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Today

❖ The classes ABPP, IP

❖ Easy: ABPP ⊆ IP ⊆ PSPACE

❖ Hard (Shamir’s theorem): ABPP = IP = PSPACE
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ABPP, IP
❖ ABPP ≝ AM[poly] = {languages recognizable 

    by an A-M protocol with polynomially many rounds}

❖ IP ≝ IP[poly] = {languages recognizable by an 
    interactive proof with polynomially many rounds}

❖ Beware: Merlin must provide answers y of size 
polynomial in n ≝ size(x), not in the size of the history



The subtlety with answer sizes
❖ Imagine Merlin were allowed to answer y of size |history|2 

(and Arthur is lazy, and |r|=n, to make things simpler)

❖ |x#q1#r1|= 2n+2

❖ |x#q1#r1#y1|= (2n+2)+1+(2n+2)2 = 4n2+6n+7 ≥ 4n2

❖ |x#q1#r1#y1#q2#r2#y2| ≥ (4n2)2 = 16n4

❖ …
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The subtlety with answer sizes
❖ Imagine Merlin were allowed to answer y of size |history|2 

(and Arthur is lazy, and |r|=n, to make things simpler)

❖ |x#q1#r1|= 2n+2

❖ |x#q1#r1#y1|= (2n+2)+1+(2n+2)2 = 4n2+6n+7 ≥ 4n2

❖ |x#q1#r1#y1#q2#r2#y2| ≥ (4n2)2 = 16n4

❖ …

❖ |x#q1#r1#y1#…#qk#rk#yk| ≥ 22^kn2^k

❖ polynomial if k constant, 
doubly exponential if k=poly(n)
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ABPP ⊆ PSPACE
❖ We start with the relatively simple inclusion ABPP ⊆ PSPACE

❖ Let L ∈ ABPP, decided in R(n) rounds, random tape size =q(n), lazy Arthur

❖ Idea: count the number of lists of random strings r1, r2, …, rR(n) 
that lead to acceptance

❖ That must be ≥ ⅔.2R(n)q(n) or ≤ ⅓.2R(n)q(n): 
                   accept if larger than ½.2R(n)q(n), reject otherwise
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ABPP ⊆ PSPACE
❖ We start with the relatively simple inclusion ABPP ⊆ PSPACE

❖ Let L ∈ ABPP, decided in R(n) rounds, random tape size =q(n), lazy Arthur

❖ Idea: count the number of lists of random strings r1, r2, …, rR(n) 
that lead to acceptance

❖ That must be ≥ ⅔.2R(n)q(n) or ≤ ⅓.2R(n)q(n): 
                   accept if larger than ½.2R(n)q(n), reject otherwise

❖ Answers by Merlin are guessed.

❖ Hence L is in NPSPACE, therefore in PSPACE (Savitch). 
See lecture notes for details.



ABPP ⊆ PSPACE: alternate argument
❖ Let L ∈ ABPP, defined by formula 

      Er1, ∃y1, Er2, ∃y2, …, Erk, ∃yk, P(x,r1,y1,…,rk,yk)     [k=R(n)] 
namely this is ≥⅔ if x ∈ L, ≤⅓ if x ∉ L

❖ Hence 
  F(x) ≝ Σr1, max y1, Σr2, max y2, …, Σrk, max yk, P(x,r1,y1,…,rk,yk) 
            is ≥ ⅔.2R(n)q(n)  if x ∈ L, ≤ ⅓.2R(n)q(n) if x ∉ L

❖ We accept if F(x) ≥ ½.2R(n)q(n), we reject otherwise

❖ Note that we can compute F(x) in poly space: 
— 2R(n) words ri, yi, of size ≤ q(n) 
— P(x,r1,y1,…,rk,yk) poly time, hence poly space 
— Intermediate counters ≤ 2R(n)q(n), hence of size ≤ R(n)q(n).



IP ⊆ PSPACE
❖ Let now L ∈ IP, decided in R(n) rounds, random tape size =q(n) 

Arthur no longer lazy: qi ≝ A(x#q1#r1#y1#…#yi–1,ri), size ≤ q(n)

❖ If we count the number of lists of random strings r1, r2, …, rR(n) 
that lead to acceptance, and Merlin guesses yi, 
            then yi may depend on r1, r2, …, ri 

— but it is only allowed to depend on (x and) q1, q2, …, qi



IP ⊆ PSPACE
❖ Let now L ∈ IP, decided in R(n) rounds, random tape size =q(n) 

Arthur no longer lazy: qi ≝ A(x#q1#r1#y1#…#yi–1,ri), size ≤ q(n)

❖ If we count the number of lists of random strings r1, r2, …, rR(n) 
that lead to acceptance, and Merlin guesses yi, 
            then yi may depend on r1, r2, …, ri 

— but it is only allowed to depend on (x and) q1, q2, …, qi

❖ Instead, we count the # of lists of random questions q1, q2, …, qR(n) 

             — it is just that they are not uniformly random; 
we weigh each of them with the number of random strings that give rise 
to those questions: see lecture notes for details



IP ⊆ PSPACE: alternate argument
❖ Let L ∈ IP, similarly as for AM, we can show that L is defined by a formula 
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where E’qi is average over questions qi, 
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❖ This formula is ≥⅔ if x ∈ L, ≤⅓ if x ∉ L
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where E’qi is average over questions qi, 
                   with probability card {ri | A(x#q1#r1#y1#…#yi–1,ri)=qi}/2q(n)

❖ This formula is ≥⅔ if x ∈ L, ≤⅓ if x ∉ L

❖ Hence 
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           is ≥ ⅔.2R(n)q(n)  if x ∈ L, ≤ ⅓.2R(n)q(n) if x ∉ L                               [q(n) ≝ question size, now]

❖ We accept if F(x) ≥ ½.2R(n)q(n), we reject otherwise

❖ Note that we can compute F(x) in poly space, as previously.



The easy direction
❖ Prop.  ABPP ⊆ IP ⊆ PSPACE

❖ We have just sketched proofs of IP ⊆ PSPACE

❖ ABPP ⊆ IP is because AM[f(n)] ⊆ IP[f(n)] for any f: 
given L ∈ AM[f(n)] decided by a lazy Arthur, 
an IP[f(n)] protocol for f computes qi ≝ A(x#q1#r1#y1#…#yi–1,ri) 
                   as ri, simply.  ☐



The hard direction: 
PSPACE ⊆ ABPP



Shamir’s theorem

Par Erik Tews — Travail personnel, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=28572036

Adi Shamir
(J. ACM, 1992)

Shamir shows PSPACE ⊆ ABPP, 
which entails IP=PSPACE

Building on a series of previous ideas by 
Lund, Feige, and others



Alexander Shen

By Avsmal - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=77675476

Александр Ханиевич Шень

(J. ACM, 1992)

I will really describe A. Shen’s simplified proof
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General idea of the proof
❖ We will show that QBF is in ABPP

❖ For this, we will arithmetize the evaluation of QBF 
formulae 
        ∀X1, ∃X2, ∀X3, ∃X4, …, ∀/∃Xk, G(X1,X2,…,Xk)

❖ by evaluating them as polynomials

❖ … mod p

❖ because (low degree) polynomials provide proofs that are 
checkable with just one random sample (see next slides)

conjunction of 
3-clauses

which will act as 
error-correcting codes 

(but don’t worry about that)



Polynomials mod p



Polynomials mod p
❖ Let p be prime: K ≝ ℤ/pℤ is a field.
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Polynomials mod p
❖ Let p be prime: K ≝ ℤ/pℤ is a field.

❖ K[X1,…,Xm] = {polynomials 
                                  Σn1…nm an1…nm X1n1…Xmnm  on m variables 
                          with coefficients an1…nm  in K}

❖ For every polynomial P, one can evaluate 
P on an m-tuple (v1, …, vm) in Km, 
yielding a value P(v1, …, vm) in K

❖ This defines a function ⟦P⟧ : Km → K 
                      (a so-called polynomial function)

sum of monomials
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❖ One should (in principle) not confuse 

     polynomials P with polynomial functions ⟦P⟧.

❖ For example, X1p-X1 and 0 are distinct polynomials, 
which define the same function (Fermat’s little theorem)
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Polynomials and polynomial functions
❖ One should (in principle) not confuse 

     polynomials P with polynomial functions ⟦P⟧.

❖ For example, X1p-X1 and 0 are distinct polynomials, 
which define the same function (Fermat’s little theorem)

❖ However, there is no ambiguity if P has low degree: 
for two polynomials P, Q in one variable X1, 
if deg(P), deg(Q) < p, then ⟦P⟧=⟦Q⟧ iff P=Q

❖ Equivalent to: if deg(P) < p, then ⟦P⟧=0 iff P=0 
because P≠0 implies P has ≤ deg(P) roots (Lagrange)



❖ This generalizes to multivariate polynomials.

❖ For P ∈ K[X1,…,Xm] ≝ Σn1…nm an1…nm X1n1…,Xmnm 
the total degree deg(P) ≝ max deg(an1…nm X1n1…,Xmnm) 
      where deg(an1…nm X1n1…,Xmnm) ≝ n1+…+nm if an1…nm≠0 
                                                                 ≝ 0 otherwise

❖ A root of P is an m-tuple (v1, …, vm) such that P(v1, …, vm)=0

❖ Theorem (Schwartz 1980, Zippel 1979).  Let K ≝ ℤ/pℤ, m≥1. 
Every P ∈ K[X1,…,Xm] such that P≠0 has ≤ deg(P).pm–1 roots.

The Schwartz-Zippel Lemma



❖ Theorem (Schwartz 1980, Zippel 1979).  Let K ≝ ℤ/pℤ, m≥1. 
Every P ∈ K[X1,…,Xm] such that P≠0 has ≤ deg(P).pm–1 roots.

❖ By induction on m.  We write P as a univariate polynomial in Xm, 
with coefficients in K[X1,…,Xm–1]: 
                  P = Qd Xmd + Qd–1 Xmd–1 + … + Q1 Xm + Q0, 
where Qd, Qd–1, …, Q1, Q0 ∈ K[X1,…,Xm–1] and Qd≠0

❖ Base case: m=1, this is Lagrange.

The Schwartz-Zippel Lemma
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❖ Theorem (Schwartz 1980, Zippel 1979).  Let K ≝ ℤ/pℤ, m≥1. 
Every P ∈ K[X1,…,Xm] such that P≠0 has ≤ deg(P).pm–1 roots.

❖ Induction case m≥2.            P = Qd Xmd + Qd–1 Xmd–1 + … + Q1 Xm + Q0, 
                                   where Qd, Qd–1, …, Q1, Q0 ∈ K[X1,…,Xm–1] and Qd≠0

❖ Note: deg(P) ≥ deg(Qd)+d.  We count the roots (v1,…,vm) of P:

❖ either (v1,…,vm–1) is a root of Qd: ≤ deg(Qd).pm–2 possible (m–1)-tuples, 
                                                    times p possible values for vm

❖ or it is not: at most pm–1 possible (m–1)-tuples, 
           times ≤ d possible roots vm (for each fixed (m–1)-tuple (v1,…,vm–1))

❖ Total: ≤ deg(Qd).pm–2.p + pm–1.d = (deg(Qd)+d).pm–1 ≤ deg(P).pm–1.  ☐
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❖ Hence the problem: 
INPUT: P ∈ K[X1,…,Xm] with d ≝ deg(P) < p/2, 
QUESTION: P≠0? 
is in RP.

Polynomial identity testing

a « low degree polynomial »
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Every P ∈ K[X1,…,Xm] such that P≠0 has ≤ deg(P).pm–1 roots.

❖ Consequence (polynomial identity testing, PIT): 
Given P ∈ K[X1,…,Xm] with d ≝ deg(P) < p, 
            if P≠0 then Prv1,…,vm ∈ K(P(v1,…,vm)=0) ≤ d/p.

❖ Hence the problem: 
INPUT: P ∈ K[X1,…,Xm] with d ≝ deg(P) < p/2, 
QUESTION: P≠0? 
is in RP.

Polynomial identity testing

a « low degree polynomial »

provided evaluation of P can be done in polynomial time…



Complexity of arithmetic 
operations



❖ Given numbers a, b of size ≤ f(n), in binary

❖ a+b: time O(f(n)), result size ≤ f(n)+1

❖ a.b: time O(f(n)2), result size ≤ 2f(n) 
[can be improved: Karatsuba O(f(n)log 3/log 2), Toom-Cook O(f(n)1+ε), Schönhage-Strassen O(f(n) log f(n) log log f(n)))]
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❖ ab: result size = b.size(a) 
               exponential in size(b) 
Hence no matter which algorithm 
we choose to implement ab, 
running time will be exponential
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let rec pow(a,b)=
    if b=0
       then 1
    else let (b’,lsb) = b divmod 2 in
         let r = pow(a,b’) in  
         let r2 = r*r in  
         if lsb=0
            then r2
         else r2*a

Fast exponentiation



❖ Given numbers a, b of size ≤ f(n), in binary

❖ a+b: time O(f(n)), result size ≤ f(n)+1

❖ a.b: time O(f(n)2), result size ≤ 2f(n) 
[can be improved: Karatsuba O(f(n)log 3/log 2), Toom-Cook O(f(n)1+ε), Schönhage-Strassen O(f(n) log f(n) log log f(n)))]

❖ ab: result size = b.size(a) 
               exponential in size(b) 
Hence no matter which algorithm 
we choose to implement ab, 
running time will be exponential

❖ … this is why we turn to mod p operations

Complexity of arithmetic operations

let rec pow(a,b)=
    if b=0
       then 1
    else let (b’,lsb) = b divmod 2 in
         let r = pow(a,b’) in  
         let r2 = r*r in  
         if lsb=0
            then r2
         else r2*a

Fast exponentiation



❖ If p is of size ≤ f(n), then all numbers mod p are of size ≤ f(n)
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❖ If p is of size ≤ f(n), then all numbers mod p are of size ≤ f(n)

❖ Only new operation: x mod p 
Here is an easy way 
(assuming a on ≤k bits, and p≥1; 

 more efficient: see Montgomery representation):

Complexity of operations mod p

r := x;  
let q = p<<(k-1) in  
for i=1 to k: (* Inv: q=p2k-i,r<2q,r=x mod p *)  
    if r≥q then r -= q; (* r<q,r=x mod p *)  
    q >>= 1;
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Here is an easy way 
(assuming a on ≤k bits, and p≥1; 

 more efficient: see Montgomery representation):

❖ in time O(k f(n)).  In practice, x=ab has size k = 2f(n). 
Hence ab mod p: time O(f(n)2) [same as for ab], 
but size remains ≤ size(p) ≤ f(n)
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❖ If p is of size ≤ f(n), then all numbers mod p are of size ≤ f(n)

❖ Only new operation: x mod p 
Here is an easy way 
(assuming a on ≤k bits, and p≥1; 

 more efficient: see Montgomery representation):

❖ in time O(k f(n)).  In practice, x=ab has size k = 2f(n). 
Hence ab mod p: time O(f(n)2) [same as for ab], 
but size remains ≤ size(p) ≤ f(n)

❖ Hence any polynomial computation involving A(n) additions and 
M(n) multiplications mod p takes time time O(A(n)f(n)+M(n)f(n)2): 
polynomial if A(n), M(n), f(n) are polynomial.
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r := x;  
let q = p<<(k-1) in  
for i=1 to k: (* Inv: q=p2k-i,r<2q,r=x mod p *)  
    if r≥q then r -= q; (* r<q,r=x mod p *)  
    q >>= 1;
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M(n) multiplications mod p takes time time O(A(n)f(n)
+M(n)f(n)2): polynomial if A(n), M(n), f(n) are polynomial.

❖ Hence evaluating P(v1,…,vm) where P ∈ K[X1,…,Xm], K ≝ ℤ/pℤ 
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        (1) size(p)=f(n) is polynomial 
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❖ Any polynomial computation involving A(n) additions and 
M(n) multiplications mod p takes time time O(A(n)f(n)
+M(n)f(n)2): polynomial if A(n), M(n), f(n) are polynomial.

❖ Hence evaluating P(v1,…,vm) where P ∈ K[X1,…,Xm], K ≝ ℤ/pℤ 
        takes polynomial time if: 
        (1) size(p)=f(n) is polynomial 
        (2) m is polynomial 
        (3) P has polynomially many non-zero monomials

❖ When m=1, (3) is equivalent to: deg(P) is polynomial 
(In general, #monomials is exponential = O(deg(P)m)

Complexity of operations mod p

P has polynomial size



Polynomials and polynomial expressions

❖ Until now, polynomials were given explicitly, as lists of 
monomials

❖ We will deal with polynomial expressions, namely 
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❖ E.g., (x+1)(2y+3)2: needs 2 additions and 3 products 
simplifies to 4xy2+4y2+6xy+6y+9x+9, 
  which needs 5 additions and 9 products (and is larger!)



Polynomials and polynomial expressions

❖ Until now, polynomials were given explicitly, as lists of 
monomials

❖ We will deal with polynomial expressions, namely 
expressions that simplify to polynomials

❖ E.g., (x+1)(2y+3)2: needs 2 additions and 3 products 
simplifies to 4xy2+4y2+6xy+6y+9x+9, 
  which needs 5 additions and 9 products (and is larger!)

❖ Expressions will use extra operations: ⋁, ⋀, ¬, ∀, ∃, R
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❖ How do we find a prime number p of f(n) bits?
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❖ Theorem (Bertrand’s postulate, Chebyshev 1899). 
For every natural number N≥1, there is at least one 
prime number p such that N < p ≤ 2N; 
     in fact there are strictly more than N/(3 log (2N)) 
 
 

Victor Shoup.  A Computational Introduction to Number Theory and Algebra. (Beta version 4.) https://shoup.net/ntb/
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❖ How do we find a prime number p of f(n) bits?

❖ Theorem (Bertrand’s postulate, Chebyshev 1899). 
For every natural number N≥1, there is at least one 
prime number p such that N < p ≤ 2N; 
     in fact there are strictly more than N/(3 log (2N)) 
 
 

❖ Then rejection sampling + primality testing
Victor Shoup.  A Computational Introduction to Number Theory and Algebra. (Beta version 4.) https://shoup.net/ntb/
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❖ Prp, of f(n) bits(p is prime) > 2/(3 (f(n)+1)log 2)
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Finding prime numbers (2/3)
❖ So >2f(n)/(3 (f(n)+1)log 2) 

primes of [exactly] f(n) bits, 
out of 2f(n)–1 f(n)-bit numbers

❖ Prp, of f(n) bits(p is prime) > 2/(3 (f(n)+1)log 2)

❖ Hence rejection sampling will find an f(n)-bit prime number in 
at most 3/2 log 2 (f(n)+1) tries on average

❖ Primality checking is poly time [Agrawal,Kayal,Saxena 2002]

❖ Hence, if f(n) is polynomial, then finding an f(n)-bit prime 
number can be done in average polynomial time
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prime number in average time p(n)
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❖ Imagine we can find an f(n)-bit 
prime number in average time p(n)

❖ By simulating this computation 
for 2p(n) steps,and failing if timeout is reached, either: 
— we obtain an f(n)-bit prime number in time O(p(n)) 
— or we fail, with probability ≤ 1/2
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❖ Imagine we can find an f(n)-bit 
prime number in average time p(n)

❖ By simulating this computation 
for 2p(n) steps,and failing if timeout is reached, either: 
— we obtain an f(n)-bit prime number in time O(p(n)) 
— or we fail, with probability ≤ 1/2

❖ Repeating this process while it fails, 
     and at most q(n) [polynomial] times, either: 
— we obtain an f(n)-bit prime number in time O(q(n)p(n)log n) 
— or we fail, with probability ≤ 1/2q(n)

Finding prime numbers (3/3)



❖ Let p be an f(n)-bit prime number

Drawing random numbers mod p



❖ Let p be an f(n)-bit prime number

❖ To draw v mod p at random uniformly: rejection sampling again

Drawing random numbers mod p



❖ Let p be an f(n)-bit prime number

❖ To draw v mod p at random uniformly: rejection sampling again

❖ stops in ≤2 iterations on average

Drawing random numbers mod p



❖ Let p be an f(n)-bit prime number

❖ To draw v mod p at random uniformly: rejection sampling again

❖ stops in ≤2 iterations on average

❖ With a timeout of 4 iterations, we obtain a random v mod p in 
time 4f(n), or we fail with probability ≤ 1/2
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❖ Let p be an f(n)-bit prime number

❖ To draw v mod p at random uniformly: rejection sampling again

❖ stops in ≤2 iterations on average

❖ With a timeout of 4 iterations, we obtain a random v mod p in 
time 4f(n), or we fail with probability ≤ 1/2

❖ Repeating this process while it fails, 
     and at most q(n) [polynomial] times, either: 
— we obtain an f(n)-bit random v mod p in time O(q(n)f(n)log n) 
— or we fail, with probability ≤ 1/2q(n)

Drawing random numbers mod p



Arithmetization



Arithmetizing formulae

❖ We will interpret QBF formulae F as polynomial 
expressions F(X1,…,Xm) (we will not simplify them as polynomials)

❖ … in such a way that for all Booleans v1,…,vm, 
     F(v1,…,vm) is the value of F[X1:=v1,…,Xm:=vm] 
                                                 (and is in particular Boolean; we let false=0, true=1)

❖ P ⋀ Q ≝ P.Q      ¬P ≝ 1–P      P ⋁ Q ≝ 1–(1–P)(1–Q)
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Arithmetizing formulae
❖ P ⋀ Q ≝ P.Q      ¬P ≝ 1–P      P ⋁ Q ≝ 1–(1–P)(1–Q)

❖ Example: (X1 ⋀ ¬X2) ⋁ X3 = 1–(1– X1.(1–X2))(1–X3)

❖ For a 3-clause C, deg(C) ≤ 3, constant size (counting the size of variables as one)

❖ For a set [conjunction] G of k 3-clauses, 
                              deg(G) ≤ 3k, size O(k)

k=poly(n), good!
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Arithmetizing QBF formulae
❖ P ⋀ Q ≝ P.Q      ¬P ≝ 1–P      P ⋁ Q ≝ 1–(1–P)(1–Q)

❖ ∀X.P ≝ P[X:=0] ⋀ P[X:=1]   ∃X.P ≝ P[X:=0] ⋁ P[X:=1]

❖ Each quantifier doubles both the degree and the size

❖ For a set [conjunction] G of k 3-clauses, 
                              deg(G) ≤ 3k, size O(k)

❖ ∀X1, ∃X2, ∀X3, ∃X4, …, ∀/∃Xm, G(X1,X2,…,Xm) 
                     degree: 2m3k, size O(2mk)

exponential: no problem for Schwartz-Zippel (take f(n) polynomial > m log2 (3k)),
but will cause a size problem later (solved by Shen’s trick, see later)
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An ABPP game to decide QBF
❖ We first assume that the max degree dmax of all polynomials we 

need to handle is polynomial (instead of 2m3k)…

❖ This is wrong, but will be solved by Shen’s trick later

❖ We let Arthur check that 
      ∀X1, ∃X2, ∀X3, ∃X4, …, ∀/∃Xm, G(X1,X2,…,Xm) = 1 
by asking Merlin for polynomials representing certain 
subformulae (~error-correcting codes), and checking them using 
Schwartz-Zippel

❖ There will be m rounds

❖ Let me explain this with m=4…



❖ At each point of the game, 
we will have a 
polynomial expression F 
     (… with no variable) 
and an objective value w, 
and Arthur wishes to 
check whether ⟦F⟧=w.

❖ Initially, F=F0, w=w0≝1
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F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)
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F3(X1,X2,X3)
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❖ Arthur cannot check 
whether ⟦F0⟧=w0 

(F0 is too large)

❖ Merlin gives a polynomial (not a polynomial expression) P1(X1), 
claiming that: 
— ⟦P1(X1)⟧ = ⟦F1(X1)⟧ 
— ⟦∀X1, P1(X1)⟧ = w0
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❖ Initially, F=F0, w=w0≝1

❖ Arthur cannot check 
whether ⟦F0⟧=w0 

(F0 is too large)

❖ Merlin gives a polynomial (not a polynomial expression) P1(X1), 
claiming that: 
— ⟦P1(X1)⟧ = ⟦F1(X1)⟧ 
— ⟦∀X1, P1(X1)⟧ = w0

❖ Since dmax is (assumed) polynomial, and P1(X1) is univariate, 
P1(X1) has polynomial size
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— ⟦∀X1, P1(X1)⟧ = w0

❖ Arthur checks that 
⟦∀X1, P1(X1)⟧ = w0 by verifying that P1(0).P1(1) = w0 
… admittedly, it is very easy for a dishonest Merlin to pass this test
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❖ Now F = F1(v1), w=w1≝P1(v1)

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)



❖ Now F = F1(v1), w=w1≝P1(v1)

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)



❖ Now F = F1(v1), w=w1≝P1(v1)

❖ Merlin gives P2(X2), claims: 
— ⟦P2(X2)⟧ = ⟦F2(v1,X2)⟧ 
— ⟦∃X2, P2(X2)⟧ = w1

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)



❖ Now F = F1(v1), w=w1≝P1(v1)

❖ Merlin gives P2(X2), claims: 
— ⟦P2(X2)⟧ = ⟦F2(v1,X2)⟧ 
— ⟦∃X2, P2(X2)⟧ = w1

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)
Yes, with X1:=v1 

Note that  P2(X2) is univariate, too.



❖ Now F = F1(v1), w=w1≝P1(v1)

❖ Merlin gives P2(X2), claims: 
— ⟦P2(X2)⟧ = ⟦F2(v1,X2)⟧ 
— ⟦∃X2, P2(X2)⟧ = w1

❖ Arthur checks that 
⟦∃X2, P2(X2)⟧ = w1 by verifying that 1–(1–P2(0))(1–P2(1)) = w1

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)
Yes, with X1:=v1 

Note that  P2(X2) is univariate, too.



❖ Now F = F1(v1), w=w1≝P1(v1)

❖ Merlin gives P2(X2), claims: 
— ⟦P2(X2)⟧ = ⟦F2(v1,X2)⟧ 
— ⟦∃X2, P2(X2)⟧ = w1

❖ Arthur checks that 
⟦∃X2, P2(X2)⟧ = w1 by verifying that 1–(1–P2(0))(1–P2(1)) = w1

❖ In order to check ⟦P2(X2)⟧ = ⟦F2(v1,X2)⟧, 
Arthur draws v2 mod p uniformly, and needs to check P2(v2)=F2(v1,v2), 
             by Schwartz-Zippel (on one variable), this is a reliable test

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)
Yes, with X1:=v1 

Note that  P2(X2) is univariate, too.



❖ Now F = F1(v1), w=w1≝P1(v1)

❖ Merlin gives P2(X2), claims: 
— ⟦P2(X2)⟧ = ⟦F2(v1,X2)⟧ 
— ⟦∃X2, P2(X2)⟧ = w1

❖ Arthur checks that 
⟦∃X2, P2(X2)⟧ = w1 by verifying that 1–(1–P2(0))(1–P2(1)) = w1

❖ In order to check ⟦P2(X2)⟧ = ⟦F2(v1,X2)⟧, 
Arthur draws v2 mod p uniformly, and needs to check P2(v2)=F2(v1,v2), 
             by Schwartz-Zippel (on one variable), this is a reliable test

❖ Now F = F2(v1,v2), w=w2≝P2(v2)

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)
Yes, with X1:=v1 

Note that  P2(X2) is univariate, too.



❖ Now F = F2(v1,v2), w=w2≝P2(v2)

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)



❖ Now F = F2(v1,v2), w=w2≝P2(v2)

❖ Merlin gives P3(X3), claims: 
— ⟦P3(X3)⟧ = ⟦F3(v1,v2,X3)⟧ 
— ⟦∀X3, P3(X3)⟧ = w2

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)
Yes, with X1:=v1, X2:=v2 

Note that  P3(X3) is univariate, too



❖ Now F = F2(v1,v2), w=w2≝P2(v2)

❖ Merlin gives P3(X3), claims: 
— ⟦P3(X3)⟧ = ⟦F3(v1,v2,X3)⟧ 
— ⟦∀X3, P3(X3)⟧ = w2

❖ Arthur checks that 
⟦∀X3, P3(X3)⟧ = w2 by verifying that P3(0)P3(1) = w2

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)
Yes, with X1:=v1, X2:=v2 

Note that  P3(X3) is univariate, too



❖ Now F = F2(v1,v2), w=w2≝P2(v2)

❖ Merlin gives P3(X3), claims: 
— ⟦P3(X3)⟧ = ⟦F3(v1,v2,X3)⟧ 
— ⟦∀X3, P3(X3)⟧ = w2

❖ Arthur checks that 
⟦∀X3, P3(X3)⟧ = w2 by verifying that P3(0)P3(1) = w2

❖ In order to check ⟦P3(X3)⟧ = ⟦F3(v1,v2,X3)⟧ 
Arthur draws v3 mod p uniformly, and will check P3(v3)=F3(v1,v2,v3), 
             by Schwartz-Zippel (on one variable), this is a reliable test

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)
Yes, with X1:=v1, X2:=v2 

Note that  P3(X3) is univariate, too



❖ Now F = F2(v1,v2), w=w2≝P2(v2)

❖ Merlin gives P3(X3), claims: 
— ⟦P3(X3)⟧ = ⟦F3(v1,v2,X3)⟧ 
— ⟦∀X3, P3(X3)⟧ = w2

❖ Arthur checks that 
⟦∀X3, P3(X3)⟧ = w2 by verifying that P3(0)P3(1) = w2

❖ In order to check ⟦P3(X3)⟧ = ⟦F3(v1,v2,X3)⟧ 
Arthur draws v3 mod p uniformly, and will check P3(v3)=F3(v1,v2,v3), 
             by Schwartz-Zippel (on one variable), this is a reliable test

❖ Now F = F3(v1,v2,v3), w=w3≝P3(v3)

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)
Yes, with X1:=v1, X2:=v2 

Note that  P3(X3) is univariate, too



❖ Now F = F3(v1,v2,v3), w=w3≝P3(v3)

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)



❖ Now F = F3(v1,v2,v3), w=w3≝P3(v3)

❖ Merlin gives P4(X4), claims: 
— ⟦P4(X4)⟧ = ⟦F4(v1,v2,v3,X4)⟧ 
— ⟦∃X4, P4(X4)⟧ = w3

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)



❖ Now F = F3(v1,v2,v3), w=w3≝P3(v3)

❖ Merlin gives P4(X4), claims: 
— ⟦P4(X4)⟧ = ⟦F4(v1,v2,v3,X4)⟧ 
— ⟦∃X4, P4(X4)⟧ = w3

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)
Yes, with X1:=v1, X2:=v2, X3:=v3 

Note that  P4(X4) is univariate, too

F4(X1,X2,X3,X4)



❖ Now F = F3(v1,v2,v3), w=w3≝P3(v3)

❖ Merlin gives P4(X4), claims: 
— ⟦P4(X4)⟧ = ⟦F4(v1,v2,v3,X4)⟧ 
— ⟦∃X4, P4(X4)⟧ = w3

❖ Arthur checks that 
⟦∃X4, P4(X4)⟧ = w3 by verifying that 1–(1–P4(0))(1–P4(1)) = w3

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)
Yes, with X1:=v1, X2:=v2, X3:=v3 

Note that  P4(X4) is univariate, too

F4(X1,X2,X3,X4)



❖ Now F = F3(v1,v2,v3), w=w3≝P3(v3)

❖ Merlin gives P4(X4), claims: 
— ⟦P4(X4)⟧ = ⟦F4(v1,v2,v3,X4)⟧ 
— ⟦∃X4, P4(X4)⟧ = w3

❖ Arthur checks that 
⟦∃X4, P4(X4)⟧ = w3 by verifying that 1–(1–P4(0))(1–P4(1)) = w3

❖ In order to check ⟦P4(X4)⟧ = ⟦F4(v1,v2,v3,X4)⟧ 
Arthur draws v4 mod p uniformly, and will check P4(v4)=F4(v1,v2,v3,v4), 
             by Schwartz-Zippel (on one variable), this is a reliable test

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)
Yes, with X1:=v1, X2:=v2, X3:=v3 

Note that  P4(X4) is univariate, too

F4(X1,X2,X3,X4)



❖ Now F = F3(v1,v2,v3), w=w3≝P3(v3)

❖ Merlin gives P4(X4), claims: 
— ⟦P4(X4)⟧ = ⟦F4(v1,v2,v3,X4)⟧ 
— ⟦∃X4, P4(X4)⟧ = w3

❖ Arthur checks that 
⟦∃X4, P4(X4)⟧ = w3 by verifying that 1–(1–P4(0))(1–P4(1)) = w3

❖ In order to check ⟦P4(X4)⟧ = ⟦F4(v1,v2,v3,X4)⟧ 
Arthur draws v4 mod p uniformly, and will check P4(v4)=F4(v1,v2,v3,v4), 
             by Schwartz-Zippel (on one variable), this is a reliable test

❖ … and Arthur can do this by himself, since F4=G.  ☐

An ABPP game to decide QBF
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)
Yes, with X1:=v1, X2:=v2, X3:=v3 

Note that  P4(X4) is univariate, too

F4(X1,X2,X3,X4)



❖ If F0 is true, then Merlin simply 
gives the simplified form 
of Fk(v1,v2,…,vk–1,Xk) for Pk(Xk), 
at each turn k

❖ Arthur will always accept in 
the end, in that case

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)



❖ If F0 is false, how can Merlin 
play (i.e., cheat) so as to force 
Arthur to eventually accept?

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)



❖ If F0 is false, how can Merlin 
play (i.e., cheat) so as to force 
Arthur to eventually accept?

❖ Round 1: P1(X1)≠F1(X1) [as polynomials] 
since ⟦∀X1,P1(X1)⟧=1     (Arthur checks ⟦∀X1, P1(X1)⟧ = w0, where w0=1) 
   but ⟦∀X1,F1(X1)⟧=⟦F0⟧=0

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)



❖ If F0 is false, how can Merlin 
play (i.e., cheat) so as to force 
Arthur to eventually accept?

❖ Round 1: P1(X1)≠F1(X1) [as polynomials] 
since ⟦∀X1,P1(X1)⟧=1     (Arthur checks ⟦∀X1, P1(X1)⟧ = w0, where w0=1) 
   but ⟦∀X1,F1(X1)⟧=⟦F0⟧=0

❖ With prob. ≤dmax/p over v1 

(Schwartz-Zippel), P1(v1)=F1(v1)

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

dmax/p 1–dmax/p

P1(v1)=F1(v1)



❖ If F0 is false, how can Merlin 
play (i.e., cheat) so as to force 
Arthur to eventually accept?

❖ Round 1: P1(X1)≠F1(X1) [as polynomials] 
since ⟦∀X1,P1(X1)⟧=1     (Arthur checks ⟦∀X1, P1(X1)⟧ = w0, where w0=1) 
   but ⟦∀X1,F1(X1)⟧=⟦F0⟧=0

❖ With prob. ≤dmax/p over v1 

(Schwartz-Zippel), P1(v1)=F1(v1)

❖ Otherwise, F1(v1)≠w1, where w1≝P1(v1), so…

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

dmax/p 1–dmax/p

P1(v1)=F1(v1)



❖ If F0 is false, how can Merlin 
play so as to force Arthur to 
eventually accept?

❖ Recap: now F1(v1)≠w1 [w1≝P1(v1)]

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

dmax/p 1–dmax/p

P1(v1)=F1(v1)



❖ If F0 is false, how can Merlin 
play so as to force Arthur to 
eventually accept?

❖ Recap: now F1(v1)≠w1 [w1≝P1(v1)]

❖ Round 2: P2(X2)≠F2(v1,X2) [as polynomials] 
since ⟦∃X2,P2(X2)⟧=w1              (since Arthur checks ⟦∃X2, P2(X2)⟧ = w1) 
   but ⟦∃X2,F2(v1,X2)⟧=F1(v1)≠w1

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

dmax/p 1–dmax/p

P1(v1)=F1(v1)



❖ If F0 is false, how can Merlin 
play so as to force Arthur to 
eventually accept?

❖ Recap: now F1(v1)≠w1 [w1≝P1(v1)]

❖ Round 2: P2(X2)≠F2(v1,X2) [as polynomials] 
since ⟦∃X2,P2(X2)⟧=w1              (since Arthur checks ⟦∃X2, P2(X2)⟧ = w1) 
   but ⟦∃X2,F2(v1,X2)⟧=F1(v1)≠w1

❖ With prob. ≤dmax/p over v2 

(Schwartz-Zippel), P2(v2)=F2(v1,X2)

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)



❖ If F0 is false, how can Merlin 
play so as to force Arthur to 
eventually accept?

❖ Recap: now F1(v1)≠w1 [w1≝P1(v1)]

❖ Round 2: P2(X2)≠F2(v1,X2) [as polynomials] 
since ⟦∃X2,P2(X2)⟧=w1              (since Arthur checks ⟦∃X2, P2(X2)⟧ = w1) 
   but ⟦∃X2,F2(v1,X2)⟧=F1(v1)≠w1

❖ With prob. ≤dmax/p over v2 

(Schwartz-Zippel), P2(v2)=F2(v1,X2)

❖ Otherwise, F2(v1,v2)≠w2, where w2≝P2(v2), 
so…

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)



❖ If F0 is false, how can Merlin 
play so as to force Arthur to 
eventually accept?

❖ Now F2(v1,v2)≠w2 [w2≝P2(v2)]

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)



❖ If F0 is false, how can Merlin 
play so as to force Arthur to 
eventually accept?

❖ Now F2(v1,v2)≠w2 [w2≝P2(v2)]

❖ Round 3: P3(X3)≠F3(v1,v2,X3) [as polynomials] 
since ⟦∀X3,P3(X3)⟧=w2              (since Arthur checks ⟦∀X3,P3(X3)⟧=w2) 
   but ⟦∀X3,F3(v1,v2,X3)⟧=F2(v1,v2)≠w2

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)



❖ If F0 is false, how can Merlin 
play so as to force Arthur to 
eventually accept?

❖ Now F2(v1,v2)≠w2 [w2≝P2(v2)]

❖ Round 3: P3(X3)≠F3(v1,v2,X3) [as polynomials] 
since ⟦∀X3,P3(X3)⟧=w2              (since Arthur checks ⟦∀X3,P3(X3)⟧=w2) 
   but ⟦∀X3,F3(v1,v2,X3)⟧=F2(v1,v2)≠w2

❖ With prob. ≤dmax/p over v3 

(Schwartz-Zippel), P3(v3)=F3(v1,v2,v3)

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)
dmax/p 1–dmax/p

P3(v3)=F3(v1,v2,v3)



❖ If F0 is false, how can Merlin 
play so as to force Arthur to 
eventually accept?

❖ Now F2(v1,v2)≠w2 [w2≝P2(v2)]
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   but ⟦∀X3,F3(v1,v2,X3)⟧=F2(v1,v2)≠w2

❖ With prob. ≤dmax/p over v3 

(Schwartz-Zippel), P3(v3)=F3(v1,v2,v3)

❖ Otherwise, F3(v1,v2,v3)≠w3, where w3≝P3(v3), 
so…

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)
dmax/p 1–dmax/p

P3(v3)=F3(v1,v2,v3)



❖ If F0 is false, how can Merlin 
play so as to force Arthur to 
eventually accept?

❖ Now F3(v1,v2,v3)≠w3 [w3≝P3(v3)]

Error bounds
F0 ≝ ∀X1, ∃X2, ∀X3, ∃X4, G(X1,X2,X3,X4)

F1(X1)

F2(X1,X2)

F3(X1,X2,X3)

F4(X1,X2,X3,X4)

dmax/p 1–dmax/p

P1(v1)=F1(v1)
dmax/p 1–dmax/p

P2(v2)=F2(v1,v2)
dmax/p 1–dmax/p

P3(v3)=F3(v1,v2,v3)



❖ If F0 is false, how can Merlin 
play so as to force Arthur to 
eventually accept?

❖ Now F3(v1,v2,v3)≠w3 [w3≝P3(v3)]
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   but ⟦∃X4,F4(v1,v2,v3,X4)⟧=F3(v1,v2,v3)≠w3
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❖ With prob. ≤dmax/p over v4 

(Schwartz-Zippel), P4(v4)=F4(v1,v2,v3,v4)
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   but ⟦∃X4,F4(v1,v2,v3,X4)⟧=F3(v1,v2,v3)≠w3

❖ With prob. ≤dmax/p over v4 

(Schwartz-Zippel), P4(v4)=F4(v1,v2,v3,v4)

❖ Otherwise, F4(v1,v2,v3,v4)≠w4, 
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❖ If F0 is false, then probability of 
acceptance is ≤ 4dmax/p
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F0 = ∀X1, ∃X2, ∀X3, ∃X4, …, ∀/∃Xm, 
                                        G(X1,X2,…,Xm) 
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❖ If F0 is false, then probability of 
acceptance is ≤ 4dmax/p

❖ That was for m=4 quantified variables

❖ In the general case, 
F0 = ∀X1, ∃X2, ∀X3, ∃X4, …, ∀/∃Xm, 
                                        G(X1,X2,…,Xm) 
and prob. of acceptance ≤ mdmax/p

❖ But all that works in poly time only if 
dmax is polynomial in n…
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❖ Given P ∈ K[X], let 
          RX, P(X) ≝ AX+B 
where B ≝ P(0) 
            A ≝ P(1)–P(0)

❖ At the Boolean level, R is a no-op: 
            RX, P(X) and P(X) have the same values on X=0 or 1

❖ … but the degree of RX, P(X) is at most one (in X)

Shen’s trick: degree reduction
New « quantifier » R (reduction).

Beware that RX, P(X) still depends on X

RX, P(X) is really P(X) mod (X2–X)



❖ Instead of checking whether the polynomial expression 
         ∀X1, ∃X2, ∀X3, ∃X4, …, ∀/∃Xm, G(X1,X2,…,Xm) 
evaluates to 1,
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         ∀X1, ∃X2, ∀X3, ∃X4, …, ∀/∃Xm, G(X1,X2,…,Xm) 
evaluates to 1,

❖ we consider the polynomial expression 
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         ∃X2, RX1, RX2, 
         ∀X3, RX1, RX2, RX3, 
         ∃X4, RX1, RX2, RX3, RX4, 
         … 
         ∀/∃Xm, RX1, RX2, …, RXm, G(X1,X2,…,Xm)

❖ That has now m+m(m+1)/2 quantifiers instead of m (polynomial)

Shen’s trick: using R



Testing R probabilistically
❖ Instead of just ∀ and ∃ rounds, there are now also R rounds 

They are dealt with in a very similar way:

❖ Imagine Fk(X) = RX, Fk+1(X)                            [just showing var. X for clarity] 
and Arthur wishes to check Fk(vk)=wk                            [current objective]
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Testing R probabilistically
❖ Instead of just ∀ and ∃ rounds, there are now also R rounds 

They are dealt with in a very similar way:

❖ Imagine Fk(X) = RX, Fk+1(X)                            [just showing var. X for clarity] 
and Arthur wishes to check Fk(vk)=wk                            [current objective]

❖ Merlin provides univariate polynomial Pk+1(X), claims: 
— ⟦Pk+1(X)⟧ = ⟦Fk+1(X)⟧ 
— ⟦RX, Pk+1(X)⟧(vk) = wk

❖ Arthur checks ⟦RX, Pk+1(X)⟧(vk) = wk, i.e., Avk+B=wk, 
                           where B ≝ Pk+1(0), A ≝ Pk+1(1)–Pk+1(0)

❖ … then goes on to the next round by drawing vk+1 mod p, 
with the goal of checking Fk+1(vk+1)=wk+1, where wk+1 ≝ Pk+1(vk+1)



❖ If F0 is false, then probability of 
acceptance is ≤ #quantifiers.dmax/p

❖ Now #quantifiers = m+m(m+1)/2

Error bounds, and dmax
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❖ If F0 is false, then probability of 
acceptance is ≤ #quantifiers.dmax/p

❖ Now #quantifiers = m+m(m+1)/2

❖ and (new!) dmax is polynomial in n…

❖ precisely, at most max(3k,2m) 
where k ≝ #clauses in G 
            m ≝ #quantified variables 
… linear in size(F0)

Error bounds, and dmax
dmax/p 1–dmax/p
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❖ If F0 is false, then probability of acceptance is ≤ #quantifiers.dmax/p 
We need to make that ≤1/2q(n), for an arbitrary polynomial q(n) 
Let us aim for 1/2q(n)+1, really (we will see why later)
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❖ If F0 is false, then probability of acceptance is ≤ #quantifiers.dmax/p 
We need to make that ≤1/2q(n), for an arbitrary polynomial q(n) 
Let us aim for 1/2q(n)+1, really (we will see why later)

❖ dmax≤max(3k,2m) ≤ 3n, #quantifiers=m+m(m+1)/2≤(n2+3n)/2 ≤ 2n2 [if n≥1], 
so we require: 
                    p ≥ 2q(n)+1.6n3

❖ Let us draw p at random on f(n) bits [in poly time], where 
                   f(n) ≝ q(n) + ⌈3 log2 n + log2 6⌉ + 2 
… failing with probability ≤ 1/2q(n)+2

❖ If that did not fail, then 
      p ≥ 2f(n)–1 ≥ 2q(n)+1.6n3, as required

The final adjustments (1/3)
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❖ Each time, this may fail, 
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❖ During the whole game, we will draw numbers mod p 
              #quantifiers = m+m(m+1)/2 ≤ 2n2 times

❖ Each time, this may fail, 
and we arrange the probability of 
failure to be ≤ 1/(2n2 . 2q(n)+2), 
viz. ≤ 1/2q’(n), where q’(n) is some polynomial ≥ q(n)+2+log2(2n2)

❖ Hence the total probability of failure is at most: 
— 1/2q(n)+2 when drawing p 
— 1/2q(n)+2 for the ≤2n2 draws of numbers mod p 
hence at most 1/2q(n)+1
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❖ The total probability of failure is at most 1/2q(n)+1

❖ In case of failure, Arthur immediately accepts. 
This way,

❖ if F0 is true, then if Merlin plays honestly, 
     Arthur will eventually accept, either because the game goes 
     as planned, or because some failure occurs

❖ if F0 is false, then whatever strategy Merlin uses, 
     acceptance occurs only if failure (prob. ≤ 1/2q(n)+1) 
                          or if game goes on as planned 
                                  but Arthur does not detect Merlin’s cheating 
                                         (prob. ≤ 1/2q(n)+1 as well, by our choice of p)
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❖ The total probability of failure is at most 1/2q(n)+1

❖ In case of failure, Arthur immediately accepts. 
This way,

❖ if F0 is true, then if Merlin plays honestly, 
     Arthur will eventually accept, either because the game goes 
     as planned, or because some failure occurs

❖ if F0 is false, then whatever strategy Merlin uses, 
     acceptance occurs only if failure (prob. ≤ 1/2q(n)+1) 
                          or if game goes on as planned 
                                  but Arthur does not detect Merlin’s cheating 
                                         (prob. ≤ 1/2q(n)+1 as well, by our choice of p)

❖ … hence with probability ≤ 1/2q(n).  ☐
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Conclusion
❖ We have proved: 

Theorem.  QBF is in ABPP.

❖ Since QBF is PSPACE-complete, and 
since ABPP is closed under poly time reductions, 
Corollary. PSPACE ⊆ ABPP

❖ With the previous result ABPP ⊆ IP ⊆ PSPACE:

❖ Corollary (Shamir’s theorem).  ABPP = IP = PSPACE.

and with perfect soundness!  no error if x ∈ L

and every PSPACE language has an ABPP protocol with perfect soundness



Next time…



Next time

❖ A glimpse at the Arora-Safra theorem 
                 NP=PCP(O(log n), O(1), O(1))

❖ … specially its relationship to the hardness 
     of approximation problems


