DM Programmation I (2016-17)

Nous allons revenir au langage jouet IMP du cours :

Les variables sont supposées en nombre fini, et seront numérotées x_1, x_2, \ldots, x_n .

On cherche à déterminer des intervalles de variation possibles des variables à travers l'exécution d'un programme. Pour ceci, on va considérer une sémantique dénotationnelle \ll quotient \gg .

On note \mathcal{I} l'ensemble contenant l'élément spécial \bot , plus tous les couples (a,b), où $a,b \in \mathbb{Z} \cup \{-\infty,+\infty\}$, et a+1 < b. On peut penser au couple (a,b) comme à une notation représentant l'intervalle d'entiers]a,b[(= $\{c \in \mathbb{Z} \mid a < c < b\}$), et à \bot comme à un symbole qui signifie l'intervalle vide.

On ordonne \mathcal{I} par $v \leq w$ ssi :

```
\begin{split} &-v=\bot,\\ &-\text{ou }v=(a,b),\,w=(c,d),\,\text{et }a\geq c,\,b\leq d. \end{split}
```

Définissons l'addition dans \mathcal{I} par :

```
-\perp + v = v + \perp = \perp pour tout v \in \mathcal{I};
```

— (a,b)+(c,d)=(a+c,b+d) (on conviendra que $(-\infty)+c=-\infty$ et $b+(+\infty)=(+\infty)$; noter que l'on n'aura jamais à calculer l'expression absurde $(-\infty)+(+\infty)$, au vu des contraintes de formation des éléments de \mathcal{I}).

Similairement, définissons l'opposé dans \mathcal{I} par : $-\perp = \perp$, -(a,b) = (-b,-a) sinon.

- 1. \mathcal{I} est un treillis complet, autrement dit toute famille d'éléments a une borne supérieure et une borne inférieure, comme il est facile de le voir. Comment est définie l'opération \vee , borne supérieure de deux éléments? (Oui, $v \vee w$ est le plus petit des majorants de $\{v, w\}$. Je veux une définition explicite, avec analyse des différents cas possibles.)
- 2. \mathcal{I}^n , l'ensemble des *n*-uplets d'éléments de \mathcal{I} , avec l'ordre composante par composante, est-il : (a) un dcpo? (b) un treillis complet?

On identifiera \mathcal{I}^n à l'espace des fonctions de l'ensemble des variables vers \mathcal{I} , c'est-à-dire aux environnements « quotients ». Pour $\eta \in \mathcal{I}^n$, $\eta(x_i)$ sera donc la *i*ème composante du n-uplet η .

On étend la notation \vee aux environnements par : $\eta \vee \eta'$ envoie toute variable x vers $\eta(x) \vee \eta'(x)$.

3. Une fonction monotone $F: \mathcal{I}^n \to \mathcal{I}^n$ est dite *inflationnaire* si et seulement si $\eta \leq F(\eta)$ pour tout η . Pour toute fonction inflationnaire F, pour tout $\eta_0 \in \mathcal{I}^n$, montrer que F a plus petit point fixe $\geq \eta_0$. A titre d'indication, considérez la fonction F' définie par $F'(\eta) = \eta_0 \vee F(\eta)$.

On notera dans la suite $lfp_n(F)$ ce plus petit point fixe de F au-dessus de η .

La sémantique quotient Q[e] des expressions e prend un environnement quotient η , et retourne une valeur dans \mathcal{I} , selon les clauses :

$$Q[x]\eta = \eta(x)$$

$$Q[\dot{n}]\eta = (n-1, n+1)$$

$$Q[e_1 + e_2]\eta = Q[e_1]\eta + Q[e_2]\eta$$

$$Q[\dot{-}e]\eta = -Q[e]\eta$$

La sémantique quotient $Q[\![c]\!]$ des commandes c prend un environnement quotient η , et retourne un nouvel environnement quotient, selon les règles :

$$Q[\![x := e]\!] \eta = \eta \vee \eta[x \mapsto Q[\![e]\!] \eta]) \tag{1}$$

$$Q[\![\mathtt{skip}]\!]\eta = \eta \tag{2}$$

$$Q[[c_1; c_2]] \eta = Q[[c_2]] (Q[[c_1]] \eta)$$
(3)

$$Q[\![c_1; c_2]\!]\eta = Q[\![c_2]\!](Q[\![c_1]\!]\eta)$$

$$Q[\![if e \text{ then } c_1 \text{ else } c_2]\!]\eta = \begin{cases} \eta & \text{si } Q[\![e]\!]\eta = \bot \\ Q[\![c_2]\!]\eta & \text{si } Q[\![e]\!]\eta = (-1, 1) \\ Q[\![c_1]\!]\eta & \text{si } Q[\![e]\!]\eta = (a, b) \text{ avec } a \ge 0 \text{ ou } b \le 0 \end{cases}$$

$$Q[\![c_1]\!]\eta \lor Q[\![c_2]\!]\eta \text{ sinon}$$

$$Q[\![c_1]\!]\eta \lor Q[\![c_2]\!]\eta \text{ sinon}$$

$$Q[\![c_1]\!]\eta \lor Q[\![c_2]\!]\eta \text{ sinon}$$

$$Q[[\mathtt{while}\,e\,\operatorname{do}\,c]]\eta = \operatorname{lfp}_{\eta}(F_{e,c}) \tag{5}$$

où $F_{e,c} \colon \mathcal{I}^n \to \mathcal{I}^n$ est la fonction suivante :

$$F_{e,c}(\eta') = \begin{cases} \eta' & \text{si } Q\llbracket e \rrbracket \eta' = \bot \text{ ou } Q\llbracket e \rrbracket \eta' = (-1,1) \\ \eta' \vee Q\llbracket c \rrbracket \eta' & \text{sinon.} \end{cases}$$

On souhaite montrer que cette définition est sensée.

4. En supposant que $Q[\![e]\!]$ et $Q[\![c]\!]$ sont déjà définies et monotones en leur argument η , montrez que $F_{e,c}$ est inflationnaire de \mathcal{I}^n vers \mathcal{I}^n . N'oubliez pas de démontrer la monotonie d'abord.

$$\frac{(c_1,\rho)\to\rho[x\mapsto \llbracket e\rrbracket \rho]}{(c_1;c_2,\rho)\to\rho(c_2,\rho')} (\to Seq_{fin}) \qquad \frac{(c_1,\rho)\to(c_1',\rho')}{(c_1;c_2,\rho)\to(c_1';c_2,\rho')} (\to Seq)$$

$$\frac{(if\ e\ then\ c_1\ else\ c_2,\rho)\to(c_1,\rho)}{si\ \llbracket e\rrbracket \rho\neq 0} (\to while) \qquad \frac{(c_1,\rho)\to(c_1',\rho')}{(c_1;c_2,\rho)\to(c_1';c_2,\rho')} (\to Seq)$$

$$\frac{(if\ e\ then\ c_1\ else\ c_2,\rho)\to(c_2,\rho)}{si\ \llbracket e\rrbracket \rho\neq 0} (\to while) \qquad (while\ e\ do\ c,\rho)\to\rho \qquad (o\ while_{fin})$$

$$si\ \llbracket e\rrbracket \rho\neq 0 \qquad \qquad si\ \llbracket e\rrbracket \rho=0 \qquad$$

FIGURE 1 – Une sémantique opérationnelle à petits pas de IMP

5. La question 3 permet donc d'en conclure que Q[[while e do c]] est bien définie. Pourquoi ceci définit-il bien une fonction monotone de \mathcal{I}^n dans \mathcal{I}^n ? Autrement dit, supposons $\eta \leq \eta'$, alors pourquoi a-t-on $lfp_{\eta}(F_{e,c}) \leq lfp_{\eta'}(F_{e,c})$? On montrera, plus généralement, que si F est une fonction inflationnaire d'un treillis complet L dans lui-même (par exemple $F_{e,c}$, mais pas uniquement), et si $\eta \leq \eta'$, alors $lfp_{\eta}(F) \leq lfp_{\eta'}(F)$.

A partir de ces considérations, on peut démontrer que $Q[\![c]\!]$ est bien définie pour toute commande c. On peut aussi démontrer que c'est une fonction Scott-continue de \mathcal{I}^n vers \mathcal{I}^n . Parmi ce qu'il faut démontrer dans ce but, on trouver les trois questions suivantes.

- 6. Montrer que la fonction $+: \mathcal{I} \times \mathcal{I} \to \mathcal{I}$ est Scott-continue. En clair, vous devrez montrer que : (a) + est monotone, (b) pour toute famille dirigée $(v_i, w_i)_{i \in I}$ de couples d'éléments de \mathcal{I} , $\sup_{i \in I} (v_i + w_i) = (\sup_{i \in I} v_i) + (\sup_{i \in I} w_i)$. On pourra utiliser sans démonstration les résultats suivants caractérisant les bornes supérieures de familles dirigées $(v_i)_{i \in I}$ dans \mathcal{I} : si tous les v_i sont égaux à \bot , alors $\sup_{i \in I} v_i = \bot$; sinon, écrivons v_i sous la forme (a_i, b_i) pour tout $i \in I$ tel que $v_i \neq \bot$, alors $\sup_{i \in I} v_i = (\inf_{i \in I, v_i \neq \bot} a_i, \sup_{i \in I, v_i \neq \bot} b_i)$, où les infs et les sups dans la dernière expression sont pris dans $\mathbb{Z} \cup \{-\infty, +\infty\}$ muni de son ordre usuel $(-\infty \le \cdots \le -3 \le -2 \le -1 \le 0 \le 1 \le 2 \le 3 \le \cdots \le +\infty)$.
- 7. Montrer que la fonction $-: \mathcal{I} \to \mathcal{I}$ est Scott-continue.
- 8. Montrer que, si F est une fonction inflationnaire et Scott-continue de \mathcal{I} dans \mathcal{I} , alors la fonction qui à $\eta \in \mathcal{I}$ associe $\mathrm{lfp}_{\eta}(F)$ est encore Scott-continue.

On peut en déduire que $Q[\![c]\!]$ est Scott-continue, par récurrence sur la taille de c, en faisant une récurrence auxiliaire pour démontrer que $Q[\![e]\!]$ est Scott-continue pour toute expression e. Le cas où e est une addition est traité par la question 6, le cas où e est un opposé par la question 7. Le cas où e est une boucle while est traité par la question 8. Nous ne demandons pas de faire la démonstration complète, et admettrons dans la suite que $Q[\![e]\!]$ est Scott-continue.

Nous utilisons désormais une sémantique opérationnelle à petits pas de IMP—la première des notes de cours. Les règles sont en figure 1; ρ y dénote un environnement (réel).

Pour toute commande c, et tout ensemble \mathcal{E} d'environnements (réels), disons que l'environnement ρ' est accessible depuis c et \mathcal{E} si et seulement s'il existe un environnement (réel) ρ , dans \mathcal{E} , tel que $(c, \rho) \to^* \rho'$ ou bien $(c, \rho) \to^* (c', \rho')$ pour une certaine commande c'. On

notera $X[\![c]\!]\mathcal{E}$ l'ensemble des environnements accessibles depuis c et \mathcal{E} . On a les relations :

$$X[x := e] \mathcal{E} = \mathcal{E} \cup \{ \rho[x \mapsto [e] \rho] \mid \rho \in \mathcal{E} \}$$
 (6)

$$X[\![\mathtt{skip}]\!]\mathcal{E} = \mathcal{E} \tag{7}$$

$$X[c_1; c_2] \mathcal{E} = X[c_2] (X[c_1] \mathcal{E})$$
 (8)

$$X[\![\text{if } e \text{ then } c_1 \text{ else } c_2]\!] \mathcal{E} = \mathcal{E} \cup X[\![c_2]\!] \{ \rho \in \mathcal{E} \mid [\![e]\!] \rho = 0 \}$$

$$\tag{9}$$

$$\bigcup X[[c_1]] \{ \rho \in \mathcal{E} \mid [[e]] \rho \neq 0 \}$$

$$X[\text{while } e \text{ do } c]\mathcal{E} = \operatorname{lfp}_{\mathcal{E}}(\Phi_{e,c})$$
 (10)

où $\Phi_{e,c}$ est la fonction définie par :

$$\Phi_{e,c}(\mathcal{E}') = \mathcal{E}' \cup X[\![c]\!] \{ \rho \in \mathcal{E}' \mid [\![e]\!] \rho \neq 0 \}$$

et l'on rappelle que lfp $_{\mathcal{E}}$ désigne l'opérateur plus petit point fixe au-dessus de \mathcal{E} . Ici, \mathcal{E} , \mathcal{E}' appartiennent au treillis complet dcpo $\mathbb{P}(Env)$ des ensembles d'environnements (réels), ordonné par inclusion \subseteq .

On ne demandera pas de démontrer ces égalités... sauf la dernière. C'est le sujet des deux questions qui viennent.

9. Montrer que la fonction $filt: \mathcal{E}' \mapsto \{\rho \in \mathcal{E}' \mid \llbracket e \rrbracket \rho \neq 0\}$ est Scott-continue. On pourra utiliser sans preuve que le supremum $\sup_{i \in I} \mathcal{E}_i$ dans $\mathbb{P}(Env)$ est l'union $\bigcup_{i \in I} \mathcal{E}_i$.

Au vu de la définition de $X[\![c]\!]\mathcal{E}$ comme ensemble de traces accessibles, il n'est pas trop difficile de démontrer que $X[\![c]\!]$ est Scott-continue. Comme toute composée de fonctions Scott-continues est Scott-continue, et que la fonction \cup est trivialement Scott-continue, on en déduit que $\Phi_{e,c}$ est elle aussi Scott-continue. Je n'en demande pas de démonstration plus détaillée.

10. On admet qu'on peut démontrer que $X[while e do c]\mathcal{E}$ est égal à $\mathcal{E}_0 \cup \mathcal{E}_1 \cup \cdots \cup \mathcal{E}_n \cup \cdots$, où la suite \mathcal{E}_n est définie par :

$$\mathcal{E}_0 = \mathcal{E}$$

$$\mathcal{E}_{n+1} = \mathcal{E}_n \cup X[\![c]\!] \{ \rho \in \mathcal{E}_n \mid [\![e]\!] \rho \neq 0 \}$$

A partir de cette observation, démontrer l'égalité (10).

Nous pouvons désormais admettre la validité des équations (6) à (10).

On définit la fonction γ de \mathcal{I} vers $\mathbb{P}(\mathbb{Z})$: $\gamma(\perp) = \emptyset$, $\gamma((a,b))$ est l'intervalle entier]a,b[(ouvert, et non vide).

Réciproquement, pour toute partie E de \mathbb{Z} , on définit $\alpha(E) \in \mathcal{I}$ par : $\alpha(\emptyset) = \bot$, et si E est non vide, alors $\alpha(E) = (\inf E - 1, \sup E + 1)$. (Les infs et sups sont de nouveau calculés dans $\mathbb{Z} \cup \{-\infty, +\infty\}$, et $(-\infty) - 1 = (-\infty)$, $(+\infty) + 1 = +\infty$.)

On vérifie aisément que α et γ sont deux fonctions monotones, lorsque $\mathbb{P}(\mathbb{Z})$ est ordonné par l'ordre d'inclusion \subseteq . On peut aussi vérifier que $\alpha(\gamma(v)) = v$ pour tout $v \in \mathcal{I}$ et que $E \subseteq \gamma(\alpha(E))$ pour toute partie E de \mathbb{Z} .

11. En déduire que, pour tout $v \in \mathcal{I}$, pour tout $E \in \mathbb{P}(\mathbb{Z})$, $\alpha(E) \leq v$ ssi $E \subseteq \gamma(v)$. Si l'une de ces inégalités équivalentes est vérifiée, on dira que v représente correctement l'ensemble E.

On généralise cela aux environnements : un environnement quotient η représente correctement un ensemble \mathcal{E} d'environnements (réels) si et seulement si $\eta(x)$ représente correctement $\{\rho(x) \mid \rho \in \mathcal{E}\}$ pour toute variable x.

On admettra que si η représente correctement \mathcal{E} , alors pour toute expression e, $Q[\![e]\!]\eta$ représente correctement $\{[\![e]\!]\rho \mid \rho \in \mathcal{E}\}$.

- 12. Soit c une commande, et supposons que pour tout environnement quotient η' et tout ensemble \mathcal{E}' d'environnements (réels) tels que η' représente correctement \mathcal{E}' , $Q[\![c]\!]\eta'$ représente correctement $X[\![c]\!]\mathcal{E}'$.
 - Montrer que, pour tous η et \mathcal{E} , si η représente correctement \mathcal{E} , alors $Q[[\text{while } e \text{ do } c]]\eta$ représente correctement $X[[\text{while } e \text{ do } c]]\mathcal{E}$.
- 13. La similarité entre la définition de $Q[\![c]\!]\rho$ est les équations caractérisant $X[\![c]\!]\mathcal{E}$ nous permettent de démontrer que pour tous η et \mathcal{E} , si η représente correctement \mathcal{E} , alors $Q[\![c]\!]\eta$ représente correctement $X[\![c]\!]\mathcal{E}$. Nous avons déjà traité le cas de la boucle while à la question 12. Cette démonstration s'effectue par récurrence, mais sur quoi?
- 14. Poursuivons la question précédente. Le lemme à prouver dans le cas de la boucle while a été décrit à la question 12. Dans le cas de l'affectation, quel lemme devons-nous prouver?
- 15. Prouvez ce lemme.

Les cas des autres constructions du langages ne seront pas traitées ici. Tout fonctionne : si η représente correctement \mathcal{E} , alors $Q[\![c]\!]\eta$ représente correctement $X[\![c]\!]\mathcal{E}$.

- 16. On peut penser calculer $Q[\![c]\!]\eta$ par récurrence sur la structure de c, en suivant les équations (1) à (5). Pour cette dernière, on peut calculer $\mathrm{lfp}_{\eta}(F_{e,c})$ par itérations de Kleene: comme la borne supérieure de η , $F_{e,c}(\eta)$, $F_{e,c}^2(\eta)$, etc., en calculant $\eta_0 = \eta$, $\eta_{n+1} = F_{e,c}(\eta_n)$, et en s'arrêtant à la première étape n où $\eta_{n+1} = \eta_n$. Montrer que ceci ne termine pas, en exhibant un programme while e do c adéquat.
- 17. Pour corriger ce problème, je propose de remplacer $F_{e,c}$ dans (5) par $F'_{e,c}$ (autrement dit je remplace la définition de $Q[[\mathbf{while}\ e\ \mathbf{do}\ c]]\eta$ par $\mathrm{lfp}_{\eta}(F'_{e,c})$), définie comme suit :

$$F_{e,c}'(\eta') = \begin{cases} \eta' & \text{si } Q[\![e]\!] \eta' = \bot \text{ ou } Q[\![e]\!] \eta' = 0 \\ \eta' \nabla Q[\![e]\!] \eta' & \text{sinon.} \end{cases},$$

où l'opération ∇ est définie par : $\bot \nabla v = v, \ v \nabla \bot = v, \ (a,b) \nabla (c,d)$ est égal à (a',b') où a' = a si $c \ge a, \ a' = -\infty$ sinon, et b' = b si $d \le b, \ b' = +\infty$ sinon.

Pourquoi le calcul de $\operatorname{lfp}_{\eta}(F'_{e,c})$ par itérations de Kleene termine-t-il? Pourquoi, avec la nouvelle définition, $Q[\![c]\!]\eta$ représente-t-il toujours correctement $X[\![c]\!]\mathcal{E}$ pour toute commande c?

C'est un exemple simple d'interprétation abstraite, une technique d'analyse statique de programmes, donnant des informations sur les valeurs calculées par le programme sans avoir à l'exécuter.