GLEX(1) GLEX(1)

NAME

glex — lexical analyzer generator for GimML, deed from flex
SYNOPSIS

glex [-hisvwLTV? —ooutput —Pprefix] [-—help ——version][filename ...]
OVERVIEW

This manual describaglex,a ool for generating programs that perform pattern-matchingxn Téistool
is very close tdflex,from which it was devied. Themanual includes both tutorial and reference sections:

Description
a lrief overview of the tool

Some Simple Examples
Format Of The Input File

Paterns
the extended regular expressions used by glex

How The Input Is Matched
the rules for determining what has been matched

Actions
how to specify what to do when a pattern is matched

The Generated Scanner
details rgarding the scanner that gi@roduces;
how to control the input source

Start Conditions
introducing context into your scanners, and
managing "mini-scanners"

Multiple Input Buffers
how to manipulate multiple input sources;wdo
scan from strings instead of files

End-of-file Rules
special rules for matching the end of the input

Miscellaneous Functions
a ummary of functions\ailable to the actions

Interfacing With Gyacc
connecting gle scanners together with gyacc parsers

Options
glex command-line options, and the "%option"
directive

Performance Considerations
how to make your scanner go as fast as possible

Diagnostics
those error messages produced by (e scanners

Version 2.5 May 2000 1

GLEX(1) GLEX(1)

it generates) whose meanings might not be apparent

Files
files used by glex

Deficiencies / Bugs
known problems with glex

See Also
other documentation, related tools

Author
includes contact information

DESCRIPTION
glexis a tool for generatingcannersprograms which recognized lexical patterns it.teglex reads the
given input files, or its standard input if no file names avergifor a description of a scanner to generate.
The description is in the form of pairs of regular expressions and GimML code, reédledglex generates
as output a GimML source fildexyy.ml, which defines a routingylex. Whenyylex is run on some
machine state (of typglex_data), it analyzes its input for occurrences of the regulgressions. When-
eve it finds one, it gecutes the corresponding GimML code.

SOME SIMPLE EXAMPLES
First some simple examples to get thediaof how one useglex. The folloving glex input specifies a
scanner which wherer it encounters the string "username" will replace it with the sdegin name:

%%
username #pudtdout (getlogin ())
wheregetlogin is defined as follows on Unix systems, for instance:
fun getlogin () =
let val |[getline, kill, ...]| =
inprocess "/usr/bin/whoami"
val id = getline () before kill ()
in
substr (id, 0, size id-1)
end;

By default, ag text not matched by @lex scanner is copied to the output, so the net effect of this scanner
is to copy its input file to its output with each occurrence of "usernamgdreded. (Sefle examplel.lfor

the full definition.) In this input, there is just one ruleisername” is th@atternand the "#put stdout ..." is
theaction. The "%%" marks the beginning of the rules.

Here's another simple example:

%{
val num_lines = ref O;
val num_chars = ref O;
%%}
%%

\n incnum_lines; inc num_chars; continue
inc num_chars; continue

%%

fun wec filename =
let val f = infile filename

Version 2.5 May 2000 2

GLEX(1)

val yyd = glex_data (f, fn _ => true)
in
num_lines := 0;
num_chars := 0;
yylex yyd,;
#close f ();
#put stdout "# of lines = ";
print stdout (pack (!num_lines));
#put stdout ", # of chars =";
print stdout (pack (num_chars));
#put stdout "\n";
#flush stdout ()
end;

GLEX(1)

This scanner counts the number of characters and the number of lines in its input (it produces no output
other than the final report on the counts). The first line declares gl@bals, "num_lines" and
"num_chars", which are accessible both ingigex and in thewc routine declared after the second "%%".
There are tw rules, one which matches awime ("\n") and increments both the line count and the charac-

ter count, and one which matchey @haracter other than awkne (indicated by the

sion). Sedile example2.Ifor the full example.

A somewhat more complicated example:
(* scanner for a tpPascal-lile language *)

DIGIT [0-9]
ID [a-z][a-z0-9]*

%%

{DIGIT}+ { #put stdout "An integer: ";
#put stdout (glex_text yyd);
#put stdout "\n";
continue

}

{DIGIT}+"."{DIGIT}* {
#put stdout "A float: ";
#put stdout (glex_text yyd);
#put stdout "\n";
continue

}

if|then|bgin|end|procedure|function {
#put stdout "A kyword: ";
#put stdout (glex_text yyd);
#put stdout "\n";
continue

}

{ID} { #put stdout "An identifier: ";
#put stdout (glex_text yyd);
#put stdout "\n"; continue }

" { #put stdout "An operator:
#put stdout (glex_text yyd);

Version 2.5 May 2000

regulaxpres-

GLEX(1) GLEX(1)

#put stdout "\n"; continue }
""I'’Nn]*"}* (* eat up one-line comments *) continue
[\t\n]+ (* eat up whitespace *) continue

{ #put stdout "Unrecognized character: ";
#put stdout (glex_text yyd);
#put stdout "\n"; continue }

%%

fun tokenize filename =
let val f = infile filename
val yyd = glex_data (f, fn _ => true)
in
yylex yyd,;
#flush stdout ()
end;
This is the beginnings of a simple scanner for a languagddikcal. Itidentifies different types dbkens
and reports on what it has seen.

The details of this examplev@lable in fileexample3.l) will be explained in the following sections.

FORMAT OF THE INPUT FILE
The glexinput file consists of three sections, separated by a line witBodstn it:

definitions
%%
rules
%%
user code

The definitionssection contains declarations of simpmedefinitions to simplify the scanner specifica-

tion, and declarations atart conditionswhich are explained in a later section.

Name definitions hae the form:

name definition

The "name" is a word lgénning with a letter or an underscore ('_’) followed by zero or more letters, digits,

or -’ (dash). The definition is taken to begin at the first non-white-space character following the name

and continuing to the end of the line. The definition can subsequently be referred to using "{name}", which

will expand to "(definition)".For example,

DIGIT [0-9]
ID [a-z][a-z0-9]*

defines "DIGIT" to be a regulaxpression which matches a single digit, and "ID" to be a regxfaes-
sion which matches a letter followed by zero-or-more lettedigits. Asubsequent reference to

{DIGIT}+"."{DIGIT}*
is identical to

([0-9])+"."([0-9])*

Version 2.5 May 2000 4

GLEX(1) GLEX(1)

and matches one-or-more digits followed by &ollowed by zero-or-more digits.

Therulessection of theglexinput contains a series of rules of the form:
pattern action

where the pattern must be unindented and the action must begin on the same line.
See belw for a further description of patterns and actions.

Finally, the user code section is simply copiederyy.ml verbatim. Itis used for companion routines
which call the scannerThe presence of this section is optional; if it is missing, the se¥%éndin the
input file may be skipped, too.

In the definitions and rules sectionsy amdentedtext or text enclosed ito{ and%]} is copied verbatim to
the output (with the %{}s removed). The%({}' s must appear unindented on lines by themselves.

In the rules section, rindented or %f{} t&t appearing before the first rule may be used to dectaie v
ables which are local to the scanning routine. Other indented or %{jnt¢he rule section is still copied

to the output, but its meaning is not well-defined and it may well cause compile-time errors (this feature is
present foPOSIXcompliance; see belofor other such features).

In the definitions section (but not in the rules section), an unindented comment (i.e., gitiménbewith
"(*") is also copied verbatim to the output up to the next "*)".

PATTERNS
The patterns in the input are written using an extended set of regoilesgions. Thesare:

X match the character 'x’
any character (byte) except newline

[xyz] a"character class"; in this case, the pattern
matches either an 'x’, a'’y’, ora’'z’

[abj-0Z] a"character class" with a range in it; matches
an’a’, a’b’, ary letter from ’j’ through 'o’,
ora’z

[(A-Z] a'"negaed character class", i.e.,yatharacter
but those in the class. In this case, any
character EXCEPT an uppercase letter.

[A-Z\n] any character EXCEPT an uppercase letter or

a rewline
rx zeroor more r's, where r is grregular expression
r+ oneor more r's
r? zeroor one 15 (that is, "an optional r")

r{2,5} anywhere from tvo to five r's

r{2,} twoormorers

r{4} exactly4rs

{name} theexpansion of the "name" definition

(see abwe)
"[xyz]\"foo"
the literal string: [xyz]"foo
\X if Xisan'a’,’b’, 'f’,'n",r,’t, or'v,

then the ANSI-C interpretation of \x.
Otherwise, a literal 'X’ (used to escape
operators such as)

\0 aNUL character (ASCII code 0)

\123 thecharacter with octal value 123

\x2a thecharacter with hexadecimal value 2a

n matchan r; parentheses are usedvernde
precedence (see below)

Version 2.5 May 2000 5

GLEX(1) GLEX(1)

rs theregular expression r followed by the
regular expression s; called "concatenation”

rls eithemanrorans

r/s anr but only if it is followed by an s. The
text matched by s is included when determining
whether this rule is the "longest match",
but is then returned to the input before
the action is xecuted. Sdhe action only
sees the text matched byThis type
of pattern is called trailing context".

(There are some combinations of r/s that glex
cannot match correctly; see notes in the
Deficiencies / Bugs section beleegading
"dangerous trailing context".)

r anr, but only at the beginning of a line (i.e.,
which just starting to scan, or right after a
newline has been scanned).

r$ anr, but only at the end of a line (i.e., just

before a n&line). Equvalent to "rAn".

Note that glexs notion of "newline" is exactly
whatever the C compiler used to compile glex
interprets '\n’ as; in particulaon ©me DOS
systems you must either filter ous\ih the
input yourself, or explicitly use rAr\n for "r$".

<s>r anr, but only in start condition s (see
below for discussion of start conditions)
<sl1,s2,s3>r
same, but in anof start conditions s1,
s2, or s3
<*>r anrin any dart condition, gen an eclusive me.

<<EOF>> arend-of-file
<sl,s2><<EOF>>
an end-of-file when in start condition s1 or s2

Note that inside of a character class, all regulguression operators lose their special meaniup@
escape (') and the character class operators, ’-’, 'T', and, at the beginning of the class, .

The regular expressions listed abare grouped according to precedence, from highest precedence at the
top to lowest at the bottom. Those grouped togethes Epual precedence-or example,

foo|bar*

is the same as

(foo)|(ba(r))

Version 2.5 May 2000 6

GLEX(1) GLEX(1)

since the "*’ operator has higher precedence than concatenation, and concatenation higher than alternation
(- This pattern therefore matchegher the string "foo"or the string "ba" followed by zero-aonore r5.
To match "foo" or zero-or-more "bar"'s, use:

foo|(bar)*
and to match zero-or-more "foo™'s-or-"bar"'s:

(foo|bar)*

In addition to characters and ranges of characters, character classes can also contain charaqierselass
sions. These are expressions enclosed infidend:] delimiters (which themselves must appear between
the ’[and 'T' of the character class; other elements may occur inside the character classheowlid
expressions are:

[:alnum:] [:alpha:] [:blank:]
[:entrl:] [:digit:] [:graph:]
[:lower:] [:print:] [:punct:]
[:space:] [:upper:] [:xdigit:]

These expressions all designate a set of charactexslequito the corresponding standards®XX func-
tion. For example,[:alnum:] designates those characters for whginum() returns true - i.e., gralpha-
betic or numeric. Some systems dqubvideisblank(), so gle« defines[:blank:] as a blank or a tab.

For example, the following character classes are all\atgrit:

[[:alnum:]]
[[:alpha:][:digit:]
[[:alpha:]0-9]
[a-zA-Z0-9]

If you run scanner in case-insensititode, therj:upper:] and[:lower:] are equialent to[:alpha:].

Some notes on patterns:

- A negated character class such as the example "["A-Z]Valoll match a rewline unless "\n" (or
an equialent escape sequence) is one of the characters explicitly present igdes reharacter
class (e.g., "['(A-Z\n]"). This is unlé&how mary other regular expression tools treagaed char
acter classes, but unfortunately the inconsistesdistorically entrenched. Matching wknes
means that a pattern & "1* can match the entire input unless thsraiother quote in the input.

- A rule can hae & most one instance of trailing comtgthe '/’ operator or the '$’ operator)The
start condition, ", and "<<EOF>>" patterns can only occur at the beginning of a pattern, and, as
well as with '/ and '$’, cannot be grouped inside parenthegeS. which does not occur at the
beginning of a rule or a '$’ which does not occur at the end of a rule loses its special properties
and is treated as a normal character.

The following are illgd:

foo/bar$
<scl>foo<sc2>bar

Note that the first of these, can be written "foo/bar\n".

The following will result in '$’ or ™ being treated as a normal character:

foo|(bar$)
foo|"bar

Version 2.5 May 2000 7

GLEX(1) GLEX(1)

If what's wanted is a "foo" or a baat-the-bginning-of-a-line, the following could be used (the
special ’|’ action is explained below):

foo |
"bar (*action goes here *)

However, to match a "foo" or a bar-followed-by-a-newline, the following cannot be used:

foo |
bar$ (*action goes here *)

Although flex would accept it (making the scanner considerably slowery,rgfeises it, and you
would have © write something like:

foo (* action goes here *)

bar$ (*same action repeated here *)

HOW THE INPUT IS MATCHED
When the generated scanner is run, it analyzes its input looking for strings which nyad¢litgpatterns.
If it finds more than one match, it &k the one matching the most text (for trailing context rules, this
includes the length of the trailing partea though it will then be returned to the input). If it findsotar
more matches of the same length, the rule listed first igléxanput file is chosen.

Once the match is determined, the whole scanner machine state isvaikatidean a variable namegyd.

The text corresponding to the match (calledttken)can be obtained by callirgex_textonyyd, and its
length can be computed by calling tsige function on the latter t. If you just wish to get the length
without the text, callingjlex_length yydin faster Theaction corresponding to the matched pattern is then
executed (a more detailed description of actions fedfp and then the remaining input is scanned for
another match.

If no match is found, then thaefault ruleis executed: the next character in the input is considered matched
and copied to the standard output. Thus, the simplgatdéexinput is:

%%

which generates a scanner that simply copies its input (one character at a time) to its output.

The huffer where the scanner puts the valueglafx_text yyd grows dynamically to accommodate dar

tokens. Whilethis means your scanner can accommodate very large tokens (such as matching entire blocks
of comments), bear in mind that each time the scanner must resigffatsitbalso must rescan the entire

token from the beginning, so matching such tokens careow. This kuffer presently doesot dynami-

cally graw if a call to glex_unputresults in too much x being pushed back; instead, aceptionGlex 3

is raised.

ACTIONS
Each pattern in a rule has a corresponding action, which carylaebitrary GimML expression returning
a value of type'token option, where’token is the type of returned teks. Thepattern ends at the first
non-escaped whitespace character; the remainder of the line is its action. Empty actiomslaoeiltear
ily to flex: compiling lexyy.ml will produce a type erroisince avery action must return a tek SOME
token or informyylex that it should proceed with the next token, by returtN@NE. Abbreviations are
provided to mak this meaning more explicit, amdtur n token has the same effect 8ME token, while
continue has the same effect BONE. For example, here is the specification for a program which deletes
all occurrences of "zap me" from its input:

%%
"zap me" continue

(It will copy all other characters in the input to the output sincg ti# be matched by the default rule.)

Version 2.5 May 2000 8

GLEX(1) GLEX(1)

Here is a program which compresses multiple blanks and tabs down to a single blank,vesidwayo
whitespace found at the end of a line (seecfidl@mple5.l):

%%
[\M]+ #putstdout " "; continue
[\f][+$ continue(* ignore this token *)

If the action contains a '{’, then the action spans till the balancing '} is found, and the action may cross
multiple lines. Similarly if the action contains a ’'(’, then the action spans till the balancing ')’ is found.
glexknows about GimML strings and comments amahitbe fooled by braces found within them, but also
allows actions to begin witk{ and will consider the action to be all the text up to the %g (regardless

of ordinary braces inside the action).

An action consisting solely of aitical bar ('|') means "same as the action for the next rule." Sew belo
for an illustration.

Actions can include arbitrary GimML code, and must compute a value of either theefarm applied to
some token that we wish to return to wiataoutine calledyylex, or of the formcontinue meaning that
we wish to letyylex continue scanning. Each tinyglex() is called it continues processing éois from
where it last left dfuntil it either reaches the end of the file geeutes a return.

Contrarily toflex, actions are not free to modify the piece oft teist recognized byylex, and can only
read it by callingglex_text yydwhereyyd is a variable that will be defined in each action and will hold the
current gl& machine state.

There are a number of special direesiwhich can be included within an action:

- glex_begin (yyd,<start-condition-name>) where<start-condition-name>is the name of a start
condition places the scanner in the corresponding start condition (see below).

- glex_less (yyd,n) returns all lot the firstn characters of the current token back to the input
stream, where tlyewill be rescanned when the scanner looks for the next mgtek. text yydis
adjusted appropriately (e.gsize (glex_text yyd)or equvalently glex_length yydwill now be
equal ton). For example, on the input "foobar" the following will write out "foobarbar":

%%

foobar {#put stdout (glex_text yyd);
glex_less(yyd, 3); continue }

[a-z]+ #putstdout (glex_text yyd); continue

An argument of O taylex_lesswill cause the entire current input string to be scannednag
Unless yowe changed he the scanner will subsequently process its input (ugieg begin,for
example), this will result in an endless loopalling glex_lesson a ngative rumber raisesxeep-
tion Glex 6 ("less on ngdive agument"), while callingglex_lesson an argumentxeeeding
glex_length yydraises exceptioslex 7 ("less on argument>glex_length").

- glex_unput (yyd, c) puts the characterback onto the input streantt will be the next character
scanned. Théllowing action will tale the current token and cause it to be rescanned enclosed in
parentheses.

{

let val scanned = explode (glex_text yyd)
(* copy text because glex_unput trashes glex_text. *)
in
glex_unput (yyd, ord ")");
iterate
glex_unput (yyd, ord c)
| cin list rev scanned

Version 2.5 May 2000 9

GLEX(1) GLEX(1)

end;
glex_unput (yyd, ord ")");
continue

end

}

Note that since eacblex_unput puts the gien character back at thbeginningof the input
stream, pushing back strings must be done back-to-front.

An important potential problem when usigtex_unputis that a call tagyglex_unput destroysthe contents
of glex_text yyd,starting with its rightmost character and/digring one character to the left with each call.
If you need the value of yytext preserved after a caffléa_unput (as in the abee example), you must
first copy it elsewhere.

Finally, note that you cannot put baBIOF to attempt to mark the input stream with an end-of-file.

- glex_input yyd reads the néa character from the input strearfor example, the following is one
way to eat up C comments:

%%
npen g
let datatype state = SCANNING | FOUND_STAR
| END_OF _COMMENT
val now = ref SCANNING
in
while Inow<>END_OF COMMENT do
let val ¢ = glex_input yyd
in
if c=ord "*"
then nev := FOUND_STAR
else if c=ord "/"
then (case 'nw of
FOUND_STAR =>
now := END_OF_COMMENT
| _=>row = SCANNING)
elseifc="1
then error "EOF in comment"
(* where error is user-defined *)
else nav := SCANNING
end;
continue
end

}

- glex_current_huffer yyd returns the scannesrturrent luffer. This is used mostly as argument to
the next function.

- glex_flush (yyd,buffer) flushes the gien buffer. The main use oflex_flushis to flush the scan-
ner’s internal luffer, by calling glex_flush (yyd, glex_curent_huffer yyd), so that the next time
the scanner attempts to match a token, it will first refill tfeeb usingglex_input (see The Gen-
erated Scanngbelow). Thegeneral meaning @flex_flushis described bele in the section Mul-
tiple Input Buffers.

- yyterminate yyd can be used to return the &k0. This means end of file to Gyacc generated
parsers, and therefore indicates "all done" to the scamadler. yyterminate is also called when
an end-of-file is encounteregyterminate is not a GimML primite, and is defined locally to the
generated scanner kylex. Using the-t option tells glex not to generate gndefinition for

Version 2.5 May 2000 10

GLEX(1) GLEX(1)

yyterminate, allowing you to define your own version gfterminate instead. Notehat, as soon
asglex needs to define a default end-of-file action (e.g., you digh&cify an action for some
<<EOF>> pattern),glex will define it asyyterminate. Since the latter returns 0O, this forces the
return type ofjlex,i.e., the type of returned tokens, toibe Using the-t option therefore alles
you to receoer polymorphism in the generated scanrardmply to have the generated scanner
return tokens of some other type than

A number of options\ailable inflex arenot available inglex, namely theREJECT andyymore() options.
They are hacks, were rarely used, ped to be lard to implement iglexand also had the effect of almg
downflex scanners considerablyor these reasons, it was decided tedehem out ofglex scanners.

THE GENERATED SCANNER
The output ofglex is the filelexyy.ml, which contains the scanning routipgex, a number of tables used
by it for matching tokens, and a number of auxiliary routines and macros, all of thenhogeirng the def-
inition of yylex. The type ofyylex is glex_data -> 'token whereglex_datais the type of internal scanner
states, anttoken is the type of returned tokens, usuafiy

You can create an initial internal scanner state by using the furgiBandata : |[get : int -> string,getline
> unit -> string,... : 'a]| * (unit -> bool) -> glex_data. In other words, glex_datatakes an input stream
providing functionsget to read a fixed number of characters, gatline to read a line, and also a function
yywrap : unit -> bool, and returns the initial machine stateor example, you may define

val yydata = glex_data (stdin, fn _ => true);
to have the scanner read from stdiithe role of theyywrap function is discussed later; letust say that
having it returrtrue always is the standard choice for scanners working only on one input source.

Wheneer yylex yydatais called, it scans tokens from the input lelin, since this is what was specified
as input source in the definition pfdata above. It continues until it either reaches an end-of-file (at which
point it returns the value 0) or one of its actions returns a token by ushgracommand.

If the scanner reaches an end-of-file, subsequent calls are undefined unless the input source is changed
through the use aflex_switch(see Multiple Input Buffers below).

If yylex stops scanning due to havingeeuted some action that returns a token throughraéhen func-
tion. Thescanner may then be called again and it will resume scanning where it left off.

By default the scanner reads its input one line at a time, by usiggtiires field of the input stream gén

to glex_data. This allows scanning from stdin, sdyy interleaing line entries by the user and scanning
activities. Sucha anner is callednteractivefor this reason.Calling glex_set_interactve (yyd, false)
whereyyd is the internal scanner state changes this to a non-interacséinney which will instead read
whole blocks of the input stream at once, @jaréing line breaks, using thget field of the input stream
given to glex_data. Non-interactve sanners are meant to be faster than inteactianners, but may
appear to beh@ drangely on stdin. Putting a scanner back to interactiode is done by calling
glex_set_interactve (yyd, true), and you can diss@r whether a scanner is interagtia not by calling
glex_interactive yyd.

When the scanner reges an e&d-of-file indication from its input source, it then checksyierap func-

tion that was provided tglex_data. If yywrap() returns &lse, then it is assumed that the function has
gone ahead and changed the input source to some other byglesingwitch,and scanning continues. If it
returns true, then the scanner calls the corresponding end-of-file atb®.that in either case, the start
condition remains unchanged,; it doest revert to INITIAL.

START CONDITIONS
glex provides a mechanism for conditionally aeting rules. Any rule whose pattern is prefixed with
"<sc>" will only be actre when the scanner is in the start condition named 'Baexample,
<STRING>["* { (* eat up the string body ... *)
}

will be actve anly when the scanner is in the "STRING" start condition, and

Version 2.5 May 2000 11

GLEX(1) GLEX(1)

<INITIAL,STRING,QUOTE>\. { (* handle an escape ... *)

will be actve anly when the current start condition is either "INITIAL", "STRING", or "QUOTE".

Start conditions are declared in the definitions (first) section of the input using unindenteddinesge
with either%s or %x followed by a list of namesThe former declaresclusivestart conditions, the latter
exclusive start conditions.A start condition is actiated using theglex_beginfunction, e.g. glex_begin
(yyd, <sc>). Until the net glex_beginaction is a&ecuted, rules with the gén gart condition will be
active and rules with other start conditions will be inaeti If the start condition isnclusive,then rules
with no start conditions at all will also be aeti If it i s exclusive,thenonly rules qualified with the start
condition will be actre. A set of rules contingent on the sanxelesive dart condition describe a scanner
which is independent of grof the other rules in thglexinput. Becausef this, exclusive dart conditions
male it easy to specify "mini-scanners” which scan portions of the input that are syntacticiherdif
from the rest (e.g., comments).

If the distinction between inclug and exclusive dart conditions is still a little vague, hesead smple
example illustrating the connection between the.twheset of rules:

%s example
%%

<example>foo do_somethin@; continue
bar something_el9@; continue
is equiaent to

%x example
%%

<example>foo do_something; continue

<INITIAL,example>bar something_el§g continue
Without the<INITIAL,example> qualifier, the bar pattern in the second examplewidn't be active (.e.,
couldnt match) when in start conditicexample. If we just usedexample>to qualify bar, though, then it

would only be actie in exampleand not inINITIAL, while in the first example #'active in both, because
in the first example thexamplestartion condition is aimclusive(%s) start condition.

Also note that the special start-condition speci§i&® matches eery start condition. Thus, the ab®
example could also va been written;

%x example
%%

<example>foo do_somethin@; continue

<*>par something_elsg; continue

The default rule (to print gnunmatched character to stdout) remainsvadt gart conditions. It is equi
alent to:

<*>[\n #putstdout (glex_text yyd); continue

Version 2.5 May 2000 12

GLEX(1) GLEX(1)

glex_begin (yyd, O)returns to the original state where only the rules with no start conditions ar@ acti
This state can also be referred to as the start-condition "INITIALgleso begin (yyd, INITIAL) is equv-
alent toglex_begin (yyd, 0)

To illustrate the uses of start conditions, here is a scanner which proviegfarent interpretations of a
string like "123.456". Bydefault it will treat it as three tokens, the integer "123", a dot ('), and thgente
"456". Butif the string is preceded earlier in the line by the string "expect-floats" it will treat it as a single
token, the floating-point number 123.456 (seeefdlemple6.):

%s expect

%%
expect-floats ghe_begin (yyd, expect); continue

<expect>[0-9]+"."[0-9]+ {
#put stdout "Found a float, = ";
#put stdout (glex_text yyd);
#put stdout "\n";
#flush stdout ();
continue
}

<expect>\n {
(* that’s the end of the line, so
* we need another "expect-number"
* before we’ll recognize gnmore
* numbers
)
glex_begin (yyd, INITIAL);
continue

}

[0-9]+ {
#put stdout "Found an integer";
#put stdout (glex_text yyd);
#put stdout "\n";
#flush stdout ();
continue

}

{ #put stdout "Found a dot\n";
#flush stdout (); continue }

Here is a scanner which recognizes (and discards) C comments while maintaining a count of the current
input line. (See filexample7.l.) Note that the declaration the_num is at the bginning of what is ner

mally the rules sectionHowever, this declaration is indented, and this tegjflex to ouput it verbatim into
thelexyy.ml file. Theeffect is that this declares anableline_num, initialized toref 1, that will be seen

by all actions, but which will remain local to the generated scanner: it will be invisible from the outside.

%x comment
%%
va line_num =ref 1

e glex_begin (yyd, comment); continue

<comment>["*\n]* { (* eat anything tha not a ™’ *)

Version 2.5 May 2000 13

GLEX(1) GLEX(1)

continue }
<comment>"*"+[*A\n]* { (* eat up "*'s rot followed by '/'s *)
continue }
<comment>\n indine_num; continue
<comment>"*"+"/" gle_begin (yyd, INITIAL); continue

This scanner goes to a bit of trouble to match as muthagepossible with each rule. In general, when
attempting to write a high-speed scanner try to match as much possible in each rsle, @Eswiin.

Note that start-conditions names are reallygatevalues and can be stored as such. Thus, tive abald
be extended in the following fashion:

%x comment foo
%%
va line_num =ref 1
val comment_caller = ref INITIAL

" { comment_caller := INITIAL;
glex_begin (yyd, comment); continue }

<foo>"*" { comment_caller :=foo;
glex_begin (yyd, comment); continue }

<comment>["*\n]* { (* eat anything that not a ™’ *)
continue }

<comment>"*"+[*A\n]* { (* eat up "*'s rot followed by '/'s *)
continue }

<comment>\n indine_num; continue

<comment>"*"+"/" { glex_begin (yyd, lcomment_caller);
continue }

Furthermore, you can access the current start condition using teriméduedglex_start function. For
example, the abee assignments tcomment_callecould instead be written

comment_caller := glex_start yyd

Note that start conditions do notveatheir own name-space; %sind %x’s declare names in the same
fashion asval declarations.

Finally, heres an g&le of hav to match C-style quoted strings usingckisive dart conditions, includ-
ing expanded escape sequences (seex@mple9.|):

%{

exception Yyerr of string * string;

fun yyerr (yyd, msg, s) = (glex_begin (yyd, 0);
glex_flush (yyd, glex_current_buffer yyd);
raise Yyerr (msg, S));

fun read_octal (s, i, n) = ...

val yyvalue = ref ";
9%}

%X str

Version 2.5 May 2000 14

GLEX(1) GLEX(1)

%%
val string_buf = ref (outstring ");

\" { #seek (Istring_buf) 0; #truncate (!string_buf) ();
glex_begin (yyd, str); continue }

<str>\" { (* saw closing quote - all done *)
glex_begin (yyd, INITIAL);
(* return string constant token type and
*value to parser
")
yyvalue := #cowert (Istring_buf) ();
return 1

}

<str>\n {
(* error - unterminated string constant *)
(* generate error message *)
yyerr (yyd, "unterminated string constant", ")

}

<str>\\[0-7]{1,3} { (* octal escape sequence *)
let val yytext = glex_text yyd
val result = read_octal (yytext, 1,
size yytext)
in
if result > Oxff
then yyerr(yyd, "constant out of bounds: ",
yytext)
else #put (!string_buf) (chr result)
end; continue

}

<str>\\[0-9]+ {
(* generate error - bad escape sequence; something
*|ike \48 or \O777777
")
yyerr (yyd, "bad escape sequence", glex_text yyd)
}

<str>\\n #put(!string_buf) "\n"; continue
<str>\\t #put(!string_buf) "\t"; continue
<str>\\r #put(Istring_buf) "\"M"; continue
<str>\\b #puf(!string_buf) "\"H"; continue
<str>\\f #put(Istring_buf) "\f"; continue

<str>\\(.[\n) {#put (!string_buf)
(substr (glex_text yyd, 1, glex_length yyd));
continue }

<str>["\\n\"]+ #put(!string_buf) (glex_text yyd); continue

Note in passing that thgyerr function, which is meant to raise an exception when some syntactically

Version 2.5 May 2000 15

GLEX(1) GLEX(1)

incorrect text is encountered, caligex_beginto revert the scanner to th&NITIAL start condition.
Indeed, if an error is encountered while parsing a string, i.e. when the start conditipthis allows the
next call toyylex to continue scanning as though we hagmed to normal scanningOtherwise the scan-
ner will still expect to read in the rest of a stringote thatyyerr also callsglex_flushto discard an
unmatched input. Assuming the scanner is intaradhich it is by default), the e call will refill the
buffer by reading the next line.

Often, such as in some of the examplesvabgou wind up writing a whole bunch of rules all preceded by
the same start condition(sfzlex makes this a little easier and cleaner by introducing a notion of start con-
dition scope. A start condition scope is begun with:

<SCs>{

where SCsis a list of one or more start conditiontside the start condition scope/esy rule automati-
cally has the prefixSCs>applied to it, until &' which matches the initigl. So, for example,

<ESC>{
"\n" return"\n"
"\r" return"\"M"
"\ return "\f"
"\0" return"'\"@"

}

is equiaent to:

<ESC>"\n" returr\n"
<ESC>"\Wr" return'\"M"
<ESC>"\\" return\f"
<ESC>"\0" returi’\"@"

Start condition scopes may be nested.
Three routines arevailable for manipulating stacks of start conditions:

glex_push_state : glex_data * int -> unit;
Calling glex_push_state (yydnew_state) pushes the current start condition onto the top of the
start condition stack and switches mew_stateas though you had useglex_ begin (yyd,
new_statg (recall that start condition names are also integers).

glex_pop_state : glex_data -> unit;
Calling glex_pop_state yydpops the top of the stack and switches to itglex_begin. If the
stack was empfyt raises exceptioGlex 5instead.

glex_top_state : glex_data -> int;
Calling glex_top_state yydreturns the top of the stack without altering the stakitents. This
raisesGlex 5if the stack is empty.

The start condition stack grows dynamically and so has no built-in size limitation.

MULTIPLE INPUT BUFFERS
Some scanners (such as those which support “include" or "use" or "openVelrerinclude files) require
reading from seeral input streams.To this end,glex provides a mechanism for creating and switching
between multiple input bfdrs. Aninput buffer is created by using:

glex_buffer : glex_data
*|[get : int -> string,getline : unit -> string,... : 'a]|
-> glex_buffer

glex_huffer (yyd, stream)takes an internal scanner machine siatd and an input strearstream and

Version 2.5 May 2000 16

GLEX(1) GLEX(1)

creates aliffer associated with the\gn Sream. lItreturns an object of typglex_buffer, which may then
be passed to other routines (seeWwgloYou select a particular buffer to scan from using:

glex_switch : glex_data * glex_buffer -> unit

Calling glex_switch (yyd,new_buffer) switches the scannsrinput tuffer so subsequent tokens will come
from new_buffer.It is recommended to uggex_switchinsideyywrap to set things up for continued scan-
ning, when closing an included file. Note also that switching input sources via gligheswitch or
yywrap doesnot change the start conditiorYou can also clear the current contents of a buffer using:

glex_flush : glex_data * glex_buffer -> unit

This function discards theuffier's contents, so the next time the scanner attempts to matckraftokn the
buffer, it will first fill the buffer anev using glex_input Note thatglex_flushtakes two arguments. The
main argument is the second one, thids whose contents we wish to discard. So one may wondeawh
first argument of typelex_datais needed. The reason is that, after discarding the contetusfer,
glex_flush (yyd,buffer) examines whethebuffer is yyd's current luffer. If so, it tellsglex to refill the
buffer usingglex_input next time it is called.

Finally, the glex_current_buffer function returns an object of typgex_buffer, the current bffer of the
argument internal scanner machine statergas agument.

Here is anxample of using these features for writing a scanner which expands include files @emnfile
plel10.l; the<<EOF>> feature is discussed below):

%{
exception CannotOpen of string;
96}

(* the "incl" state is used for picking up the name
* of an include file
*)

%x incl

%{
val include_stack = ref (nil : glex_buffer list);
fun last (a:nil) = a

| last (_ :: rest) = last rest;

96}

%%

include gle_begin (yyd, incl); continue
[a-z]+ #putstdout (glex_text yyd); continue

[fa-zZ\\n]*\n? #putstdout (glex_text yyd); continue

<incl>[\f]* (* eat the whitespace *) continue
<incl>[" \t\n]+ {(* g ot the include file name *)

let val yytext = glex_text yyd

(* save yytext *)
in
include_stack := glex_current_buffer yyd
.2 linclude_stack;
let val yyin = infile yytext
in
glex_switch (yyd, glex_buffer (yyd, yyin));

Version 2.5 May 2000 17

GLEX(1) GLEX(1)

glex_begin (yyd, INITIAL);
continue
end handle 10 _ => (glex_begin (yyd, INITIAL);
glex_flush (yyd,
glex_current_buffer yyd);
(case linclude_stack of
nil => ()
| =
glex_switch (yyd,
last (linclude_stack)));
include_stack := nil;
raise CannotOpen yytext)
end

}

<<EOF>> {
case linclude_stack of
nil => yyterminate ()
| buf::rest =>
(glex_switch (yyd, buf);
include_stack := rest;
continue)

}

END-OF-FILE RULES
The special rule "<<EOF>>" indicates actions which are to ntaken an end-of-file is encountered and
yywrap() returndrue (i.e., indicates no further files to process). The action must finish by doing one of
three things:

- executing areturn statement;
- executing the speciatyterminate action; this actually doesturn 0 by default;
- or, switching to a ne buffer usingglex_switchas shown in the example algo

<<EOF>> rules may not be used with other patterny; iy only be qualified with a list of start condi-
tions. Ifan unqualified <<EOF>> rule isvgn, it applies taall start conditions which do not alreadywka
<<EOF>> actions.To ecify an <<EOF>> rule for only the initial start condition, use

<INITIAL><<EOF>>

These rules are useful for catching thinge likclosed comments. An example:

%X quote
%%

...other rules for dealing with quotes...

<quote><<EOF>> ({
error("unterminated quote");
yyterminate()
}
<<EOF>> {
case linclude_stack of
nil => yyterminate ()
| buf::rest =>

Version 2.5 May 2000 18

GLEX(1) GLEX(1)

(glex_switch (yyd, buf);
include_stack := rest;
continue)

}

MISCELLANEOUS FUNCTIONS

- glex_set_interactve : dex_data * bool -> unitcan be used to control whether the curreritel
is considerednhteractive. An interactve tuffer is processed slightly more slowly than a non-inter
active e, but must be used when the scamsnaput source is indeed intera&ito avoid prob-
lems due to waiting to fill liffers (see the discussion of theflag belav). A true value in the
macro ivocation marks theuffer as interactie, a zro value as non-interaeti glex_set_inter-
active must be imoked prior to beginning to scan theuffer that is (or is not) to be considered
interactve.

- glex_interactive : dex_data -> boolreturns whether the ygn machine state is interaeé a not.

- glex_set_bol : glex_data * bool -> unitan be used to control whether the curreriten’'s san-
ning context for the next tek match is done as though at the beginning of a Bngue macro
argument makes rules anchored with

- glex_at_bol : glex_data -> booteturnstrue if the next token scanned from the curreuffdr will
have ™ rules actve, false otherwise.

- glex_text : glex_data -> stringreturns the text of the current ®k Thevalue returned by
glex_textmay change after calls to other scanner functions.

- glex_length : glex_data -> intreturns the length of the current &k glex_length yydis the
same as callingize (glex_text yyd)except it is faster.

- glex_current_huffer : glex_data -> glex_luffer returns the currentuffer associated with the
given scanner machine state.

- glex_loc : glex_data -> intarrayreturns a mutable array of 4 igrs (start line, start position,
end line, end position) giving the location of the current scanned token in the cuffenabsoci-
ated with the gien scanner machine state.

- glex_start : glex_data -> initreturns an integeralue corresponding to the current start condition.
You can subsequently use this value wiflex_begin : glex_data * int -> unitto return to that
start condition.

INTERFACING WITH GY ACC
One of the main uses gfexis as a companion to tlgg/accparser-generatorgyaccparsers expect to call
a ganning routine to find the reinput tolen. Thisroutine is gien as £cond argument to thgyyacc_data
function, which builds an initial parser machine stafbis scanning routine may be named as you wish;
glexwill provide one calledrylex Theyylex routine is supposed to return the type of the next token as well
as putting ay associated value in some referenygdval that is gven as burth agument togyacc_data.
To useglex with gyacc,you hae o be avare thatgyaccgenerates a filparse_tab_h.mlfrom the gram-
mar file parse.y. The parse_tab_h.mlcontains definitions of all th&tokens appearing in thegyacc
input. You should then writepen parse_tab_hin the declarations section of tiyeex scanner to makit
awae of all the%tokens that should be returned to thgaccgenerated parsefFor example, if one of the
tokens is "TOK_NUMBER", part of the scanner might look like:

%{

open "parse_tab_h";
96}

%%

[0-9]+ yyvalue = glex_text yyd; return TOK_NUMBER

Version 2.5 May 2000 19

GLEX(1) GLEX(1)

- Glex : int -> exnis the constructor for all exceptions returnedglgx generated scanneré text
explanation of anjeeptionGlex n can be obtained by callirglexmsgn. For example,glexmsg
2 returnsscanner input buffer overflow .

OPTIONS
glexhas the following options:
-h generates a "help" summary giex’s options tostdoutand then ®its. —? and-——help are syn-
onyms for-h.

=i instructsglex to generate &ase-insensitivescanner The case of letters\gn in the glex input
patterns will be ignored, and tokens in the input will be matchgaldiess of case. The matched
text given in glex_text yydwill have te preserved case (i.e., it will not be folded).

=S causes théefault rule(that unmatched scanner input is echoestdout)to be suppressed. If the
scanner encounters input that does not matglofits rules, it raises thexeeptionGlex 8 (scan-
ner jammed). This option is useful for finding holes in a scasnde set.

-t instructsglex not to provide a default definition for tygterminate function. Thedefault defini-
tion is to returnrSOME 0. The tolen O is interpreted bygyaccgenerated parsers as meaning end-
of-file. The-t option is useful to detect unmatched end-of-file conditions, or to produce a scanner
returning tokens of type other tham.

-V specifies thaglex should write tostderr a summary of statistics garding the scanner it generates.
Most of the statistics are meaningless to the cagaaluser but the first line identifies theevsion
of glex (same as reported byV), and the next line the flags used when generating the scanner
including those that are on by default.

-w suppresses warning messages.

-L instructsglex to generatetline directives. (Thisis the opposite oflex’'s behavior) With this
option, glex peppers the generated scanner with #line direcg8o eror messages in the actions
will be correctly located with respect to either the origigiak input file (if the errors are due to
code in the input file), dexyy.ml (if the errors arglex’s fault -- you should report these sorts of
errors to the email addresv@i below). However, snce GimML does not about #line diregts,
this option is dfby default.

-T makesglex run intrace mode. Itwill generate a lot of messagesstolerr concerning the form of
the input and the resultant non-deterministic and deterministic finite automata. This option is
mostly for use in maintaininglex.

-V prints the version number gidoutand exits.——versionis a synonym fof-V.

—ooutput
directs gl to write the scanner to the fiutput instead ofexyy.ml.

—Pprefix
changes the daifilt yy prefix used byglex for all globally-visible variable and function names to
instead beprefix. This actually only applies tgylex. For example,—Pfoo changes the name of
yylex to foolex. It does not change the name of the default output file: yea bause the-o
option to do this.

This option lets you easily link together multigleex programs into the sameaegutable.

glex also pra@ides a mechanism for controlling options within the scanner specification itself, rather than
from the gl& command-line. Thiss done by includingooption directives in the first section of the scan-

ner specification.You can specify multiple options with a singf&option directive, and multiple directres

in the first section of your gtanput file.

Most options are gen Smply as names, optionally preceded by trerdv'no” (with no intervening white-
space) to rgete their meaning A number are equélent to flex flags or their ngetion:

caseful or

Version 2.5 May 2000 20

GLEX(1) GLEX(1)

case-sensite qposite of -i (default)

case-insensie a
caseless -option

default oppositef -s option
verbose -voption
warn oppositeof -w option

(use "%option navarn” for -w)

Two options tak gring-delimited values, offset with '=":
%option outfile="ABC"

is equialent to-oABC, and
%option prefix="XYZ"

is equiaent to-PXYZ.

PERFORMANCE CONSIDERATIONS
One area where the user can increase a scafmrgormance arises from the fact that the longer therntsk
matched, the faster the scanner will rurhis is because with long tokens the processing of most input
characters takes place in the (short) inner scanning loop, and does not wftdm d@hrough the addi-
tional work of setting up the scanningvennment (e.g.glex_text yyd)for the action. Recall the scanner
for C comments:

%x comment
%%
va line_num =ref 1

e glex_begin (yyd, comment); continue

<comment>["*\n]* { (* eat anything tha$ not a ™’ *)
continue }

<comment>"*"+[*A\n]* { (* eat up "*'s rot followed by '/'s *)
continue }

<comment>\n indine_num; continue

<comment>"*"+"/" gle_begin (yyd, INITIAL); continue

This could be sped up by writing it as:

%x comment
%%
va line_num =ref 1

e glex_begin (yyd, comment); continue

<comment>["*\n]* { (* eat anything tha not a ™’ *)
continue }

<comment>["*\n]*\n incline_num; continue

<comment>"*"+["*\n]* continue

<comment>"*"+["*\n]*\n inc line_num; continue

<comment>"*"+"/" gle_begin (yyd, INITIAL); continue

Version 2.5 May 2000 21

GLEX(1) GLEX(1)

Now instead of each mdine requiring the processing of another action, recognizing the newlines is "dis-
tributed" over the other rules to keep the matched text as long as possible. Naddiragrules doesot

slow down the scanner! The speed of the scanner is independent of the number of rules or (modulo the
considerations gen a the beginning of this section) Wacomplicated the rules are withgad to operators

such as ™ and ’|".

A final note:glexis slav when matching NUk (the character \"@, of code 0), particularly when amok
contains multiple NUk. It's best to write rules which matathort amounts of text if i anticipated that
the text will often include NUE.

Another final note garding performance: as mentioned abadn the section Ha the Input is Matched,
dynamically resizing the inputuffer to accommodate huge tokens is avsppocess because it presently
requires that the (huge) token be rescanned from tarbeg. Thusf performance is vital, you should
attempt to match "lge" quantities of text but not "huge" quantities, where the fchétiveen the twis &
about 8K characters/token.

DIAGNOSTICS
warning, rule cannot be malted indicates that the gén rule cannot be matched because it follows other
rules that will alvays match the same text as For example, in the following "foo" cannot be matched
because it comes after an identifier "catch-all" rule:

[a-z]+ got_identifier()
foo got_foo()

warning,—s option given bt default rule can be matedmeans that it is possible (perhaps only in a partic-
ular start condition) that the default rule (matcly gingle character) is the only one that will match a par
ticular input. Since-swas gven, presumably this is not intended.

warning all start conditions already have <<EOF>> rulesneans that you ka fied to specify an
<<EOF>> rule for all start conditions which ditlhaveone yet. But you hae in fact specified <<EOF>>
rules for all start conditions.

warning, <start-condition> specified twiceself-explanatory.

warning, trailing context made variable due togmeding ’|' action:glex cannot cope with variable trailing
contet rules. The latter are rules of the forfa wherer ands match text of non-fixed length. The use of
a’|' action together with trailing conterules maksglex think that thg may be variable trailing conte
rules. Se¢he Deficiencies / Bugs section b&lo

no action found {exceptionGlex 0) An internal error in the generated scanner occurred: it reached a state
for which no actionx@sts. Thismeans there is a bug in th@yglex generates its tables, typically; this is
not meant to happen.

end of lbiffer missed {exceptionGlex 1) In old version ofglex, this might hae accurred in a scanner
which is reentered after an exception has been raised from a ssamntien but not caught. This should
not happen anlonger.

scanner input bffer overflow {exceptionGlex 2) This should not happen, and means that the scanner did
not manage to allocate its inputffer. This should not happen, since memory allocatioveys succeeds
in GimML.

(exceptionGlex 3) You usedglex_unputto push back so much text that the scamsrtiffer could not hold
both the pushed-back text and the curren¢ok the input bffer. Ideally the scanner should dynamically
resize the buffer in this case, but at present it does not.

(exceptionGlex 4) This should not happen, and means that the scanner did not manage to reallocate its
start-condition stack. This should not happen, since memory allocatieysaducceeds in GimML.

start-condition stak underflow -(exceptionGlex 5) glex_pop_stateor glex_top_statewas alled while
the start-condition stack was empty.

less on negative argument(exceptionGlex 6) glex_lesswas clled on a strictly rgative agument.

Version 2.5 May 2000 22

GLEX(1) GLEX(1)

Although glex itself may generate calls glex_lessin the case of trailing context rules, this can only be
raised by calls tglex_lessyou did yourself, unlesglexis buggy.

less on agument>glex_lengttiexceptionGlex 7) glex_lesavas clled on an argument that exceeds the
length of the matched input. The same comment as for the previous exception applies.

scanner jammed (exceptionGlex 8) a anner compiled with-s has encountered an input string which
wasn't matched by ayof its rules. This error can also occur due to internal problems.

FILES
lexyy.ml
generated scanner.

DEFICIENCIES / BUGS
Some trailing contd patterns cannot be properly matched and generate warning messages ("Variable trail-
ing context rule at line <n>: please reake head contant-length or remeothe trailing context (after rule
matches the lggnning of the second part, such as "zx*/xy*", where the 'x* matches the 'x’ at tia-be
ning of the trailing contd. (Notethat the POSIX draft states that thattenatched by such patterns is
undefined.)

glexdoes not kne how to match aw trailing contet r/s where either ands may both match text of non-
fixed lengths.flex would be able to match some of these so-caliadable trailing contet rules, at the
price of incurring a great slow-down in the generated scanner.

Furthermore, for some trailing comterules, parts which are actually fixed-length are not recognized as
such, leading to the abementioned error message. In particufsrts using ’|’ or {n} (such as "foo{3}")
are alvays considered variable-length.

Combining trailing context with the special ’|' action can resulfixed trailing contet being turned into
the erroneousariabletrailing contet. For example, in the following:

%%
abc |
xyz/def

Use ofglex_unputinvalidatesglex_textandglex_length.
Patern-matching of NUIs is aubstantially slower than matching other characters.

Dynamic resizing of the inputulffer is slav, as it entails rescanning all the text matched so far by the cur
rent (generally huge) token.

Due to both bffering of input and read-ahead, you cannot intermix calls to GimML input routireegelik
or getline on the same input file as the one that the generated scanner is reading, and expedt. itGalv
glex_inputinstead.

The total table entries listed by the flag excludes the number of table entries needed to determine what
rule has been matched. The number of entries is equal to the numbek sbis.

The glexinternal algorithms, which are also thosefleik,need documentation.

SEE ALSO
flex(1), lex(1), yacc(1), sed(1), awk(1).

John Levine, dny Mason, and Doug Bwen, Lex & Yacc, O'Reilly and Associates. Be sure to get the 2nd
edition.

M. E. Lesk and E. Schmidt,EX — Lexical Analyzer Generator

Alfred Aho, Ravi Sethi and Jdfey Ullman, Compiless: Principles, €hniques and dols, Addison-Wesley
(1986). Describethe pattern-matching techniques usedflex (deterministic finite automata).

Version 2.5 May 2000 23

GLEX(1) GLEX(1)

AUTHOR
Jean Goubault-Larrecq, by modifying the sourcieot.

flex was aeated by Vern Paxson, with the help of maeas and much inspiration from Van Jacobson.
Original \ersion by Jef PoskanzeThe fast table representation (not usedlex) is a partial implementa-
tion of a design done by Van Jacobson. The implementation was doreihyGong and Vern Paxson.

Thanks to the manflex beta-testers, feedbackers, and contributors, especially Francois Pinayd, €ase
dom, Robert Abramovitz, Stan Adermann, Terry AllenyiDa&Barker-PlummeyrJohn Basrai, Neal Beek,
Nelson H.FBeebe, benson@odi.com, Karl BerPgter A. Bigot, Simon Blanchard, Keith Bostic, Frederic
Brehm, lan Brockbank, Kin Cho, Nick ChristophBrian ClapperJ.T. Conklin, Jason Coughlin, Bill Cox,
Nick CropperDaveCurtis, Scott David Daniels, Chris G. Demetriou, Theo Deraadte Mdnahue, Chuck
Doucette, Tom EpperlyLeo Eskin, Chris &ylor, Chris Flatters, Jon Forrest, frefy Friedl, Joe Gayda,
Kaveh R. Ghazi, Wlfgang Glunz, Eric Goldman, Christopher M. Gould, Ulrich Grepel, Peer Griebel, Jan
Hajic, Charles Hemphill, NOB Hideo, Jarkk Hietaniemi, Scott Hofmann, Jefionig, Dana Hudes, Eric
Hughes, John Interrante, Ceriel Jacobs, Michal Jaegermann, Sakssatgladdiey R. Jones, Henry
Juengst, Klaus Kaempf, Jonathan I. Kamens, Terrence O Kane, Amir Ea@/dn.hilco.com, kvin B.
Kenny, Seve Kirsch, Winfried Koenig, Marq Kole, Ronald Lamprecht, Giece, Rohan Lenard, Craig
Leres, John Levine, Ste Liddle, David Loffredo, Milke Long, Mohamed el LozyBrian Madsen, Malte,
Joe Marshall, Bengt Martensson, Chris Metcalf, & dlewburn, Jim Meyering, R. Alexander Mitgski,
Erik Naggum, G.TNicol, Landon Noll, James NordpbMarc Nozell, Richard Ohnemus, KarsteshRke,
Swven Panne, Roland Peschak®r Pelissero, Gaumond Pierre, Esmond Pitt, Jef PoskaoeeRahmeh,
Jarmo Raiha, Frederic Raimbault, Pat Rankin, Rick Richardsewin IRodgers, Kai Uwe Rommel, Jim
Roskind, Alberto Santini, Andreas Schet@arrell Schiebel, Raf Schietekat, Doug Schmidt, Philippe Sch-
noebelen, Andreas Schwab, Larry Schwimn#dex Siegel, Eckehard Stolz, Jan-Erik Strvmquist, ®lik
Stump, Paul Stuart, Da Tallman, lan Lance dylor, Chris Thevalt, Richard M. Tmoney, Jodi Tsai, Rwul
Tuinena, Gary Veik, Frank Whalg, Gerhard Wilhelms, Kent Williams, Ken Yap, Ron Zell&tathan
Zelle, David Zuhn, and those whose namesgeldipped my marginal mail-archiving skills but whose con-
tributions are appreciated all the same.

Thanks to Keith Bostic, Jon Forrest, Noah Friedman, John Gilmore, Craig Leres, John Levine, Bob Mulc-
ahy, G.T. Nicol, Francois Pinard, Rich Salz, and Richard Stallman for help véitious distrilition
headaches.

Thanks to Esmond Pitt and Earle Horton for 8-bit character support; to Bensgulistaand Fred Buek
for C++ support; to Knt Williams and Tom Epperly for C++ class support; t@ Gwerlid for support of
NUL's; and to Eric Hughes for support of multiple buffers.

This work was primarily done when | was with the Reiahd Systems Group at the Lawrence Bdei
Laboratory in Berkelg CA. Many thanks to all there for the support | raeei.

Send comments to Jean.Goubault@dyade.fr (or to vern@eexlfbrgrcomments about flex).

Version 2.5 May 2000 24

