits followed by a ’.’ f ollowed by zero-or-more digits.

Therulessection of theglex input contains a series of rules of the form:

pattern action

where the pattern must be unindented and the action must begin on the same line.

See below for a further description of patterns and actions.

Finally, the user code section is simply copied tolexyy.ml verbatim. It is used for companion routines
which call the scanner. The presence of this section is optional; if it is missing, the second%% in the
input file may be skipped, too.

In the definitions and rules sections, any indentedtext or text enclosed in%{ and%} is copied verbatim to
the output (with the %{}’s removed). The%{}’ s must appear unindented on lines by themselves.

In the rules section, any indented or %{} text appearing before the first rule may be used to declare vari-
ables which are local to the scanning routine. Other indented or %{} text in the rule section is still copied
to the output, but its meaning is not well-defined and it may well cause compile-time errors (this feature is
present forPOSIXcompliance; see below for other such features).

In the definitions section (but not in the rules section), an unindented comment (i.e., a line beginning with
"(*") is also copied verbatim to the output up to the next "*)".

PATTERNS
The patterns in the input are written using an extended set of regular expressions. Theseare:

x match the character ’x’
. any character (byte) except newline
[xyz] a "character class"; in this case, the pattern

matches either an ’x’, a ’y’, or a ’z’
[abj-oZ] a"character class" with a range in it; matches

an ’a’, a ’b’, any letter from ’j’ through ’o’,
or a ’Z’

[ˆA-Z] a "negated character class", i.e., any character
but those in the class. In this case, any
character EXCEPT an uppercase letter.

[ˆA-Z\n] any character EXCEPT an uppercase letter or
a newline

r* zeroor more r’s, where r is any regular expression
r+ oneor more r’s
r? zeroor one r’s (that is, "an optional r")
r{2,5} anywhere from two to five r’s
r{2,} tw o or more r’s
r{4} exactly 4 r’s
{name} theexpansion of the "name" definition

(see above)
"[xyz]\"foo"

the literal string: [xyz]"foo
\X if X is an ’a’, ’b’, ’f’, ’n’, ’r’, ’t’, or ’v’,

then the ANSI-C interpretation of \x.
Otherwise, a literal ’X’ (used to escape
operators such as ’*’)

\0 aNUL character (ASCII code 0)
\123 thecharacter with octal value 123
\x2a thecharacter with hexadecimal value 2a
(r) matchan r; parentheses are used to override

precedence (see below)

Version 2.5 May 2000 5



GLEX(1) GLEX(1)

rs theregular expression r followed by the
regular expression s; called "concatenation"

r|s eitheran r or an s

r/s anr but only if it is followed by an s. The
text matched by s is included when determining
whether this rule is the "longest match",
but is then returned to the input before
the action is executed. Sothe action only
sees the text matched by r. This type
of pattern is called trailing context".
(There are some combinations of r/s that glex
cannot match correctly; see notes in the
Deficiencies / Bugs section below reg arding
"dangerous trailing context".)

ˆr anr, but only at the beginning of a line (i.e.,
which just starting to scan, or right after a
newline has been scanned).

r$ anr, but only at the end of a line (i.e., just
before a newline). Equivalent to "r/\n".

Note that glex’s notion of "newline" is exactly
whatever the C compiler used to compile glex
interprets ’\n’ as; in particular, on some DOS
systems you must either filter out \r’s in the
input yourself, or explicitly use r/\r\n for "r$".

<s>r anr, but only in start condition s (see
below for discussion of start conditions)

<s1,s2,s3>r
same, but in any of start conditions s1,
s2, or s3

<*>r anr in any start condition, even an exclusive one.

<<EOF>> anend-of-file
<s1,s2><<EOF>>

an end-of-file when in start condition s1 or s2

Note that inside of a character class, all regular expression operators lose their special meaning except
escape (’\’) and the character class operators, ’-’, ’]’, and, at the beginning of the class, ’ˆ’.

The regular expressions listed above are grouped according to precedence, from highest precedence at the
top to lowest at the bottom. Those grouped together have equal precedence.For example,

foo|bar*

is the same as

(foo)|(ba(r*))

Version 2.5 May 2000 6



GLEX(1) GLEX(1)

since the ’*’ operator has higher precedence than concatenation, and concatenation higher than alternation
(’|’). This pattern therefore matcheseither the string "foo"or the string "ba" followed by zero-or-more r’s.
To match "foo" or zero-or-more "bar"’s, use:

foo|(bar)*

and to match zero-or-more "foo"’s-or-"bar"’s:

(foo|bar)*

In addition to characters and ranges of characters, character classes can also contain character classexpres-
sions. These are expressions enclosed inside[: and :] delimiters (which themselves must appear between
the ’[’ and ’]’ of the character class; other elements may occur inside the character class, too).The valid
expressions are:

[:alnum:] [:alpha:] [:blank:]
[:cntrl:] [:digit:] [:graph:]
[:lower:] [:print:] [:punct:]
[:space:] [:upper:] [:xdigit:]

These expressions all designate a set of characters equivalent to the corresponding standard CisXXX func-
tion. For example,[:alnum:] designates those characters for whichisalnum() returns true - i.e., any alpha-
betic or numeric. Some systems don’t provide isblank(), so glex defines[:blank:] as a blank or a tab.

For example, the following character classes are all equivalent:

[[:alnum:]]
[[:alpha:][:digit:]
[[:alpha:]0-9]
[a-zA-Z0-9]

If you run scanner in case-insensitive mode, then[:upper:] and[:lower:] are equivalent to[:alpha:].

Some notes on patterns:

- A negated character class such as the example "[ˆA-Z]" above will match a  newline unless "\n" (or
an equivalent escape sequence) is one of the characters explicitly present in the negated character
class (e.g., "[ˆA-Z\n]"). This is unlike how many other regular expression tools treat negated char-
acter classes, but unfortunately the inconsistency is historically entrenched. Matching newlines
means that a pattern like [̂ "]* can match the entire input unless there’s another quote in the input.

- A rule can have at most one instance of trailing context (the ’/’ operator or the ’$’ operator).The
start condition, ’ˆ’, and "<<EOF>>" patterns can only occur at the beginning of a pattern, and, as
well as with ’/’ and ’$’, cannot be grouped inside parentheses.A ’ ˆ’ which does not occur at the
beginning of a rule or a ’$’ which does not occur at the end of a rule loses its special properties
and is treated as a normal character.

The following are illegal:

foo/bar$
<sc1>foo<sc2>bar

Note that the first of these, can be written "foo/bar\n".

The following will result in ’$’ or ’ˆ’ being treated as a normal character:

foo|(bar$)
foo|ˆbar

Version 2.5 May 2000 7



GLEX(1) GLEX(1)

If what’s wanted is a "foo" or a bar-at-the-beginning-of-a-line, the following could be used (the
special ’|’ action is explained below):

foo |
ˆbar (* action goes here *)

However, to match a "foo" or a bar-followed-by-a-newline, the following cannot be used:

foo |
bar$ (*action goes here *)

Although flex would accept it (making the scanner considerably slower), glex refuses it, and you
would have to write something like:

foo (* action goes here *)
bar$ (*same action repeated here *)

HOW THE INPUT IS MATCHED
When the generated scanner is run, it analyzes its input looking for strings which match any of its patterns.
If it finds more than one match, it takes the one matching the most text (for trailing context rules, this
includes the length of the trailing part, even though it will then be returned to the input). If it finds two or
more matches of the same length, the rule listed first in theglex input file is chosen.

Once the match is determined, the whole scanner machine state is made available in a variable namedyyd.
The text corresponding to the match (called thetoken)can be obtained by callingglex_texton yyd, and its
length can be computed by calling thesize function on the latter text. If you just wish to get the length
without the text, callingglex_length yydin faster. Theactioncorresponding to the matched pattern is then
executed (a more detailed description of actions follows), and then the remaining input is scanned for
another match.

If no match is found, then thedefault ruleis executed: the next character in the input is considered matched
and copied to the standard output. Thus, the simplest legal glex input is:

%%

which generates a scanner that simply copies its input (one character at a time) to its output.

The buffer where the scanner puts the value ofglex_text yyd grows dynamically to accommodate large
tokens. Whilethis means your scanner can accommodate very large tokens (such as matching entire blocks
of comments), bear in mind that each time the scanner must resize its buffer it also must rescan the entire
token from the beginning, so matching such tokens can prove slow. This buffer presently doesnot dynami-
cally grow if a call to glex_unput results in too much text being pushed back; instead, an exceptionGlex 3
is raised.

ACTIONS
Each pattern in a rule has a corresponding action, which can be any arbitrary GimML expression returning
a value of type’tok en option, where ’token is the type of returned tokens. Thepattern ends at the first
non-escaped whitespace character; the remainder of the line is its action. Empty actions are illegal, contrar-
ily to flex: compiling lexyy.ml will produce a type error, since every action must return a token SOME
token or inform yylex that it should proceed with the next token, by returningNONE. Abbreviations are
provided to make this meaning more explicit, andretur n token has the same effect asSOME token,while
continue has the same effect asNONE. For example, here is the specification for a program which deletes
all occurrences of "zap me" from its input:

%%
"zap me" continue

(It will copy all other characters in the input to the output since they will be matched by the default rule.)

Version 2.5 May 2000 8



GLEX(1) GLEX(1)

Here is a program which compresses multiple blanks and tabs down to a single blank, and throws away
whitespace found at the end of a line (see fileexample5.l):

%%
[ \t]+ #putstdout " "; continue
[ \t]+$ continue(* ignore this token *)

If the action contains a ’{’, then the action spans till the balancing ’}’ is found, and the action may cross
multiple lines. Similarly if the action contains a ’(’, then the action spans till the balancing ’)’ is found.
glex knows about GimML strings and comments and won’t be fooled by braces found within them, but also
allows actions to begin with%{ and will consider the action to be all the text up to the next %} (regardless
of ordinary braces inside the action).

An action consisting solely of a vertical bar (’|’) means "same as the action for the next rule." See below
for an illustration.

Actions can include arbitrary GimML code, and must compute a value of either the formreturn applied to
some token that we wish to return to whatever routine calledyylex, or of the formcontinue meaning that
we wish to letyylex continue scanning. Each timeyylex() is called it continues processing tokens from
where it last left off until it either reaches the end of the file or executes a return.

Contrarily toflex, actions are not free to modify the piece of text just recognized byyylex, and can only
read it by callingglex_text yydwhereyyd is a variable that will be defined in each action and will hold the
current glex machine state.

There are a number of special directives which can be included within an action:

- glex_begin (yyd,<start-condition-name>) where<start-condition-name>is the name of a start
condition places the scanner in the corresponding start condition (see below).

- glex_less (yyd,n ) returns all but the firstn characters of the current token back to the input
stream, where they will be rescanned when the scanner looks for the next match.glex_text yyd is
adjusted appropriately (e.g.,size (glex_text yyd)or equivalently glex_length yyd will now be
equal ton ). For example, on the input "foobar" the following will write out "foobarbar":

%%
foobar { #put stdout (glex_text yyd);

glex_less(yyd, 3); continue }
[a-z]+ #putstdout (glex_text yyd); continue

An argument of 0 toglex_lesswill cause the entire current input string to be scanned again.
Unless you’ve changed how the scanner will subsequently process its input (usingglex_begin,for
example), this will result in an endless loop.Calling glex_lesson a negative number raises excep-
tion Glex 6 ("less on negative argument"), while callingglex_lesson an argument exceeding
glex_length yydraises exceptionGlex 7 ("less on argument>glex_length").

- glex_unput (yyd,c ) puts the characterc back onto the input stream.It will be the next character
scanned. Thefollowing action will take the current token and cause it to be rescanned enclosed in
parentheses.

{
let val scanned = explode (glex_text yyd)
(* copy text because glex_unput trashes glex_text. *)
in

glex_unput (yyd, ord ")");
iterate
glex_unput (yyd, ord c)

| c in list rev scanned

Version 2.5 May 2000 9



GLEX(1) GLEX(1)

end;
glex_unput (yyd, ord ")");
continue

end
}

Note that since eachglex_unput puts the given character back at thebeginningof the input
stream, pushing back strings must be done back-to-front.

An important potential problem when usingglex_unput is that a call toglex_unput destroysthe contents
of glex_text yyd,starting with its rightmost character and devouring one character to the left with each call.
If you need the value of yytext preserved after a call toglex_unput (as in the above example), you must
first copy it elsewhere.

Finally, note that you cannot put backEOF to attempt to mark the input stream with an end-of-file.

- glex_input yyd reads the next character from the input stream.For example, the following is one
way to eat up C comments:

%%
"/*" {

let datatype state = SCANNING | FOUND_STAR
| END_OF_COMMENT

val now = ref SCANNING
in

while !now<>END_OF_COMMENT do
let val c = glex_input yyd
in

if c=ord "*"
then now := FOUND_STAR

else if c=ord "/"
then (case !now of

FOUND_STAR =>
now := END_OF_COMMENT

| _ => now := SCANNING)
else if c = ˜1

then error "EOF in comment"
(* where error is user-defined *)

else now := SCANNING
end;
continue

end
}

- glex_current_buffer yyd returns the scanner’s current buffer. This is used mostly as argument to
the next function.

- glex_flush (yyd,buffer ) flushes the given buffer. The main use ofglex_flushis to flush the scan-
ner’s internal buffer, by calling glex_flush (yyd, glex_current_buffer yyd), so that the next time
the scanner attempts to match a token, it will first refill the buffer usingglex_input (see The Gen-
erated Scanner, below). Thegeneral meaning ofglex_flushis described below in the section Mul-
tiple Input Buffers.

- yyterminate yyd can be used to return the token 0. This means end of file to Gyacc generated
parsers, and therefore indicates "all done" to the scanner’s caller. yyterminate is also called when
an end-of-file is encountered.yyterminate is not a GimML primitive, and is defined locally to the
generated scanner byglex. Using the -t option tells glex not to generate any definition for

Version 2.5 May 2000 10



GLEX(1) GLEX(1)

yyterminate, allowing you to define your own version ofyyterminate instead. Notethat, as soon
as glex needs to define a default end-of-file action (e.g., you didn’t specify an action for some
<<EOF>> pattern),glex will define it asyyterminate. Since the latter returns 0, this forces the
return type ofglex, i.e., the type of returned tokens, to beint. Using the-t option therefore allows
you to recover polymorphism in the generated scanner, or simply to have the generated scanner
return tokens of some other type thanint.

A number of options available inflex arenot available inglex,namely theREJECT andyymore() options.
They are hacks, were rarely used, proved to be hard to implement inglex and also had the effect of slowing
downflex scanners considerably. For these reasons, it was decided to leave them out ofglexscanners.

THE GENERATED SCANNER
The output ofglex is the filelexyy.ml, which contains the scanning routineyylex, a number of tables used
by it for matching tokens, and a number of auxiliary routines and macros, all of them beinglocal to the def-
inition of yylex. The type ofyylex is glex_data -> ’token whereglex_datais the type of internal scanner
states, and’token is the type of returned tokens, usuallyint.

You can create an initial internal scanner state by using the functionglex_data : |[get : int -> string,getline
: unit -> string,... : ’a]| * (unit -> bool) -> glex_data. In other words,glex_data takes an input stream
providing functionsget to read a fixed number of characters, andgetline to read a line, and also a function
yywrap : unit -> bool, and returns the initial machine state.For example, you may define

val yydata = glex_data (stdin, fn _ => true);
to have the scanner read from stdin.The role of theyywrap function is discussed later; let’s just say that
having it returntrue always is the standard choice for scanners working only on one input source.

Whenever yylex yydata is called, it scans tokens from the input filestdin,since this is what was specified
as input source in the definition ofyydata above. It continues until it either reaches an end-of-file (at which
point it returns the value 0) or one of its actions returns a token by using areturn command.

If the scanner reaches an end-of-file, subsequent calls are undefined unless the input source is changed
through the use ofglex_switch(see Multiple Input Buffers below).

If yylex stops scanning due to having executed some action that returns a token through thereturn func-
tion. Thescanner may then be called again and it will resume scanning where it left off.

By default the scanner reads its input one line at a time, by using thegetline field of the input stream given
to glex_data. This allows scanning from stdin, say, by interleaving line entries by the user and scanning
activities. Sucha scanner is calledinteractive for this reason.Calling glex_set_interactive (yyd, false)
whereyyd is the internal scanner state changes this to a non-interactive scanner, which will instead read
whole blocks of the input stream at once, disregarding line breaks, using theget field of the input stream
given to glex_data. Non-interactive scanners are meant to be faster than interactive scanners, but may
appear to behave strangely on stdin. Putting a scanner back to interactive mode is done by calling
glex_set_interactive (yyd, true), and you can discover whether a scanner is interactive or not by calling
glex_interactive yyd.

When the scanner receives an end-of-file indication from its input source, it then checks theyywrap func-
tion that was provided toglex_data. If yywrap() returns false, then it is assumed that the function has
gone ahead and changed the input source to some other by usingglex_switch,and scanning continues. If it
returns true, then the scanner calls the corresponding end-of-file action.Note that in either case, the start
condition remains unchanged; it doesnot revert to INITIAL.

START CONDITIONS
glex provides a mechanism for conditionally activating rules. Any rule whose pattern is prefixed with
"<sc>" will only be active when the scanner is in the start condition named "sc".For example,

<STRING>[ˆ"]* { (* eat up the string body ... *)
...
}

will be active only when the scanner is in the "STRING" start condition, and

Version 2.5 May 2000 11



GLEX(1) GLEX(1)

<INITIAL,STRING,QUOTE>\. { (* handle an escape ... *)
...
}

will be active only when the current start condition is either "INITIAL", "STRING", or "QUOTE".

Start conditions are declared in the definitions (first) section of the input using unindented lines beginning
with either%s or %x followed by a list of names.The former declaresinclusivestart conditions, the latter
exclusivestart conditions.A start condition is activated using theglex_begin function, e.g. glex_begin
(yyd, <sc> ). Until the next glex_beginaction is executed, rules with the given start condition will be
active and rules with other start conditions will be inactive. If the start condition isinclusive,then rules
with no start conditions at all will also be active. If it i s exclusive,thenonly rules qualified with the start
condition will be active. A set of rules contingent on the same exclusive start condition describe a scanner
which is independent of any of the other rules in theglex input. Becauseof this, exclusive start conditions
make it easy to specify "mini-scanners" which scan portions of the input that are syntactically different
from the rest (e.g., comments).

If the distinction between inclusive and exclusive start conditions is still a little vague, here’s a simple
example illustrating the connection between the two. Theset of rules:

%s example
%%

<example>foo do_something(); continue

bar something_else(); continue

is equivalent to

%x example
%%

<example>foo do_something(); continue

<INITIAL,example>bar something_else(); continue

Without the<INITIAL,example> qualifier, the bar pattern in the second example wouldn’t be active (i.e.,
couldn’t match) when in start conditionexample. If we just used<example>to qualify bar, though, then it
would only be active in exampleand not inINITIAL, while in the first example it’s active in both, because
in the first example theexamplestartion condition is aninclusive(%s) start condition.

Also note that the special start-condition specifier<*> matches every start condition. Thus, the above
example could also have been written;

%x example
%%

<example>foo do_something(); continue

<*>bar something_else(); continue

The default rule (to print any unmatched character to stdout) remains active in start conditions. It is equiv-
alent to:

<*>.|\n #putstdout (glex_text yyd); continue

Version 2.5 May 2000 12



GLEX(1) GLEX(1)

glex_begin (yyd, 0)returns to the original state where only the rules with no start conditions are active.
This state can also be referred to as the start-condition "INITIAL", soglex_begin (yyd, INITIAL) is equiv-
alent toglex_begin (yyd, 0)

To illustrate the uses of start conditions, here is a scanner which provides two different interpretations of a
string like "123.456". Bydefault it will treat it as three tokens, the integer "123", a dot (’.’), and the integer
"456". But if the string is preceded earlier in the line by the string "expect-floats" it will treat it as a single
token, the floating-point number 123.456 (see fileexample6.l):

%s expect

%%
expect-floats glex_begin (yyd, expect); continue

<expect>[0-9]+"."[0-9]+ {
#put stdout "Found a float, = ";
#put stdout (glex_text yyd);
#put stdout "\n";
#flush stdout ();
continue
}

<expect>\n {
(* that’s the end of the line, so
* we need another "expect-number"
* before we’ll recognize any more
* numbers
*)
glex_begin (yyd, INITIAL);
continue
}

[0-9]+ {
#put stdout "Found an integer, = ";
#put stdout (glex_text yyd);
#put stdout "\n";
#flush stdout ();
continue
}

"." { #put stdout "Found a dot\n";
#flush stdout (); continue }

Here is a scanner which recognizes (and discards) C comments while maintaining a count of the current
input line. (See fileexample7.l. ) Note that the declaration ofline_num is at the beginning of what is nor-
mally the rules section.However, this declaration is indented, and this tellsglex to ouput it verbatim into
the lexyy.ml file. Theeffect is that this declares a variableline_num, initialized toref 1, that will be seen
by all actions, but which will remain local to the generated scanner: it will be invisible from the outside.

%x comment
%%

val l ine_num = ref 1

"/*" glex_begin (yyd, comment); continue

<comment>[ˆ*\n]* { (* eat anything that’s not a ’*’ *)

Version 2.5 May 2000 13



GLEX(1) GLEX(1)

continue }
<comment>"*"+[ˆ*/\n]* { (* eat up ’*’s not followed by ’/’s *)

continue }
<comment>\n incline_num; continue
<comment>"*"+"/" glex_begin (yyd, INITIAL); continue

This scanner goes to a bit of trouble to match as much text as possible with each rule. In general, when
attempting to write a high-speed scanner try to match as much possible in each rule, as it’s a big win.

Note that start-conditions names are really integer values and can be stored as such. Thus, the above could
be extended in the following fashion:

%x comment foo
%%

val l ine_num = ref 1
val comment_caller = ref INITIAL

"/*" { comment_caller := INITIAL;
glex_begin (yyd, comment); continue }

<foo>"/*" { comment_caller := foo;
glex_begin (yyd, comment); continue }

<comment>[ˆ*\n]* { (* eat anything that’s not a ’*’ *)
continue }

<comment>"*"+[ˆ*/\n]* { (* eat up ’*’s not followed by ’/’s *)
continue }

<comment>\n incline_num; continue
<comment>"*"+"/" { glex_begin (yyd, !comment_caller);

continue }

Furthermore, you can access the current start condition using the integer-valuedglex_start function. For
example, the above assignments tocomment_callercould instead be written

comment_caller := glex_start yyd

Note that start conditions do not have their own name-space; %s’s and %x’s declare names in the same
fashion asval declarations.

Finally, here’s an example of how to match C-style quoted strings using exclusive start conditions, includ-
ing expanded escape sequences (see fileexample9.l):

%{

exception Yyerr of string * string;
fun yyerr (yyd, msg, s) = (glex_begin (yyd, 0);

glex_flush (yyd, glex_current_buffer yyd);
raise Yyerr (msg, s));

fun read_octal (s, i, n) = ...

val yyvalue = ref "";
%}

%x str

Version 2.5 May 2000 14



GLEX(1) GLEX(1)

%%

val string_buf = ref (outstring "");

\" { #seek (!string_buf) 0; #truncate (!string_buf) ();
glex_begin (yyd, str); continue }

<str>\" { (* saw closing quote - all done *)
glex_begin (yyd, INITIAL);
(* return string constant token type and
* value to parser
*)
yyvalue := #convert (!string_buf) ();
return 1
}

<str>\n {
(* error - unterminated string constant *)
(* generate error message *)
yyerr (yyd, "unterminated string constant", "")
}

<str>\\[0-7]{1,3} { (* octal escape sequence *)
let val yytext = glex_text yyd

val result = read_octal (yytext, 1,
size yytext)

in
if result > 0xff

then yyerr(yyd, "constant out of bounds: ",
yytext)

else #put (!string_buf) (chr result)
end; continue

}

<str>\\[0-9]+ {
(* generate error - bad escape sequence; something
* l ike ’\48’ or ’\0777777’
*)
yyerr (yyd, "bad escape sequence", glex_text yyd)
}

<str>\\n #put(!string_buf) "\n"; continue
<str>\\t #put(!string_buf) "\t"; continue
<str>\\r #put(!string_buf) "\ˆM"; continue
<str>\\b #put(!string_buf) "\ˆH"; continue
<str>\\f #put(!string_buf) "\f"; continue

<str>\\(.|\n) {#put (!string_buf)
(substr (glex_text yyd, 1, glex_length yyd));
continue }

<str>[ˆ\\\n\"]+ #put(!string_buf) (glex_text yyd); continue

Note in passing that theyyerr function, which is meant to raise an exception when some syntactically

Version 2.5 May 2000 15



GLEX(1) GLEX(1)

incorrect text is encountered, callsglex_begin to revert the scanner to theINITIAL start condition.
Indeed, if an error is encountered while parsing a string, i.e. when the start condition isstr, this allows the
next call toyylex to continue scanning as though we had reverted to normal scanning.Otherwise the scan-
ner will still expect to read in the rest of a string.Note thatyyerr also callsglex_flush to discard any
unmatched input. Assuming the scanner is interactive (which it is by default), the next call will refill the
buffer by reading the next line.

Often, such as in some of the examples above, you wind up writing a whole bunch of rules all preceded by
the same start condition(s).Glex makes this a little easier and cleaner by introducing a notion of start con-
dition scope.A start condition scope is begun with:

<SCs>{

whereSCsis a list of one or more start conditions.Inside the start condition scope, every rule automati-
cally has the prefix<SCs>applied to it, until a’}’ which matches the initial’{’. So, for example,

<ESC>{
"\\n" return"\n"
"\\r" return"\ˆM"
"\\f" return "\f"
"\\0" return"\ˆ@"

}

is equivalent to:

<ESC>"\\n" return"\n"
<ESC>"\\r" return"\ˆM"
<ESC>"\\f" return"\f"
<ESC>"\\0" return"\ˆ@"

Start condition scopes may be nested.

Three routines are available for manipulating stacks of start conditions:

glex_push_state : glex_data * int -> unit;
Calling glex_push_state (yyd,new_state) pushes the current start condition onto the top of the
start condition stack and switches tonew_stateas though you had usedglex_begin (yyd,
new_state) (recall that start condition names are also integers).

glex_pop_state : glex_data -> unit;
Calling glex_pop_state yydpops the top of the stack and switches to it viaglex_begin. If the
stack was empty, it raises exceptionGlex 5 instead.

glex_top_state : glex_data -> int;
Calling glex_top_state yydreturns the top of the stack without altering the stack’s contents. This
raisesGlex 5 if the stack is empty.

The start condition stack grows dynamically and so has no built-in size limitation.

MULTIPLE INPUT BUFFERS
Some scanners (such as those which support "include" or "use" or "open" directives to include files) require
reading from several input streams.To this end,glex provides a mechanism for creating and switching
between multiple input buffers. Aninput buffer is created by using:

glex_buffer : glex_data
* |[get : int -> string,getline : unit -> string,... : ’a]|
-> glex_buffer

glex_buffer (yyd, stream) takes an internal scanner machine stateyyd and an input streamstream and

Version 2.5 May 2000 16



GLEX(1) GLEX(1)

creates a buffer associated with the given stream. Itreturns an object of typeglex_buffer, which may then
be passed to other routines (see below). You select a particular buffer to scan from using:

glex_switch : glex_data * glex_buffer -> unit

Calling glex_switch (yyd,new_buffer) switches the scanner’s input buffer so subsequent tokens will come
from new_buffer.It is recommended to useglex_switchinsideyywrap to set things up for continued scan-
ning, when closing an included file. Note also that switching input sources via eitherglex_switch or
yywrap doesnot change the start condition.You can also clear the current contents of a buffer using:

glex_flush : glex_data * glex_buffer -> unit

This function discards the buffer’s contents, so the next time the scanner attempts to match a token from the
buffer, it will first fill the buffer anew using glex_input Note thatglex_flush takes two arguments. The
main argument is the second one, the buffer whose contents we wish to discard. So one may wonder why a
first argument of typeglex_data is needed. The reason is that, after discarding the contents ofbuffer,
glex_flush (yyd,buffer ) examines whetherbuffer is yyd’s current buffer. If so, it tells glex to refill the
buffer usingglex_input next time it is called.

Finally, the glex_current_buffer function returns an object of typeglex_buffer, the current buffer of the
argument internal scanner machine state given as argument.

Here is an example of using these features for writing a scanner which expands include files (see fileexam-
ple10.l; the<<EOF>> feature is discussed below):

%{
exception CannotOpen of string;
%}

(* the "incl" state is used for picking up the name
* of an include file
*)
%x incl

%{
val include_stack = ref (nil : glex_buffer list);
fun last (a::nil) = a
| last (_ :: rest) = last rest;

%}

%%
include glex_begin (yyd, incl); continue

[a-z]+ #putstdout (glex_text yyd); continue
[ˆa-z\\n]*\n? #putstdout (glex_text yyd); continue

<incl>[ \t]* (* eat the whitespace *) continue
<incl>[ˆ \t\n]+ { (* g ot the include file name *)

let val yytext = glex_text yyd
(* save yytext *)

in
include_stack := glex_current_buffer yyd

:: !include_stack;
let val yyin = infile yytext
in

glex_switch (yyd, glex_buffer (yyd, yyin));

Version 2.5 May 2000 17



GLEX(1) GLEX(1)

glex_begin (yyd, INITIAL);
continue

end handle IO _ => (glex_begin (yyd, INITIAL);
glex_flush (yyd,
glex_current_buffer yyd);

(case !include_stack of
nil => ()

| _ =>
glex_switch (yyd,

last (!include_stack)));
include_stack := nil;
raise CannotOpen yytext)

end
}

<<EOF>> {
case !include_stack of

nil => yyterminate ()
| buf::rest =>
(glex_switch (yyd, buf);
include_stack := rest;
continue)

}

END-OF-FILE RULES
The special rule "<<EOF>>" indicates actions which are to be taken when an end-of-file is encountered and
yywrap() returnstrue (i.e., indicates no further files to process). The action must finish by doing one of
three things:

- executing areturn statement;

- executing the specialyyterminate action; this actually doesreturn 0 by default;

- or, switching to a new buffer usingglex_switchas shown in the example above.

<<EOF>> rules may not be used with other patterns; they may only be qualified with a list of start condi-
tions. If an unqualified <<EOF>> rule is given, it applies toall start conditions which do not already have
<<EOF>> actions.To specify an <<EOF>> rule for only the initial start condition, use

<INITIAL><<EOF>>

These rules are useful for catching things like unclosed comments. An example:

%x quote
%%

...other rules for dealing with quotes...

<quote><<EOF>> {
error( "unterminated quote" );
yyterminate()
}

<<EOF>> {
case !include_stack of

nil => yyterminate ()
| buf::rest =>

Version 2.5 May 2000 18



GLEX(1) GLEX(1)

(glex_switch (yyd, buf);
include_stack := rest;
continue)

}

MISCELLANEOUS FUNCTIONS
- glex_set_interactive : glex_data * bool -> unit can be used to control whether the current buffer

is consideredinteractive. An interactive buffer is processed slightly more slowly than a non-inter-
active one, but must be used when the scanner’s input source is indeed interactive to avoid prob-
lems due to waiting to fill buffers (see the discussion of the−I flag below). A true value in the
macro invocation marks the buffer as interactive, a zero value as non-interactive. glex_set_inter-
active must be invoked prior to beginning to scan the buffer that is (or is not) to be considered
interactive.

- glex_interactive : glex_data -> boolreturns whether the given machine state is interactive or not.

- glex_set_bol : glex_data * bool -> unitcan be used to control whether the current buffer’s scan-
ning context for the next token match is done as though at the beginning of a line.A true macro
argument makes rules anchored with

- glex_at_bol : glex_data -> boolreturnstrue if the next token scanned from the current buffer will
have ’ˆ’ rules active, false otherwise.

- glex_text : glex_data -> stringreturns the text of the current token. Thevalue returned by
glex_textmay change after calls to other scanner functions.

- glex_length : glex_data -> intreturns the length of the current token. glex_length yyd is the
same as callingsize (glex_text yyd),except it is faster.

- glex_current_buffer : glex_data -> glex_buffer returns the current buffer associated with the
given scanner machine state.

- glex_loc : glex_data -> intarrayreturns a mutable array of 4 integers (start line, start position,
end line, end position) giving the location of the current scanned token in the current buffer associ-
ated with the given scanner machine state.

- glex_start : glex_data -> initreturns an integer value corresponding to the current start condition.
You can subsequently use this value withglex_begin : glex_data * int -> unitto return to that
start condition.

INTERFACING WITH GY ACC
One of the main uses ofglex is as a companion to thegyaccparser-generator.gyaccparsers expect to call
a scanning routine to find the next input token. Thisroutine is given as second argument to thegyacc_data
function, which builds an initial parser machine state.This scanning routine may be named as you wish;
glex will provide one calledyylex Theyylex routine is supposed to return the type of the next token as well
as putting any associated value in some referenceyylval that is given as fourth argument togyacc_data.
To useglex with gyacc,you have to be aware thatgyaccgenerates a fileparse_tab_h.mlfrom the gram-
mar file parse.y. The parse_tab_h.ml contains definitions of all the%tokens appearing in thegyacc
input. You should then writeopen parse_tab_hin the declarations section of theglex scanner to make it
aw are of all the%tokens that should be returned to thegyaccgenerated parser. For example, if one of the
tokens is "TOK_NUMBER", part of the scanner might look like:

%{
open "parse_tab_h";
%}

%%

[0-9]+ yyvalue := glex_text yyd; return TOK_NUMBER

Version 2.5 May 2000 19



GLEX(1) GLEX(1)

- Glex : int -> exn is the constructor for all exceptions returned byglex generated scanners.A text
explanation of an exceptionGlex n can be obtained by callingglexmsgn. For example,glexmsg
2 returnsscanner input buffer overflow .

OPTIONS
glexhas the following options:

−h generates a "help" summary ofglex’s options tostdoutand then exits. −? and−−help are syn-
onyms for−h.

−i instructsglex to generate acase-insensitivescanner. The case of letters given in the glex input
patterns will be ignored, and tokens in the input will be matched regardless of case. The matched
text given in glex_text yydwill have the preserved case (i.e., it will not be folded).

−s causes thedefault rule(that unmatched scanner input is echoed tostdout)to be suppressed. If the
scanner encounters input that does not match any of its rules, it raises the exceptionGlex 8 (scan-
ner jammed). This option is useful for finding holes in a scanner’s rule set.

−t instructsglex not to provide a default definition for theyyterminate function. Thedefault defini-
tion is to returnSOME 0. The token 0 is interpreted bygyaccgenerated parsers as meaning end-
of-file. The−t option is useful to detect unmatched end-of-file conditions, or to produce a scanner
returning tokens of type other thanint.

−v specifies thatglexshould write tostderr a summary of statistics regarding the scanner it generates.
Most of the statistics are meaningless to the casualglex user, but the first line identifies the version
of glex (same as reported by−V), and the next line the flags used when generating the scanner,
including those that are on by default.

−w suppresses warning messages.

−L instructsglex to generate#line directives. (This is the opposite offlex’s behavior.) With this
option, glex peppers the generated scanner with #line directives so error messages in the actions
will be correctly located with respect to either the originalglex input file (if the errors are due to
code in the input file), orlexyy.ml (if the errors areglex’s fault -- you should report these sorts of
errors to the email address given below). However, sinceGimML does not about #line directives,
this option is off by default.

−T makesglex run in tracemode. Itwill generate a lot of messages tostderr concerning the form of
the input and the resultant non-deterministic and deterministic finite automata. This option is
mostly for use in maintainingglex.

−V prints the version number tostdoutand exits.−−version is a synonym for−V.

−ooutput
directs glex to write the scanner to the fileoutput instead oflexyy.ml.

−Pprefix
changes the default yy prefix used byglex for all globally-visible variable and function names to
instead beprefix. This actually only applies toyylex. For example,−Pfoo changes the name of
yylex to foolex. It does not change the name of the default output file: you have to use the-o
option to do this.

This option lets you easily link together multipleglexprograms into the same executable.

glex also provides a mechanism for controlling options within the scanner specification itself, rather than
from the glex command-line. Thisis done by including%option directives in the first section of the scan-
ner specification.You can specify multiple options with a single%option directive, and multiple directives
in the first section of your glex input file.

Most options are given simply as names, optionally preceded by the word "no" (with no intervening white-
space) to negate their meaning.A number are equivalent to flex flags or their negation:

caseful or

Version 2.5 May 2000 20



GLEX(1) GLEX(1)

case-sensitive opposite of -i (default)

case-insensitive or
caseless -ioption

default oppositeof -s option
verbose -voption
warn oppositeof -w option

(use "%option nowarn" for -w)

Tw o options take string-delimited values, offset with ’=’:

%option outfile="ABC"

is equivalent to-oABC, and

%option prefix="XYZ"

is equivalent to-PXYZ.

PERFORMANCE CONSIDERATIONS
One area where the user can increase a scanner’s performance arises from the fact that the longer the tokens
matched, the faster the scanner will run.This is because with long tokens the processing of most input
characters takes place in the (short) inner scanning loop, and does not often have to go through the addi-
tional work of setting up the scanning environment (e.g.,glex_text yyd) for the action. Recall the scanner
for C comments:

%x comment
%%

val l ine_num = ref 1

"/*" glex_begin (yyd, comment); continue

<comment>[ˆ*\n]* { (* eat anything that’s not a ’*’ *)
continue }

<comment>"*"+[ˆ*/\n]* { (* eat up ’*’s not followed by ’/’s *)
continue }

<comment>\n incline_num; continue
<comment>"*"+"/" glex_begin (yyd, INITIAL); continue

This could be sped up by writing it as:

%x comment
%%

val l ine_num = ref 1

"/*" glex_begin (yyd, comment); continue

<comment>[ˆ*\n]* { (* eat anything that’s not a ’*’ *)
continue }

<comment>[ˆ*\n]*\n incline_num; continue
<comment>"*"+[ˆ*/\n]* continue
<comment>"*"+[ˆ*/\n]*\n inc line_num; continue
<comment>"*"+"/" glex_begin (yyd, INITIAL); continue

Version 2.5 May 2000 21



GLEX(1) GLEX(1)

Now instead of each newline requiring the processing of another action, recognizing the newlines is "dis-
tributed" over the other rules to keep the matched text as long as possible. Note thataddingrules doesnot
slow down the scanner! The speed of the scanner is independent of the number of rules or (modulo the
considerations given at the beginning of this section) how complicated the rules are with regard to operators
such as ’*’ and ’|’.

A final note:glex is slow when matching NUL’s (the character \ˆ@, of code 0), particularly when a token
contains multiple NUL’s. It’s best to write rules which matchshort amounts of text if it’s anticipated that
the text will often include NUL’s.

Another final note regarding performance: as mentioned above in the section How the Input is Matched,
dynamically resizing the input buffer to accommodate huge tokens is a slow process because it presently
requires that the (huge) token be rescanned from the beginning. Thusif performance is vital, you should
attempt to match "large" quantities of text but not "huge" quantities, where the cutoff between the two is at
about 8K characters/token.

DIAGNOSTICS
warning, rule cannot be matched indicates that the given rule cannot be matched because it follows other
rules that will always match the same text as it.For example, in the following "foo" cannot be matched
because it comes after an identifier "catch-all" rule:

[a-z]+ got_identifier()
foo got_foo()

warning,−soption given but default rule can be matchedmeans that it is possible (perhaps only in a partic-
ular start condition) that the default rule (match any single character) is the only one that will match a par-
ticular input. Since−swas giv en, presumably this is not intended.

warning, all start conditions already have <<EOF>> rulesmeans that you have tried to specify an
<<EOF>> rule for all start conditions which didn’t hav eone yet. But you have in fact specified <<EOF>>
rules for all start conditions.

warning, <start-condition> specified twice:self-explanatory.

warning, trailing context made variable due to preceding ’|’ action:glex cannot cope with variable trailing
context rules. The latter are rules of the formr/s wherer ands match text of non-fixed length. The use of
a ’|’ action together with trailing context rules makesglex think that they may be variable trailing context
rules. Seethe Deficiencies / Bugs section below.

no action found -(exceptionGlex 0) An internal error in the generated scanner occurred: it reached a state
for which no action exists. Thismeans there is a bug in the way glex generates its tables, typically; this is
not meant to happen.

end of buffer missed -(exceptionGlex 1) In old version ofglex, this might have occurred in a scanner
which is reentered after an exception has been raised from a scanner’s action but not caught. This should
not happen any longer.

scanner input buffer overflow -(exceptionGlex 2) This should not happen, and means that the scanner did
not manage to allocate its input buffer. This should not happen, since memory allocation always succeeds
in GimML.

(exceptionGlex 3)You usedglex_unput to push back so much text that the scanner’s buffer could not hold
both the pushed-back text and the current token in the input buffer. Ideally the scanner should dynamically
resize the buffer in this case, but at present it does not.

(exceptionGlex 4) This should not happen, and means that the scanner did not manage to reallocate its
start-condition stack. This should not happen, since memory allocation always succeeds in GimML.

start-condition stack underflow -(exceptionGlex 5) glex_pop_stateor glex_top_statewas called while
the start-condition stack was empty.

less on negative argument -(exceptionGlex 6) glex_lesswas called on a strictly negative argument.

Version 2.5 May 2000 22



GLEX(1) GLEX(1)

Although glex itself may generate calls toglex_lessin the case of trailing context rules, this can only be
raised by calls toglex_lessyou did yourself, unlessglex is buggy.

less on argument>glex_length(exceptionGlex 7) glex_lesswas called on an argument that exceeds the
length of the matched input. The same comment as for the previous exception applies.

scanner jammed -(exceptionGlex 8) a scanner compiled with−s has encountered an input string which
wasn’t matched by any of its rules. This error can also occur due to internal problems.

FILES
lexyy.ml

generated scanner.

DEFICIENCIES / BUGS
Some trailing context patterns cannot be properly matched and generate warning messages ("Variable trail-
ing context rule at line <n>: please make the head contant-length or remove the trailing context (after rule
matches the beginning of the second part, such as "zx*/xy*", where the ’x*’ matches the ’x’ at the begin-
ning of the trailing context. (Note that the POSIX draft states that the text matched by such patterns is
undefined.)

glex does not know how to match any trailing context r/s where eitherr ands may both match text of non-
fixed lengths.flex would be able to match some of these so-calledvariable trailing context rules, at the
price of incurring a great slow-down in the generated scanner.

Furthermore, for some trailing context rules, parts which are actually fixed-length are not recognized as
such, leading to the abovementioned error message. In particular, parts using ’|’ or {n} (such as "foo{3}")
are always considered variable-length.

Combining trailing context with the special ’|’ action can result infixed trailing context being turned into
the erroneousvariable trailing context. For example, in the following:

%%
abc |
xyz/def

Use ofglex_unput invalidatesglex_textandglex_length.

Pattern-matching of NUL’s is substantially slower than matching other characters.

Dynamic resizing of the input buffer is slow, as it entails rescanning all the text matched so far by the cur-
rent (generally huge) token.

Due to both buffering of input and read-ahead, you cannot intermix calls to GimML input routines like get
or getlineon the same input file as the one that the generated scanner is reading, and expect it to work. Call
glex_input instead.

The total table entries listed by the−v flag excludes the number of table entries needed to determine what
rule has been matched. The number of entries is equal to the number of DFA states.

Theglex internal algorithms, which are also those offlex,need documentation.

SEE ALSO
flex(1), lex(1), yacc(1), sed(1), awk(1).

John Levine, Tony Mason, and Doug Brown, Lex & Yacc,O’Reilly and Associates. Be sure to get the 2nd
edition.

M. E. Lesk and E. Schmidt,LEX − Lexical Analyzer Generator

Alfred Aho, Ravi Sethi and Jeffrey Ullman,Compilers: Principles, Techniques and Tools,Addison-Wesley
(1986). Describesthe pattern-matching techniques used byflex (deterministic finite automata).

Version 2.5 May 2000 23



GLEX(1) GLEX(1)

AUTHOR
Jean Goubault-Larrecq, by modifying the source offlex.

flex was created by Vern Paxson, with the help of many ideas and much inspiration from Van Jacobson.
Original version by Jef Poskanzer. The fast table representation (not used inglex) is a partial implementa-
tion of a design done by Van Jacobson. The implementation was done by Kevin Gong and Vern Paxson.

Thanks to the many flex beta-testers, feedbackers, and contributors, especially Francois Pinard, Casey Lee-
dom, Robert Abramovitz, Stan Adermann, Terry Allen, David Barker-Plummer, John Basrai, Neal Becker,
Nelson H.F. Beebe, benson@odi.com, Karl Berry, Peter A. Bigot, Simon Blanchard, Keith Bostic, Frederic
Brehm, Ian Brockbank, Kin Cho, Nick Christopher, Brian Clapper, J.T. Conklin, Jason Coughlin, Bill Cox,
Nick Cropper, Dav eCurtis, Scott David Daniels, Chris G. Demetriou, Theo Deraadt, Mike Donahue, Chuck
Doucette, Tom Epperly, Leo Eskin, Chris Faylor, Chris Flatters, Jon Forrest, Jeffrey Friedl, Joe Gayda,
Kaveh R. Ghazi, Wolfgang Glunz, Eric Goldman, Christopher M. Gould, Ulrich Grepel, Peer Griebel, Jan
Hajic, Charles Hemphill, NORO Hideo, Jarkko Hietaniemi, Scott Hofmann, Jeff Honig, Dana Hudes, Eric
Hughes, John Interrante, Ceriel Jacobs, Michal Jaegermann, Sakari Jalovaara, Jeffrey R. Jones, Henry
Juengst, Klaus Kaempf, Jonathan I. Kamens, Terrence O Kane, Amir Katz, ken@ken.hilco.com, Kevin B.
Kenny, Steve Kirsch, Winfried Koenig, Marq Kole, Ronald Lamprecht, Greg Lee, Rohan Lenard, Craig
Leres, John Levine, Steve Liddle, David Loffredo, Mike Long, Mohamed el Lozy, Brian Madsen, Malte,
Joe Marshall, Bengt Martensson, Chris Metcalf, Luke Mewburn, Jim Meyering, R. Alexander Milowski,
Erik Naggum, G.T. Nicol, Landon Noll, James Nordby, Marc Nozell, Richard Ohnemus, Karsten Pahnke,
Sven Panne, Roland Pesch, Walter Pelissero, Gaumond Pierre, Esmond Pitt, Jef Poskanzer, Joe Rahmeh,
Jarmo Raiha, Frederic Raimbault, Pat Rankin, Rick Richardson, Kevin Rodgers, Kai Uwe Rommel, Jim
Roskind, Alberto Santini, Andreas Scherer, Darrell Schiebel, Raf Schietekat, Doug Schmidt, Philippe Sch-
noebelen, Andreas Schwab, Larry Schwimmer, Alex Siegel, Eckehard Stolz, Jan-Erik Strvmquist, Mike
Stump, Paul Stuart, Dave Tallman, Ian Lance Taylor, Chris Thewalt, Richard M. Timoney, Jodi Tsai, Paul
Tuinenga, Gary Weik, Frank Whaley, Gerhard Wilhelms, Kent Williams, Ken Yap, Ron Zellar, Nathan
Zelle, David Zuhn, and those whose names have slipped my marginal mail-archiving skills but whose con-
tributions are appreciated all the same.

Thanks to Keith Bostic, Jon Forrest, Noah Friedman, John Gilmore, Craig Leres, John Levine, Bob Mulc-
ahy, G.T. Nicol, Francois Pinard, Rich Salz, and Richard Stallman for help with various distribution
headaches.

Thanks to Esmond Pitt and Earle Horton for 8-bit character support; to Benson Margulies and Fred Burke
for C++ support; to Kent Williams and Tom Epperly for C++ class support; to Ove Ewerlid for support of
NUL’s; and to Eric Hughes for support of multiple buffers.

This work was primarily done when I was with the Real Time Systems Group at the Lawrence Berkeley
Laboratory in Berkeley, CA. Many thanks to all there for the support I received.

Send comments to Jean.Goubault@dyade.fr (or to vern@ee.lbl.gov for comments about flex).

Version 2.5 May 2000 24


