Jean Goubault-Larrecq

Randomized complexity classes

Today: **RP**, **coRP**, and **ZPP** (what a zoo!)

Tous droits réservés, Jean Goubault-Larrecq, professeur, ENS Paris-Saclay, Université Paris-Saclay Cours « Complexité avancée » (M1), 2020-, 1er semestre Ce document est protégé par le droit d'auteur. Toute représentation ou reproduction intégrale ou partielle faite sans le consentement de l'auteur est illicite.

Today

- Randomized Turing machines
- * One-sided error: **RP**, **coRP**
- * No error: **ZPP**
- Next time: two-sided error BPP

Randomized Turing machines

Ordinary Turing machines

X

- * One **read-only** input tape
- As many work tapes as you need (but only a constant number!)

(size |x| = n)

 (Possibly) one write-only output tape

Drawing strings at random

- We will study probabilistic complexity classes, where our TMs can now draw strings of bits at random
- * No need to invent a new TM model
- <u>Choice 1</u>: use a non-deterministic TM model and draw execution branch at random (we won't do that; hard to do it right)
- * <u>Choice 2</u>: ... next slide

Randomized Turing machines

Two

- One read-only tapes
- As many work tapes as you need (but only a constant number!)

random tape

 (Possibly) one write-only output tape

Technical points 1/2

We draw the random tape r
 uniformly at random

- * We will be interested in **probabilities**, e.g. $\Pr_r [\mathcal{M}(x,r) \text{ accepts}]$
- Random tape must not just be read-only:
 we impose that no bit on r is ever read twice
 (otherwise bits read are not independent)

Technical points 2/2

* ⇒ we need *r* to contain at least *f*(*n*) bits,
 where *f*(*n*) is an upper bound on the time taken by the TM.

- * We will always assume that *r* is **large enough**
- * OK for classes defined by **worst-case time**, will cause problems for classes defined with no a priori upper bound on time (e.g., **ZPP**)

Our first probabilistic class: RP

(also sometimes known as the class of *Monte Carlo* languages)

http://fr.casino-jackpot.com/wp-content/uploads/2018/04/casino-monaco.jpg

RP: <u>Randomized Polynomial time</u>

- A language L is in RP if and only if there is a polynomial-time TM M such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1/2$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r [\mathcal{M}(x,r) \text{ accepts}]=0$).

where *n*=|*x*|, in the worst case (and for any value of *r*)

i.e. there is also a **polynomial** *p*(*n*) /

 $\mathcal{M}(x,r)$ terminates in time $\leq p(n)$,

... hence, implicitly, we require $|r| \ge p(n)$ (let us say |r| = p(n))

probability taken over all $r \in \{0,1\}^{p(n)}$

one-sided error: we make **no** error if $x \notin L$

Perhaps paradoxically, that means that we make **no** error if $\mathcal{M}(x,r)$ **accepts** (so please do not confuse acceptance with being in the language!)

RP: <u>Randomized Polynomial time</u>

- A language L is in **RP** if and only if there is a **polynomial-time** TM M such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1/2$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r [\mathcal{M}(x,r) \text{ accepts}]=0$).

Note: **RP**-languages are **not** defined by « **RP**-machines » (there is no such notion)

... but if we wanted to define « **RP**-machines », those would be machines \mathcal{M} such that, for every x, — either $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1/2$ — or $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] = 0$

coRP

- * *L* is in **coRP** iff complement *L*^c is in **RP**, hence:
- *L* is in coRP if and only if
 there is a polynomial-time TM M
 such that for every input *x* (of size *n*):
- * if $x \in L$ then $\Pr_{\neq} [\mathcal{M}(x,r) \text{ accepts}] \ge 1/2 \mathcal{M}(x,r)$ accepts for every r
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r $\Pr_r[\mathcal{M}(x,r) \text{ accepts}] \le 1/2$

A motivating example for (co)RP

- PRIMALITY
 INPUT: a natural number *p*, in binary
 Q: is *p* prime?
- For a long time, not known to be in P
 (now solved: indeed in P [Agrawal,Kayal,Saxena 2004])
- * In **coNP** (guess a proper divisor)
- * In **NP** [Pratt 1975]
- * Can also be solved efficiently with **randomization**...

Fermat's little theorem

- * Thm (Fermat). If *p* is prime, then for every *r* ($1 \le r < p$), $r^{p-1}=1 \mod p$.
- * \Rightarrow draw *r* at random in [2,*p*-2]; accept if $r^{p-1}=1 \mod p$.
- Note: computing mod *p* is efficient: size of all numbers bounded by size(*p*)=O(log *p*). — addition mod *p* in time O(log *p*) — mult. mod *p* in time O(log² *p*) (even O(log^{1+ε} *p*))
- * An experiment... (next slide)

Fermat's little theorem in practice

- * Thm (Fermat). If *p* is prime, then for every *r* ($1 \le r < p$), $r^{p-1}=1 \mod p$.
- * \Rightarrow draw *r* at random in [2,*p*-2]; accept if $r^{p-1}=1 \mod p$.
- * Is 87 prime?
- * Draw r at random... say 25
- * $r^{86} = 16 \mod 87$
- * \Rightarrow 87 is **not prime** (definitely)

Fermat's little theorem in practice

- * Thm (Fermat). If *p* is prime, then for every *r* ($1 \le r < p$), $r^{p-1}=1 \mod p$.
- * \Rightarrow draw *r* in [2,*p*-2]; accept if $r^{p-1}=1 \mod p$.
- * Is 87 prime?
- * The probability (over r) of error is: $2/84 \approx 0.024$

		r	r ⁸⁶	r	r ⁸⁶	r	x ⁸⁶	r	r ⁸⁶	r	r ⁸⁶	r	r ⁸⁶	r	r 86	r	r ⁸⁶
r	r ⁸⁶	11	34	21	6	31	4	41	28	51	78	61	67	71	82	81	36
2	4	12	57	22	49	32	67	42	24	52	7	62	16	72	51	82	25
3	9	13	82	23	7	33	45	43	22	53	25	63	54	73	22	83	16
4	16	14	22	24	54	34	25	44	22	54	45	64	7	74	82	84	9
5	25	15	51	25	16	35	7	45	24	55	67	65	49	75	57	85	4
6	36	16	82	26	67	36	78	46	28	56	4	66	6	76	34		
7	49	17	28	27	33	37	64	47	34	57	30	67	52	77	13		
8	64	18	63	28	1	38	52	48	42	58	58	68	13	78	81		
9	81	19	13	29	58	39	42	49	52	59	1	69	63	79	64		
10	13	20	52	30	30	40	34	50	64	60	33	70	28	80	49		

Fermat's little theorem in practice

- * Thm (Fermat). If *p* is prime, then for every *r* ($1 \le r < p$), $r^{p-1}=1 \mod p$.
- * \Rightarrow draw *r* in [2,*p*-2]; accept if $r^{p-1}=1 \mod p$.
- If *p* is prime, will succeed
 for every *r*
- * Else, will fail with
 (hopefully) high probability
 (0.024 in the example, looks good); but...

L is in **coRP** if and only if there is a **polynomial-time** TM \mathcal{M} such that for every input *x* (of size *n*):

if $x \in L$ then $\Pr_r[\mathcal{M}(x,r) \text{ accepts}] \ge 1/2 \mathcal{M}(x,r)$ accepts for every r

if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r $\Pr_r[\mathcal{M}(x,r) \text{ accepts}] \le 1/2$

Carmichael numbers

- * A **Carmichael number** is a number *p*:
 - that is **not** prime
 - but passes all Fermat tests ($r^{p-1}=1 \mod p$ for every r)
- * I.e., on which our hopes of low error rate fail miserably
- Infinitely many of them [Alford, Granville, Pomerance 1994]:
 561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, etc.
- Frustrating: if *p* is not prime and passes at least one
 Fermat test, then it passes at least half of them...

The Miller-Rabin test (1/2)

- ★ We use another basic fact: if *p* is prime, then
 the only square roots of 1 mod *p* are 1 and −1
- * Hence, if *p* is prime and odd (so $p-1 = 2^k q$, q odd):

The Miller-Rabin test (2/2)

- On input *p*,
 draw *r* at random:
 - if the test shown here:
 succeeds, then accept (*p* probably prime)
 otherwise reject (*p* definitely not prime)
- * Probability of error $\leq 1/4$. Excellent! Hence:
- *** Theorem. PRIMALITY** is in **coRP**.
- * (Superseded by [AKS04]...
 but Miller-Rabin works in log space, not [AKS04]!)

(read from right to left : \leftarrow) $r^{(2i-1q)}$ $r^{(2iq)}$ $r^{(2k-1,q)} r^{(2k,q)}$ mod p-1 1 ¹ for some *i*, or: (don't care ... don't care) 1 $r^{(2i-1 q)} r^{(2i q)}$ $r^{(2k-1q)} r^{(2kq)}$ mod pr^q 1 1 1 ...

Hence, if *p* is prime and odd (so $p-1 = 2^k q$, q odd):

To know more

Notes on Primality Testing And Public Key Cryptography Part 1: Randomized Algorithms Miller–Rabin and Solovay–Strassen Tests

> Jean Gallier and Jocelyn Quaintance Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104, USA e-mail: jean@cis.upenn.edu

> > © Jean Gallier

February 27, 2019

https://www.cis.upenn.edu/~jean/RSA-primality-testing.pdf

Error reduction

- What is so special about error 1/2?
- * Nothing!

★ Theorem. ∀ ε ∈]0, 1[,
RP = RP(ε).

* Note: **RP**=**RP**(1/2) (def.)

A language L is in **RP** if and only if there is a **polynomial-time** TM M such that for every input x (of size n):

error = 1 - 1/2

- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1/2$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r [\mathcal{M}(x,r) \text{ accepts}]=0$).
- A language L is in RP(ε) and only if there is a polynomial-time TM M
 such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r [\mathcal{M}(x,r) \text{ accepts}]=0$).

Error reduction: the easy direction

- * Clearly, if $\eta \le \varepsilon$ then $\mathbf{RP}(\eta) \subseteq \mathbf{RP}(\varepsilon)$
- Proof: take any L ∈ RP(η)
 … I'll let you finish the argument
- A language L is in RP(ε) and only if there is a polynomial-time TM M such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r[\mathcal{M}(x,r) = \alpha \frac{\operatorname{cepts}(x)}{\operatorname{error}(x)} = \alpha \frac{\operatorname{cepts}(x)}{\operatorname{e$
- * Note: $\mathbf{RP}(0)=\mathbf{P}$ (believed $\neq \mathbf{RP}$) $\mathbf{RP}(1)=\{all \ languages\}$ (why?)

The hard direction: repeating experiments

- * Let $L \in \mathbf{RP}(\varepsilon)$, $0 < \eta < \varepsilon < 1$
- On input *x*, let us do the following (at most) *K* times:
- * Draw *r* at random, simulate $\mathcal{M}(x, r)$ and:

* A language *L* is in **RP**(ε) and only if there is a **polynomial-time** TM \mathcal{M} such that for every input *x* (of size *n*): * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$ * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] = \varepsilon$

- * If $\mathcal{M}(x, r)$ accepts, then exit the loop and **accept**;
- * Otherwise, proceed and loop.
- * At the end of the loop, reject.

Remember: if $\mathcal{M}(x, r)$ accepts, then x **must** be in L.

Repeating experiments (pretty) formally

- We have defined a new randomized TM
 M'(x, r[1]#...#r[K]) by:
- * A language *L* is in **RP**(ε) and only if there is a **polynomial-time** TM \mathcal{M} such that for every input *x* (of size *n*): * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$ * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no *r* (i.e., $\Pr_r [\mathcal{M}(x,r) \text{ accepts}]=0$).

- * for *i*=1 to *K*:
 - * If $\mathcal{M}(x, r[i])$ accepts, then exit the loop and **accept**;
- * reject.

Remember: if $\mathcal{M}(x, r[i])$ accepts, then x **must** be in L.

Acceptance: 1. if $x \in L$

- * If $x \in L$ (recall L in **RP**(ε)), then letting r=r[1]#...#r[K], $Pr_r(\mathcal{M}'(x, r) \text{ rejects})$
 - * = $\Pr_r(\forall i=1..K, \mathcal{M}(x, r[i]) \text{ rejects})$
 - * = $\prod_{i=1..K} \Pr_{r[i]}(\mathcal{M}(x, r[i]) \text{ rejects})$ (independence)
 - * $\leq \varepsilon^K$
- * \Rightarrow If $x \in L$ then $\Pr_r(\mathcal{M}'(x, r) \text{ accepts}) \ge 1 - \varepsilon^K$

- * A language *L* is in **RP**(ε) and only if there is a **polynomial-time** TM \mathcal{M} such that for every input *x* (of size *n*): * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$ * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no *r* (i.e., $\Pr_r [\mathcal{M}(x,r) \text{ accepts}]=0$) ε
 - * Define $\mathcal{M}'(x, r[1] # ... # r[K])$ by:
 - * for *i*=1 to K:
 - If $\mathcal{M}(x, r[i])$ accepts, then exit the loop and **accept**;
 - * reject.

Acceptance: 2. if $x \notin L$; Complexity

- * If $x \in L$ (recall L in **RP**(ε)) then Pr_r($\mathcal{M}'(x, r)$ accepts) $\ge 1 - \varepsilon^{K}$
- * If $x \notin L$, then $\mathcal{M}'(x, r)$ accepts for no r
- If M runs in time p(n), then
 M' runs in time O(Kp(n))
- * Hence *L* is in **RP**(ε^{K})

- * A language *L* is in **RP**(ε) and only if there is a **polynomial-time** TM \mathcal{M} such that for every input *x* (of size *n*): * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$ * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no *r* (i.e., $\Pr_r [\mathcal{M}(x,r) \text{ accepts}]=0$) ε
- * Define $\mathcal{M}'(x, r[1] # ... # r[K])$ by:
- * for *i*=1 to *K*:
 - If $\mathcal{M}(x, r[i])$ accepts, then exit the loop and **accept**;
- * reject.

The hard direction: the end

- We have shown that every language *L* in **RP**(ε) is in **RP**(ε^K) (for any ε ∈ [0,1], K≥1)
- * If $0 < \eta < \varepsilon < 1$, choose *K* large enough so that $\varepsilon^{K} \le \eta$ (explicitly, $K \ge \eta / \log \varepsilon$)
- * Then *L* is in **RP**(η). \Box

- * A language *L* is in **RP**(ε) and only if there is a **polynomial-time** TM \mathcal{M} such that for every input *x* (of size *n*): * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$ * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no *r* (i.e., $\Pr_r [\mathcal{M}(x,r) \text{ accepts}]=0$).
- * Define $\mathcal{M}'(x, r[1] # ... # r[K])$ by:
- * for i=1 to K:
 - If $\mathcal{M}(x, r[i])$ accepts, then exit the loop and **accept**;
- * reject.

Can we do even better?

- * Hence we define the same class with error $\varepsilon = 0.000000000001$
- * Can we make ε go to 0 as $n \rightarrow \infty$?

* A language *L* is in **RP**(ε) and only if there is a **polynomial-time** TM \mathcal{M} such that for every input *x* (of size *n*): * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$ * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no *r* (i.e., $\Pr_r [\mathcal{M}(x,r) \text{ accepts}]=0$).

The hard direction revisited

Let us take K = a **polynomial** q(n)

- * If $x \in L$ (recall L in **RP**(ε)) the $\Pr_r(\mathcal{M}'(x, r) \text{ accepts}) \ge 1 \varepsilon^K$
- * If $x \notin L$, then $\mathcal{M}'(x, r)$ accepts for no r
- If M runs in time p(n), then
 M' runs in time O(Kp(n))
- * Hence *L* is in **RP**(ε^{K}).

error $\varepsilon^{K} = \varepsilon^{q(n)}$ (exponentially small) A language L is in RP(ε) and only if there is a polynomial-time TM M such that for every input x (of size n):

* if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$

if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r [\mathcal{M}(x,r) \text{ accepts}]=0$)

error = ε

* Define $\mathcal{M}'(x, r[1] # ... # r[K])$ by:

* for *i*=1 to *K*:

• If $\mathcal{M}(x, r[i])$ accepts, then exit the loop and **accept**;

reject.

=O(q(n)p(n)), still **polynomial time**

The hard direction revisited

- * Let $\varepsilon = 1/2$. We have proved:
- * **Theorem.** RP=RP(1/2q(n))for every polynomial q(n).
- I.e., error can be made exponentially small.
- * (Note: **RP**(ε) called $\cup_{p(n)}$ **RTIME**($p(n), p(n), 0, \varepsilon$) in the notes: ignore the complication)

- A language L is in **RP**(ε) and only if there is a **polynomial-time** TM M such that for every input x (of size n):
 if x ∈ L then Pr_r [M(x,r) accepts] ≥ 1-ε
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r [\mathcal{M}(x,r) \text{ accepts}]=0$)

error = ε

- * Exercise: show that, conversely:
- Theorem. RP=RP(1-1/q(n))
 for every polynomial q(n).
- I.e., error can be assumed
 « polynomially large » as well

Relation to ordinary classes

- * Theorem. $P \subseteq RP \subseteq NP$.
- * Proof. First, $\mathbf{P} = \mathbf{RP}(0) \subseteq \mathbf{RP}(1/2) = \mathbf{RP}$
- * Second, let $L \in \mathbf{RP}$.
 - * If $x \in L \Rightarrow$ for some r, $\mathcal{M}(x, r)$ accepts
 - * If $x \notin L \Rightarrow$ for no r.
- ★ Hence $L = \{x \mid \exists r, \mathcal{M}(x, r) \text{ accepts}\}$ is in **NP**. \Box

- A language *L* is in **RP** if and only if there is a **polynomial-time** TM M such that for every input *x* (of size *n*):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1/2$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r [\mathcal{M}(x,r) \text{ accepts}]=0$).

(in fact, for at least half of them!)

Our second probabilistic class: ZPP

(also known as the class of *Las Vegas* languages)

https://www.agoda.com/fr-fr/paris-las-vegas_8/hotel/las-vegas-nv-us.html?cid=1844104

ZPP

- * $ZPP = \underline{Z}ero \underline{P}robability of error \underline{P}olynomial-time$
- Usually defined as the class of languages L which we can decide in average polynomial-time (not worst-case!)
 with probability zero of making a mistake.
- Alternate definition:
 ZPP = RP ∩ coRP
- * Not clear that those two definitions are equivalent, right?

ZPP

- * Let us start simple:
- * **Definition.** $ZPP = RP \cap coRP$

a **coRP** machine for *L*

an **RP** machine for *L*

- * I.e., *L* is in **ZPP** iff there are <u>**two</u>** poly-time rand. TMs M_1 and M_2 such that:</u>
 - * if *x* ∈ *L* then M₁(*x*,*r*) accepts for every *r* [no error]
 M₂(*x*,*r*) accepts with prob.≥1/2
 - * if *x* ∉ *L* then $\mathcal{M}_1(x,r)$ accepts with prob.≤1/2 $\mathcal{M}_2(x,r)$ rejects for every *r* [no error]

ZPP, alternate form

- * Let us define ZPP' (for now) as the class of languages L which we can decide in average polynomial-time with probability zero of making a mistake.
- * I claim that **ZPP** = **ZPP'**.
- The definition of ZPP' has a few technical problems...
 (see next slides)
- * we will need something called Markov's inequality too
- * ... but before that, we explain why (intuitively) $ZPP \subseteq ZPP'$.

Deciding L in **ZPP** = **RP** \cap **coRP** with no error

- * Assume M_1 and M_2 such as here \rightarrow
- Now run the following on input x:
 forever:
 if M₁(x,...) rejects: stop and reject
 if M₂(x,...) accepts: stop and accept

It may be that $\mathcal{M}_1(x,...)$ accepted and $\mathcal{M}_2(x,...)$ rejected,

- in which case we loop
- and that happens with probability ≤1/2... why?

(if you tell me that this is even $\leq 1/4$, you are wrong)

I.e., *L* is in **ZPP** iff there are <u>**two**</u> poly-time rand. TMs M_1 and M_2 such that:

* if x ∈ L then M₁(x,r) accepts for every r [no error]
 M₂(x,r) accepts with prob.≥1/2

* if $x \notin L$ then $\mathcal{M}_1(x,r)$ accepts with prob. $\leq 1/2$ $\mathcal{M}_2(x,r)$ rejects for every r [no error]

then *x* cannot be in *L* (sure)

then *x* must be in *L* (sure)

Hence this machine **never makes any mistake**

We will see that this implies that
 the machine terminates in
 ≤ 2 turns of the loop on average

A technical problem

- * All this requires us to draw **arbitrarily long** bitstrings
- In fact, even infinite bit strings (for those computations that do not terminate)
- Requires measure theory: there is a unique measure μ on {0,1}^ω with σ-algebra generated by cylinders w.{0,1}^ω such that μ(w.{0,1}^ω) = 1/2^{|w|} (Carathéodory)
- * We will happily ignore this.

Rejection sampling

A classic probabilistic procedure (rejection sampling):
 forever:

compute something (with some random data r), x; if P(x) holds: stop and return x

* Trick. If:

- the random bits are independent across turns of the loop - and P(x) holds with **prob.** $\geq \alpha$ at each turn then rejection sampling terminates in $1/\alpha$ turns of the loop on average.

Rejection sampling

 An classic probabilistic procedure (rejection sampling): forever:

compute something (with some random data *r*), *x*; if P(x) holds: stop and return *x* prob. $\geq \alpha$

- *Proof.* Let X be the random variable « # turns through the loop »
- * $Pr(X \ge n) = Pr(P \text{ failed at turns } 1, ..., n-1)$ $\leq (1-\alpha)^{n-1}$ (by independence)

* $E(X) = \sum_{n\geq 1} n \cdot \Pr(X=n) = \sum_{n\geq 1} \Pr(X\geq n) \leq \sum_{n\geq 1} (1-\alpha)^{n-1} = 1/\alpha$. \Box

Expectation (average)

Rejection sampling: a typical application

- * Draw a point inside the disc:
- Repeatedly draw a point inside the inscribing square
 - * If it is in the disc, return it.
- * Terminates in $\leq 4/\pi$ ~ 1.27324 turns

 Used as first step in the Box-Muller procedure drawing two independent numbers with a normal distribution)

Deciding L in **ZPP** = **RP** \cap **coRP** with no error

- * Assume M_1 and M_2 such as here:
- Now run the following on input x:
 forever:
 if M₁(x,...) rejects: stop and reject
 if M₂(x,...) accepts: stop and accept

It may be that $\mathcal{M}_1(x,...)$ accepted and $\mathcal{M}_2(x,...)$ rejected, — in which case we loop — and that happens with probability $\leq 1/2...$ (two cases: *x* in *L*, *x* not in *L*) I.e., *L* is in **ZPP** iff there are <u>two</u> poly-time rand. TMs M_1 and M_2 such that:

* if x ∈ L then M₁(x,r) accepts for every r [no error]
 M₂(x,r) accepts with prob.≥1/2

* if $x \notin L$ then $\mathcal{M}_1(x,r)$ accepts with prob. $\leq 1/2$ $\mathcal{M}_2(x,r)$ rejects for every r [no error]

then *x* cannot be in *L* (sure)

then *x* must be in *L* (sure)

Hence this machine **never makes any mistake**

This is **rejection sampling**: stops in ≤2 turns on average hence in **polytime on average**.

Markov's inequality

* Hence: $ZPP (= RP \cap coRP) \subseteq ZPP'$ Let us define **ZPP'** (for now) as the class of languages *L* which we can decide in **average** polynomial-time with probability **zero** of making a mistake.

I claim that **ZPP** = **ZPP'**.

- * In order to show the reverse inclusion, we use:
- * Theorem (Markov's inequality).
 Let X be a non-negative real-valued random variable with finite expectation E(X). For every *a*>0: Pr(X≥a.E(X)) ≤ 1/a.

Markov's inequality

- Theorem (Markov's inequality).
 Let X be a non-negative real-valued random variable with finite expectation E(X). For every *a*>0:
 Pr(X≥a.E(X)) ≤ 1/a.
- * Proof. E(X) = ∫_t Pr(X≥t) dt ≥ area of the blue rectangle = a . E(X) . Pr(X≥a.E(X)) Then divide out by a . E(X). □

a.E(X)

The reverse inclusion ZPP' \subseteq ZPP

Let us define **ZPP'** (for now) as the class of languages L

which we can decide in average polynomial-time

- * Let L in **ZPP'**, decided by \mathcal{M} running in average poly. time p(n) with probability zero of making a mistake. Recall ZPP = RP \cap coRP
- Define M₁ as follows: on input x

 (and random tape r of size a. p(n))
 simulate M on x for at most a. p(n) steps (timeout).

 If timeout reached, then accept (that may be an error).

The reverse inclusion **ZPP**' \subseteq **ZPP**

- Markov on r.v. X = time taken by M on x; also let a=2.
- * $E(X) \le p(n)$ finite OK

Let L in **ZPP'**, decided by \mathcal{M} running in **average** poly. time p(n) with **no** error.

Let us define **ZPP'** (for now) as the class of languages *L* which we can decide in **average** polynomial-time

Define M_1 as follows: on input x

(and random tape r of size a. p(n)) **simulate** \mathcal{M} on x for at most a. p(n) steps (**timeout**). If timeout reached, then **accept** (that may be an error).

* If
$$x \notin L \Rightarrow \operatorname{error} = \Pr_r(\mathcal{M}_1(x,r) \operatorname{accepts})$$

$$= \Pr(X \ge a. \ p(n)) \quad (\mathcal{M} \operatorname{makes} \operatorname{no} \operatorname{mistake})$$

$$\leq \Pr(X \ge a. \ E(X)) \quad (E(X) \le p(n))$$

$$\leq 1/a = 1/2 \qquad (\operatorname{Markov})$$

- * If $x \in L \Rightarrow \mathcal{M}_1(x,r)$ must accept.
- * Hence *L* is in **coRP**.

The reverse inclusion ZPP' \subseteq ZPP

Symmetrically:

- Markov on n.v. X = time taken by M on x; also let a=2.
- * $E(X) \le p(n)$ finite OK

Let L in **ZPP'**, decided by \mathcal{M} running in **average** poly. time p(n) with **no** error.

Let us define **ZPP'** (for now) as the class of languages *L* which we can decide in **average** polynomial-time

Define M_2 as follows: on input x

(and random tape r of size a. p(n)) **simulate** \mathcal{M} on x for at most a. p(n) steps (**timeout**). If timeout reached, then **reject** that may be an error).

- ★ If x ∈ L ⇒ error = Pr_r(M₂(x,r) accepts rejects) = Pr(X ≥ a. p(n)) (M makes no mistake) ≤ Pr(X ≥ a. E(X)) (E(X) ≤ p(n)) ≤ 1/a = 1/2 (Markov)
- * If $x \notin L \Rightarrow \mathcal{M}_2(x,r)$ must accept reject.
- * Hence *L* is in **coRP RP**.

Hence *L* is both in **RP** and in **coRP**, namely in **ZPP**. \Box

Summary on ZPP

- * **Definition.** $ZPP = RP \cap coRP$
- Theorem. ZPP is the class of languages L
 which we can decide in average polynomial-time
 with probability zero of making a mistake.

Next time...

BPP: <u>Bounded Prob. of Error Polynomial time</u>

- A language L is in BPP if and only if there is a polynomial-time TM M such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 2/3$
- * if $x \notin L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \le 1/3$.

two-sided error: $\Pr_r [\mathcal{M}(x,r) \text{ errs}] \le 1/3$