
Jean Goubault-Larrecq

Randomized
complexity classes

Today: RP, coRP,
 and ZPP
 (what a zoo!)

Tous droits réservés, Jean Goubault-Larrecq, professeur, ENS Paris-Saclay, Université Paris-Saclay
Cours « Complexité avancée » (M1), 2020-, 1er semestre
Ce document est protégé par le droit d’auteur. Toute représentation ou reproduction intégrale ou
partielle faite sans le consentement de l’auteur est illicite.

Today

❖ Randomized Turing machines

❖ One-sided error: RP, coRP

❖ No error: ZPP

❖ Next time: two-sided error BPP

Randomized Turing machines

Ordinary Turing machines

❖ One read-only input tape

❖ As many work tapes
as you need
(but only a constant
number!)

❖ (Possibly) one write-only
output tape

x (size |x| = n)

Drawing strings at random

❖ We will study probabilistic complexity classes,
where our TMs can now draw strings of bits at random

❖ No need to invent a new TM model

❖ Choice 1: use a non-deterministic TM model
 and draw execution branch at random
 (we won’t do that; hard to do it right)

❖ Choice 2: … next slide

Randomized Turing machines

❖ One read-only tapes

❖ As many work tapes
as you need
(but only a constant
number!)

❖ (Possibly) one write-only
output tape

x

rTwo random tape
input tape(size n)

Technical points 1/2

❖ We draw the random tape r
uniformly at random

❖ We will be interested in probabilities, e.g.
 Prr [M(x,r) accepts]

❖ Random tape must not just be read-only:
we impose that no bit on r is ever read twice
(otherwise bits read are not independent)

Technical points 2/2

❖ ⇒ we need r to contain at least f(n) bits,
where f(n) is an upper bound on the time
taken by the TM.

❖ We will always assume that r is large enough

❖ OK for classes defined by worst-case time,
will cause problems for classes defined with
no a priori upper bound on time (e.g., ZPP)

Our first probabilistic class: RP

(also sometimes known as the class of
Monte Carlo languages)

http://fr.casino-jackpot.com/wp-content/uploads/2018/04/casino-monaco.jpg

i.e. there is also a polynomial p(n) /
M(x,r) terminates in time ≤ p(n),
where n=|x|, in the worst case

(and for any value of r)

RP: Randomized Polynomial time
❖ A language L is in RP if and only if

there is a polynomial-time TM M
such that for every input x (of size n):

❖ if x ∈ L then Prr [M(x,r) accepts] ≥ 1/2

❖ if x ∉ L then M(x,r) accepts for no r
 (i.e., Prr [M(x,r) accepts]=0).

… hence, implicitly,
we require |r|≥p(n)
(let us say |r|= p(n))

probability taken over
all r ∈ {0,1}p(n)

one-sided error:
we make no error if x ∉ L

Perhaps paradoxically, that means that we make no error if
M(x,r) accepts

(so please do not confuse acceptance with being in the
language!)

… but if we wanted to define « RP-machines »,
those would be machines M such that, for every x,
— either Prr [M(x,r) accepts] ≥ 1/2
— or Prr [M(x,r) accepts] = 0

Note: RP-languages are not defined
by « RP-machines »

(there is no such notion)

RP: Randomized Polynomial time
❖ A language L is in RP if and only if

there is a polynomial-time TM M
such that for every input x (of size n):

❖ if x ∈ L then Prr [M(x,r) accepts] ≥ 1/2

❖ if x ∉ L then M(x,r) accepts for no r
 (i.e., Prr [M(x,r) accepts]=0).

coRP
❖ L is in coRP iff complement Lc is in RP, hence:
❖ L is in coRP if and only if

there is a polynomial-time TM M
such that for every input x (of size n):

❖ if x ∈ L then Prr [M(x,r) accepts] ≥ 1/2 M(x,r) accepts for every r

❖ if x ∉ L then M(x,r) accepts for no r Prr [M(x,r) accepts] ≤ 1/2

A motivating example for (co)RP
❖ PRIMALITY

INPUT: a natural number p, in binary
Q: is p prime?

❖ For a long time, not known to be in P
(now solved: indeed in P [Agrawal,Kayal,Saxena 2004])

❖ In coNP (guess a proper divisor)

❖ In NP [Pratt 1975]

❖ Can also be solved efficiently with randomization…

Fermat’s little theorem
❖ Thm (Fermat). If p is prime, then for every r (1≤r<p),

 rp–1=1 mod p.

❖ ⇒ draw r at random in [2,p–2]; accept if rp–1=1 mod p.

❖ Note: computing mod p is efficient:
 size of all numbers bounded by size(p)=O(log p).
 — addition mod p in time O(log p)
 — mult. mod p in time O(log2 p) (even O(log1+ε p))

❖ An experiment… (next slide)

Fermat’s little theorem in practice
❖ Thm (Fermat). If p is prime, then for every r (1≤r<p),

 rp–1=1 mod p.

❖ ⇒ draw r at random in [2,p–2]; accept if rp–1=1 mod p.

❖ Is 87 prime?

❖ Draw r at random… say 25

❖ r86 = 16 mod 87

❖ ⇒ 87 is not prime (definitely)

Fermat’s little theorem in practice
❖ Thm (Fermat). If p is prime, then for every r (1≤r<p),

 rp–1=1 mod p.

❖ ⇒ draw r in [2,p–2]; accept if rp–1=1 mod p.

❖ Is 87 prime?

❖ The probability (over r)
of error is:
 2/84 ≈ 0.024

r r86

2 4

3 9

4 16

5 25

6 36

7 49

8 64

9 81

10 13

r r86

11 34

12 57

13 82

14 22

15 51

16 82

17 28

18 63

19 13

20 52

r r86

21 6

22 49

23 7

24 54

25 16

26 67

27 33

28 1

29 58

30 30

r x86

31 4

32 67

33 45

34 25

35 7

36 78

37 64

38 52

39 42

40 34

r r86

41 28

42 24

43 22

44 22

45 24

46 28

47 34

48 42

49 52

50 64

r r86

51 78

52 7

53 25

54 45

55 67

56 4

57 30

58 58

59 1

60 33

r r86

61 67

62 16

63 54

64 7

65 49

66 6

67 52

68 13

69 63

70 28

r r86

71 82

72 51

73 22

74 82

75 57

76 34

77 13

78 81

79 64

80 49

r r86

81 36

82 25

83 16

84 9

85 4

Fermat’s little theorem in practice
❖ Thm (Fermat). If p is prime, then for every r (1≤r<p),

 rp–1=1 mod p.

❖ ⇒ draw r in [2,p–2]; accept if rp–1=1 mod p.

❖ If p is prime, will succeed
for every r

❖ Else, will fail with
(hopefully) high probability
(0.024 in the example, looks good); but…

Carmichael numbers
❖ A Carmichael number is a number p:

— that is not prime
— but passes all Fermat tests (rp–1=1 mod p for every r)

❖ I.e., on which our hopes of low error rate fail miserably

❖ Infinitely many of them [Alford, Granville, Pomerance 1994]:
561, 1105, 1729, 2465, 2821, 6601 , 8911, 10585, 15841, etc.

❖ Frustrating: if p is not prime and passes at least one
Fermat test, then it passes at least half of them…

The Miller-Rabin test (1/2)
❖ We use another basic fact: if p is prime, then

 the only square roots of 1 mod p are 1 and –1

❖ Hence, if p is prime and odd (so p–1 = 2k q, q odd):

r^q … r^(2i–1 q) r^(2i q) … r^(2k–1 q) r^(2k q)
(don’t care … …. don’t care) –1 1 … 1 1

mod p

for some i, or:

(read from right to left : ⃪)

r^q … r^(2i–1 q) r^(2i q) … r^(2k–1 q) r^(2k q)
1 … 1 1 … 1 1

mod p

The Miller-Rabin test (2/2)
❖ On input p,

draw r at random:
— if the test shown here:
 succeeds, then accept (p probably prime)
— otherwise reject (p definitely not prime)

❖ Probability of error ≤ 1/4. Excellent! Hence:

❖ Theorem. PRIMALITY is in coRP.

❖ (Superseded by [AKS04]…
 but Miller-Rabin works in log space, not [AKS04]!)

To know more

https://www.cis.upenn.edu/~jean/RSA-primality-testing.pdf

Error reduction
❖ What is so special about

error 1/2?

❖ Nothing!

❖ Theorem. ∀ ε ∈]0, 1[,
 RP = RP(ε).

❖ Note: RP=RP(1/2) (def.)

error = 1 – 1/2
(= 1/2 here)

RP(ε)

1–ε

error = ε

RP(ε)

1–ε

error = ε

Error reduction: the easy direction
❖ Clearly, if η ≤ ε then

 RP(η) ⊆ RP(ε)

❖ Proof: take any L ∈ RP(η)
 … I’ll let you finish the
 argument

❖ Note: RP(0)=P (believed ≠ RP)
 RP(1)={all languages} (why?)

The hard direction: repeating experiments

❖ Let L ∈ RP(ε), 0<η<ε<1

❖ On input x, let us do the
following (at most) K times:

❖ Draw r at random,
simulate M(x, r) and:

❖ If M(x, r) accepts, then exit the loop and accept;

❖ Otherwise, proceed and loop.

❖ At the end of the loop, reject. Remember: if M(x, r) accepts,
then x must be in L.

RP(ε)

1–ε

error = ε

Repeating experiments (pretty) formally

❖ We have defined a new
randomized TM
 M’(x, r[1]#…#r[K]) by:

❖ for i=1 to K:

❖ If M(x, r[i]) accepts, then exit the loop and accept;

❖ reject.
Remember: if M(x, r[i]) accepts,

then x must be in L.

RP(ε)

1–ε

error = ε

Acceptance: 1. if x ∈ L
❖ If x ∈ L (recall L in RP(ε)), then

 letting r=r[1]#…#r[K],
 Prr(M’(x, r) rejects)

❖ = Prr(∀i=1..K, M(x, r[i]) rejects)

❖ = Πi=1..K Prr[i](M(x, r[i]) rejects)
 (independence)

❖ ≤ εK

❖ ⇒ If x ∈ L then
 Prr(M’(x, r) accepts) ≥ 1–εK

RP(ε)

1–ε

error = ε

Acceptance: 2. if x ∉ L; Complexity
❖ If x ∈ L (recall L in RP(ε)) then

Prr(M’(x, r) accepts) ≥ 1–εK

❖ If x ∉ L, then
M’(x, r) accepts for no r

❖ If M runs in time p(n), then
 M’ runs in time O(Kp(n))

❖ Hence L is in RP(εK)

RP(ε)

1–ε

error = ε

The hard direction: the end
❖ We have shown that every

language L in RP(ε)
 is in RP(εK)
(for any ε ∈ [0,1], K≥1)

❖ If 0<η<ε<1,
choose K large enough
so that εK≤η
(explicitly, K≥η/log ε)

❖ Then L is in RP(η). ☐

RP(ε)

1–ε

error = ε

Can we do even better?

❖ Hence we define the same class
with error ε = 0.000000000001

❖ … or with error ε = 0.99999999!

❖ Can we make ε go to 0 as n→∞?

RP(ε)

1–ε

error = ε

The hard direction revisited
❖ If x ∈ L (recall L in RP(ε)) then

Prr(M’(x, r) accepts) ≥ 1–εK

❖ If x ∉ L, then
M’(x, r) accepts for no r

❖ If M runs in time p(n), then
 M’ runs in time O(Kp(n))

❖ Hence L is in RP(εK).

RP(ε)

1–ε

error = ε

Let us take K = a polynomial q(n)

=O(q(n)p(n)), still polynomial time
error εK = εq(n)

(exponentially small)

❖ Let ε=1/2. We have proved:

❖ Theorem. RP=RP(1/2q(n))
 for every polynomial q(n).

❖ I.e., error can be made
 exponentially small.

❖ (Note: RP(ε) called ∪p(n) RTIME(p(n),p(n),0,ε)
 in the notes: ignore the complication)

The hard direction revisited

❖ Exercise: show that, conversely:

❖ Theorem. RP=RP(1–1/q(n))
 for every polynomial q(n).

❖ I.e., error can be assumed
 « polynomially large » as well

RP(ε)

1–ε

error = ε

Relation to ordinary classes
❖ Theorem. P ⊆ RP ⊆ NP.

❖ Proof. First,
 P=RP(0) ⊆ RP(1/2) = RP

❖ Second, let L ∈ RP.

❖ If x ∈ L ⇒ for some r, (in fact, for at least half of them!)
 M(x, r) accepts

❖ If x ∉ L ⇒ for no r.

❖ Hence L = {x | ∃r, M(x, r) accepts} is in NP. ☐

Our second probabilistic class: ZPP

(also known as the class of
Las Vegas languages)

https://www.agoda.com/fr-fr/paris-las-vegas_8/hotel/las-vegas-nv-us.html?cid=1844104

ZPP
❖ ZPP = Zero Probability of error Polynomial-time

❖ Usually defined as the class of languages L
which we can decide in average polynomial-time
 (not worst-case!)
with probability zero of making a mistake.

❖ Alternate definition:
 ZPP = RP ∩ coRP

❖ Not clear that those two definitions are equivalent, right?

❖ Let us start simple:

❖ Definition. ZPP = RP ∩ coRP

❖ I.e., L is in ZPP iff there are
 two poly-time rand. TMs M1 and M2 such that:

❖ if x ∈ L then M1(x,r) accepts for every r [no error]
 M2(x,r) accepts with prob.≥1/2

❖ if x ∉ L then M1(x,r) accepts with prob.≤1/2
 M2(x,r) rejects for every r [no error]

ZPP

an RP machine for L

a coRP machine for L

❖ Let us define ZPP’ (for now) as the class of languages L
which we can decide in average polynomial-time
with probability zero of making a mistake.

❖ I claim that ZPP = ZPP’.

❖ The definition of ZPP’ has a few technical problems…
 (see next slides)

❖ we will need something called Markov’s inequality too

❖ … but before that, we explain why (intuitively) ZPP ⊆ ZPP’.

ZPP, alternate form

Deciding L in ZPP = RP ∩ coRP with no error

❖ Assume M1 and M2 such as here→

❖ Now run the following on input x:
forever:
 if M1(x,…) rejects: stop and reject
 if M2(x,…) accepts: stop and accept

then x cannot be in L (sure)

then x must be in L (sure)

It may be that M1(x,…) accepted and M2(x,…) rejected,
— in which case we loop
— and that happens with probability ≤1/2…
 why?
 (if you tell me that this is even ≤1/4, you are wrong)

Hence this machine never
makes any mistake

We will see that this implies that
the machine terminates in

≤ 2 turns of the loop on average

A technical problem
❖ All this requires us to draw arbitrarily long bitstrings

❖ In fact, even infinite bit strings (for those computations
that do not terminate)

❖ Requires measure theory:
there is a unique measure μ on {0,1}ω
 with σ-algebra generated by cylinders w.{0,1}ω
 such that μ(w.{0,1}ω) = 1/2|w| (Carathéodory)

❖ We will happily ignore this.

Rejection sampling
❖ A classic probabilistic procedure (rejection sampling):
forever:
 compute something (with some random data r), x;
 if P(x) holds: stop and return x

❖ Trick. If:
— the random bits are independent across turns of the loop
— and P(x) holds with prob. ≥ α at each turn
then rejection sampling terminates in
 1/α turns of the loop on average.

prob. ≥ α

Rejection sampling
❖ An classic probabilistic procedure (rejection sampling):
forever:
 compute something (with some random data r), x;
 if P(x) holds: stop and return x

❖ Proof. Let X be the random variable « # turns through the
loop »

❖ Pr(X≥n) = Pr(P failed at turns 1, …, n–1)
 ≤ (1– α)n–1 (by independence)

❖ E(X) = ∑n≥1 n.Pr(X=n) = ∑n≥1 Pr(X≥n) ≤ ∑n≥1 (1– α)n–1 = 1/α. ☐

Expectation (average)

Rejection sampling: a typical application

❖ Draw a point inside the disc:

❖ Repeatedly draw a point
inside the inscribing square

❖ If it is in the disc, return it.

❖ Terminates in ≤4/π
 ~ 1.27324 turns

❖ (Used as first step in the Box-Muller procedure drawing
two independent numbers with a normal distribution)

Deciding L in ZPP = RP ∩ coRP with no error

❖ Assume M1 and M2 such as here:

❖ Now run the following on input x:
forever:
 if M1(x,…) rejects: stop and reject
 if M2(x,…) accepts: stop and accept

then x cannot be in L (sure)

then x must be in L (sure)

It may be that M1(x,…) accepted and M2(x,…) rejected,
— in which case we loop
— and that happens with probability ≤1/2…
 (two cases: x in L, x not in L)

Hence this machine never
makes any mistake

This is rejection sampling:
stops in ≤2 turns on average

hence in polytime on average.

Markov’s inequality
❖ Hence:

ZPP (= RP ∩ coRP) ⊆ ZPP’

❖ In order to show the reverse inclusion, we use:

❖ Theorem (Markov’s inequality).
Let X be a non-negative real-valued random variable
 with finite expectation E(X). For every a>0:
 Pr(X≥a.E(X)) ≤ 1/a.

Markov’s inequality
❖ Theorem (Markov’s inequality).

Let X be a non-negative real-valued random variable
 with finite expectation E(X). For every a>0:
 Pr(X≥a.E(X)) ≤ 1/a.

❖ Proof. E(X) = ∫t Pr(X≥t) dt
 ≥ area of the blue rectangle
 = a . E(X) . Pr(X≥a.E(X))
Then divide out
 by a . E(X). ☐

t

Pr(X≥t)

a.E(X)

Pr(X≥a.E(X))

The reverse inclusion ZPP’ ⊆ ZPP
❖ Let L in ZPP’, decided by M

running in average poly. time p(n) with no error.

❖ Define M1 as follows: on input x
 (and random tape r of size a. p(n))
simulate M on x for at most a. p(n) steps (timeout).
If timeout reached, then accept (that may be an error).

Recall ZPP = RP ∩ coRP

The reverse inclusion ZPP’ ⊆ ZPP
❖ Markov on r.v. X =

time taken by M on x;
also let a=2.

❖ E(X) ≤ p(n) finite OK

❖ If x ∉ L ⇒ error = Prr(M1(x,r) accepts)
 = Pr(X ≥ a. p(n)) (M makes no mistake)
 ≤ Pr(X ≥ a. E(X)) (E(X) ≤ p(n))
 ≤ 1/a = 1/2 (Markov)

❖ If x ∈ L ⇒ M1(x,r) must accept.

❖ Hence L is in coRP.

The reverse inclusion ZPP’ ⊆ ZPP
❖ Markov on r.v. X =

time taken by M on x;
also let a=2.

❖ E(X) ≤ p(n) finite OK

❖ If x ∈ L ⇒ error = Prr(M1(x,r) accepts rejects)
 = Pr(X ≥ a. p(n)) (M makes no mistake)
 ≤ Pr(X ≥ a. E(X)) (E(X) ≤ p(n))
 ≤ 1/a = 1/2 (Markov)

❖ If x ∉ L ⇒ M1(x,r) must accept reject.

❖ Hence L is in coRP RP.

Symmetrically:

reject

Hence L is both in RP and
in coRP, namely in ZPP. ☐

M2

M2

M2

coRP RP

❖ Definition. ZPP = RP ∩ coRP

❖ Theorem. ZPP is the class of languages L
which we can decide in average polynomial-time
with probability zero of making a mistake.

Summary on ZPP

P

ZPP

NPcoNP

Next time…

BPP: Bounded Prob. of Error Polynomial time

❖ A language L is in BPP if and only if
there is a polynomial-time TM M
such that for every input x (of size n):

❖ if x ∈ L then Prr [M(x,r) accepts] ≥ 2/3

❖ if x ∉ L then Prr [M(x,r) accepts] ≤ 1/3.

two-sided error:
Prr [M(x,r) errs] ≤ 1/3

