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Today

“ Sipser’s coding lemmas
* AM is in the polynomial hierarchy

* The Goldwasser-Sipser theorem:
public coins=private coins

* The Boppana-Hastad-Zachos theorem:
Graph Isomorphism is most certainly not NP-complete.



Sipser’s coding lemmas



Hash tables

« Store elements of type o (e.g. strings)
In general, associative array 0 — T

+ Hash-table = table of size N

+ Collision: element x of o

Hash function /1 : 0 — [0, N-1] h(x) = x

Each datum x stored at position /(x) h(x’)

h(y) — y

such that there is an element x’=x of o

with h(x)=h(x")



Collisions

“ In practice, one avoids collisions by:

— storing lists of data x with the same & value
instead of just elements

— resizing the table (increasing N) hx) = x
in case of collisions hx) /

+ But how can we ensure that N is

large enough so that there are h(y) =y
no collisions? How do we choose h?



Collisions

“ In practice, one avoids collisions by:
— storing lists of data x with the same & value
instead of just elements

— resizing the table (increasing N) h(x) —  x
in case of collisions hx) /
— using several hash functions h;, ..., ki

+ Still how can we ensure that N is h(y) =y

large enough so that there are no collisions?
How do we choose Hz(hy, ..., h,)?



Universal hash functions

« Carter and Wegman realized that you could
draw Hg (hll = hg) O ——————— Y, Y

at random from certain

Universal Classes of Hash Functions

J. LawreNce CARTER AND Mark N. WEGMAN

IBM Thomas ]. Watson Research Center, Yorktown Heights, New York 10

S O_ Calle d univer S al Received August 8, 1977; revised August 10, 1978

1 This paper gives an input independent average linear time algorithm for storage and
C a S Se S e o o retrieval on keys. The algorithm makes a random choice of hash function from a suitable
class of hash functions. Given any sequence of inputs the expected time (averaging over all
functions in the class) to store and retrieve elements is linear in the length of the sequence.
The number of references to the data base required by the algorithm fo

extremely close to the theoretical minimum for any possible hash function
distributed inputs. We present three suitable classes of hash functions whi

.
0:0 an d t ne I‘e are ‘ 7 e r evaluated rapidly. The ability to analyze the cost of storage and retrieval witl
e about the distribution of the input allows as corollaries improvements on

several algorithms.

simple such classes! —

A program may be viewed as solving a class of problems. Each inp
is an instance of a problem from that class. The answer given by the
hopes, a correct solution to the problem. Ordinarily, when one talks a
performance of a program, one averages over the class of problems
solve. Gill [3], Rabin [8], and Solovay and Strassen [11] have used a d
on some classes of problems. They suggest that the program rand

https://cse.ucsd.edu/sites/cse.ucsd.edu/files/faculty/carterl7-115x150.jpg
https://www.ithistory.org/sites/default/files/honor-roll/Mark%20N.%20Wegman. jpg



linear hash functons

e et (0 1] =727

# Alinear hash function b : Y — Y’

is just a linear map between vector spaces (over Z/27)

* ...1i.e., his given by a matrix of bits B = (b;j)i—1.m’, j=1..m:
h(X1,. R .,xm) - (bi1x1 R AR -I-bimxm)i:1,,m'

* For computer geeks, each row (bi,...,bin) is a mask
and bix1 + ... +bimxny 1s a parity check
= exclusive or of the bits x; at those positions j / bij=1



linear hash functions

¢ Alinear hash function h: Ym — Y
is just a linear map between vector spaces (over Z/27)

*

It is eas y to dI’ aw h * ...1.e., his given by a matrix of bits B = (bjj)i=1.m’, j=1.m:
at random uniformly: h(xi,...,xm) = (baxa + ... +BimXm)iz1.m

just draw mm’ bits independently, uniformly, at random .

* Let X be the set of data to be stored. Sipser realized that:

L)

*

(Coding lemma I): it X is sufficiently small,
then drawing H(hy, ..., h,) at random,

with high probability there will be
no collision in X

* (Coding lemma II): if X is too large, then
whichever H=(hy, ..., h,) you take, there will

definitely be a collision in X.

https://upload.wikimedia.org/wikipedia/commons/thumb/3/34/MIT-Science Sipser Michael.jpg/440px-MIT-Science Sipser Michael. jpg



The definition of collisions

« A collision x for H£(hy, ..., h) : Y — Yy in X is a point:
S X
« such that there are points vy, ..., y,

+ allin X

+ all distinct from x

+ but l(x)=h1(y1), ..., h{x)=hdy.).

« If such an x exists, we say that X has a collision for H.



Sipser’s coding lemma | (X" small)

+ Lemma (3.15). Let X &)™, Assume | X |<2m~1 Leté=m’.

Then Pru(X has a collision for H) < 1/2¢m™+1,

: : A collision x for H2(hj, ..., h) in X is a point:
* Proof (1/5). We start by proving: ivew R
. — such that there are points vy, ..., Y,
Claim. For every non-zero y € ) , e
— all distinct from x
Pr.(z . ]/:O):Pr Az . y=1 = — but (x)=(y), ..., hx)=hiy).

* Indeed, y has a non-zero coordinate y; (hence =)
Lett=(0,...,0,1,0, ..., 0) with the only 1 at position i.
Then z » z @ ¢ (flip bit i) is a bijection

oz =R r = entos i R i (=



Sipser’s coding lemma | (X" small)

* Lemma (3.15). Let X &)™, Assume | X |<2m~1 Let =m’.

Then Pru(X has a collision for H) < 1/2¢m'+1,

A collision x for H2(hj, ..., h) in X is a point:
* Proof (2/5). Recap: —inX Rty
f — such that there are points vy, ..., Y,
Claim. For every non-zeroy € ), = —alinx
— all distinct from x
Pri(z . y=0)=Pr(z . y=1)=1/2. —buth@-t), ... =iz

% ‘In particular it x=y, then Pr(z a2y =12
(take v £ x—v;).



Sipser’s coding lemma | (X" small)

* Lemma (3.15). Let X &)™, Assume | X |<2m~1 Let =m’.

Then Pru(X has a collision for H) < 1/2¢m'+1,

A collision x for H(hy, ..., h) in X is a point:
x

* Proof (3/5). Recap: —inX ety
— such that there are points v, ..., y,
If x=y;, then Pry(z . x=2z . y;)=1/2 —allin X

— all distinct from x
ek )

+ Hence Pr h(h (x ):h (]/ ] )) h is given by a matrix of bits B = (bij)i—1.m’, j=1.m: |

h(x1,...,xm) = (bax1 + ... +himXm)i=1.m
5 PrB (m’xm) matrix(B-x:B-yj) L — ——"

=R (oo i VEONEZ GF B 22 0

B ||,

m



Sipser’s coding lemma | (X" small)

+ Lemma (3.15). Let X ©) . Assume | X |<2m~1, Leté=m’.

Then Pry(X has a collision for H) < 1/2¢m™+1,

& P oo f ( 4 / 5) i ci(r)lll)i(sion x for Hgg’;ﬁ’;’i’mh‘) in X is a point:
= A e § — such that th ints y1, ..., Yo
Pry(h(x)=h(y;)) = 1/2" (recap). st hre e pois .
— all distinct from x
+ Pry(x is a collision for H in X) — but ha(x)=hi(y), ..., hdx)=hdy.).
= Pru@yy, ..., Y. € X-{x}, Ajzt? hi(x)=hi(y)))

< Z]/L e H]'zlé Pr h(h(x ):h(y])) (sum bound-+independence)

e < (1 X|=1)/2mm" < 1/]2¢



Sipser’s coding lemma | (X" small)

* Lemma (3.15). Let X &)™, Assume | X |<2m~1 Let =m’.

* Prp(X has a collision for H)

v = | |l 21 /Demt

Then Pru(X has a collision for H) < 1/2¢m'+1,

A collision x for H(hy, ..., h) in X is a point:
x

+ Proof (5/5). Recap: —inX ity
] A . — such that there are points vy, ..., Y,
Pru(x is a collision for H in X)<1/2¢] —ainx
— all distinct from x
— but hi(x)=hi(y1), ..., hdx)=hdy.).

—ﬁ

= Pry(3x € X, x is a collision for H in X)




Sipser’s coding lemma Il (X large)

+ Lemma (3.16). Let X ©) ™. Assume | X |>¢ 2",

Then X (definitely) has a collision for H.

* Proof. A collision x for H in X is a point in X /

V] (1gjgé), Hy (:y]-) - X—{X}, h].(x):h],(y) ici(:l)i:ion x for Hgf@’;g’mh‘) in X is a point:
: . e — such that th i 7
» Hence, if X has no collision for H, then Tcantina; ETEEE POMES VL)
for each x € X, __ all distinct from x
there is a j (1<j<¢) /| Yy € X—{x}, hi(x)=hi(y) — but a(x)=hi(y1), ..., hdx)=hdyo).

« For each x € X, let k(x)2the least such j.

# Then x € X v (j, hi(x)) where j=x(x) is injective
... since otherwise y € X—{x}, j=x(x)(=x(y)) and hi(x)=hi(y)

+ Hence card X <¢.card Y™ =¢2m'. O



Large or small?

* Assume you are given a set R, which is either large or small.
Let the gap be size(large)/size(small).
We have two techniques to decide whether R is large or small.

+ Lautemann: (as used in Babai’s theorem, Lemma 3.11)

it 22 R lal‘ge = VI’1, ey ot 37’,, 7”@1’1 - R No error if R large
— R small = Pry1 .. (37, ¥ @®r; E R) small
Requires gap

b 1-1/21)/(1/2n) ~ 2
“ Sipser: L2

— R large = VH, dcollision for H in R No error if R large

— R small = Pry(3collision for H in R) small

Only needs gap ¢.2m"/2m-1 =

2¢ = poly(n)



Lautemann or Sipser?

« Sipser will have a real advantage over Lautemann only
later, when we show that GNI is in AM, not just in IP[1]

# ... and in principle when we show the Goldwasser-
Sipser theorem (later)

* For now, we will use Sipser to show that AM C I'1r,
and Lautemann would be just as practical here

+ We start by showing that for every language L € AM,
we can require perfect soundness (=no error if x € L).



D
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AM with perfect soundness (1/4)

* Let L be in AM. For some D € P,

— if x € L then (Er, Ay, x#irfy € D) >1-1/2" («large »)
— if x & L then (Er, 3y, x#irty € D) < 1/2n (« small ») o)
poly, given),
but we should

* LetR2{reYym| Jy, x#trty € D} (either large or small) = getermine m¢
« Arthur draws H=(hy, ..., h) at random uniformly (mm’¢ bits)

+ Merlin answers a (claimed) collision r in R

Can we really do this in

* We check that this is a collision. polynomial time?

— if x € L then VH, Jcollision for Hin R (perfect soundness!)
— if x & L then Pry(3collision for H in R) < 1/2¢m+1



X/
%®

*

X/
4%®

AM with perfect soundness (2/4)

¢+ Let L be in AM. For some D €P,
—if x € L then (Er, Ay, x#r#y €D)>1-1/2" («large »)

: —if L th Er, Ay, x#tr#tyeD)<1/2n L2 Tk
m=q(n) (assume m=n): determine m’, ¢ if x ¢ L then (Br, Jy, x#r#y €D)<1/2"  («small»)

* LetRe{reym| Jy, x#rty € D} (either large or small)
Use Sipser I and I1; # Arthur draws H(hy, ..., h,) at random uniformly (mm’¢ bits

- Lemma (3.15). Let X QZ"’. Assume | X | <2m-1 Let =m’. + Merlin answers a (Claimed) collision7in R

Then Pry(X has a collision for H) < 1/2¢m+1,
il ) + We check that this is a collision.

Lemma (3.16). Let X CY™. Assume | X |>¢ 2", where &m’. — if x € L then VH, Jcollision for Hin R (perfect soundne
Then X (definitely) has a collision for H. — if x € L then Pru(3collision for H in R) < 1/2¢m+1

To apply Sipser I, need | R|<2m-1if x & L = e.g., require m'—1=>m-n (1)
To apply Sipser II, need |R|>¢2m if x € L = e.g., require m'+log, ¢<m—1 (2)
We wish error to be < 1/2¢ = require ém’+1 = g(n) (3)

Other constraints: ¢&zm” (4), both polynomial in 7.

E.g., m'#m—n+1 (for (1)), ¢m’+g(n) (for (3), (4))
((2) OK for n large enough, otherwise tabulate)



AM with perfect soundness (3/4)

¢+ Let L be in AM. For some D €P,
—if x € L then (Er, Ay, x#r#y €D)>1-1/2" («large »)
7 — if x & L then (Er, Ay, x#irfy € D) < 1/2n (« small »)
* Now m, m’, ¢=poly(n)

* LetRe{reym| Jy, x#rty € D} (either large or small)
Can we Che Ck that T 1S ad ¢ Arthur draws H£(hy, ..., h) at random uniformly (mm’¢bits

STn > s g lin answers a (claimed) collision 7 in R
collision in R in poly time*
eck that this is a collision.
x € L then VH, collision for Hin R (perfect soundne

NO: ]USt Che Cklng that T 18 —if x & L then Pry(3collision for H in R) < 1/2¢m™+1

7/
%

in R is an NP problem...

+ Instead...



AM with perfect soundness (4/4)

¢+ Let L be in AM. For some D € P,
—if x € L then (Er, Ay, x#r#y €D)>1-1/2" («large »)

+ We require Merlin to give us: — if x & L then (Er, Jy, x#rty €D)<1/2n  (« small »)
q : * LetR={reym| Jy, x#frity €D} (either large or small)

* Cl aimed COHiSiOIl s ¢ Arthur draws H£(hy, ..., h,) at random uniformly (mm’¢bits

< a prOOf y that =R + We check that this is a collision.

(i e. Merlin claims that x #1’#}/ = D) — if x € L then VH, Jcollision for Hin R (perfect soundne
SES — if x & L then Pry(3collision for H in R) < 1/2¢m+1

Points il T — T —

« proofs y;that each rjis in R

* And we check that x#r#y € D,
x#ri#ty; € D for each j=1..,

r=r; and hi(r)=hi(r;) for each j=1..£. O

in poly time!



AM with perfect soundness (4/4)

+ Let L be in AM. For some D € P,
—if x € L then (Er, Ay, x#rfy € D) >1-1/2" («large »)
— if x & L then (Er, Ay, x#irfy € D) < 1/2n (« small »)

* We have proved:

* LetR={reym| Jy, x#rty €D} (either large or small)

Prop (3°18) . Ever y L E AM # Arthur draws H(hy, ..., h,) at random uniformly (mm’¢ bits
can be decided with an AM ' ' s

. + We check that this is a collision.
game Wlth per feCt Soundness — if x € L then VH, Jcollision for Hin R (perfect soundne

. —if x & L then Pry(3collision for H in R) < 1/2¢m™+1
(no error if x € L) )

L — T ——————

+ Hence:
Thm (3.19). AM C [p,.

« Proof. x € L iff VH, collision for H in R (with proofs!)
and proofs of collisions can be checked in poly time.




Graph Non-Isomorphism is in AM



Reminder: Graph Non-Isomorphism

“ GNI £ complement of GI: in coNP,

not known to be in P or coNP-complete

. . GI
& PI‘OP. GNI is 1n IP[l]. INPUT: 2 graphs G1=(V, E1), Go=(V, E2)  (with the same V)
QUESTION: are Gi, G2 isomorphic? VS coer I

—‘

“ Algorithm.
— Arthur draws i € {1,2}, m € Sy at random uniformly,
sends g £ .G

e Mer lln dNSWeErSs ] &= {1 ,2} Note: it is crucial here that i remains secret!
e K ’ This is not an AM game
— We accept if i=j, reject otherwise.



X/
%?

R/
%?

GNlisin AM

Idea: (that fails, but we will fix this later)
Let X; £ {graphs G on V such that G =G},
& ETUD.E
1 2 GI
: INPUT: 2 graphs G1=(V, E1), Go=(V, E2) (with the same V)
Imagine | X; [=] X5 =K QUESTION: are Gy, G; isomorphic? V=t N

L —— e — e

If (G1, G2) € GNI,
i.e. if GizGa then | X |=2K (X is large) The main problem is this:

| Xi | can vary wildly,
— from N!/2 (if G;is a chain)

Otherwise | X | zK (X iS Small) — to 1 (if G;is a complete graph)

We test which is the case using Sipser
(All random bits in H are public = in AM.)

Oops, gap is only 2:
not enough for Sipser, but we will see
later how to increase it.



L X4

Building sets of uniform size

X; is the orbit of G;under the group action of Sy on Gy
Let pi2{t € Sn | m.Gi = G .
I

stabilizer Of Gi INPUT: 2 graphs Gi=(V, E1), Go=(V, E2)  (with the same V)
QUESTION: are G1, G isomorphic? VS ooy 1N

The orbit-stabilizer thm: —

« Let V=1{1, ..., N} set of vertices,

| orbit | . |stabilizer | Gy # directed graphs on V,
Sn £ group of permutations of V.
= Order Of the group SN + Syacts on Gy by: V7t € Sy, VG=(V,E) € Sn,
Ie | Xi X (l)i | — N! .G £ (V, {(n(u), 7)) | (u, v) EE}
[ 0, °

+ Two graphs
3 : G1=(V, E1), Go=(V, E;) (with the same V)
e lndependenﬂy Of /oF are isomorphic (G1 = Gy) iff 3 © € Sy, 1.G1=Go.




7/
%?

7/
%

7/
X4

Building sets of uniform size

Hence let X’; # X; x ¢ = {(G,1) | G=Giet m.Gi =G,
X £ X7U X
GI

If (Gl, GZ) = GNI, le INPUT: 2 graphs G1=(V, E1), Go=(V, E3)  (with the same V)
i QUESTION: are Gi, Gz isomorphic? M)
if Gi2Go then | X | =2N!
- «  Xjis the orbit of G;under the group action of Sy on G
Otherwise | X |=N! s
Let p#{m € Sy | . Gi = Gj} stabilizer of G;
GOOd e but gap 1S Stlll #  The orbit-stabilizer thm: | X; x ;| = N!

Only D L — ——



The power trick (repeating experiments virtually)

* Hencelet X2 X; x &; = {(G,1) | G=G;et m.G; = Gi},
X = (XX )

GI
» If (GL Gz) = GNI, B oF INPUT: 2 graphs G1=(V, E1), Go=(V, E2)  (with the same V)
i QUESTION: are Gi, Gz isomorphic? M)
if G12Gy then | X | =(2N!)k
: - «  Xjis the orbit of G;under the group action of Sy on G
+ Otherwise | X | =(N!)k ik
Let p#{m € Sy | . Gi = Gj} stabilizer of G;
s Gap 1S now 2k° #  The orbit-stabilizer thm: | X; x ;| = N!
Now take k so large that e———— —

this exceeds 2¢.



GNlisin AM

+ Arthur draws H (hl, =il é) at ;e: ;(<X=Uxxx)j> - {(Gm) | G=Giet m.Gi =G,
random uniformly (mm’¢ bits) P—

« Merlin answers a (claimed) collision x in X (with proofs!)

“ We check (the proofs) that this is a collision.
— if (G1, G2) € GNI then VH, 3collision for H in X
— if (G1, G>2) & GNI then

Pru(3dcollision for H in R) < 1/2¢m+1

We need to tune m, m’, ¢ and k so that the error is < 1 /25



Determinino m m’. ¢, and £

Note: size(graph)=N2 (adjacency matrlx)
size(input)=n=2N?2

* m=k x (size(graph)+size(permutation))
= O(k(N2+N log N)) = O(kN2) = O(kn)

» Use Sipser I and II:
- Lemma (3.15). Let X C)Y ™. Assume | X |<2m-1, Let é=m’.
Then Pry(X has a collision for H) < 1/2¢m+1,

Lemma (3.16). Let X Y. Assume | X |>¢2m, where &=m’.
Then X (definitely) has a collision for H.

Let X’ £ X; x (I)i = {(G,T() | G=G;et t.G; = Gi},
X £ (X'1U X'k

— if (G1, G2) € GNI then VH, Jcollision for H in X
— if (G1, G2) & GNI then
Pru(3collision for H in R) < 1/2¢m+1

+ Sipser I: need | X |<2m-1if (G1, G2) & GNI = require m’~1=k.logx(\N!) (1)

« Sipser II: need | X |>¢2m" if (G1, G2) € GNI = require m'+logs ¢<k(1+loga(N!)) (2)

« We wish error to be < 1/28" = require é&m’'+1 = g(n) (3)

# Other constraints: &xm” (4), all of m, m’, ¢, k polynomial in n.

E.g., k&N, m’21+k.Jog(N!) (for (1)), ¢£m’+g(n) (for (3), (4))
((2) OK for n large enough, otherwise tabulate)



Checking (proofs of) collisions

« Explicitly, Merlin sends: Let X'i 2 Xi x ¢ ={(G,m0) | G=Giet .Gi = Gil,
X £ (X'1U X'k
— an element x |

— a proof that x is in X
— elements x1, ..., Xy
— proofs that each x;is in X

* Then we will check the proofs
+ x=x; and hi(x)=hi(x;) for each j=1...

+ A proof that x£((G"1,m1),...,(G’% %)) is in X is:
— for each i=1..k, a permutation 7’; / '.G’i=G1 or G
— Checking it means checking 7';.G’i=G1 or G,

and also ;.G =G’;, for each 1.



* In fact:

* So AMCIP[1] C ... CIP[k] C AM[k+1] = AM

* We have proved:
Prop (3.17). GNI is in AM (not just IP[1]).

By Weizmann Institute of Science -

Thm (3.25; Goldwasser-Sipser). st tab g
For every k>1, IP[k] € AM[k+1].

index.php?curid=12112705

« [ will omit the proof, see the lecture notes.

* Corl. For every k=1, IP[k] = AM[k] = AM. (!)

https://upload.wikimedia.org/wikipedia/commons/thumb/3/34/MIT-Science Sipser Michael.jpg/440px-MIT-Science Sipser Michael. jpg
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Baba: (1985) and Goldwasser, Mical and Rackoff (1985) introduced two probabihsuc extensions of the complexity
NP The two complexity classes, denoted AM[Q) and IP[Q] respectively, are defined using randomuzed snteractive p:
between a prover and a venfier Goldwasser and Sipser (1986) proved that the two classes are equal We prove that 1
complexaty class ¢0-NP 1s contamned tn IP[k] for some constant k (1 ¢, if every language in co-NP has a short intera
proof), then the polynomual-ume hserarchy collapses to the second level As a corollary, we show that if the G
Isomorphism problem 1s NP-complete, then the polynomal-ume luerarchy collapses
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T'he Boppana-Hastad-Zachos theorem

« Thm (3.20). If coNP € AM then PH collapses at level 2.

* Proof. Let L € Lr,. We will show that L is in IIp,.
L={x | 3y, (x,y) €EL’}, for some L’ € coNP.

+ Hence L’ & AM. There is a D in P such that:
— if (x,y) € L’ then (Er, 3z, x#y#r#z € D) large
—if (x,y) & L’ then (Er, 3z, x#y#r#z € D) small

* —if x € L then (Jy, Er, Az, x#y#ir#z € D) large
— if x & L then (y, Er, Az, x#y#r#z € D) small

* Hence L € MAM = AM (Babai) C I'lr,. O



The BHZ theorem, and Graph Isomorphism

“ Corl (3.21). It GI is NP-complete
then PH collapses at level 2.

“ Proof. AM is closed under poly time reductions.
+ Remember that GNI is in AM, as we have just shown.

* Hence if GI is NP-complete,
then GNI is coNP-complete,
hence coNP C AM.

Now apply the previous theorem.




Graph Isomorphism

“ Corl (3.21). It GI is NP-complete

then PH collapses at level 2.

+ Remember that GI is not known to be in P,

and not known to be NP-complete.
* The BHZ theorem shows that the latter is unlikely.

* Note: Babai gave a super polynomial time algo for GI in
2015 (still does not solve the question, but what a
progress!); builds on a lot of things, including BHZ.






IP and PSPACE

# TP and AM with polynomially many rounds
(the classes IP and ABPP)

+ Shamir’s theorem: ABPP=IP=PSPACE (!)



