Randomized complexity classes

Today: Shamir’s theorem
Today

- The classes ABPP, IP
- Easy: $\text{ABPP} \subseteq \text{IP} \subseteq \text{PSPACE}$
- Hard (Shamir’s theorem): $\text{ABPP} = \text{IP} = \text{PSPACE}$
ABPP ⊆ IP ⊆ PSPACE
ABPP, IP

- **ABPP** \equiv **AM**[poly] = \{languages recognizable by an A-M protocol with polynomially many rounds\}

- **IP** \equiv **IP**[poly] = \{languages recognizable by an interactive proof with polynomially many rounds\}

- **Beware**: Merlin must provide answers y of size polynomial in $n \equiv \text{size}(x)$, **not** in the size of the history.
The subtlety with answer sizes

- Imagine Merlin were allowed to answer y of size $|\text{history}|^2$ (and Arthur is lazy, and $|r|=n$, to make things simpler)
- $|x#q_1#r_1| = 2n + 2$
- $|x#q_1#r_1#y_1| = (2n+2)+1+(2n+2)^2 = 4n^2+6n+7 \geq 4n^2$
- $|x#q_1#r_1#y_1#q_2#r_2#y_2| \geq (4n^2)^2 = 16n^4$
- ...
- $|x#q_1#r_1#y_1#\ldots#q_k#r_k#y_k| \geq 2^{2^k}n^{2^k}$
- polynomial if k constant, **doubly exponential** if $k=\text{poly}(n)$
The subtlety with answer sizes

- Instead, Merlin must answer \(y \) of size \(\leq q(n) \) \([q \text{ polynomial}]\).
 Arthur also runs \(A(x\#q_1\#r_1\#y_1\ldots,r) \) in time \(\leq q(n) \)
 hence uses up \(\leq q(n) \) random bits, produces question of size \(\leq q(n) \)

- \(|x\#q_1\#r_1| \leq n+2q(n)+2 \)
- \(|x\#q_1\#r_1\#y_1| \leq n+3q(n)+3 \)
- \(|x\#q_1\#r_1\#y_1\#q_2\#r_2\#y_2| \leq n+6q(n)+6 \)
- \(\ldots \)
- \(|x\#q_1\#r_1\#y_1\ldots\#q_k\#r_k\#y_k| \leq n+3k\ q(n)+3k \)
- \text{polynomial} \ if \(k=\text{poly}(n) \)
We start with the relatively simple inclusion $\text{ABPP} \subseteq \text{PSPACE}$

Let $L \in \text{ABPP}$, decided in $R(n)$ rounds, random tape size $= q(n)$, lazy Arthur

Idea: count the number of lists of random strings $r_1, r_2, \ldots, r_{R(n)}$ that lead to acceptance

That must be $\geq \frac{2}{3}.2^{R(n)q(n)}$ or $\leq \frac{1}{3}.2^{R(n)q(n)}$:
accept if larger than $\frac{1}{2}.2^{R(n)q(n)}$, reject otherwise

Answers by Merlin are guessed.

Hence L is in NPSPACE, therefore in PSPACE (Savitch). See lecture notes for details.
ABPP \subseteq \text{PSPACE}: \text{alternate argument}

- Let \(L \in \text{ABPP} \), defined by formula
 \[
 E r_1, \exists y_1, E r_2, \exists y_2, \ldots, E r_k, \exists y_k, P(x,r_1,y_1,\ldots,r_k,y_k) \quad [k=R(n)]
 \]
 namely this is \(\geq \frac{2}{3} \) if \(x \in L \), \(\leq \frac{1}{3} \) if \(x \notin L \)

- Hence
 \[
 F(x) \doteq \Sigma r_1, \max y_1, \Sigma r_2, \max y_2, \ldots, \Sigma r_k, \max y_k, P(x,r_1,y_1,\ldots,r_k,y_k)
 \]
 is \(\geq \frac{2}{3}.2^{R(n)q(n)} \) if \(x \in L \), \(\leq \frac{1}{3}.2^{R(n)q(n)} \) if \(x \notin L \)

- We accept if \(F(x) \geq \frac{1}{2}.2^{R(n)q(n)} \), we reject otherwise

- Note that we can compute \(F(x) \) in poly space:
 - \(2R(n) \) words \(r_i, y_i \), of size \(\leq q(n) \)
 - \(P(x,r_1,y_1,\ldots,r_k,y_k) \) poly time, hence poly space
 - Intermediate counters \(\leq 2^{R(n)q(n)} \), hence of size \(\leq R(n)q(n) \).
IP ⊆ PSPACE

- Let now $L \in \text{IP}$, decided in $R(n)$ rounds, random tape size $= q(n)$
 Arthur no longer lazy: $q_i \equiv A(x#q_1#r_1#y_1#...#y_{i-1},r_i)$, size $\leq q(n)$

- If we **count** the number of lists of random strings $r_1, r_2, ..., r_{R(n)}$ that lead to acceptance, and Merlin guesses y_i,
 then y_i may depend on $r_1, r_2, ..., r_i$ — but it is only allowed to depend on (x and) $q_1, q_2, ..., q_i$

- Instead, we count the # of lists of **random questions** $q_1, q_2, ..., q_{R(n)}$
 — it is just that they are not **uniformly** random;
 we weigh each of them with the number of random strings that give rise to those questions: see lecture notes for details
IP ⊆ PSPACE: alternate argument

- Let $L \in \text{IP}$, similarly as for AM, we can show that L is defined by a formula

 $E'q_1, \exists y_1, E'r_2, \exists y_2, \ldots, E'q_k, \exists y_k, \Pr_{r_1,\ldots,r_k}(P(x,r_1,y_1,\ldots,r_k,y_k)=1) \quad [k=R(n)]$

 where $E'q_i$ is average over questions q_i,

 with probability card $\{r_i \mid \mathcal{A}(x\#q_1\#r_1\#y_1\ldots\#y_{i-1},r_i)=q_i\} / 2^{q(n)}$

- This formula is $\geq \frac{2}{3}$ if $x \in L$, $\leq \frac{1}{3}$ if $x \notin L$

- Hence

 $F(x) \equiv \Sigma q_1, \max y_1, \Sigma q_2, \max y_2, \ldots, \Sigma q_k, \max y_k, (\Sigma r_1,\ldots,r_k, P(x,q_1,r_1,y_1,\ldots,q_k,r_k,y_k))$

 (where the final sum ranges over random strings r_i yielding the correct questions q_i)

 is $\geq \frac{2}{3}.2^{R(n)q(n)}$ if $x \in L$, $\leq \frac{1}{3}.2^{R(n)q(n)}$ if $x \notin L$ \quad [q(n) \equiv \text{question size, now}]

- We accept if $F(x) \geq \frac{1}{2}.2^{R(n)q(n)}$, we reject otherwise

- Note that we can compute $F(x)$ in poly space, as previously.
The easy direction

- Prop. $\text{ABPP} \subseteq \text{IP} \subseteq \text{PSPACE}$
- We have just sketched proofs of $\text{IP} \subseteq \text{PSPACE}$
- $\text{ABPP} \subseteq \text{IP}$ is because $\text{AM}[f(n)] \subseteq \text{IP}[f(n)]$ for any f:
 given $L \in \text{AM}[f(n)]$ decided by a lazy Arthur,
 an $\text{IP}[f(n)]$ protocol for f computes $q_i \overset{\text{def}}{=} \mathcal{A}(x\#q_1\#r_1\#y_1\#\ldots\#y_{i-1}, r_i)$
 as r_i, simply. \square
The hard direction: \(\text{PSPACE} \subseteq \text{ABPP} \)
Shamir’s theorem

<table>
<thead>
<tr>
<th>IP = PSPACE</th>
<th>(J. ACM, 1992)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADI SHAMIR</td>
<td></td>
</tr>
<tr>
<td>The Weizmann Institute of Science, Rehovot, Israel</td>
<td></td>
</tr>
<tr>
<td>Abstract. In this paper, it is proven that when both randomization and interaction are allowed, the proofs that can be verified in polynomial time are exactly those proofs that can be generated with polynomial space.**</td>
<td></td>
</tr>
<tr>
<td>Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Models of Computation—bounded-action devices (e.g., Turing machines, random access machines); F.1.2 [Computation by Abstract Devices]: Modes of Computation—interactive computation, probabilistic computation, relations among models; F.1.3 [Computation by Abstract Devices]: Complexity Classes—complexity hierarchies, relations among complexity classes</td>
<td></td>
</tr>
<tr>
<td>General Terms: Algorithms, Theorem</td>
<td></td>
</tr>
<tr>
<td>Additional Key Words and Phrases: Interactive proofs, IP, PSPACE</td>
<td></td>
</tr>
</tbody>
</table>

Shamir shows $\text{PSPACE} \subseteq \text{ABPP}$, which entails $\text{IP}=\text{PSPACE}$

Building on a series of previous ideas by Lund, Feige, and others
Alexander Shen

I will really describe A. Shen’s simplified proof

IP = PSPACE: Simplified Proof

A. SHEN

Academy of Sciences, Moscow, Russia, CIS

Abstract. Lund et al. [1] have proved that PH is contained in IP. Shamir [2] improved this technique and proved that PSPACE = IP. In this note, a slightly simplified version of Shamir’s proof is presented, using degree reductions instead of simple QBFs.

Categories and Subject Descriptors: F.1.2 [Computation by Abstract Devices]: Modes of computation—Alternation and nondeterminism; probabilistic computation; F.1.3 [Computation by Abstract Devices]: Complexity classes—relation among complexity classes; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic—proof theory

General Terms: Theory

Additional Key Words and Phrases: Interactive proofs, PSPACE

By Avsmal - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=77675476
General idea of the proof

- We will show that QBF is in ABPP
- For this, we will **arithmetize** the evaluation of QBF formulae
 \[\forall X_1, \exists X_2, \forall X_3, \exists X_4, \ldots, \forall / \exists X_k, G(X_1, X_2, \ldots, X_k) \]
- by evaluating them as **polynomials**
- \(\ldots \) mod \(p \)
- because (low degree) polynomials provide proofs that are checkable with just **one random sample** (see next slides)
Polynomials mod p
Let p be prime: $K \defeq \mathbb{Z} / p\mathbb{Z}$ is a field.

$K[X_1,\ldots,X_m] = \{\text{polynomials } \sum_{n_1\ldots n_m} a_{n_1\ldots n_m} X_1^{n_1}\ldots X_m^{n_m} \text{ on } m \text{ variables with coefficients } a_{n_1\ldots n_m} \text{ in } K\}$

For every polynomial P, one can evaluate P on an m-tuple (v_1, \ldots, v_m) in K^m, yielding a value $P(v_1, \ldots, v_m)$ in K

This defines a function $\llbracket P \rrbracket : K^m \to K$

(a so-called polynomial function)
One should (in principle) not confuse \textbf{polynomials} P with \textbf{polynomial functions} $[P]$.

For example, $X_1^p-X_1$ and 0 are distinct polynomials, which define the same function (Fermat’s little theorem).

However, there is no ambiguity if P has low degree: for two polynomials P, Q in \textbf{one variable} X_1, if $\deg(P), \deg(Q) < p$, then $[P]=[Q]$ iff $P=Q$.

Equivalent to: if $\deg(P) < p$, then $[P]=0$ iff $P=0$ because $P \neq 0$ implies P has $\leq \deg(P)$ roots (Lagrange).
The Schwartz-Zippel Lemma

- This generalizes to multivariate polynomials.

- For $P \in K[X_1, \ldots, X_m] \equiv \sum_{n_1 \ldots n_m} a_{n_1 \ldots n_m} X_1^{n_1} \ldots, X_m^{n_m}$ the total degree $\deg(P) \equiv \max \deg(a_{n_1 \ldots n_m} X_1^{n_1} \ldots, X_m^{n_m})$ where $\deg(a_{n_1 \ldots n_m} X_1^{n_1} \ldots, X_m^{n_m}) \equiv n_1 + \ldots + n_m$ if $a_{n_1 \ldots n_m} \neq 0$

- A root of P is an m-tuple (v_1, \ldots, v_m) such that $P(v_1, \ldots, v_m) = 0$

- **Theorem** (Schwartz 1980, Zippel 1979). Let $K \equiv \mathbb{Z} / p\mathbb{Z}$, $m \geq 1$. Every $P \in K[X_1, \ldots, X_m]$ such that $P \neq 0$ has $\leq \deg(P).p^{m-1}$ roots.
Theorem (Schwartz 1980, Zippel 1979). Let \(K \equiv \mathbb{Z} / p\mathbb{Z}, \ m \geq 1 \). Every \(P \in K[X_1, \ldots, X_m] \) such that \(P \neq 0 \) has \(\leq \deg(P).p^{m-1} \) roots.

By induction on \(m \). We write \(P \) as a univariate polynomial in \(X_m \), with coefficients in \(K[X_1, \ldots, X_{m-1}] \):

\[
P = Q_d X_m^d + Q_{d-1} X_m^{d-1} + \ldots + Q_1 X_m + Q_0,
\]

where \(Q_d, Q_{d-1}, \ldots, Q_1, Q_0 \in K[X_1, \ldots, X_{m-1}] \) and \(Q_d \neq 0 \).

Base case: \(m = 1 \), this is Lagrange.
The Schwartz-Zippel Lemma

Theorem (Schwartz 1980, Zippel 1979). Let $K \equiv \mathbb{Z} / p\mathbb{Z}$, $m \geq 1$. Every $P \in K[X_1, \ldots, X_m]$ such that $P \neq 0$ has $\leq \deg(P).p^{m-1}$ roots.

Induction case $m \geq 2$. $P = Q_d X_m^d + Q_{d-1} X_m^{d-1} + \ldots + Q_1 X_m + Q_0$, where $Q_d, Q_{d-1}, \ldots, Q_1, Q_0 \in K[X_1, \ldots, X_{m-1}]$ and $Q_d \neq 0$

Note: $\deg(P) \geq \deg(Q_d) + d$. We count the roots (v_1, \ldots, v_m) of P:

- either (v_1, \ldots, v_{m-1}) is a root of Q_d: $\leq \deg(Q_d).p^{m-2}$ possible $(m-1)$-tuples, times p possible values for v_m
- or it is not: at most p^{m-1} possible $(m-1)$-tuples, times $\leq d$ possible roots v_m (for each fixed $(m-1)$-tuple (v_1, \ldots, v_{m-1}))

Total: $\leq \deg(Q_d).p^{m-2}.p + p^{m-1}.d = (\deg(Q_d) + d).p^{m-1} \leq \deg(P).p^{m-1}$. \Box
Theorem (Schwartz 1980, Zippel 1979). Let $K \doteq \mathbb{Z} / p\mathbb{Z}$, $m \geq 1$. Every $P \in K[X_1, \ldots, X_m]$ such that $P \neq 0$ has $\leq \deg(P) \cdot p^{m-1}$ roots.

Consequence (polynomial identity testing, PIT): Given $P \in K[X_1, \ldots, X_m]$ with $d \doteq \deg(P) < p$, if $P \neq 0$ then $\Pr_{v_1, \ldots, v_m \in K}(P(v_1, \ldots, v_m) = 0) \leq d / p$.

Hence the problem:
INPUT: $P \in K[X_1, \ldots, X_m]$ with $d \doteq \deg(P) < p / 2$, QUESTION: $P \neq 0$?
is in RP.

provided evaluation of P can be done in polynomial time…
Complexity of arithmetic operations
Complexity of arithmetic operations

- Given numbers a, b of size $\leq f(n)$, in binary
 - $a+b$: time $O(f(n))$, result size $\leq f(n)+1$
 - $a \cdot b$: time $O(f(n)^2)$, result size $\leq 2f(n)$
 [can be improved: Karatsuba $O(f(n)^{\log 3/\log 2})$, Toom-Cook $O(f(n)^{1+\varepsilon})$, Schönhage-Strassen $O(f(n) \log f(n) \log \log f(n))$]
 - a^b: result size = b.size(a) \textbf{exponential} in size(b)
 Hence no matter which algorithm we choose to implement a^b, running time will be exponential
 - ... this is why we turn to mod p operations

```ml
let rec pow(a,b) =
    if b=0
        then 1
    else let (b',lsb) = b divmod 2 in
        let r = pow(a,b') in
        let r2 = r*r in
        if lsb=0
            then r2
        else r2*a
```

Fast exponentiation
Complexity of operations mod \(p \)

- If \(p \) is of size \(\leq f(n) \), then all numbers mod \(p \) are of size \(\leq f(n) \).

- Only new operation: \(x \mod p \)
 Here is an easy way
 (assuming \(a \) on \(\leq k \) bits, and \(p \geq 1 \);
 more efficient: see Montgomery representation):

  ```
  r := x;
  let q = p<<(k-1) in
  for i=1 to k: (* Inv: q=p2^{k-i}, r<2q, r=x \mod p *)
    if r\geq q then r -= q; (* r<q, r=x \mod p *)
    q >>= 1;
  ```

- in time \(O(kf(n)) \). In practice, \(x=ab \) has size \(k = 2f(n) \).
 Hence \(ab \mod p \): time \(O(f(n)^2) \) [same as for \(ab \)],
 but size remains \(\leq \text{size}(p) \leq f(n) \).

- Hence any polynomial computation involving \(A(n) \) additions and
 \(M(n) \) multiplications mod \(p \) takes time time \(O(A(n)f(n)+M(n)f(n)^2) \):
 polynomial if \(A(n), M(n), f(n) \) are polynomial.
Complexity of operations mod p

- Any polynomial computation involving $A(n)$ additions and $M(n)$ multiplications mod p takes time time $O(A(n)f(n) + M(n)f(n)^2)$: **polynomial** if $A(n)$, $M(n)$, $f(n)$ are polynomial.

- Hence evaluating $P(v_1,\ldots,v_m)$ where $P \in K[X_1,\ldots,X_m]$, $K \equiv \mathbb{Z}/p\mathbb{Z}$ takes polynomial time if:
 1. $\text{size}(p)=f(n)$ is polynomial
 2. m is polynomial
 3. P has polynomially many non-zero monomials

- When $m=1$, (3) is equivalent to: $\deg(P)$ is **polynomial**
 (In general, $\#\text{monomials}$ is exponential $= O(\deg(P)^m)$
Until now, polynomials were given \textit{explicitly}, as lists of monomials.

We will deal with \textit{polynomial expressions}, namely expressions that \textit{simplify} to polynomials.

E.g., \((x+1)(2y+3)^2\): needs 2 additions and 3 products simplifies to \(4xy^2+4y^2+6xy+6y+9x+9\), which needs 5 additions and 9 products (and is larger!)

Expressions will use extra operations: \(\lor, \land, \neg, \forall, \exists, \mathbb{R}\).
How do we find a prime number p of $f(n)$ bits?

Theorem (Bertrand’s postulate, Chebyshev 1899). For every natural number $N \geq 1$, there is at least one prime number p such that $N < p \leq 2N$; in fact there are strictly more than $N/(3 \log (2N))$.

Then rejection sampling + primality testing
Finding prime numbers (2/3)

- So \(\frac{2^f(n)}{(3(f(n)) + 1) \log 2} \) primes of [exactly] \(f(n) \) bits, out of \(2^{f(n) - 1} f(n) \)-bit numbers.

- \(\Pr_p, \text{ of } f(n) \text{ bits (p is prime)} > \frac{2}{(3(f(n)) + 1) \log 2} \)

- Hence rejection sampling will find an \(f(n) \)-bit prime number in at most \(\frac{3}{2} \log 2 (f(n) + 1) \) tries on average.

- Primality checking is poly time [Agrawal,Kayal,Saxena 2002]

- Hence, if \(f(n) \) is polynomial, then finding an \(f(n) \)-bit prime number can be done in **average polynomial time**.
Imagine we can find an $f(n)$-bit prime number in average time $p(n)$.

By simulating this computation for $2p(n)$ steps, and failing if timeout is reached, either:
- we obtain an $f(n)$-bit prime number in time $O(p(n))$
- or we fail, with probability $\leq 1/2$

Repeating this process while it fails, and at most $q(n)$ [polynomial] times, either:
- we obtain an $f(n)$-bit prime number in time $O(q(n)p(n)\log n)$
- or we fail, with probability $\leq 1/2q(n)$
Drawing random numbers mod p

- Let p be an $f(n)$-bit prime number
- To draw $v \mod p$ at random **uniformly**: rejection sampling again
 - stops in ≤ 2 iterations **on average**
 - With a timeout of 4 iterations, we obtain a random $v \mod p$ in time $4f(n)$, or we fail with probability $\leq 1/2$

Repeating this process while it fails,
 - and at most $q(n)$ [polynomial] times, either:
 - we obtain an $f(n)$-bit random $v \mod p$ in time $O(q(n)f(n)\log n)$
 - or we fail, with probability $\leq 1/2^{q(n)}$
Arithmetization
Arithmetizing formulae

- We will interpret QBF formulae F as **polynomial expressions** $F(X_1,\ldots,X_m)$ (we will not simplify them as polynomials).

- ... in such a way that for all **Booleans** v_1,\ldots,v_m,

 $F(v_1,\ldots,v_m)$ is the value of $F[X_1:=v_1,\ldots,X_m:=v_m]$
 (and is in particular Boolean; we let false=0, true=1)

- $P \land Q \overset{\text{def}}{=} P.Q$
 $\neg P \overset{\text{def}}{=} 1-P$
 $P \lor Q \overset{\text{def}}{=} 1-(1-P)(1-Q)$
Arithmetizing formulae

- \(P \land Q \overset{\text{def}}{=} P \cdot Q \quad \neg P \overset{\text{def}}{=} 1 - P \quad P \lor Q \overset{\text{def}}{=} 1 - (1 - P)(1 - Q) \)

- **Example:** \((X_1 \land \neg X_2) \lor X_3 = 1 - (1 - X_1.(1 - X_2))(1 - X_3)\)

- For a 3-clause \(C\), \(\deg(C) \leq 3\), constant size (counting the size of variables as one)

- For a set [conjunction] \(G\) of \(k\) 3-clauses, \(\deg(G) \leq 3k\), size \(O(k)\)

\(k = \text{poly}(n)\), good!
Arithmetizing QBF formulae

- $P \land Q \overset{\text{def}}{=} P \cdot Q \quad \neg P \overset{\text{def}}{=} 1 - P \quad P \lor Q \overset{\text{def}}{=} 1 - (1 - P)(1 - Q)$
- $\forall X. P \overset{\text{def}}{=} P[X:=0] \land P[X:=1] \quad \exists X. P \overset{\text{def}}{=} P[X:=0] \lor P[X:=1]$
- Each quantifier **doubles** both the degree and the size
- For a set [conjunction] G of k 3-clauses,
 \[\text{deg}(G) \leq 3k, \text{size } O(k) \]
- $\forall X_1, \exists X_2, \forall X_3, \exists X_4, \ldots, \forall / \exists X_m, G(X_1,X_2,\ldots,X_m)$
 \[\text{degree: } 2^m3k, \text{size } O(2^{mk}) \]

exponential: no problem for Schwartz-Zippel (take $f(n)$ polynomial $> m \log_2 (3k)$), but will cause a **size** problem later (solved by Shen’s trick, see later)
An ABPP game to decide QBF

- We first assume that the max degree d_{max} of all polynomials we need to handle is polynomial (instead of 2^{m3k})...

- This is wrong, but will be solved by Shen’s trick later

- We let Arthur check that

 $\forall X_1, \exists X_2, \forall X_3, \exists X_4, \ldots, \forall / \exists X_m, G(X_1,X_2,\ldots,X_m) = 1$

 by asking Merlin for polynomials representing certain subformulae (~error-correcting codes), and checking them using Schwartz-Zippel

- There will be m rounds

- Let me explain this with $m=4$...
At each point of the game, we will have a polynomial expression F (... with no variable) and an objective value w, and Arthur wishes to check whether $[F] = w$.

Initially, $F = F_0$, $w = w_0 \equiv 1$
An ABPP game to decide QBF

- Initially, $F = F_0$, $w = w_0 = 1$

- Arthur cannot check whether $[F_0] = w_0$ (F_0 is too large)

- Merlin gives a polynomial (not a polynomial expression) $P_1(X_1)$, claiming that:
 - $[P_1(X_1)] = [F_1(X_1)]$
 - $[\forall X_1, P_1(X_1)] = w_0$

- Since d_{max} is (assumed) polynomial, and $P_1(X_1)$ is univariate, $P_1(X_1)$ has polynomial size
An ABPP game to decide QBF

- Initially, $F=F_0$, $w=w_0 \nleq 1$
- Merlin gives $P_1(X_1)$, claims:
 - $[[P_1(X_1)]] = [[F_1(X_1)]]$
 - $[[\forall X_1, P_1(X_1)]] = w_0$
- Arthur checks that $[[\forall X_1, P_1(X_1)]] = w_0$ by verifying that $P_1(0).P_1(1) = w_0$
 ... admittedly, it is very easy for a dishonest Merlin to pass this test
- In order to check $[[P_1(X_1)]] = [[F_1(X_1)]]$,
 Arthur draws $v_1 \mod p$ uniformly, and needs to check $P_1(v_1)=F_1(v_1)$,
 by Schwartz-Zippel (on one variable), this is a reliable test
- Now $F = F_1(v_1)$, $w=w_1 \nleq P_1(v_1)$
An ABPP game to decide QBF

- Now $F = F_1(v_1)$, $w = w_1 \not\equiv P_1(v_1)$

- Merlin gives $P_2(X_2)$, claims:
 - $\llbracket P_2(X_2) \rrbracket = \llbracket F_2(v_1, X_2) \rrbracket$
 - $\llbracket \exists X_2, P_2(X_2) \rrbracket = w_1$

- Arthur checks that $\llbracket \exists X_2, P_2(X_2) \rrbracket = w_1$ by verifying that $1 - (1 - P_2(0))(1 - P_2(1)) = w_1$

- In order to check $\llbracket P_2(X_2) \rrbracket = \llbracket F_2(v_1, X_2) \rrbracket$,
 Arthur draws $v_2 \mod p$ uniformly, and needs to check $P_2(v_2) = F_2(v_1, v_2)$, by Schwartz-Zippel (on one variable), this is a reliable test

- Now $F = F_2(v_1, v_2)$, $w = w_2 \not\equiv P_2(v_2)$
An ABPP game to decide QBF

- Now $F = F_2(v_1,v_2)$, $w = w_2 \equiv P_2(v_2)$
- Merlin gives $P_3(X_3)$, claims:
 - $\langle P_3(X_3) \rangle = \langle F_3(v_1,v_2,X_3) \rangle$
 - $\langle \forall X_3, P_3(X_3) \rangle = w_2$
- Arthur checks that $\langle \forall X_3, P_3(X_3) \rangle = w_2$ by verifying that $P_3(0)P_3(1) = w_2$
- In order to check $\langle P_3(X_3) \rangle = \langle F_3(v_1,v_2,X_3) \rangle$
 Arthur draws $v_3 \mod p$ uniformly, and will check $P_3(v_3) = F_3(v_1,v_2,v_3)$,
 by Schwartz-Zippel (on one variable), this is a reliable test
- Now $F = F_3(v_1,v_2,v_3)$, $w = w_3 \equiv P_3(v_3)$
An **ABPP** game to decide QBF

- Now $F = F_3(v_1,v_2,v_3)$, $w = w_3 \equiv P_3(v_3)$

- Merlin gives $P_4(X_4)$, claims:
 - $[P_4(X_4)] = [F_4(v_1,v_2,v_3,X_4)]$
 - $[\exists X_4, P_4(X_4)] = w_3$

- Arthur checks that $[\exists X_4, P_4(X_4)] = w_3$ by verifying that $1 - (1 - P_4(0))(1 - P_4(1)) = w_3$

- In order to check $[P_4(X_4)] = [F_4(v_1,v_2,v_3,X_4)]$
 Arthur draws $v_4 \mod p$ uniformly, and will check $P_4(v_4) = F_4(v_1,v_2,v_3,v_4)$, by Schwartz-Zippel (on one variable), this is a **reliable** test

- … and Arthur can do this by himself, since $F_4 = G$. □
Error bounds

- If F_0 is true, then Merlin simply gives the simplified form of $F_k(v_1,v_2,\ldots,v_{k-1},X_k)$ for $P_k(X_k)$, at each turn k.
- Arthur will *always* accept in the end, in that case.

\[
F_0 \equiv \forall X_1, \exists X_2, \forall X_3, \exists X_4, G(X_1,X_2,X_3,X_4)
\]

\[
F_1(X_1)
\]

\[
F_2(X_1,X_2)
\]

\[
F_3(X_1,X_2,X_3)
\]

\[
F_4(X_1,X_2,X_3,X_4)
\]
If F_0 is false, how can Merlin play (i.e., cheat) so as to force Arthur to eventually accept?

Round 1: $P_1(X_1) \neq F_1(X_1)$ [as polynomials]
since $\left\llbracket \forall X_1, P_1(X_1) \right\rrbracket = 1$ (Arthur checks $\left\llbracket \forall X_1, P_1(X_1) \right\rrbracket = w_0$, where $w_0=1$) but $\left\llbracket \forall X_1, F_1(X_1) \right\rrbracket = \left\llbracket F_0 \right\rrbracket = 0$

- With prob. $\leq \frac{d_{\text{max}}}{p}$ over v_1 (Schwartz-Zippel), $P_1(v_1) = F_1(v_1)$
- Otherwise, $F_1(v_1) \neq w_1$, where $w_1 \equiv P_1(v_1)$, so...
If F_0 is false, how can Merlin play so as to force Arthur to eventually accept?

Recap: now $F_1(v_1) \neq w_1$ [\(w_1 \equiv P_1(v_1)\)]

Round 2: $P_2(X_2) \neq F_2(v_1, X_2)$ [as polynomials]

- since $\llbracket \exists X_2, P_2(X_2) \rrbracket = w_1$ (since Arthur checks $\llbracket \exists X_2, P_2(X_2) \rrbracket = w_1$)
- but $\llbracket \exists X_2, F_2(v_1, X_2) \rrbracket = F_1(v_1) \neq w_1$

With prob. $\leq \frac{d_{\text{max}}}{p}$ over v_2 (Schwartz-Zippel), $P_2(v_2) = F_2(v_1, X_2)$

Otherwise, $F_2(v_1, v_2) \neq w_2$, where $w_2 \equiv P_2(v_2)$, so…

Error bounds

\[F_0 \equiv \forall X_1 \exists X_2 \forall X_3 \exists X_4, G(X_1, X_2, X_3, X_4) \]

\[F_1(X_1) \]

\[F_2(X_1, X_2) \]

\[F_3(X_1, X_2, X_3) \]

\[F_4(X_1, X_2, X_3, X_4) \]
If F_0 is false, how can Merlin play so as to force Arthur to eventually accept?

Now $F_2(v_1, v_2) \neq w_2$ [$w_2 \overset{\text{def}}{=} P_2(v_2)$]

Round 3: $P_3(X_3) \neq F_3(v_1, v_2, X_3)$ [as polynomials] since $[\forall X_3, P_3(X_3)] = w_2$ (since Arthur checks $[\forall X_3, P_3(X_3)] = w_2$)

but $[\forall X_3, F_3(v_1, v_2, X_3)] = F_2(v_1, v_2) \neq w_2$

With prob. $\leq d_{\text{max}} / p$ over v_3 (Schwartz-Zippel), $P_3(v_3) = F_3(v_1, v_2, v_3)$

Otherwise, $F_3(v_1, v_2, v_3) \neq w_3$, where $w_3 \overset{\text{def}}{=} P_3(v_3)$, so…

Error bounds
Error bounds

- If F_0 is false, how can Merlin play so as to force Arthur to eventually accept?

- Now $F_3(v_1,v_2,v_3) \neq w_3 \ [w_3 \equiv P_3(v_3)]$

- **Round 4:** $P_4(X_4) \neq F_4(v_1,v_2,v_3,X_4)$ [as polynomials]
 - since $[\exists X_4,P_4(X_4)] = w_3$
 - but $[\exists X_4,F_4(v_1,v_2,v_3,X_4)] = F_3(v_1,v_2,v_3) \neq w_3$

- With prob. $\leq \frac{d_{\text{max}}}{p}$ over v_4
 (Schwartz-Zippel), $P_4(v_4) = F_4(v_1,v_2,v_3,v_4)$

- Otherwise, $F_4(v_1,v_2,v_3,v_4) \neq w_4,$ where $w_4 \equiv P_4(v_4)$, but Arthur will then **reject**
If F_0 is false, then probability of acceptance is $\leq 4d_{\text{max}}/p$

That was for $m=4$ quantified variables

In the general case,

$F_0 = \forall X_1, \exists X_2, \forall X_3, \exists X_4, \ldots, \forall \exists X_m,
\quad G(X_1,X_2,\ldots,X_m)$

and prob. of acceptance $\leq md_{\text{max}}/p$

But all that works in poly time only if d_{max} is polynomial in n…
Shen’s trick
Shen’s trick: degree reduction

- Given \(P \in K[X] \), let
 \[
 RX, P(X) \equiv AX + B
 \]
 where \(B \equiv P(0) \)
 \[
 A \equiv P(1) - P(0)
 \]

- At the Boolean level, \(R \) is a no-op:
 \(RX, P(X) \) and \(P(X) \) have the same values on \(X=0 \) or \(1 \)

- ... but the degree of \(RX, P(X) \) is at most one (in \(X \))

- New « quantifier » \(R \) (reduction).
 Beware that \(RX, P(X) \) still depends on \(X \)

- \(RX, P(X) \) is really \(P(X) \mod (X^2 - X) \)
Shen’s trick: using R

- Instead of checking whether the polynomial expression
 \[\forall X_1, \exists X_2, \forall X_3, \exists X_4, \ldots, \forall / \exists X_m, G(X_1, X_2, \ldots, X_m) \]
evaluates to 1,

- we consider the polynomial expression
 \[
 \forall X_1, RX_1, \\
 \exists X_2, RX_1, RX_2, \\
 \forall X_3, RX_1, RX_2, RX_3, \\
 \exists X_4, RX_1, RX_2, RX_3, RX_4, \\
 \ldots \\
 \forall / \exists X_m, RX_1, RX_2, \ldots, RX_m, G(X_1, X_2, \ldots, X_m)
 \]

- That has now $m + m(m+1)/2$ quantifiers instead of m (polynomial)
Testing R probabilistically

- Instead of just \forall and \exists rounds, there are now also R rounds. They are dealt with in a very similar way:

- Imagine $F_k(X) = RX, F_{k+1}(X)$ (just showing var. X for clarity) and Arthur wishes to check $F_k(v_k) = w_k$ (current objective).

- Merlin provides univariate polynomial $P_{k+1}(X)$, claims:
 - $[P_{k+1}(X)] = [F_{k+1}(X)]$
 - $[RX, P_{k+1}(X)](v_k) = w_k$

- Arthur checks $[RX, P_{k+1}(X)](v_k) = w_k$, i.e., $Av_k + B = w_k$, where $B \equiv P_{k+1}(0), A \equiv P_{k+1}(1) - P_{k+1}(0)$.

- … then goes on to the next round by drawing $v_{k+1} \mod p$, with the goal of checking $F_{k+1}(v_{k+1}) = w_{k+1}$, where $w_{k+1} \equiv P_{k+1}(v_{k+1})$.
Error bounds, and d_{max}

- If F_0 is false, then probability of acceptance is $\leq \#\text{quantifiers}.d_{\text{max}}/p$
- Now $\#\text{quantifiers} = m + m(m+1)/2$
- and (new!) d_{max} is polynomial in n…
- precisely, at most $\max(3k,2m)$ where $k \equiv \#\text{clauses in } G$
 $m \equiv \#\text{quantified variables}$
 … linear in $\text{size}(F_0)$
The final adjustments (1/3)

- If F_0 is false, then probability of acceptance is $\leq \#\text{quantifiers}.d_{\text{max}}/p$

 We need to make that $\leq 1/2^{q(n)}$, for an arbitrary polynomial $q(n)$

 Let us aim for $1/2^{q(n)+1}$, really (we will see why later)

- $d_{\text{max}} \leq \max(3k,2m) \leq 3n$, $\#\text{quantifiers}=m+m(m+1)/2 \leq (n^2+3n)/2 \leq 2n^2$ [if $n \geq 1$],
 so we require:

 $p \geq 2^{q(n)+1.6n^3}$

- Let us draw p at random on $f(n)$ bits [in poly time], where

 $f(n) = q(n) + \lceil 3 \log_2 n + \log_2 6 \rceil + 2$

 ... failing with probability $\leq 1/2^{q(n)+2}$

- If that did not fail, then

 $p \geq 2^{f(n)-1} \geq 2^{q(n)+1.6n^3}$, as required
The final adjustments (2/3)

- During the whole game, we will draw numbers mod p:
 \[\#\text{quantifiers} = \frac{m+m(m+1)}{2} \leq 2n^2 \text{ times} \]

- Each time, this may fail, and we arrange the probability of failure to be
 \[\leq \frac{1}{(2n^2 \cdot 2q(n)+2)} \]
 viz. \[\leq \frac{1}{2q(n)} \text{, where } q'(n) \text{ is some polynomial } \geq q(n)+2+\log_2(2n^2) \]

- Hence the total probability of failure is at most:

 - \[\frac{1}{2q(n)+2} \text{ when drawing } p \]

 - \[\frac{1}{2q(n)+2} \text{ for the } \leq 2n^2 \text{ draws of numbers mod } p \]

 hence at most \[\frac{1}{2q(n)+1} \]
The total probability of failure is at most $\frac{1}{2^{q(n)+1}}$.

In case of failure, Arthur immediately accepts. This way,

- if F_0 is true, then if Merlin plays honestly, Arthur will eventually accept, either because the game goes as planned, or because some failure occurs;
- if F_0 is false, then whatever strategy Merlin uses, acceptance occurs only if failure (prob. $\leq \frac{1}{2^{q(n)+1}}$) or if game goes on as planned but Arthur does not detect Merlin’s cheating (prob. $\leq \frac{1}{2^{q(n)+1}}$ as well, by our choice of p);

... hence with probability $\leq \frac{1}{2^{q(n)}}$. \Box
Conclusion

❖ We have proved:

Theorem. QBF is in ABPP.

❖ Since QBF is PSPACE-complete, and since ABPP is closed under poly time reductions,

Corollary. PSPACE ⊆ ABPP

❖ With the previous result ABPP ⊆ IP ⊆ PSPACE:

❖ Corollary (Shamir’s theorem). ABPP = IP = PSPACE.

and every PSPACE language has an ABPP protocol with perfect soundness!
Next time...
Next time

- A glimpse at the Arora-Safra theorem
 \[\text{NP} = \text{PCP}(O(\log n), O(1), O(1)) \]
- … specially its relationship to the hardness of approximation problems