Randomized complexity classes

Today: Sipser’s coding lemmas, and consequences
Today

- Sipser’s coding lemmas
- AM is in the polynomial hierarchy
- The Goldwasser-Sipser theorem: public coins ≡ private coins
- The Boppana-Håstad-Zachos theorem: Graph Isomorphism is most certainly not NP-complete.
Sipser’s coding lemmas
Hash tables

- Store elements of type σ (e.g. strings)
 In general, associative array $\sigma \rightarrow \tau$

- **Hash-table** = table of size N
 Hash function $h : \sigma \rightarrow [0, N-1]$
 Each datum x stored at position $h(x)$

- **Collision**: element x of σ
 such that there is an element $x' \neq x$ of σ
 with $h(x) = h(x')$
Collisions

- In practice, one avoids collisions by:
 - storing lists of data \(x \) with the same \(h \) value instead of just elements
 - resizing the table (increasing \(N \)) in case of collisions

- But how can we ensure that \(N \) is large enough so that there are no collisions? How do we choose \(h \)?
In practice, one avoids collisions by:
- storing lists of data x with the same h value instead of just elements
- resizing the table (increasing N) in case of collisions
- using several hash functions h_1, \ldots, h_ℓ

Still, how can we ensure that N is large enough so that there are no collisions? How do we choose $H \equiv (h_1, \ldots, h_\ell)$?
Carter and Wegman realized that you could draw \(H \equiv (h_1, \ldots, h_l) \) at random from certain so-called universal classes…

and there are very simple such classes!
Linear hash functions

- Let \(\Sigma = \{0, 1\} = \mathbb{Z} / 2\mathbb{Z} \)

- A **linear** hash function \(h : \Sigma^m \to \Sigma^{m'} \) is just a linear map between vector spaces (over \(\mathbb{Z} / 2\mathbb{Z} \))

- ... i.e., \(h \) is given by a **matrix of bits** \(B = (b_{ij})_{i=1..m', j=1..m} \):
 \[
 h(x_1, \ldots, x_m) = (b_{i1}x_1 + \ldots + b_{im}x_m)_{i=1..m'}
 \]

- For computer geeks, each row \((b_{i1}, \ldots, b_{im}) \) is a **mask** and \(b_{i1}x_1 + \ldots + b_{im}x_m \) is a **parity check** = exclusive or of the bits \(x_j \) at those positions \(j / b_{ij}=1 \)
Linear hash functions

- It is easy to draw h at random uniformly: just draw mm' bits independently, uniformly, at random.

- Let X be the set of data to be stored. Sipser realized that:
 - (Coding lemma I): if X is sufficiently small, then drawing $H^\|= (h_1, \ldots, h_l)$ at random, with high probability there will be no collision in X.
 - (Coding lemma II): if X is too large, then whichever $H^\|= (h_1, \ldots, h_l)$ you take, there will definitely be a collision in X.

A linear hash function $h : \Sigma^m \rightarrow \Sigma^{m'}$ is just a linear map between vector spaces (over $\mathbb{Z}/2\mathbb{Z}$).

... i.e., h is given by a matrix of bits $B = (b_{ij})_{i=1..m', j=1..m}$:

$$h(x_1, \ldots, x_m) = (b_{i1}x_1 + \ldots + b_{im}x_m)_{i=1..m'}$$
The definition of collisions

- A collision x for $H=(h_1, \ldots, h_\ell): \sum^m \rightarrow \sum^{m'}$ in X is a point:
 - in X
 - such that there are points y_1, \ldots, y_ℓ in X
 - all distinct from x
 - but $h_1(x)=h_1(y_1), \ldots, h_\ell(x)=h_\ell(y_\ell)$.

 If such an x exists, we say that X has a collision for H.
Sipser’s coding lemma I (X small)

Lemma (3.15). Let $X \subseteq \sum^m$. Assume $|X| \leq 2^{m'-1}$. Let $\ell \geq m'$. Then $\Pr_H(X$ has a collision for $H) \leq 1/2^{\ell-m'+1}$.

Proof (1/5). We start by proving:

Claim. For every non-zero $y \in \sum^m$,

\[\Pr_z(z \cdot y=0) = \Pr_z(z \cdot y=1) = 1/2. \]

Indeed, y has a non-zero coordinate y_i (hence $y_i = 1$)

Let $t \neq (0, \ldots, 0, 1, 0, \ldots, 0)$ with the only 1 at position i.

Then $z \mapsto z \oplus t$ (flip bit i) is a bijective

of $\{z \in \sum^m \mid z \cdot y=0\}$ onto $\{z \in \sum^m \mid z \cdot y=1\}$.

A collision x for $H(h_1, \ldots, h_\ell)$ in X is a point:

- in X
- such that there are points y_1, \ldots, y_ℓ
- all in X
- all distinct from x
- but $h_1(x)=h_1(y_1), \ldots, h_\ell(x)=h_\ell(y_\ell)$.

Sipser’s coding lemma I (X small)

Lemma (3.15). Let $X \subseteq \Sigma^m$. Assume $|X| \leq 2^{m'-1}$. Let $\ell \geq m'$. Then $\Pr_H(X \text{ has a collision for } H) \leq 1/2^{\ell-m'+1}$.

Proof (2/5). Recap:

Claim. For every non-zero $y \in \Sigma^m$,
\[\Pr_z(z \cdot y = 0) = \Pr_z(z \cdot y = 1) = 1/2. \]

In particular, if $x \neq y_j$, then $\Pr_z(z \cdot x = z \cdot y_j) = 1/2$
(take $y \overset{\text{def}}{=} x - y_j$).

A collision x for $H^\circ(h_1, \ldots, h_\ell)$ in X is a point:
- in X
- such that there are points y_1, \ldots, y_ℓ
 - all in X
 - all distinct from x
 - but $h_1(x) = h_1(y_1), \ldots, h_\ell(x) = h_\ell(y_\ell)$.
Lemma (3.15). Let $X \subseteq \sum^m$. Assume $|X| \leq 2^{m'-1}$. Let $\ell \geq m'$. Then $\Pr_H(X \text{ has a collision for } H) \leq 1 / 2^{\ell - m' + 1}$.

Proof (3/5). Recap:
If $x \neq y_j$, then $\Pr_z(z \cdot x = z \cdot y_j) = 1 / 2$

Hence $\Pr_h(h(x) = h(y_j))$

$= \Pr_B (m' \times m) \text{ matrix}(B \cdot x = B \cdot y_j)$

$= \Pr_B (m' \times m) \text{ matrix}(\forall \text{ row } z \text{ of } B, z \cdot x = z \cdot y_j) = 1 / 2^{m'}$
Lemma (3.15). Let $X \subseteq \Sigma^m$. Assume $|X| \leq 2^{m'-1}$. Let $\ell \geq m'$. Then $\Pr_H(X \text{ has a collision for } H) \leq 1/2^{\ell-m'+1}$.

Proof (4/5).

$\Pr_h(h(x)=h(y_j)) = 1/2^{m'}$ (recap).

$\Pr_H(x \text{ is a collision for } H \text{ in } X)$
$= \Pr_H(\exists y_1, \ldots, y_\ell \in X-\{x\}, \land_{j=1}^\ell h_j(x)=h_j(y_j))$

$\leq \sum_{y_1, \ldots, y_\ell \in X-\{x\}} \prod_{j=1}^\ell \Pr_h(h(x)=h(y_j))$ (sum bound+independence)

$\leq (|X|-1)^\ell/2^{\ell m'} < 1/2^\ell$
Sipser’s coding lemma I (X small)

- **Lemma (3.15).** Let $X \subseteq \sum^m$. Assume $|X| \leq 2^{m'-1}$. Let $\ell \geq m'$. Then $\Pr_H(X \text{ has a collision for } H) \leq 1/2^{\ell-m'+1}$.

- **Proof (5/5).** Recap:

 $\Pr_H(x \text{ is a collision for } H \text{ in } X) < 1/2^\ell$

- $\Pr_H(X \text{ has a collision for } H) = \Pr_H(\exists x \in X, x \text{ is a collision for } H \text{ in } X)$

 $\leq |X|/2^\ell \leq 1/2^{\ell-m'+1}$. \square
Lemma (3.16). Let $X \subseteq \Sigma^m$. Assume $|X| > \ell \cdot 2^{m'}$, where $\ell \geq m'$. Then X (definitely) has a collision for H.

Proof. A collision x for H in X is a point in X / $\forall j \ (1 \leq j \leq \ell), \exists y \ (y = y_j) \in X - \{x\}, h_j(x) = h_j(y)$

Hence, if X has no collision for H, then for each $x \in X$,
there is a $j \ (1 \leq j \leq \ell) / \forall y \in X - \{x\}, h_j(x) \neq h_j(y)$

For each $x \in X$, let $\kappa(x)$ = the least such j.

Then $x \in X \mapsto (j, h_j(x))$ where $j = \kappa(x)$ is injective
... since otherwise $\exists y \in X - \{x\}, j = \kappa(x)(=\kappa(y))$ and $h_j(x) = h_j(y)$

Hence $\text{card } X \leq \ell \cdot \text{card } \Sigma^{m'} = \ell \cdot 2^{m'}$. \square
Assume you are given a set R, which is either large or small. Let the gap be $\text{size(large)}/\text{size(small)}$. We now have two techniques to better decide whether R is large or small.

Lautemann: (as used in Babai’s theorem, Lemma 3.11)
- R large $\Rightarrow \forall r_1, \ldots, r_k, \exists r', r' \oplus r_i \in R$
- R small $\Rightarrow \Pr_{r_1, \ldots, r_k}(\exists r', r' \oplus r_i \in R)$ small

Sipser:
- R large $\Rightarrow \forall H, \exists \text{collision for } H \text{ in } R$
- R small $\Rightarrow \Pr_H(\exists \text{collision for } H \text{ in } R)$ small

No error if R large
Requires gap $(1-1/2^n)/(1/2^n) \sim 2^n$

No error if R large
Only needs gap $\epsilon.2^{m'}/2^{m'-1} = 2\epsilon = \text{poly}(n)$
Lautemann or Sipser?

- Sipser will have a real advantage over Lautemann only later, when we show that GNI is in AM, not just in IP[1]
- ... and in principle when we show the Goldwasser-Sipser theorem (later)
- For now, we will use Sipser to show that $AM \subseteq \Pi_{p2}$ and Lautemann would be just as practical here
- We start by showing that for every language $L \in AM$, we can require perfect soundness (=no error if $x \in L$).
AM \subseteq \Pi^{p_2}
AM with perfect soundness (1/4)

- Let L be in AM. For some $D \in \mathbf{P}$,
 - if $x \in L$ then $(\exists \ y, \ x \# r \# y \in D) \geq 1 - 1/2^n$ (« large »)
 - if $x \notin L$ then $(\exists \ y, \ x \# r \# y \in D) \leq 1/2^n$ (« small »)

- Let $R = \{ r \in \sum^m \mid \exists \ y, \ x \# r \# y \in D \}$ (either large or small)

- Arthur draws $H = (h_1, \ldots, h_\ell)$ at random uniformly ($mm'\ell$ bits)

- Merlin answers a (claimed) collision x in R

- We check that this is a collision.
 - if $x \in L$ then $\forall H, \exists$ collision for H in R (perfect soundness!)
 - if $x \notin L$ then $\Pr_H(\exists$ collision for H in $R) \leq 1/2^{\ell-m'+1}$

Can we really do this in polynomial time?

$m = q(n) \text{ (poly, given)}, \text{ but we should determine } m', \ell$
AM with perfect soundness (2/4)

- $m=q(n)$ (assume $m \geq n$): determine m', ℓ

- Use Sipser I and II:

 Lemma (3.15). Let $X \subseteq \Sigma^m$. Assume $|X| \leq 2^{m'-1}$. Let $\ell \geq m'$.
 Then $\Pr_H(X \text{ has a collision for } H) \leq 1/2^{\ell-m'+1}$.

 Lemma (3.16). Let $X \subseteq \Sigma^m$. Assume $|X| > 0.2^{m'}$, where $\ell \geq m'$.
 Then X (definitely) has a collision for H.

- To apply Sipser I, need $|R| \leq 2^{m'-1}$ if $x \notin L$ ⇒ e.g., require $m'-1 \geq m-n$ (1)

- To apply Sipser II, need $|R| > 0.2^{m'}$ if $x \in L$ ⇒ e.g., require $m' + \log_2 \ell < m-1$ (2)

- We wish error to be $\leq 1/2^g(n)$ ⇒ require $\ell-m'+1 \geq g(n)$ (3)

- Other constraints: $\ell \geq m'$ (4), both polynomial in n.

- Let L be in \textbf{AM}. For some $D \in \mathbb{P}$,
 - if $x \in L$ then $(\operatorname{Er}, \exists y, x\#r\#y \in D) \geq 1-1/2^n$ (« large »)
 - if $x \notin L$ then $(\operatorname{Er}, \exists y, x\#r\#y \in D) \leq 1/2^n$ (« small »)

- Let $R = \{ r \in \Sigma^m \mid \exists y, x\#r\#y \in D \}$ (either large or small)

- Arthur draws $H=(h_1, \ldots, h_t)$ at random uniformly (mm'ε bit)

- Merlin answers a (claimed) collision x in R

- We check that this is a collision.
 - if $x \in L$ then $\forall H, \exists$ collision for H in R (perfect soundness)
 - if $x \notin L$ then $\Pr_H(\exists$ collision for H in $R) \leq 1/2^{\ell-m'+1}$

- E.g., $m' \equiv m-n+1$ (for (1)), $\ell \equiv m'+g(n)$ (for (3), (4))
 ((2) OK for n large enough, otherwise tabulate)
• Now $m, m', \ell = \text{poly}(n)$
 Can we check that x is a collision in R in poly time?
• No: just checking that x is in R is an NP problem…
• Instead…

Let L be in AM. For some $D \in \text{P}$,
 — if $x \in L$ then $(\text{Er}, \exists y, x \# r \# y \in D) \geq 1 - 1/2^n$ (« large »)
 — if $x \notin L$ then $(\text{Er}, \exists y, x \# r \# y \in D) \leq 1/2^n$ (« small »)
Let $R \equiv \{ r \in \sum^m \mid \exists y, x \# r \# y \in D \}$ (either large or small)
Arthur draws $H^s(h_1, \ldots, h_t)$ at random uniformly (mm' bits in answers a (claimed) collision x in R
 We check that this is a collision.
 — if $x \in L$ then $\forall H, \exists$ collision for H in R (perfect soundness)
 — if $x \notin L$ then $\Pr_H(\exists$ collision for H in $R) \leq 1/2^{l-m'^{-1}}$
AM with perfect soundness (4/4)

- We require Merlin to give us:
 - a claimed collision r
 - a proof y that $r \in R$
 (i.e., Merlin claims that $x \# r \# y \in D$)
 - points r_1, \ldots, r_l
 - proofs y_j that each r_j is in R
- And we check that $x \# r \# y \in D$, $x \# r_j \# y_j \in D$ for each $j=1..l$, $r \neq r_j$ and $h_j(r) \neq h_j(r_j)$ for each $j=1..l$. □

Let L be in AM. For some $D \in \mathcal{P}$,
- if $x \in L$ then $(\exists r, \exists y, x \# r \# y \in D) \geq 1 - 1/2^n$ (« large »)
- if $x \notin L$ then $(\exists r, \exists y, x \# r \# y \in D) \leq 1/2^n$ (« small »)

Let $R = \{r \in \Sigma^n \mid \exists y, x \# r \# y \in D\}$ (either large or small)

Arthur draws $H^e(h_1, \ldots, h_l)$ at random uniformly (min’ s bit)

Merlin answers a (claimed) collision x in R—

We check that this is a collision.
- if $x \in L$ then $\forall H, \exists$ collision for H in R (perfect soundness)
- if $x \notin L$ then $\Pr_H(\exists$ collision for H in $R) \leq 1/2^{l-m' + 1}$

in poly time!
We have proved:

Prop (3.18). Every \(L \in \text{AM} \) can be decided with an AM game with perfect soundness (no error if \(x \in L \))

Hence:

Thm (3.19). \(\text{AM} \subseteq \Pi_2^p \)

Proof. \(x \in L \) iff \(\forall H, \exists \text{collision for } H \text{ in } R \) (with proofs!) and proofs of collisions can be checked in poly time. \(\square \)
Graph Non-Isomorphism is in AM
Reminder: Graph Non-Isomorphism

- **GNI** $\stackrel{\text{def}}{=} \text{complement of GI}: \text{in coNP},$ not known to be in P or coNP-complete

- **Prop. GNI is in IP}[1].**

- **Algorithm.**
 - Arthur draws $i \in \{1, 2\}, \pi \in S_N$ at random uniformly, sends $q \stackrel{\text{def}}{=} \pi.G_i$
 - Merlin answers $j \in \{1, 2\}$
 - We accept if $i=j,$ reject otherwise.

Note: it is crucial here that i remains secret!
This is not an AM game
GNI is in AM

- **Idea:** (that fails, but we will fix this later)
 Let $X_i \triangleq \{\text{graphs } G \text{ on } V \text{ such that } G \equiv G_i\}$, $X \triangleq X_1 \cup X_2$

- Imagine $|X_1| \approx |X_2| \approx K$

- If $(G_1, G_2) \in \text{GNI}$, i.e. if $G_1 \neq G_2$ then $|X| \approx 2K$ (X is large)

- Otherwise $|X| \approx K$ (X is small)

- We test which is the case using Sipser (All random bits in H are public \Rightarrow in AM.)

GI

INPUT: 2 graphs $G_1=(V, E_1), G_2=(V, E_2)$ (with the same V)

QUESTION: are G_1, G_2 isomorphic?

The main problem is this:

- $|X_i|$ can vary wildly,
 - from 1 (if G_i is a chain)
 - to $N!$ (if G_i is a complete graph)

Oops, gap is only 2:
not enough for Sipser, but we will see later how to increase it.
Building sets of uniform size

- X_i is the orbit of G_i under the group action of S_N on G_N

- Let $\phi_i \eqdef \{ \pi \in S_N \mid \pi.G_i = G_i \}$ stabilize of G_i

- The orbit-stabilizer thm:
 \[|\text{orbit}| \cdot |\text{stabilizer}| = \text{order of the group } S_N \]
 I.e., $|X_i \times \phi_i| = N!$

- ... independently of i.

GI
INPUT: 2 graphs $G_1=(V, E_1)$, $G_2=(V, E_2)$ (with the same V)
QUESTION: are G_1, G_2 isomorphic?

- Let $V = \{1, \ldots, N\}$ set of vertices,
 $G_N \cong$ directed graphs on V,
 $S_N \cong$ group of permutations of V.

- S_N acts on G_N by: $\forall \pi \in S_N, \forall G=(V,E) \in S_N$,
 $\pi.G \equiv (V, \{(\pi(u), \pi(v)) \mid (u, v) \in E\}$

- Two graphs
 $G_1=(V, E_1)$, $G_2=(V, E_2)$ (with the same V)
 are isomorphic ($G_1 \cong G_2$) iff $\exists \pi \in S_N, \pi.G_1=G_2$.

Building sets of uniform size

- Hence let $X'_i \overset{\text{def}}{=} X_i \times \phi_i = \{(G, \pi) \mid G \equiv G_i \text{ et } \pi.G_i = G_i\}$, $X \overset{\text{def}}{=} X'_1 \cup X'_2$

- If $(G_1, G_2) \in \text{GNI}$, i.e.
 - if $G_1 \not\equiv G_2$ then $|X| = 2N!$

- Otherwise $|X| = N!$

- Good… but gap is still only 2.

\[\text{GNI}\]
INPUT: 2 graphs $G_1=(V, E_1), G_2=(V, E_2)$ (with the same V) $V = \{1, ..., N\}$
QUESTION: are G_1, G_2 isomorphic?

\[\text{X_i}\]
- X_i is the orbit of G_i under the group action of S_N on G_N
- Let $\phi_i \overset{\text{def}}{=} \{\pi \in S_N \mid \pi.G_i = G_i\}$ stabilizer of G_i
- The orbit-stabilizer thm: $|X_i \times \phi_i| = N!$
The power trick (repeating experiments virtually)

- Hence let $X'_i \overset{\text{def}}{=} X_i \times \phi_i = \{(G, \pi) \mid G \equiv G_i \text{ et } \pi.G_i = G_i\}$,
 $X \overset{\text{def}}{=} (X'_1 \cup X'_2)^k$

- If $(G_1, G_2) \in \text{GNI}$, i.e.
 if $G_1 \not\equiv G_2$ then $|X| = (2N!)^k$

- Otherwise $|X| = (N!)^k$

- Gap is now 2^k.
 Now take k so large that this exceeds 2^ℓ.

- X_i is the orbit of G_i under the group action of S_N on G_N
- Let $\phi_i \overset{\text{def}}{=} \{\pi \in S_N \mid \pi.G_i = G_i\}$ stabilizer of G_i
- The orbit-stabilizer thm: $|X_i \times \phi_i| = N!$
GNI is in AM

- Arthur draws $H \overset{\text{def}}{=} (h_1, \ldots, h_\ell)$ at random uniformly ($mm'\ell$ bits)

- Merlin answers a (claimed) collision x in X (with proofs!)

- We check (the proofs) that this is a collision.
 - if $(G_1, G_2) \in \text{GNI}$ then $\forall H, \exists \text{collision for } H \text{ in } X$
 - if $(G_1, G_2) \notin \text{GNI}$ then $\Pr_H(\exists \text{collision for } H \text{ in } R) \leq 1/2^{\ell-m'+1}$

Let $X'_i \equiv X_i \times \phi_i = \{(G,\pi) \mid G \equiv G_i \text{ et } \pi.G_i = G_i\}$, $X \equiv (X'_1 \cup X'_2)^k$

We need to tune m, m', ℓ and k so that the error is $\leq 1/2^{g(n)}$
Determining m, m', l, and k

Note: size(graph)=N^2 (adjacency matrix)
size(input)=$n=2N^2$

- $m=k \times (\text{size(graph)}+\text{size(permutation)})$
 $= O(k(N^2+N \log N)) = O(kN^2) = O(kn)$

- Use Sipser I and II:

 Lemma (3.15). Let $X \subseteq \Sigma^m$. Assume $|X| \leq 2^{m-1}$. Let $\ell \geq m'$. Then $Pr_H(X \text{ has a collision for } H) \leq 1/2^{\ell-m'+1}$.

 Lemma (3.16). Let $X \subseteq \Sigma^m$. Assume $|X| > \ell.2^{m'}$, where $\ell \geq m'$. Then X (definitely) has a collision for H.

- Sipser I: need $|X| \leq 2^{m'-1}$ if $(G_1, G_2) \notin \text{GNI}$ ⇒ require $m'-1 \geq k.\log_2(N!)$ (1)

- Sipser II: need $|X| > \ell.2^{m'}$ if $(G_1, G_2) \in \text{GNI}$ ⇒ require $m'+\log_2 \ell < k(1+\log_2(N!))$ (2)

- We wish error to be $\leq 1/2^g(n)$ ⇒ require $\ell-m'+1 \geq g(n)$ (3)

- Other constraints: $\ell \geq m'$ (4), all of m, m', ℓ, k polynomial in n.

 E.g., $k \neq N$, $m' \neq 1+k.\log_2(N!)$ (for (1)), $\ell \neq m'+g(n)$ (for (3), (4))

 ((2) OK for n large enough, otherwise tabulate)
Checking (proofs of) collisions

- Explicitly, Merlin sends:
 - an element x
 - a proof that x is in X
 - elements x_1, \ldots, x_ℓ
 - proofs that each x_j is in X

- Then we will check the proofs
 $$+ x \neq x_j \text{ and } h_j(x) \neq h_j(x_j) \text{ for each } j = 1..\ell.$$

- A proof that $x \equiv ((G'_1, \pi_1), \ldots, (G'_k, \pi_k))$ is in X is:
 - for each $i = 1..k$, a permutation $\pi'_i / \pi'_i, G'_i = G_1$ or G_2
 - Checking it means checking $\pi'_i, G'_i = G_1$ or $G_2,$
 and also $\pi_i, G'_i = G'_i,$ for each $i.$

Let $X' = \mathcal{X} \times \phi_i = \{(G, \pi) \mid G \equiv G_i \text{ et } \pi_i.G_i = G_i\},$
$X = (X' \cup X'')^k$
We have proved:

Prop (3.17). GNI is in AM (not just IP[1]).

In fact:

Thm (3.25; Goldwasser-Sipser).
For every \(k \geq 1 \), \(IP[k] \subseteq AM[k+1] \).

I will omit the proof, see the lecture notes.

So \(AM \subseteq IP[1] \subseteq \ldots \subseteq IP[k] \subseteq AM[k+1] = AM \).

Corl. For every \(k \geq 1 \), \(IP[k] = AM[k] = AM \). (!)
The Boppana-Håstad-Zachos theorem

Baba (1985) and Goldwasser, Micali and Rackoff (1985) introduced two probabilistic extensions of the complexity class NP: the two complexity classes, denoted AM(Q) and IP(Q) respectively, are defined using randomized interactive proofs between a prover and a verifier. Goldwasser and Sipser (1986) proved that the two classes are equal. We prove that the co-NP complexity class co-NP is contained in IP(k) for some constant k (i.e., if every language in co-NP has a short interactive proof, then the polynomial-time hierarchy collapses to the second level). As a corollary, we show that if the Graph Isomorphism problem is NP-complete, then the polynomial-time hierarchy collapses.
The Boppana-Håstad-Zachos theorem

- **Thm (3.20).** If $\text{coNP} \subseteq \text{AM}$ then PH collapses at level 2.

- **Proof.** Let $L \in \Sigma_{p2}$. We will show that L is in Π_{p2}.

 $L = \{x \mid \exists y, (x,y) \in L'\}$, for some $L' \in \text{coNP}$.

- Hence $L' \in \text{AM}$. There is a D in P such that:
 - if $(x,y) \in L'$ then $(\text{Er}, \exists z, x\#y\#r\#z \in D)$ large
 - if $(x,y) \notin L'$ then $(\text{Er}, \exists z, x\#y\#r\#z \in D)$ small

- Hence $L \in \text{MAM} = \text{AM (Babai)} \subseteq \Pi_{p2}$. □
The BHZ theorem, and Graph Isomorphism

❖ Corl (3.21). If GI is NP-complete then PH collapses at level 2.

❖ Proof. AM is closed under poly time reductions.

❖ Remember that GNI is in AM, as we have just shown.

❖ Hence if GI is NP-complete, then GNI is coNP-complete, hence coNP ⊆ AM.

Now apply the previous theorem. □
Graph Isomorphism

❖ Corl (3.21). If GI is NP-complete then PH collapses at level 2.

❖ Remember that GI is not known to be in P, and not known to be NP-complete.

❖ The BHZ theorem shows that the latter is unlikely.

❖ Note: Babai gave a super polynomial time algo for GI in 2015 (still does not solve the question, but what a progress!); builds on a lot of things, including BHZ.
Next time...
IP and PSPACE

- IP and AM with polynomially many rounds (the classes IP and ABPP)
- Shamir’s theorem: ABPP=IP=PSPACE (!)