
Jean Goubault-Larrecq

Randomized
complexity classes

Today: Shamir’s
theorem

Tous droits réservés, Jean Goubault-Larrecq, professeur, ENS Paris-Saclay, Université Paris-Saclay
Cours « Complexité avancée » (M1), 2020-, 1er semestre
Ce document est protégé par le droit d’auteur. Toute représentation ou reproduction intégrale ou
partielle faite sans le consentement de l’auteur est illicite.

Today

❖ The classes ABPP, IP

❖ Easy: ABPP ⊆ IP ⊆ PSPACE

❖ Hard (Shamir’s theorem): ABPP = IP = PSPACE

ABPP ⊆ IP ⊆ PSPACE

ABPP, IP

ABPP, IP
❖ ABPP ≝ AM[poly] = {languages recognizable

 by an A-M protocol with polynomially many rounds}

ABPP, IP
❖ ABPP ≝ AM[poly] = {languages recognizable

 by an A-M protocol with polynomially many rounds}

❖ IP ≝ IP[poly] = {languages recognizable by an
 interactive proof with polynomially many rounds}

ABPP, IP
❖ ABPP ≝ AM[poly] = {languages recognizable

 by an A-M protocol with polynomially many rounds}

❖ IP ≝ IP[poly] = {languages recognizable by an
 interactive proof with polynomially many rounds}

❖ Beware: Merlin must provide answers y of size
polynomial in n ≝ size(x), not in the size of the history

The subtlety with answer sizes
❖ Imagine Merlin were allowed to answer y of size |history|2

(and Arthur is lazy, and |r|=n, to make things simpler)

❖ |x#q1#r1|= 2n+2

❖ |x#q1#r1#y1|= (2n+2)+1+(2n+2)2 = 4n2+6n+7 ≥ 4n2

❖ |x#q1#r1#y1#q2#r2#y2| ≥ (4n2)2 = 16n4

❖ …

The subtlety with answer sizes
❖ Imagine Merlin were allowed to answer y of size |history|2

(and Arthur is lazy, and |r|=n, to make things simpler)

❖ |x#q1#r1|= 2n+2

❖ |x#q1#r1#y1|= (2n+2)+1+(2n+2)2 = 4n2+6n+7 ≥ 4n2

❖ |x#q1#r1#y1#q2#r2#y2| ≥ (4n2)2 = 16n4

❖ …

❖ |x#q1#r1#y1#…#qk#rk#yk| ≥ 22^kn2^k

The subtlety with answer sizes
❖ Imagine Merlin were allowed to answer y of size |history|2

(and Arthur is lazy, and |r|=n, to make things simpler)

❖ |x#q1#r1|= 2n+2

❖ |x#q1#r1#y1|= (2n+2)+1+(2n+2)2 = 4n2+6n+7 ≥ 4n2

❖ |x#q1#r1#y1#q2#r2#y2| ≥ (4n2)2 = 16n4

❖ …

❖ |x#q1#r1#y1#…#qk#rk#yk| ≥ 22^kn2^k

❖ polynomial if k constant,
doubly exponential if k=poly(n)

The subtlety with answer sizes
❖ Instead, Merlin must answer y of size ≤q(n) [q polynomial]

Arthur also runs A(x#q1#r1#y1…,r) in time ≤q(n)
 hence uses up ≤q(n) random bits, produces question of size ≤q(n)

❖ |x#q1#r1|≤ n+2q(n)+2

❖ |x#q1#r1#y1|≤ n+3q(n)+3

❖ |x#q1#r1#y1#q2#r2#y2| ≤ n+6q(n)+6

❖ …

The subtlety with answer sizes
❖ Instead, Merlin must answer y of size ≤q(n) [q polynomial]

Arthur also runs A(x#q1#r1#y1…,r) in time ≤q(n)
 hence uses up ≤q(n) random bits, produces question of size ≤q(n)

❖ |x#q1#r1|≤ n+2q(n)+2

❖ |x#q1#r1#y1|≤ n+3q(n)+3

❖ |x#q1#r1#y1#q2#r2#y2| ≤ n+6q(n)+6

❖ …

❖ |x#q1#r1#y1#…#qk#rk#yk| ≤ n+3k q(n)+3k

The subtlety with answer sizes
❖ Instead, Merlin must answer y of size ≤q(n) [q polynomial]

Arthur also runs A(x#q1#r1#y1…,r) in time ≤q(n)
 hence uses up ≤q(n) random bits, produces question of size ≤q(n)

❖ |x#q1#r1|≤ n+2q(n)+2

❖ |x#q1#r1#y1|≤ n+3q(n)+3

❖ |x#q1#r1#y1#q2#r2#y2| ≤ n+6q(n)+6

❖ …

❖ |x#q1#r1#y1#…#qk#rk#yk| ≤ n+3k q(n)+3k

❖ polynomial if k=poly(n)

ABPP ⊆ PSPACE
❖ We start with the relatively simple inclusion ABPP ⊆ PSPACE

❖ Let L ∈ ABPP, decided in R(n) rounds, random tape size =q(n), lazy Arthur

❖ Idea: count the number of lists of random strings r1, r2, …, rR(n)
that lead to acceptance

❖ That must be ≥ ⅔.2R(n)q(n) or ≤ ⅓.2R(n)q(n):
 accept if larger than ½.2R(n)q(n), reject otherwise

ABPP ⊆ PSPACE
❖ We start with the relatively simple inclusion ABPP ⊆ PSPACE

❖ Let L ∈ ABPP, decided in R(n) rounds, random tape size =q(n), lazy Arthur

❖ Idea: count the number of lists of random strings r1, r2, …, rR(n)
that lead to acceptance

❖ That must be ≥ ⅔.2R(n)q(n) or ≤ ⅓.2R(n)q(n):
 accept if larger than ½.2R(n)q(n), reject otherwise

❖ Answers by Merlin are guessed.

ABPP ⊆ PSPACE
❖ We start with the relatively simple inclusion ABPP ⊆ PSPACE

❖ Let L ∈ ABPP, decided in R(n) rounds, random tape size =q(n), lazy Arthur

❖ Idea: count the number of lists of random strings r1, r2, …, rR(n)
that lead to acceptance

❖ That must be ≥ ⅔.2R(n)q(n) or ≤ ⅓.2R(n)q(n):
 accept if larger than ½.2R(n)q(n), reject otherwise

❖ Answers by Merlin are guessed.

❖ Hence L is in NPSPACE, therefore in PSPACE (Savitch).
See lecture notes for details.

ABPP ⊆ PSPACE: alternate argument
❖ Let L ∈ ABPP, defined by formula

 Er1, ∃y1, Er2, ∃y2, …, Erk, ∃yk, P(x,r1,y1,…,rk,yk) [k=R(n)]
namely this is ≥⅔ if x ∈ L, ≤⅓ if x ∉ L

❖ Hence
 F(x) ≝ Σr1, max y1, Σr2, max y2, …, Σrk, max yk, P(x,r1,y1,…,rk,yk)
 is ≥ ⅔.2R(n)q(n) if x ∈ L, ≤ ⅓.2R(n)q(n) if x ∉ L

❖ We accept if F(x) ≥ ½.2R(n)q(n), we reject otherwise

❖ Note that we can compute F(x) in poly space:
— 2R(n) words ri, yi, of size ≤ q(n)
— P(x,r1,y1,…,rk,yk) poly time, hence poly space
— Intermediate counters ≤ 2R(n)q(n), hence of size ≤ R(n)q(n).

IP ⊆ PSPACE
❖ Let now L ∈ IP, decided in R(n) rounds, random tape size =q(n)

Arthur no longer lazy: qi ≝ A(x#q1#r1#y1#…#yi–1,ri), size ≤ q(n)

❖ If we count the number of lists of random strings r1, r2, …, rR(n)
that lead to acceptance, and Merlin guesses yi,
 then yi may depend on r1, r2, …, ri

— but it is only allowed to depend on (x and) q1, q2, …, qi

IP ⊆ PSPACE
❖ Let now L ∈ IP, decided in R(n) rounds, random tape size =q(n)

Arthur no longer lazy: qi ≝ A(x#q1#r1#y1#…#yi–1,ri), size ≤ q(n)

❖ If we count the number of lists of random strings r1, r2, …, rR(n)
that lead to acceptance, and Merlin guesses yi,
 then yi may depend on r1, r2, …, ri

— but it is only allowed to depend on (x and) q1, q2, …, qi

❖ Instead, we count the # of lists of random questions q1, q2, …, qR(n)

 — it is just that they are not uniformly random;
we weigh each of them with the number of random strings that give rise
to those questions: see lecture notes for details

IP ⊆ PSPACE: alternate argument
❖ Let L ∈ IP, similarly as for AM, we can show that L is defined by a formula

 E’q1, ∃y1, E'r2, ∃y2, …, E’qk, ∃yk, Prr1,…,rk(P(x,r1,y1,…,rk,yk)=1) [k=R(n)]
where E’qi is average over questions qi,
 with probability card {ri | A(x#q1#r1#y1#…#yi–1,ri)=qi}/2q(n)

❖ This formula is ≥⅔ if x ∈ L, ≤⅓ if x ∉ L

IP ⊆ PSPACE: alternate argument
❖ Let L ∈ IP, similarly as for AM, we can show that L is defined by a formula

 E’q1, ∃y1, E'r2, ∃y2, …, E’qk, ∃yk, Prr1,…,rk(P(x,r1,y1,…,rk,yk)=1) [k=R(n)]
where E’qi is average over questions qi,
 with probability card {ri | A(x#q1#r1#y1#…#yi–1,ri)=qi}/2q(n)

❖ This formula is ≥⅔ if x ∈ L, ≤⅓ if x ∉ L

❖ Hence
F(x) ≝ Σq1, max y1, Σq2, max y2, …, Σqk, max yk, (Σr1,…,rk, P(x,q1,r1,y1,…,qk,rk,yk))
 (where the final sum ranges over random strings ri yielding the correct questions qi)
 is ≥ ⅔.2R(n)q(n) if x ∈ L, ≤ ⅓.2R(n)q(n) if x ∉ L [q(n) ≝ question size, now]

IP ⊆ PSPACE: alternate argument
❖ Let L ∈ IP, similarly as for AM, we can show that L is defined by a formula

 E’q1, ∃y1, E'r2, ∃y2, …, E’qk, ∃yk, Prr1,…,rk(P(x,r1,y1,…,rk,yk)=1) [k=R(n)]
where E’qi is average over questions qi,
 with probability card {ri | A(x#q1#r1#y1#…#yi–1,ri)=qi}/2q(n)

❖ This formula is ≥⅔ if x ∈ L, ≤⅓ if x ∉ L

❖ Hence
F(x) ≝ Σq1, max y1, Σq2, max y2, …, Σqk, max yk, (Σr1,…,rk, P(x,q1,r1,y1,…,qk,rk,yk))
 (where the final sum ranges over random strings ri yielding the correct questions qi)
 is ≥ ⅔.2R(n)q(n) if x ∈ L, ≤ ⅓.2R(n)q(n) if x ∉ L [q(n) ≝ question size, now]

❖ We accept if F(x) ≥ ½.2R(n)q(n), we reject otherwise

IP ⊆ PSPACE: alternate argument
❖ Let L ∈ IP, similarly as for AM, we can show that L is defined by a formula

 E’q1, ∃y1, E'r2, ∃y2, …, E’qk, ∃yk, Prr1,…,rk(P(x,r1,y1,…,rk,yk)=1) [k=R(n)]
where E’qi is average over questions qi,
 with probability card {ri | A(x#q1#r1#y1#…#yi–1,ri)=qi}/2q(n)

❖ This formula is ≥⅔ if x ∈ L, ≤⅓ if x ∉ L

❖ Hence
F(x) ≝ Σq1, max y1, Σq2, max y2, …, Σqk, max yk, (Σr1,…,rk, P(x,q1,r1,y1,…,qk,rk,yk))
 (where the final sum ranges over random strings ri yielding the correct questions qi)
 is ≥ ⅔.2R(n)q(n) if x ∈ L, ≤ ⅓.2R(n)q(n) if x ∉ L [q(n) ≝ question size, now]

❖ We accept if F(x) ≥ ½.2R(n)q(n), we reject otherwise

❖ Note that we can compute F(x) in poly space, as previously.

The easy direction
❖ Prop. ABPP ⊆ IP ⊆ PSPACE

❖ We have just sketched proofs of IP ⊆ PSPACE

❖ ABPP ⊆ IP is because AM[f(n)] ⊆ IP[f(n)] for any f:
given L ∈ AM[f(n)] decided by a lazy Arthur,
an IP[f(n)] protocol for f computes qi ≝ A(x#q1#r1#y1#…#yi–1,ri)
 as ri, simply. ☐

The hard direction:
PSPACE ⊆ ABPP

Shamir’s theorem

Par Erik Tews — Travail personnel, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=28572036

Adi Shamir
(J. ACM, 1992)

Shamir shows PSPACE ⊆ ABPP,
which entails IP=PSPACE

Building on a series of previous ideas by
Lund, Feige, and others

Alexander Shen

By Avsmal - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=77675476

Александр Ханиевич Шень

(J. ACM, 1992)

I will really describe A. Shen’s simplified proof

General idea of the proof
❖ We will show that QBF is in ABPP

General idea of the proof
❖ We will show that QBF is in ABPP

❖ For this, we will arithmetize the evaluation of QBF
formulae
 ∀X1, ∃X2, ∀X3, ∃X4, …, ∀/∃Xk, G(X1,X2,…,Xk)

General idea of the proof
❖ We will show that QBF is in ABPP

❖ For this, we will arithmetize the evaluation of QBF
formulae
 ∀X1, ∃X2, ∀X3, ∃X4, …, ∀/∃Xk, G(X1,X2,…,Xk)

conjunction of
3-clauses

General idea of the proof
❖ We will show that QBF is in ABPP

❖ For this, we will arithmetize the evaluation of QBF
formulae
 ∀X1, ∃X2, ∀X3, ∃X4, …, ∀/∃Xk, G(X1,X2,…,Xk)

❖ by evaluating them as polynomials

conjunction of
3-clauses

General idea of the proof
❖ We will show that QBF is in ABPP

❖ For this, we will arithmetize the evaluation of QBF
formulae
 ∀X1, ∃X2, ∀X3, ∃X4, …, ∀/∃Xk, G(X1,X2,…,Xk)

❖ by evaluating them as polynomials

conjunction of
3-clauses

which will act as
error-correcting codes

(but don’t worry about that)

General idea of the proof
❖ We will show that QBF is in ABPP

❖ For this, we will arithmetize the evaluation of QBF
formulae
 ∀X1, ∃X2, ∀X3, ∃X4, …, ∀/∃Xk, G(X1,X2,…,Xk)

❖ by evaluating them as polynomials

❖ … mod p

conjunction of
3-clauses

which will act as
error-correcting codes

(but don’t worry about that)

General idea of the proof
❖ We will show that QBF is in ABPP

❖ For this, we will arithmetize the evaluation of QBF
formulae
 ∀X1, ∃X2, ∀X3, ∃X4, …, ∀/∃Xk, G(X1,X2,…,Xk)

❖ by evaluating them as polynomials

❖ … mod p

❖ because (low degree) polynomials provide proofs that are
checkable with just one random sample (see next slides)

conjunction of
3-clauses

which will act as
error-correcting codes

(but don’t worry about that)

Polynomials mod p

Polynomials mod p
❖ Let p be prime: K ≝ ℤ/pℤ is a field.

❖ K[X1,…,Xm] = {polynomials
 Σn1…nm an1…nm X1n1…Xmnm on m variables
 with coefficients an1…nm in K}

sum of monomials

Polynomials mod p
❖ Let p be prime: K ≝ ℤ/pℤ is a field.

❖ K[X1,…,Xm] = {polynomials
 Σn1…nm an1…nm X1n1…Xmnm on m variables
 with coefficients an1…nm in K}

❖ For every polynomial P, one can evaluate
P on an m-tuple (v1, …, vm) in Km,
yielding a value P(v1, …, vm) in K

sum of monomials

Polynomials mod p
❖ Let p be prime: K ≝ ℤ/pℤ is a field.

❖ K[X1,…,Xm] = {polynomials
 Σn1…nm an1…nm X1n1…Xmnm on m variables
 with coefficients an1…nm in K}

❖ For every polynomial P, one can evaluate
P on an m-tuple (v1, …, vm) in Km,
yielding a value P(v1, …, vm) in K

❖ This defines a function ⟦P⟧ : Km → K
 (a so-called polynomial function)

sum of monomials

Polynomials and polynomial functions
❖ One should (in principle) not confuse

 polynomials P with polynomial functions ⟦P⟧.

❖ For example, X1p-X1 and 0 are distinct polynomials,
which define the same function (Fermat’s little theorem)

Polynomials and polynomial functions
❖ One should (in principle) not confuse

 polynomials P with polynomial functions ⟦P⟧.

❖ For example, X1p-X1 and 0 are distinct polynomials,
which define the same function (Fermat’s little theorem)

❖ However, there is no ambiguity if P has low degree:
for two polynomials P, Q in one variable X1,
if deg(P), deg(Q) < p, then ⟦P⟧=⟦Q⟧ iff P=Q

Polynomials and polynomial functions
❖ One should (in principle) not confuse

 polynomials P with polynomial functions ⟦P⟧.

❖ For example, X1p-X1 and 0 are distinct polynomials,
which define the same function (Fermat’s little theorem)

❖ However, there is no ambiguity if P has low degree:
for two polynomials P, Q in one variable X1,
if deg(P), deg(Q) < p, then ⟦P⟧=⟦Q⟧ iff P=Q

❖ Equivalent to: if deg(P) < p, then ⟦P⟧=0 iff P=0
because P≠0 implies P has ≤ deg(P) roots (Lagrange)

❖ This generalizes to multivariate polynomials.

❖ For P ∈ K[X1,…,Xm] ≝ Σn1…nm an1…nm X1n1…,Xmnm
the total degree deg(P) ≝ max deg(an1…nm X1n1…,Xmnm)
 where deg(an1…nm X1n1…,Xmnm) ≝ n1+…+nm if an1…nm≠0
 ≝ 0 otherwise

❖ A root of P is an m-tuple (v1, …, vm) such that P(v1, …, vm)=0

❖ Theorem (Schwartz 1980, Zippel 1979). Let K ≝ ℤ/pℤ, m≥1.
Every P ∈ K[X1,…,Xm] such that P≠0 has ≤ deg(P).pm–1 roots.

The Schwartz-Zippel Lemma

❖ Theorem (Schwartz 1980, Zippel 1979). Let K ≝ ℤ/pℤ, m≥1.
Every P ∈ K[X1,…,Xm] such that P≠0 has ≤ deg(P).pm–1 roots.

❖ By induction on m. We write P as a univariate polynomial in Xm,
with coefficients in K[X1,…,Xm–1]:
 P = Qd Xmd + Qd–1 Xmd–1 + … + Q1 Xm + Q0,
where Qd, Qd–1, …, Q1, Q0 ∈ K[X1,…,Xm–1] and Qd≠0

❖ Base case: m=1, this is Lagrange.

The Schwartz-Zippel Lemma

❖ Theorem (Schwartz 1980, Zippel 1979). Let K ≝ ℤ/pℤ, m≥1.
Every P ∈ K[X1,…,Xm] such that P≠0 has ≤ deg(P).pm–1 roots.

❖ Induction case m≥2. P = Qd Xmd + Qd–1 Xmd–1 + … + Q1 Xm + Q0,
 where Qd, Qd–1, …, Q1, Q0 ∈ K[X1,…,Xm–1] and Qd≠0

❖ Note: deg(P) ≥ deg(Qd)+d. We count the roots (v1,…,vm) of P:

The Schwartz-Zippel Lemma

❖ Theorem (Schwartz 1980, Zippel 1979). Let K ≝ ℤ/pℤ, m≥1.
Every P ∈ K[X1,…,Xm] such that P≠0 has ≤ deg(P).pm–1 roots.

❖ Induction case m≥2. P = Qd Xmd + Qd–1 Xmd–1 + … + Q1 Xm + Q0,
 where Qd, Qd–1, …, Q1, Q0 ∈ K[X1,…,Xm–1] and Qd≠0

❖ Note: deg(P) ≥ deg(Qd)+d. We count the roots (v1,…,vm) of P:

❖ either (v1,…,vm–1) is a root of Qd: ≤ deg(Qd).pm–2 possible (m–1)-tuples,
 times p possible values for vm

The Schwartz-Zippel Lemma

❖ Theorem (Schwartz 1980, Zippel 1979). Let K ≝ ℤ/pℤ, m≥1.
Every P ∈ K[X1,…,Xm] such that P≠0 has ≤ deg(P).pm–1 roots.

❖ Induction case m≥2. P = Qd Xmd + Qd–1 Xmd–1 + … + Q1 Xm + Q0,
 where Qd, Qd–1, …, Q1, Q0 ∈ K[X1,…,Xm–1] and Qd≠0

❖ Note: deg(P) ≥ deg(Qd)+d. We count the roots (v1,…,vm) of P:

❖ either (v1,…,vm–1) is a root of Qd: ≤ deg(Qd).pm–2 possible (m–1)-tuples,
 times p possible values for vm

❖ or it is not: at most pm–1 possible (m–1)-tuples,
 times ≤ d possible roots vm (for each fixed (m–1)-tuple (v1,…,vm–1))

The Schwartz-Zippel Lemma

❖ Theorem (Schwartz 1980, Zippel 1979). Let K ≝ ℤ/pℤ, m≥1.
Every P ∈ K[X1,…,Xm] such that P≠0 has ≤ deg(P).pm–1 roots.

❖ Induction case m≥2. P = Qd Xmd + Qd–1 Xmd–1 + … + Q1 Xm + Q0,
 where Qd, Qd–1, …, Q1, Q0 ∈ K[X1,…,Xm–1] and Qd≠0

❖ Note: deg(P) ≥ deg(Qd)+d. We count the roots (v1,…,vm) of P:

❖ either (v1,…,vm–1) is a root of Qd: ≤ deg(Qd).pm–2 possible (m–1)-tuples,
 times p possible values for vm

❖ or it is not: at most pm–1 possible (m–1)-tuples,
 times ≤ d possible roots vm (for each fixed (m–1)-tuple (v1,…,vm–1))

❖ Total: ≤ deg(Qd).pm–2.p + pm–1.d = (deg(Qd)+d).pm–1 ≤ deg(P).pm–1. ☐

The Schwartz-Zippel Lemma

❖ Theorem (Schwartz 1980, Zippel 1979). Let K ≝ ℤ/pℤ, m≥1.
Every P ∈ K[X1,…,Xm] such that P≠0 has ≤ deg(P).pm–1 roots.

❖ Consequence (polynomial identity testing, PIT):
Given P ∈ K[X1,…,Xm] with d ≝ deg(P) < p,
 if P≠0 then Prv1,…,vm ∈ K(P(v1,…,vm)=0) ≤ d/p.

Polynomial identity testing

❖ Theorem (Schwartz 1980, Zippel 1979). Let K ≝ ℤ/pℤ, m≥1.
Every P ∈ K[X1,…,Xm] such that P≠0 has ≤ deg(P).pm–1 roots.

❖ Consequence (polynomial identity testing, PIT):
Given P ∈ K[X1,…,Xm] with d ≝ deg(P) < p,
 if P≠0 then Prv1,…,vm ∈ K(P(v1,…,vm)=0) ≤ d/p.

❖ Hence the problem:
INPUT: P ∈ K[X1,…,Xm] with d ≝ deg(P) < p/2,
QUESTION: P≠0?
is in RP.

Polynomial identity testing

❖ Theorem (Schwartz 1980, Zippel 1979). Let K ≝ ℤ/pℤ, m≥1.
Every P ∈ K[X1,…,Xm] such that P≠0 has ≤ deg(P).pm–1 roots.

❖ Consequence (polynomial identity testing, PIT):
Given P ∈ K[X1,…,Xm] with d ≝ deg(P) < p,
 if P≠0 then Prv1,…,vm ∈ K(P(v1,…,vm)=0) ≤ d/p.

❖ Hence the problem:
INPUT: P ∈ K[X1,…,Xm] with d ≝ deg(P) < p/2,
QUESTION: P≠0?
is in RP.

Polynomial identity testing

a « low degree polynomial »

❖ Theorem (Schwartz 1980, Zippel 1979). Let K ≝ ℤ/pℤ, m≥1.
Every P ∈ K[X1,…,Xm] such that P≠0 has ≤ deg(P).pm–1 roots.

❖ Consequence (polynomial identity testing, PIT):
Given P ∈ K[X1,…,Xm] with d ≝ deg(P) < p,
 if P≠0 then Prv1,…,vm ∈ K(P(v1,…,vm)=0) ≤ d/p.

❖ Hence the problem:
INPUT: P ∈ K[X1,…,Xm] with d ≝ deg(P) < p/2,
QUESTION: P≠0?
is in RP.

Polynomial identity testing

a « low degree polynomial »

provided evaluation of P can be done in polynomial time…

Complexity of arithmetic
operations

❖ Given numbers a, b of size ≤ f(n), in binary

❖ a+b: time O(f(n)), result size ≤ f(n)+1

❖ a.b: time O(f(n)2), result size ≤ 2f(n)
[can be improved: Karatsuba O(f(n)log 3/log 2), Toom-Cook O(f(n)1+ε), Schönhage-Strassen O(f(n) log f(n) log log f(n)))]

Complexity of arithmetic operations

❖ Given numbers a, b of size ≤ f(n), in binary

❖ a+b: time O(f(n)), result size ≤ f(n)+1

❖ a.b: time O(f(n)2), result size ≤ 2f(n)
[can be improved: Karatsuba O(f(n)log 3/log 2), Toom-Cook O(f(n)1+ε), Schönhage-Strassen O(f(n) log f(n) log log f(n)))]

❖ ab: result size = b.size(a)
 exponential in size(b)
Hence no matter which algorithm
we choose to implement ab,
running time will be exponential

Complexity of arithmetic operations

let rec pow(a,b)=
 if b=0
 then 1
 else let (b’,lsb) = b divmod 2 in
 let r = pow(a,b’) in  
 let r2 = r*r in  
 if lsb=0
 then r2
 else r2*a

Fast exponentiation

❖ Given numbers a, b of size ≤ f(n), in binary

❖ a+b: time O(f(n)), result size ≤ f(n)+1

❖ a.b: time O(f(n)2), result size ≤ 2f(n)
[can be improved: Karatsuba O(f(n)log 3/log 2), Toom-Cook O(f(n)1+ε), Schönhage-Strassen O(f(n) log f(n) log log f(n)))]

❖ ab: result size = b.size(a)
 exponential in size(b)
Hence no matter which algorithm
we choose to implement ab,
running time will be exponential

❖ … this is why we turn to mod p operations

Complexity of arithmetic operations

let rec pow(a,b)=
 if b=0
 then 1
 else let (b’,lsb) = b divmod 2 in
 let r = pow(a,b’) in  
 let r2 = r*r in  
 if lsb=0
 then r2
 else r2*a

Fast exponentiation

❖ If p is of size ≤ f(n), then all numbers mod p are of size ≤ f(n)

Complexity of operations mod p

❖ If p is of size ≤ f(n), then all numbers mod p are of size ≤ f(n)

❖ Only new operation: x mod p
Here is an easy way
(assuming a on ≤k bits, and p≥1;

 more efficient: see Montgomery representation):

Complexity of operations mod p

r := x;  
let q = p<<(k-1) in  
for i=1 to k: (* Inv: q=p2k-i,r<2q,r=x mod p *)  
 if r≥q then r -= q; (* r<q,r=x mod p *)  
 q >>= 1;

❖ If p is of size ≤ f(n), then all numbers mod p are of size ≤ f(n)

❖ Only new operation: x mod p
Here is an easy way
(assuming a on ≤k bits, and p≥1;

 more efficient: see Montgomery representation):

❖ in time O(k f(n)). In practice, x=ab has size k = 2f(n).
Hence ab mod p: time O(f(n)2) [same as for ab],
but size remains ≤ size(p) ≤ f(n)

Complexity of operations mod p

r := x;  
let q = p<<(k-1) in  
for i=1 to k: (* Inv: q=p2k-i,r<2q,r=x mod p *)  
 if r≥q then r -= q; (* r<q,r=x mod p *)  
 q >>= 1;

❖ If p is of size ≤ f(n), then all numbers mod p are of size ≤ f(n)

❖ Only new operation: x mod p
Here is an easy way
(assuming a on ≤k bits, and p≥1;

 more efficient: see Montgomery representation):

❖ in time O(k f(n)). In practice, x=ab has size k = 2f(n).
Hence ab mod p: time O(f(n)2) [same as for ab],
but size remains ≤ size(p) ≤ f(n)

❖ Hence any polynomial computation involving A(n) additions and
M(n) multiplications mod p takes time time O(A(n)f(n)+M(n)f(n)2):
polynomial if A(n), M(n), f(n) are polynomial.

Complexity of operations mod p

r := x;  
let q = p<<(k-1) in  
for i=1 to k: (* Inv: q=p2k-i,r<2q,r=x mod p *)  
 if r≥q then r -= q; (* r<q,r=x mod p *)  
 q >>= 1;

❖ Any polynomial computation involving A(n) additions and
M(n) multiplications mod p takes time time O(A(n)f(n)
+M(n)f(n)2): polynomial if A(n), M(n), f(n) are polynomial.

❖ Hence evaluating P(v1,…,vm) where P ∈ K[X1,…,Xm], K ≝ ℤ/pℤ
 takes polynomial time if:
 (1) size(p)=f(n) is polynomial
 (2) m is polynomial
 (3) P has polynomially many non-zero monomials

Complexity of operations mod p

❖ Any polynomial computation involving A(n) additions and
M(n) multiplications mod p takes time time O(A(n)f(n)
+M(n)f(n)2): polynomial if A(n), M(n), f(n) are polynomial.

❖ Hence evaluating P(v1,…,vm) where P ∈ K[X1,…,Xm], K ≝ ℤ/pℤ
 takes polynomial time if:
 (1) size(p)=f(n) is polynomial
 (2) m is polynomial
 (3) P has polynomially many non-zero monomials

Complexity of operations mod p

P has polynomial size

❖ Any polynomial computation involving A(n) additions and
M(n) multiplications mod p takes time time O(A(n)f(n)
+M(n)f(n)2): polynomial if A(n), M(n), f(n) are polynomial.

❖ Hence evaluating P(v1,…,vm) where P ∈ K[X1,…,Xm], K ≝ ℤ/pℤ
 takes polynomial time if:
 (1) size(p)=f(n) is polynomial
 (2) m is polynomial
 (3) P has polynomially many non-zero monomials

❖ When m=1, (3) is equivalent to: deg(P) is polynomial
(In general, #monomials is exponential = O(deg(P)m)

Complexity of operations mod p

P has polynomial size

Polynomials and polynomial expressions

❖ Until now, polynomials were given explicitly, as lists of
monomials

❖ We will deal with polynomial expressions, namely
expressions that simplify to polynomials

Polynomials and polynomial expressions

❖ Until now, polynomials were given explicitly, as lists of
monomials

❖ We will deal with polynomial expressions, namely
expressions that simplify to polynomials

❖ E.g., (x+1)(2y+3)2: needs 2 additions and 3 products
simplifies to 4xy2+4y2+6xy+6y+9x+9,
 which needs 5 additions and 9 products (and is larger!)

Polynomials and polynomial expressions

❖ Until now, polynomials were given explicitly, as lists of
monomials

❖ We will deal with polynomial expressions, namely
expressions that simplify to polynomials

❖ E.g., (x+1)(2y+3)2: needs 2 additions and 3 products
simplifies to 4xy2+4y2+6xy+6y+9x+9,
 which needs 5 additions and 9 products (and is larger!)

❖ Expressions will use extra operations: ⋁, ⋀, ¬, ∀, ∃, R

Finding prime numbers (1/3)
❖ How do we find a prime number p of f(n) bits?

Finding prime numbers (1/3)
❖ How do we find a prime number p of f(n) bits?

❖ Theorem (Bertrand’s postulate, Chebyshev 1899).
For every natural number N≥1, there is at least one
prime number p such that N < p ≤ 2N;
 in fact there are strictly more than N/(3 log (2N))

Victor Shoup. A Computational Introduction to Number Theory and Algebra. (Beta version 4.) https://shoup.net/ntb/

Finding prime numbers (1/3)
❖ How do we find a prime number p of f(n) bits?

❖ Theorem (Bertrand’s postulate, Chebyshev 1899).
For every natural number N≥1, there is at least one
prime number p such that N < p ≤ 2N;
 in fact there are strictly more than N/(3 log (2N))

❖ Then rejection sampling + primality testing
Victor Shoup. A Computational Introduction to Number Theory and Algebra. (Beta version 4.) https://shoup.net/ntb/

Finding prime numbers (2/3)
❖ So >2f(n)/(3 (f(n)+1)log 2)

primes of [exactly] f(n) bits,
out of 2f(n)–1 f(n)-bit numbers

❖ Prp, of f(n) bits(p is prime) > 2/(3 (f(n)+1)log 2)

Finding prime numbers (2/3)
❖ So >2f(n)/(3 (f(n)+1)log 2)

primes of [exactly] f(n) bits,
out of 2f(n)–1 f(n)-bit numbers

❖ Prp, of f(n) bits(p is prime) > 2/(3 (f(n)+1)log 2)

❖ Hence rejection sampling will find an f(n)-bit prime number in
at most 3/2 log 2 (f(n)+1) tries on average

Finding prime numbers (2/3)
❖ So >2f(n)/(3 (f(n)+1)log 2)

primes of [exactly] f(n) bits,
out of 2f(n)–1 f(n)-bit numbers

❖ Prp, of f(n) bits(p is prime) > 2/(3 (f(n)+1)log 2)

❖ Hence rejection sampling will find an f(n)-bit prime number in
at most 3/2 log 2 (f(n)+1) tries on average

❖ Primality checking is poly time [Agrawal,Kayal,Saxena 2002]

Finding prime numbers (2/3)
❖ So >2f(n)/(3 (f(n)+1)log 2)

primes of [exactly] f(n) bits,
out of 2f(n)–1 f(n)-bit numbers

❖ Prp, of f(n) bits(p is prime) > 2/(3 (f(n)+1)log 2)

❖ Hence rejection sampling will find an f(n)-bit prime number in
at most 3/2 log 2 (f(n)+1) tries on average

❖ Primality checking is poly time [Agrawal,Kayal,Saxena 2002]

❖ Hence, if f(n) is polynomial, then finding an f(n)-bit prime
number can be done in average polynomial time

❖ Imagine we can find an f(n)-bit
prime number in average time p(n)

Finding prime numbers (3/3)

❖ Imagine we can find an f(n)-bit
prime number in average time p(n)

❖ By simulating this computation
for 2p(n) steps,and failing if timeout is reached, either:
— we obtain an f(n)-bit prime number in time O(p(n))
— or we fail, with probability ≤ 1/2

Finding prime numbers (3/3)

❖ Imagine we can find an f(n)-bit
prime number in average time p(n)

❖ By simulating this computation
for 2p(n) steps,and failing if timeout is reached, either:
— we obtain an f(n)-bit prime number in time O(p(n))
— or we fail, with probability ≤ 1/2

❖ Repeating this process while it fails,
 and at most q(n) [polynomial] times, either:
— we obtain an f(n)-bit prime number in time O(q(n)p(n)log n)
— or we fail, with probability ≤ 1/2q(n)

Finding prime numbers (3/3)

❖ Let p be an f(n)-bit prime number

Drawing random numbers mod p

❖ Let p be an f(n)-bit prime number

❖ To draw v mod p at random uniformly: rejection sampling again

Drawing random numbers mod p

❖ Let p be an f(n)-bit prime number

❖ To draw v mod p at random uniformly: rejection sampling again

❖ stops in ≤2 iterations on average

Drawing random numbers mod p

❖ Let p be an f(n)-bit prime number

❖ To draw v mod p at random uniformly: rejection sampling again

❖ stops in ≤2 iterations on average

❖ With a timeout of 4 iterations, we obtain a random v mod p in
time 4f(n), or we fail with probability ≤ 1/2

Drawing random numbers mod p

❖ Let p be an f(n)-bit prime number

❖ To draw v mod p at random uniformly: rejection sampling again

❖ stops in ≤2 iterations on average

❖ With a timeout of 4 iterations, we obtain a random v mod p in
time 4f(n), or we fail with probability ≤ 1/2

❖ Repeating this process while it fails,
 and at most q(n) [polynomial] times, either:
— we obtain an f(n)-bit random v mod p in time O(q(n)f(n)log n)
— or we fail, with probability ≤ 1/2q(n)

Drawing random numbers mod p

Arithmetization

Arithmetizing formulae

❖ We will interpret QBF formulae F as polynomial
expressions F(X1,…,Xm) (we will not simplify them as polynomials)

❖ … in such a way that for all Booleans v1,…,vm,
 F(v1,…,vm) is the value of F[X1:=v1,…,Xm:=vm]
 (and is in particular Boolean; we let false=0, true=1)

❖ P ⋀ Q ≝ P.Q ¬P ≝ 1–P P ⋁ Q ≝ 1–(1–P)(1–Q)

Arithmetizing formulae
❖ P ⋀ Q ≝ P.Q ¬P ≝ 1–P P ⋁ Q ≝ 1–(1–P)(1–Q)

❖ Example: (X1 ⋀ ¬X2) ⋁ X3 = 1–(1– X1.(1–X2))(1–X3)

Arithmetizing formulae
❖ P ⋀ Q ≝ P.Q ¬P ≝ 1–P P ⋁ Q ≝ 1–(1–P)(1–Q)

❖ Example: (X1 ⋀ ¬X2) ⋁ X3 = 1–(1– X1.(1–X2))(1–X3)

❖ For a 3-clause C, deg(C) ≤ 3, constant size (counting the size of variables as one)

Arithmetizing formulae
❖ P ⋀ Q ≝ P.Q ¬P ≝ 1–P P ⋁ Q ≝ 1–(1–P)(1–Q)

❖ Example: (X1 ⋀ ¬X2) ⋁ X3 = 1–(1– X1.(1–X2))(1–X3)

❖ For a 3-clause C, deg(C) ≤ 3, constant size (counting the size of variables as one)

❖ For a set [conjunction] G of k 3-clauses,
 deg(G) ≤ 3k, size O(k)

Arithmetizing formulae
❖ P ⋀ Q ≝ P.Q ¬P ≝ 1–P P ⋁ Q ≝ 1–(1–P)(1–Q)

❖ Example: (X1 ⋀ ¬X2) ⋁ X3 = 1–(1– X1.(1–X2))(1–X3)

❖ For a 3-clause C, deg(C) ≤ 3, constant size (counting the size of variables as one)

❖ For a set [conjunction] G of k 3-clauses,
 deg(G) ≤ 3k, size O(k)

k=poly(n), good!

Arithmetizing QBF formulae
❖ P ⋀ Q ≝ P.Q ¬P ≝ 1–P P ⋁ Q ≝ 1–(1–P)(1–Q)

❖ ∀X.P ≝ P[X:=0] ⋀ P[X:=1] ∃X.P ≝ P[X:=0] ⋁ P[X:=1]

Arithmetizing QBF formulae
❖ P ⋀ Q ≝ P.Q ¬P ≝ 1–P P ⋁ Q ≝ 1–(1–P)(1–Q)

❖ ∀X.P ≝ P[X:=0] ⋀ P[X:=1] ∃X.P ≝ P[X:=0] ⋁ P[X:=1]

❖ Each quantifier doubles both the degree and the size

Arithmetizing QBF formulae
❖ P ⋀ Q ≝ P.Q ¬P ≝ 1–P P ⋁ Q ≝ 1–(1–P)(1–Q)

❖ ∀X.P ≝ P[X:=0] ⋀ P[X:=1] ∃X.P ≝ P[X:=0] ⋁ P[X:=1]

❖ Each quantifier doubles both the degree and the size

❖ For a set [conjunction] G of k 3-clauses,
 deg(G) ≤ 3k, size O(k)

Arithmetizing QBF formulae
❖ P ⋀ Q ≝ P.Q ¬P ≝ 1–P P ⋁ Q ≝ 1–(1–P)(1–Q)

❖ ∀X.P ≝ P[X:=0] ⋀ P[X:=1] ∃X.P ≝ P[X:=0] ⋁ P[X:=1]

❖ Each quantifier doubles both the degree and the size

❖ For a set [conjunction] G of k 3-clauses,
 deg(G) ≤ 3k, size O(k)

❖ ∀X1, ∃X2, ∀X3, ∃X4, …, ∀/∃Xm, G(X1,X2,…,Xm)
 degree: 2m3k, size O(2mk)

Arithmetizing QBF formulae
❖ P ⋀ Q ≝ P.Q ¬P ≝ 1–P P ⋁ Q ≝ 1–(1–P)(1–Q)

❖ ∀X.P ≝ P[X:=0] ⋀ P[X:=1] ∃X.P ≝ P[X:=0] ⋁ P[X:=1]

❖ Each quantifier doubles both the degree and the size

❖ For a set [conjunction] G of k 3-clauses,
 deg(G) ≤ 3k, size O(k)

❖ ∀X1, ∃X2, ∀X3, ∃X4, …, ∀/∃Xm, G(X1,X2,…,Xm)
 degree: 2m3k, size O(2mk)

exponential: no problem for Schwartz-Zippel (take f(n) polynomial > m log2 (3k)),
but will cause a size problem later (solved by Shen’s trick, see later)

An ABPP game to decide QBF
❖ We first assume that the max degree dmax of all polynomials we

need to handle is polynomial (instead of 2m3k)…

An ABPP game to decide QBF
❖ We first assume that the max degree dmax of all polynomials we

need to handle is polynomial (instead of 2m3k)…

❖ This is wrong, but will be solved by Shen’s trick later

An ABPP game to decide QBF
❖ We first assume that the max degree dmax of all polynomials we

need to handle is polynomial (instead of 2m3k)…

❖ This is wrong, but will be solved by Shen’s trick later

❖ We let Arthur check that
 ∀X1, ∃X2, ∀X3, ∃X4, …, ∀/∃Xm, G(X1,X2,…,Xm) = 1
by asking Merlin for polynomials representing certain
subformulae (~error-correcting codes), and checking them using
Schwartz-Zippel

An ABPP game to decide QBF
❖ We first assume that the max degree dmax of all polynomials we

need to handle is polynomial (instead of 2m3k)…

❖ This is wrong, but will be solved by Shen’s trick later

❖ We let Arthur check that
 ∀X1, ∃X2, ∀X3, ∃X4, …, ∀/∃Xm, G(X1,X2,…,Xm) = 1
by asking Merlin for polynomials representing certain
subformulae (~error-correcting codes), and checking them using
Schwartz-Zippel

❖ There will be m rounds

An ABPP game to decide QBF
❖ We first assume that the max degree dmax of all polynomials we

need to handle is polynomial (instead of 2m3k)…

❖ This is wrong, but will be solved by Shen’s trick later

❖ We let Arthur check that
 ∀X1, ∃X2, ∀X3, ∃X4, …, ∀/∃Xm, G(X1,X2,…,Xm) = 1
by asking Merlin for polynomials representing certain
subformulae (~error-correcting codes), and checking them using
Schwartz-Zippel

❖ There will be m rounds

❖ Let me explain this with m=4…

❖ At each point of the game,
we will have a
polynomial expression F
 (… with no variable)
and an objective value w,
and Arthur wishes to
check whether ⟦F⟧=w.

❖ Initially, F=F0, w=w0≝1

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

❖ Initially, F=F0, w=w0≝1

❖ Arthur cannot check
whether ⟦F0⟧=w0

(F0 is too large)

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

❖ Initially, F=F0, w=w0≝1

❖ Arthur cannot check
whether ⟦F0⟧=w0

(F0 is too large)

❖ Merlin gives a polynomial (not a polynomial expression) P1(X1),
claiming that:
— ⟦P1(X1)⟧ = ⟦F1(X1)⟧
— ⟦∀X1, P1(X1)⟧ = w0

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

❖ Initially, F=F0, w=w0≝1

❖ Arthur cannot check
whether ⟦F0⟧=w0

(F0 is too large)

❖ Merlin gives a polynomial (not a polynomial expression) P1(X1),
claiming that:
— ⟦P1(X1)⟧ = ⟦F1(X1)⟧
— ⟦∀X1, P1(X1)⟧ = w0

❖ Since dmax is (assumed) polynomial, and P1(X1) is univariate,
P1(X1) has polynomial size

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

❖ Initially, F=F0, w=w0≝1

❖ Merlin gives P1(X1), claims:
— ⟦P1(X1)⟧ = ⟦F1(X1)⟧
— ⟦∀X1, P1(X1)⟧ = w0

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

❖ Initially, F=F0, w=w0≝1

❖ Merlin gives P1(X1), claims:
— ⟦P1(X1)⟧ = ⟦F1(X1)⟧
— ⟦∀X1, P1(X1)⟧ = w0

❖ Arthur checks that
⟦∀X1, P1(X1)⟧ = w0 by verifying that P1(0).P1(1) = w0
… admittedly, it is very easy for a dishonest Merlin to pass this test

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

❖ Initially, F=F0, w=w0≝1

❖ Merlin gives P1(X1), claims:
— ⟦P1(X1)⟧ = ⟦F1(X1)⟧
— ⟦∀X1, P1(X1)⟧ = w0

❖ Arthur checks that
⟦∀X1, P1(X1)⟧ = w0 by verifying that P1(0).P1(1) = w0
… admittedly, it is very easy for a dishonest Merlin to pass this test

❖ In order to check ⟦P1(X1)⟧ = ⟦F1(X1)⟧,
Arthur draws v1 mod p uniformly, and needs to check P1(v1)=F1(v1),
 by Schwartz-Zippel (on one variable), this is a reliable test

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

❖ Initially, F=F0, w=w0≝1

❖ Merlin gives P1(X1), claims:
— ⟦P1(X1)⟧ = ⟦F1(X1)⟧
— ⟦∀X1, P1(X1)⟧ = w0

❖ Arthur checks that
⟦∀X1, P1(X1)⟧ = w0 by verifying that P1(0).P1(1) = w0
… admittedly, it is very easy for a dishonest Merlin to pass this test

❖ In order to check ⟦P1(X1)⟧ = ⟦F1(X1)⟧,
Arthur draws v1 mod p uniformly, and needs to check P1(v1)=F1(v1),
 by Schwartz-Zippel (on one variable), this is a reliable test

❖ Now F = F1(v1), w=w1≝P1(v1)

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

❖ Now F = F1(v1), w=w1≝P1(v1)

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

❖ Now F = F1(v1), w=w1≝P1(v1)

❖ Merlin gives P2(X2), claims:
— ⟦P2(X2)⟧ = ⟦F2(v1,X2)⟧
— ⟦∃X2, P2(X2)⟧ = w1

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

❖ Now F = F1(v1), w=w1≝P1(v1)

❖ Merlin gives P2(X2), claims:
— ⟦P2(X2)⟧ = ⟦F2(v1,X2)⟧
— ⟦∃X2, P2(X2)⟧ = w1

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)
Yes, with X1:=v1

Note that P2(X2) is univariate, too.

❖ Now F = F1(v1), w=w1≝P1(v1)

❖ Merlin gives P2(X2), claims:
— ⟦P2(X2)⟧ = ⟦F2(v1,X2)⟧
— ⟦∃X2, P2(X2)⟧ = w1

❖ Arthur checks that
⟦∃X2, P2(X2)⟧ = w1 by verifying that 1–(1–P2(0))(1–P2(1)) = w1

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)
Yes, with X1:=v1

Note that P2(X2) is univariate, too.

❖ Now F = F1(v1), w=w1≝P1(v1)

❖ Merlin gives P2(X2), claims:
— ⟦P2(X2)⟧ = ⟦F2(v1,X2)⟧
— ⟦∃X2, P2(X2)⟧ = w1

❖ Arthur checks that
⟦∃X2, P2(X2)⟧ = w1 by verifying that 1–(1–P2(0))(1–P2(1)) = w1

❖ In order to check ⟦P2(X2)⟧ = ⟦F2(v1,X2)⟧,
Arthur draws v2 mod p uniformly, and needs to check P2(v2)=F2(v1,v2),
 by Schwartz-Zippel (on one variable), this is a reliable test

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)
Yes, with X1:=v1

Note that P2(X2) is univariate, too.

❖ Now F = F1(v1), w=w1≝P1(v1)

❖ Merlin gives P2(X2), claims:
— ⟦P2(X2)⟧ = ⟦F2(v1,X2)⟧
— ⟦∃X2, P2(X2)⟧ = w1

❖ Arthur checks that
⟦∃X2, P2(X2)⟧ = w1 by verifying that 1–(1–P2(0))(1–P2(1)) = w1

❖ In order to check ⟦P2(X2)⟧ = ⟦F2(v1,X2)⟧,
Arthur draws v2 mod p uniformly, and needs to check P2(v2)=F2(v1,v2),
 by Schwartz-Zippel (on one variable), this is a reliable test

❖ Now F = F2(v1,v2), w=w2≝P2(v2)

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)
Yes, with X1:=v1

Note that P2(X2) is univariate, too.

❖ Now F = F2(v1,v2), w=w2≝P2(v2)

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

❖ Now F = F2(v1,v2), w=w2≝P2(v2)

❖ Merlin gives P3(X3), claims:
— ⟦P3(X3)⟧ = ⟦F3(v1,v2,X3)⟧
— ⟦∀X3, P3(X3)⟧ = w2

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)
Yes, with X1:=v1, X2:=v2

Note that P3(X3) is univariate, too

❖ Now F = F2(v1,v2), w=w2≝P2(v2)

❖ Merlin gives P3(X3), claims:
— ⟦P3(X3)⟧ = ⟦F3(v1,v2,X3)⟧
— ⟦∀X3, P3(X3)⟧ = w2

❖ Arthur checks that
⟦∀X3, P3(X3)⟧ = w2 by verifying that P3(0)P3(1) = w2

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)
Yes, with X1:=v1, X2:=v2

Note that P3(X3) is univariate, too

❖ Now F = F2(v1,v2), w=w2≝P2(v2)

❖ Merlin gives P3(X3), claims:
— ⟦P3(X3)⟧ = ⟦F3(v1,v2,X3)⟧
— ⟦∀X3, P3(X3)⟧ = w2

❖ Arthur checks that
⟦∀X3, P3(X3)⟧ = w2 by verifying that P3(0)P3(1) = w2

❖ In order to check ⟦P3(X3)⟧ = ⟦F3(v1,v2,X3)⟧
Arthur draws v3 mod p uniformly, and will check P3(v3)=F3(v1,v2,v3),
 by Schwartz-Zippel (on one variable), this is a reliable test

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)
Yes, with X1:=v1, X2:=v2

Note that P3(X3) is univariate, too

❖ Now F = F2(v1,v2), w=w2≝P2(v2)

❖ Merlin gives P3(X3), claims:
— ⟦P3(X3)⟧ = ⟦F3(v1,v2,X3)⟧
— ⟦∀X3, P3(X3)⟧ = w2

❖ Arthur checks that
⟦∀X3, P3(X3)⟧ = w2 by verifying that P3(0)P3(1) = w2

❖ In order to check ⟦P3(X3)⟧ = ⟦F3(v1,v2,X3)⟧
Arthur draws v3 mod p uniformly, and will check P3(v3)=F3(v1,v2,v3),
 by Schwartz-Zippel (on one variable), this is a reliable test

❖ Now F = F3(v1,v2,v3), w=w3≝P3(v3)

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)
Yes, with X1:=v1, X2:=v2

Note that P3(X3) is univariate, too

❖ Now F = F3(v1,v2,v3), w=w3≝P3(v3)

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

❖ Now F = F3(v1,v2,v3), w=w3≝P3(v3)

❖ Merlin gives P4(X4), claims:
— ⟦P4(X4)⟧ = ⟦F4(v1,v2,v3,X4)⟧
— ⟦∃X4, P4(X4)⟧ = w3

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

❖ Now F = F3(v1,v2,v3), w=w3≝P3(v3)

❖ Merlin gives P4(X4), claims:
— ⟦P4(X4)⟧ = ⟦F4(v1,v2,v3,X4)⟧
— ⟦∃X4, P4(X4)⟧ = w3

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)
Yes, with X1:=v1, X2:=v2, X3:=v3

Note that P4(X4) is univariate, too

F4(X1,X2,X3,X4)

❖ Now F = F3(v1,v2,v3), w=w3≝P3(v3)

❖ Merlin gives P4(X4), claims:
— ⟦P4(X4)⟧ = ⟦F4(v1,v2,v3,X4)⟧
— ⟦∃X4, P4(X4)⟧ = w3

❖ Arthur checks that
⟦∃X4, P4(X4)⟧ = w3 by verifying that 1–(1–P4(0))(1–P4(1)) = w3

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)
Yes, with X1:=v1, X2:=v2, X3:=v3

Note that P4(X4) is univariate, too

F4(X1,X2,X3,X4)

❖ Now F = F3(v1,v2,v3), w=w3≝P3(v3)

❖ Merlin gives P4(X4), claims:
— ⟦P4(X4)⟧ = ⟦F4(v1,v2,v3,X4)⟧
— ⟦∃X4, P4(X4)⟧ = w3

❖ Arthur checks that
⟦∃X4, P4(X4)⟧ = w3 by verifying that 1–(1–P4(0))(1–P4(1)) = w3

❖ In order to check ⟦P4(X4)⟧ = ⟦F4(v1,v2,v3,X4)⟧
Arthur draws v4 mod p uniformly, and will check P4(v4)=F4(v1,v2,v3,v4),
 by Schwartz-Zippel (on one variable), this is a reliable test

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)
Yes, with X1:=v1, X2:=v2, X3:=v3

Note that P4(X4) is univariate, too

F4(X1,X2,X3,X4)

❖ Now F = F3(v1,v2,v3), w=w3≝P3(v3)

❖ Merlin gives P4(X4), claims:
— ⟦P4(X4)⟧ = ⟦F4(v1,v2,v3,X4)⟧
— ⟦∃X4, P4(X4)⟧ = w3

❖ Arthur checks that
⟦∃X4, P4(X4)⟧ = w3 by verifying that 1–(1–P4(0))(1–P4(1)) = w3

❖ In order to check ⟦P4(X4)⟧ = ⟦F4(v1,v2,v3,X4)⟧
Arthur draws v4 mod p uniformly, and will check P4(v4)=F4(v1,v2,v3,v4),
 by Schwartz-Zippel (on one variable), this is a reliable test

❖ … and Arthur can do this by himself, since F4=G. ☐

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)
Yes, with X1:=v1, X2:=v2, X3:=v3

Note that P4(X4) is univariate, too

F4(X1,X2,X3,X4)

❖ If F0 is true, then Merlin simply
gives the simplified form
of Fk(v1,v2,…,vk–1,Xk) for Pk(Xk),
at each turn k

❖ Arthur will always accept in
the end, in that case

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

❖ If F0 is false, how can Merlin
play (i.e., cheat) so as to force
Arthur to eventually accept?

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

❖ If F0 is false, how can Merlin
play (i.e., cheat) so as to force
Arthur to eventually accept?

❖ Round 1: P1(X1)≠F1(X1) [as polynomials]
since ⟦∀X1,P1(X1)⟧=1 (Arthur checks ⟦∀X1, P1(X1)⟧ = w0, where w0=1)
 but ⟦∀X1,F1(X1)⟧=⟦F0⟧=0

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

❖ If F0 is false, how can Merlin
play (i.e., cheat) so as to force
Arthur to eventually accept?

❖ Round 1: P1(X1)≠F1(X1) [as polynomials]
since ⟦∀X1,P1(X1)⟧=1 (Arthur checks ⟦∀X1, P1(X1)⟧ = w0, where w0=1)
 but ⟦∀X1,F1(X1)⟧=⟦F0⟧=0

❖ With prob. ≤dmax/p over v1

(Schwartz-Zippel), P1(v1)=F1(v1)

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

dmax/p 1–dmax/p

P1(v1)=F1(v1)

❖ If F0 is false, how can Merlin
play (i.e., cheat) so as to force
Arthur to eventually accept?

❖ Round 1: P1(X1)≠F1(X1) [as polynomials]
since ⟦∀X1,P1(X1)⟧=1 (Arthur checks ⟦∀X1, P1(X1)⟧ = w0, where w0=1)
 but ⟦∀X1,F1(X1)⟧=⟦F0⟧=0

❖ With prob. ≤dmax/p over v1

(Schwartz-Zippel), P1(v1)=F1(v1)

❖ Otherwise, F1(v1)≠w1, where w1≝P1(v1), so…

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

dmax/p 1–dmax/p

P1(v1)=F1(v1)

❖ If F0 is false, how can Merlin
play so as to force Arthur to
eventually accept?

❖ Recap: now F1(v1)≠w1 [w1≝P1(v1)]

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

dmax/p 1–dmax/p

P1(v1)=F1(v1)

❖ If F0 is false, how can Merlin
play so as to force Arthur to
eventually accept?

❖ Recap: now F1(v1)≠w1 [w1≝P1(v1)]

❖ Round 2: P2(X2)≠F2(v1,X2) [as polynomials]
since ⟦∃X2,P2(X2)⟧=w1 (since Arthur checks ⟦∃X2, P2(X2)⟧ = w1)
 but ⟦∃X2,F2(v1,X2)⟧=F1(v1)≠w1

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

dmax/p 1–dmax/p

P1(v1)=F1(v1)

❖ If F0 is false, how can Merlin
play so as to force Arthur to
eventually accept?

❖ Recap: now F1(v1)≠w1 [w1≝P1(v1)]

❖ Round 2: P2(X2)≠F2(v1,X2) [as polynomials]
since ⟦∃X2,P2(X2)⟧=w1 (since Arthur checks ⟦∃X2, P2(X2)⟧ = w1)
 but ⟦∃X2,F2(v1,X2)⟧=F1(v1)≠w1

❖ With prob. ≤dmax/p over v2

(Schwartz-Zippel), P2(v2)=F2(v1,X2)

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)

❖ If F0 is false, how can Merlin
play so as to force Arthur to
eventually accept?

❖ Recap: now F1(v1)≠w1 [w1≝P1(v1)]

❖ Round 2: P2(X2)≠F2(v1,X2) [as polynomials]
since ⟦∃X2,P2(X2)⟧=w1 (since Arthur checks ⟦∃X2, P2(X2)⟧ = w1)
 but ⟦∃X2,F2(v1,X2)⟧=F1(v1)≠w1

❖ With prob. ≤dmax/p over v2

(Schwartz-Zippel), P2(v2)=F2(v1,X2)

❖ Otherwise, F2(v1,v2)≠w2, where w2≝P2(v2),
so…

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)

❖ If F0 is false, how can Merlin
play so as to force Arthur to
eventually accept?

❖ Now F2(v1,v2)≠w2 [w2≝P2(v2)]

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)

❖ If F0 is false, how can Merlin
play so as to force Arthur to
eventually accept?

❖ Now F2(v1,v2)≠w2 [w2≝P2(v2)]

❖ Round 3: P3(X3)≠F3(v1,v2,X3) [as polynomials]
since ⟦∀X3,P3(X3)⟧=w2 (since Arthur checks ⟦∀X3,P3(X3)⟧=w2)
 but ⟦∀X3,F3(v1,v2,X3)⟧=F2(v1,v2)≠w2

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)

❖ If F0 is false, how can Merlin
play so as to force Arthur to
eventually accept?

❖ Now F2(v1,v2)≠w2 [w2≝P2(v2)]

❖ Round 3: P3(X3)≠F3(v1,v2,X3) [as polynomials]
since ⟦∀X3,P3(X3)⟧=w2 (since Arthur checks ⟦∀X3,P3(X3)⟧=w2)
 but ⟦∀X3,F3(v1,v2,X3)⟧=F2(v1,v2)≠w2

❖ With prob. ≤dmax/p over v3

(Schwartz-Zippel), P3(v3)=F3(v1,v2,v3)

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)
dmax/p 1–dmax/p

P3(v3)=F3(v1,v2,v3)

❖ If F0 is false, how can Merlin
play so as to force Arthur to
eventually accept?

❖ Now F2(v1,v2)≠w2 [w2≝P2(v2)]

❖ Round 3: P3(X3)≠F3(v1,v2,X3) [as polynomials]
since ⟦∀X3,P3(X3)⟧=w2 (since Arthur checks ⟦∀X3,P3(X3)⟧=w2)
 but ⟦∀X3,F3(v1,v2,X3)⟧=F2(v1,v2)≠w2

❖ With prob. ≤dmax/p over v3

(Schwartz-Zippel), P3(v3)=F3(v1,v2,v3)

❖ Otherwise, F3(v1,v2,v3)≠w3, where w3≝P3(v3),
so…

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)
dmax/p 1–dmax/p

P3(v3)=F3(v1,v2,v3)

❖ If F0 is false, how can Merlin
play so as to force Arthur to
eventually accept?

❖ Now F3(v1,v2,v3)≠w3 [w3≝P3(v3)]

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)
dmax/p 1–dmax/p

P3(v3)=F3(v1,v2,v3)

❖ If F0 is false, how can Merlin
play so as to force Arthur to
eventually accept?

❖ Now F3(v1,v2,v3)≠w3 [w3≝P3(v3)]

❖ Round 4: P4(X4)≠F4(v1,v2,v3,X4) [as polynomials]
since ⟦∃X4,P4(X4)⟧=w3 (since Arthur checks ⟦∃X4,P4(X4)⟧=w3)
 but ⟦∃X4,F4(v1,v2,v3,X4)⟧=F3(v1,v2,v3)≠w3

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)
dmax/p 1–dmax/p

P3(v3)=F3(v1,v2,v3)

❖ If F0 is false, how can Merlin
play so as to force Arthur to
eventually accept?

❖ Now F3(v1,v2,v3)≠w3 [w3≝P3(v3)]

❖ Round 4: P4(X4)≠F4(v1,v2,v3,X4) [as polynomials]
since ⟦∃X4,P4(X4)⟧=w3 (since Arthur checks ⟦∃X4,P4(X4)⟧=w3)
 but ⟦∃X4,F4(v1,v2,v3,X4)⟧=F3(v1,v2,v3)≠w3

❖ With prob. ≤dmax/p over v4

(Schwartz-Zippel), P4(v4)=F4(v1,v2,v3,v4)

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)
dmax/p 1–dmax/p

P3(v3)=F3(v1,v2,v3)
dmax/p 1–dmax/p

P4(v4)=F4(v1,v2,v3,v4)

❖ If F0 is false, how can Merlin
play so as to force Arthur to
eventually accept?

❖ Now F3(v1,v2,v3)≠w3 [w3≝P3(v3)]

❖ Round 4: P4(X4)≠F4(v1,v2,v3,X4) [as polynomials]
since ⟦∃X4,P4(X4)⟧=w3 (since Arthur checks ⟦∃X4,P4(X4)⟧=w3)
 but ⟦∃X4,F4(v1,v2,v3,X4)⟧=F3(v1,v2,v3)≠w3

❖ With prob. ≤dmax/p over v4

(Schwartz-Zippel), P4(v4)=F4(v1,v2,v3,v4)

❖ Otherwise, F4(v1,v2,v3,v4)≠w4,
where w4≝P4(v4), but Arthur will then reject

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)
dmax/p 1–dmax/p

P3(v3)=F3(v1,v2,v3)
dmax/p 1–dmax/p

P4(v4)=F4(v1,v2,v3,v4) reject

❖ If F0 is false, then probability of
acceptance is ≤ 4dmax/p

❖ That was for m=4 quantified variables

Error bounds

dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)
dmax/p 1–dmax/p

P3(v3)=F3(v1,v2,v3)
dmax/p 1–dmax/p

P4(v4)=F4(v1,v2,v3,v4) reject

❖ If F0 is false, then probability of
acceptance is ≤ 4dmax/p

❖ That was for m=4 quantified variables

❖ In the general case,
F0 = ∀X1, ∃X2, ∀X3, ∃X4, …, ∀/∃Xm,
 G(X1,X2,…,Xm)
and prob. of acceptance ≤ mdmax/p

Error bounds

dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)
dmax/p 1–dmax/p

P3(v3)=F3(v1,v2,v3)
dmax/p 1–dmax/p

P4(v4)=F4(v1,v2,v3,v4) reject

❖ If F0 is false, then probability of
acceptance is ≤ 4dmax/p

❖ That was for m=4 quantified variables

❖ In the general case,
F0 = ∀X1, ∃X2, ∀X3, ∃X4, …, ∀/∃Xm,
 G(X1,X2,…,Xm)
and prob. of acceptance ≤ mdmax/p

❖ But all that works in poly time only if
dmax is polynomial in n…

Error bounds

dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)
dmax/p 1–dmax/p

P3(v3)=F3(v1,v2,v3)
dmax/p 1–dmax/p

P4(v4)=F4(v1,v2,v3,v4) reject

Shen’s trick

❖ Given P ∈ K[X], let
 RX, P(X) ≝ AX+B
where B ≝ P(0)
 A ≝ P(1)–P(0)

Shen’s trick: degree reduction

❖ Given P ∈ K[X], let
 RX, P(X) ≝ AX+B
where B ≝ P(0)
 A ≝ P(1)–P(0)

Shen’s trick: degree reduction
New « quantifier » R (reduction).

Beware that RX, P(X) still depends on X

❖ Given P ∈ K[X], let
 RX, P(X) ≝ AX+B
where B ≝ P(0)
 A ≝ P(1)–P(0)

Shen’s trick: degree reduction
New « quantifier » R (reduction).

Beware that RX, P(X) still depends on X

RX, P(X) is really P(X) mod (X2–X)

❖ Given P ∈ K[X], let
 RX, P(X) ≝ AX+B
where B ≝ P(0)
 A ≝ P(1)–P(0)

❖ At the Boolean level, R is a no-op:
 RX, P(X) and P(X) have the same values on X=0 or 1

Shen’s trick: degree reduction
New « quantifier » R (reduction).

Beware that RX, P(X) still depends on X

RX, P(X) is really P(X) mod (X2–X)

❖ Given P ∈ K[X], let
 RX, P(X) ≝ AX+B
where B ≝ P(0)
 A ≝ P(1)–P(0)

❖ At the Boolean level, R is a no-op:
 RX, P(X) and P(X) have the same values on X=0 or 1

❖ … but the degree of RX, P(X) is at most one (in X)

Shen’s trick: degree reduction
New « quantifier » R (reduction).

Beware that RX, P(X) still depends on X

RX, P(X) is really P(X) mod (X2–X)

❖ Instead of checking whether the polynomial expression
 ∀X1, ∃X2, ∀X3, ∃X4, …, ∀/∃Xm, G(X1,X2,…,Xm)
evaluates to 1,

Shen’s trick: using R

❖ Instead of checking whether the polynomial expression
 ∀X1, ∃X2, ∀X3, ∃X4, …, ∀/∃Xm, G(X1,X2,…,Xm)
evaluates to 1,

❖ we consider the polynomial expression
 ∀X1, RX1,
 ∃X2, RX1, RX2,
 ∀X3, RX1, RX2, RX3,
 ∃X4, RX1, RX2, RX3, RX4,
 …
 ∀/∃Xm, RX1, RX2, …, RXm, G(X1,X2,…,Xm)

Shen’s trick: using R

❖ Instead of checking whether the polynomial expression
 ∀X1, ∃X2, ∀X3, ∃X4, …, ∀/∃Xm, G(X1,X2,…,Xm)
evaluates to 1,

❖ we consider the polynomial expression
 ∀X1, RX1,
 ∃X2, RX1, RX2,
 ∀X3, RX1, RX2, RX3,
 ∃X4, RX1, RX2, RX3, RX4,
 …
 ∀/∃Xm, RX1, RX2, …, RXm, G(X1,X2,…,Xm)

❖ That has now m+m(m+1)/2 quantifiers instead of m (polynomial)

Shen’s trick: using R

Testing R probabilistically
❖ Instead of just ∀ and ∃ rounds, there are now also R rounds

They are dealt with in a very similar way:

❖ Imagine Fk(X) = RX, Fk+1(X) [just showing var. X for clarity]
and Arthur wishes to check Fk(vk)=wk [current objective]

Testing R probabilistically
❖ Instead of just ∀ and ∃ rounds, there are now also R rounds

They are dealt with in a very similar way:

❖ Imagine Fk(X) = RX, Fk+1(X) [just showing var. X for clarity]
and Arthur wishes to check Fk(vk)=wk [current objective]

❖ Merlin provides univariate polynomial Pk+1(X), claims:
— ⟦Pk+1(X)⟧ = ⟦Fk+1(X)⟧
— ⟦RX, Pk+1(X)⟧(vk) = wk

Testing R probabilistically
❖ Instead of just ∀ and ∃ rounds, there are now also R rounds

They are dealt with in a very similar way:

❖ Imagine Fk(X) = RX, Fk+1(X) [just showing var. X for clarity]
and Arthur wishes to check Fk(vk)=wk [current objective]

❖ Merlin provides univariate polynomial Pk+1(X), claims:
— ⟦Pk+1(X)⟧ = ⟦Fk+1(X)⟧
— ⟦RX, Pk+1(X)⟧(vk) = wk

❖ Arthur checks ⟦RX, Pk+1(X)⟧(vk) = wk, i.e., Avk+B=wk,
 where B ≝ Pk+1(0), A ≝ Pk+1(1)–Pk+1(0)

Testing R probabilistically
❖ Instead of just ∀ and ∃ rounds, there are now also R rounds

They are dealt with in a very similar way:

❖ Imagine Fk(X) = RX, Fk+1(X) [just showing var. X for clarity]
and Arthur wishes to check Fk(vk)=wk [current objective]

❖ Merlin provides univariate polynomial Pk+1(X), claims:
— ⟦Pk+1(X)⟧ = ⟦Fk+1(X)⟧
— ⟦RX, Pk+1(X)⟧(vk) = wk

❖ Arthur checks ⟦RX, Pk+1(X)⟧(vk) = wk, i.e., Avk+B=wk,
 where B ≝ Pk+1(0), A ≝ Pk+1(1)–Pk+1(0)

❖ … then goes on to the next round by drawing vk+1 mod p,
with the goal of checking Fk+1(vk+1)=wk+1, where wk+1 ≝ Pk+1(vk+1)

❖ If F0 is false, then probability of
acceptance is ≤ #quantifiers.dmax/p

❖ Now #quantifiers = m+m(m+1)/2

Error bounds, and dmax
dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)
dmax/p 1–dmax/p

P3(v3)=F3(v1,v2,v3)
dmax/p 1–dmax/p

P4(v4)=F4(v1,v2,v3,v4) reject

❖ If F0 is false, then probability of
acceptance is ≤ #quantifiers.dmax/p

❖ Now #quantifiers = m+m(m+1)/2

❖ and (new!) dmax is polynomial in n…

Error bounds, and dmax
dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)
dmax/p 1–dmax/p

P3(v3)=F3(v1,v2,v3)
dmax/p 1–dmax/p

P4(v4)=F4(v1,v2,v3,v4) reject

❖ If F0 is false, then probability of
acceptance is ≤ #quantifiers.dmax/p

❖ Now #quantifiers = m+m(m+1)/2

❖ and (new!) dmax is polynomial in n…

Error bounds, and dmax
dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)
dmax/p 1–dmax/p

P3(v3)=F3(v1,v2,v3)
dmax/p 1–dmax/p

P4(v4)=F4(v1,v2,v3,v4) reject

degree≤3k

❖ If F0 is false, then probability of
acceptance is ≤ #quantifiers.dmax/p

❖ Now #quantifiers = m+m(m+1)/2

❖ and (new!) dmax is polynomial in n…

Error bounds, and dmax
dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)
dmax/p 1–dmax/p

P3(v3)=F3(v1,v2,v3)
dmax/p 1–dmax/p

P4(v4)=F4(v1,v2,v3,v4) reject

degree≤3k

degree≤m

❖ If F0 is false, then probability of
acceptance is ≤ #quantifiers.dmax/p

❖ Now #quantifiers = m+m(m+1)/2

❖ and (new!) dmax is polynomial in n…

Error bounds, and dmax
dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)
dmax/p 1–dmax/p

P3(v3)=F3(v1,v2,v3)
dmax/p 1–dmax/p

P4(v4)=F4(v1,v2,v3,v4) reject

degree≤3k

degree≤m

degree≤2m

❖ If F0 is false, then probability of
acceptance is ≤ #quantifiers.dmax/p

❖ Now #quantifiers = m+m(m+1)/2

❖ and (new!) dmax is polynomial in n…

Error bounds, and dmax
dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)
dmax/p 1–dmax/p

P3(v3)=F3(v1,v2,v3)
dmax/p 1–dmax/p

P4(v4)=F4(v1,v2,v3,v4) reject

degree≤3k

degree≤m

degree≤2m
degree≤m

❖ If F0 is false, then probability of
acceptance is ≤ #quantifiers.dmax/p

❖ Now #quantifiers = m+m(m+1)/2

❖ and (new!) dmax is polynomial in n…

Error bounds, and dmax
dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)
dmax/p 1–dmax/p

P3(v3)=F3(v1,v2,v3)
dmax/p 1–dmax/p

P4(v4)=F4(v1,v2,v3,v4) reject

degree≤3k

degree≤m

degree≤2m
degree≤m

degree≤2m

❖ If F0 is false, then probability of
acceptance is ≤ #quantifiers.dmax/p

❖ Now #quantifiers = m+m(m+1)/2

❖ and (new!) dmax is polynomial in n…

Error bounds, and dmax
dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)
dmax/p 1–dmax/p

P3(v3)=F3(v1,v2,v3)
dmax/p 1–dmax/p

P4(v4)=F4(v1,v2,v3,v4) reject

degree≤3k

degree≤m

degree≤2m
degree≤m

degree≤2m
degree≤m

❖ If F0 is false, then probability of
acceptance is ≤ #quantifiers.dmax/p

❖ Now #quantifiers = m+m(m+1)/2

❖ and (new!) dmax is polynomial in n…

Error bounds, and dmax
dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)
dmax/p 1–dmax/p

P3(v3)=F3(v1,v2,v3)
dmax/p 1–dmax/p

P4(v4)=F4(v1,v2,v3,v4) reject

degree≤3k

degree≤m

degree≤2m
degree≤m

degree≤2m
degree≤m

degree≤2m

❖ If F0 is false, then probability of
acceptance is ≤ #quantifiers.dmax/p

❖ Now #quantifiers = m+m(m+1)/2

❖ and (new!) dmax is polynomial in n…

❖ precisely, at most max(3k,2m)
where k ≝ #clauses in G
 m ≝ #quantified variables
… linear in size(F0)

Error bounds, and dmax
dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)
dmax/p 1–dmax/p

P3(v3)=F3(v1,v2,v3)
dmax/p 1–dmax/p

P4(v4)=F4(v1,v2,v3,v4) reject

degree≤3k

degree≤m

degree≤2m
degree≤m

degree≤2m
degree≤m

degree≤2m

❖ If F0 is false, then probability of acceptance is ≤ #quantifiers.dmax/p
We need to make that ≤1/2q(n), for an arbitrary polynomial q(n)
Let us aim for 1/2q(n)+1, really (we will see why later)

The final adjustments (1/3)

❖ If F0 is false, then probability of acceptance is ≤ #quantifiers.dmax/p
We need to make that ≤1/2q(n), for an arbitrary polynomial q(n)
Let us aim for 1/2q(n)+1, really (we will see why later)

❖ dmax≤max(3k,2m) ≤ 3n, #quantifiers=m+m(m+1)/2≤(n2+3n)/2 ≤ 2n2 [if n≥1],
so we require:
 p ≥ 2q(n)+1.6n3

The final adjustments (1/3)

❖ If F0 is false, then probability of acceptance is ≤ #quantifiers.dmax/p
We need to make that ≤1/2q(n), for an arbitrary polynomial q(n)
Let us aim for 1/2q(n)+1, really (we will see why later)

❖ dmax≤max(3k,2m) ≤ 3n, #quantifiers=m+m(m+1)/2≤(n2+3n)/2 ≤ 2n2 [if n≥1],
so we require:
 p ≥ 2q(n)+1.6n3

❖ Let us draw p at random on f(n) bits [in poly time], where
 f(n) ≝ q(n) + ⌈3 log2 n + log2 6⌉ + 2
… failing with probability ≤ 1/2q(n)+2

The final adjustments (1/3)

❖ If F0 is false, then probability of acceptance is ≤ #quantifiers.dmax/p
We need to make that ≤1/2q(n), for an arbitrary polynomial q(n)
Let us aim for 1/2q(n)+1, really (we will see why later)

❖ dmax≤max(3k,2m) ≤ 3n, #quantifiers=m+m(m+1)/2≤(n2+3n)/2 ≤ 2n2 [if n≥1],
so we require:
 p ≥ 2q(n)+1.6n3

❖ Let us draw p at random on f(n) bits [in poly time], where
 f(n) ≝ q(n) + ⌈3 log2 n + log2 6⌉ + 2
… failing with probability ≤ 1/2q(n)+2

❖ If that did not fail, then
 p ≥ 2f(n)–1 ≥ 2q(n)+1.6n3, as required

The final adjustments (1/3)

❖ During the whole game, we will draw numbers mod p
 #quantifiers = m+m(m+1)/2 ≤ 2n2 times

The final adjustments (2/3)

❖ During the whole game, we will draw numbers mod p
 #quantifiers = m+m(m+1)/2 ≤ 2n2 times

❖ Each time, this may fail,
and we arrange the probability of
failure to be ≤ 1/(2n2 . 2q(n)+2),
viz. ≤ 1/2q’(n), where q’(n) is some polynomial ≥ q(n)+2+log2(2n2)

The final adjustments (2/3)

❖ During the whole game, we will draw numbers mod p
 #quantifiers = m+m(m+1)/2 ≤ 2n2 times

❖ Each time, this may fail,
and we arrange the probability of
failure to be ≤ 1/(2n2 . 2q(n)+2),
viz. ≤ 1/2q’(n), where q’(n) is some polynomial ≥ q(n)+2+log2(2n2)

❖ Hence the total probability of failure is at most:
— 1/2q(n)+2 when drawing p
— 1/2q(n)+2 for the ≤2n2 draws of numbers mod p
hence at most 1/2q(n)+1

The final adjustments (2/3)

❖ The total probability of failure is at most 1/2q(n)+1

The final adjustments (3/3)

❖ The total probability of failure is at most 1/2q(n)+1

❖ In case of failure, Arthur immediately accepts.
This way,

The final adjustments (3/3)

❖ The total probability of failure is at most 1/2q(n)+1

❖ In case of failure, Arthur immediately accepts.
This way,

❖ if F0 is true, then if Merlin plays honestly,
 Arthur will eventually accept, either because the game goes
 as planned, or because some failure occurs

The final adjustments (3/3)

❖ The total probability of failure is at most 1/2q(n)+1

❖ In case of failure, Arthur immediately accepts.
This way,

❖ if F0 is true, then if Merlin plays honestly,
 Arthur will eventually accept, either because the game goes
 as planned, or because some failure occurs

❖ if F0 is false, then whatever strategy Merlin uses,
 acceptance occurs only if failure (prob. ≤ 1/2q(n)+1)
 or if game goes on as planned
 but Arthur does not detect Merlin’s cheating
 (prob. ≤ 1/2q(n)+1 as well, by our choice of p)

The final adjustments (3/3)

❖ The total probability of failure is at most 1/2q(n)+1

❖ In case of failure, Arthur immediately accepts.
This way,

❖ if F0 is true, then if Merlin plays honestly,
 Arthur will eventually accept, either because the game goes
 as planned, or because some failure occurs

❖ if F0 is false, then whatever strategy Merlin uses,
 acceptance occurs only if failure (prob. ≤ 1/2q(n)+1)
 or if game goes on as planned
 but Arthur does not detect Merlin’s cheating
 (prob. ≤ 1/2q(n)+1 as well, by our choice of p)

❖ … hence with probability ≤ 1/2q(n). ☐

The final adjustments (3/3)

Conclusion
❖ We have proved:

Theorem. QBF is in ABPP.

Conclusion
❖ We have proved:

Theorem. QBF is in ABPP.

❖ Since QBF is PSPACE-complete, and
since ABPP is closed under poly time reductions,
Corollary. PSPACE ⊆ ABPP

Conclusion
❖ We have proved:

Theorem. QBF is in ABPP.

❖ Since QBF is PSPACE-complete, and
since ABPP is closed under poly time reductions,
Corollary. PSPACE ⊆ ABPP

❖ With the previous result ABPP ⊆ IP ⊆ PSPACE:

Conclusion
❖ We have proved:

Theorem. QBF is in ABPP.

❖ Since QBF is PSPACE-complete, and
since ABPP is closed under poly time reductions,
Corollary. PSPACE ⊆ ABPP

❖ With the previous result ABPP ⊆ IP ⊆ PSPACE:

❖ Corollary (Shamir’s theorem). ABPP = IP = PSPACE.

Conclusion
❖ We have proved:

Theorem. QBF is in ABPP.

❖ Since QBF is PSPACE-complete, and
since ABPP is closed under poly time reductions,
Corollary. PSPACE ⊆ ABPP

❖ With the previous result ABPP ⊆ IP ⊆ PSPACE:

❖ Corollary (Shamir’s theorem). ABPP = IP = PSPACE.

and with perfect soundness! no error if x ∈ L

Conclusion
❖ We have proved:

Theorem. QBF is in ABPP.

❖ Since QBF is PSPACE-complete, and
since ABPP is closed under poly time reductions,
Corollary. PSPACE ⊆ ABPP

❖ With the previous result ABPP ⊆ IP ⊆ PSPACE:

❖ Corollary (Shamir’s theorem). ABPP = IP = PSPACE.

and with perfect soundness! no error if x ∈ L

and every PSPACE language has an ABPP protocol with perfect soundness

Next time…

Next time

❖ A glimpse at the Arora-Safra theorem
 NP=PCP(O(log n), O(1), O(1))

❖ … specially its relationship to the hardness
 of approximation problems

