
Jean Goubault-Larrecq

Randomized 
complexity classes

Today: RP, coRP, 
             and ZPP
      (what a zoo!)

Tous droits réservés, Jean Goubault-Larrecq, professeur, ENS Paris-Saclay, Université Paris-Saclay 
Cours « Complexité avancée » (M1), 2020-, 1er semestre 
Ce document est protégé par le droit d’auteur. Toute représentation ou reproduction intégrale ou 
partielle faite sans le consentement de l’auteur est illicite.



Today

❖ Randomized Turing machines

❖ One-sided error: RP, coRP

❖ No error: ZPP

❖ Next time: two-sided error BPP



Randomized Turing machines



Ordinary Turing machines

❖ One read-only input tape

❖ As many work tapes 
as you need 
(but only a constant 
number!)

❖ (Possibly) one write-only 
output tape

x (size |x| = n)



Drawing strings at random

❖ We will study probabilistic complexity classes, 
where our TMs can now draw strings of bits at random

❖ No need to invent a new TM model

❖ Choice 1: use a non-deterministic TM model 
                 and draw execution branch at random 
                 (we won’t do that; hard to do it right)

❖ Choice 2: … next slide



Randomized Turing machines

❖ One read-only tapes

❖ As many work tapes 
as you need 
(but only a constant 
number!)

❖ (Possibly) one write-only 
output tape

x

rTwo random tape
input tape(size n)



Technical points 1/2

❖ We draw the random tape r 
uniformly at random

❖ We will be interested in probabilities, e.g. 
                 Prr [M(x,r) accepts]

❖ Random tape must not just be read-only: 
we impose that no bit on r is ever read twice 
(otherwise bits read are not independent)



Technical points 2/2

❖ ⇒ we need r to contain at least f(n) bits, 
where f(n) is an upper bound on the time 
taken by the TM.

❖ We will always assume that r is large enough

❖ OK for classes defined by worst-case time, 
will cause problems for classes defined with 
no a priori upper bound on time (e.g., ZPP)



Our first probabilistic class: RP

(also sometimes known as the class of
Monte Carlo languages)

http://fr.casino-jackpot.com/wp-content/uploads/2018/04/casino-monaco.jpg



i.e. there is also a polynomial p(n) / 
M(x,r) terminates in time ≤ p(n), 
where n=|x|, in the worst case

(and for any value of r)

RP: Randomized Polynomial time
❖ A language L is in RP if and only if 

there is a polynomial-time TM M 
such that for every input x (of size n):

❖ if x ∈ L then Prr [M(x,r) accepts] ≥ 1/2

❖ if x ∉ L then M(x,r) accepts for no r 
              (i.e., Prr [M(x,r) accepts]=0).

… hence, implicitly, 
we require |r|≥p(n)
(let us say |r|= p(n))

probability taken over
all r ∈ {0,1}p(n)

one-sided error: 
we make no error if x ∉ L

Perhaps paradoxically, that means that we make no error if 
M(x,r) accepts

(so please do not confuse acceptance with being in the 
language!)



… but if we wanted to define « RP-machines »,
those would be machines M such that, for every x,
— either Prr [M(x,r) accepts] ≥ 1/2
— or Prr [M(x,r) accepts] = 0

Note: RP-languages are not defined 
by « RP-machines »

(there is no such notion)

RP: Randomized Polynomial time
❖ A language L is in RP if and only if 

there is a polynomial-time TM M 
such that for every input x (of size n):

❖ if x ∈ L then Prr [M(x,r) accepts] ≥ 1/2

❖ if x ∉ L then M(x,r) accepts for no r 
              (i.e., Prr [M(x,r) accepts]=0).



coRP
❖ L is in coRP iff complement Lc is in RP, hence:
❖ L is in coRP if and only if 

there is a polynomial-time TM M 
such that for every input x (of size n):

❖ if x ∈ L then Prr [M(x,r) accepts] ≥ 1/2 M(x,r) accepts for every r

❖ if x ∉ L then M(x,r) accepts for no r Prr [M(x,r) accepts] ≤ 1/2



A motivating example for (co)RP
❖ PRIMALITY 

INPUT: a natural number p, in binary 
Q: is p prime?

❖ For a long time, not known to be in P 
(now solved: indeed in P [Agrawal,Kayal,Saxena 2004])

❖ In coNP (guess a proper divisor)

❖ In NP [Pratt 1975]

❖ Can also be solved efficiently with randomization…



Fermat’s little theorem
❖ Thm (Fermat).  If p is prime, then for every r (1≤r<p), 

                            rp–1=1 mod p.

❖ ⇒ draw r at random in [2,p–2]; accept if rp–1=1 mod p.

❖ Note: computing mod p is efficient: 
           size of all numbers bounded by size(p)=O(log p). 
           — addition mod p in time O(log p) 
           — mult. mod p in time O(log2 p) (even O(log1+ε p))

❖ An experiment… (next slide)



Fermat’s little theorem in practice
❖ Thm (Fermat).  If p is prime, then for every r (1≤r<p), 

                            rp–1=1 mod p.

❖ ⇒ draw r at random in [2,p–2]; accept if rp–1=1 mod p.

❖ Is 87 prime?

❖ Draw r at random… say 25

❖ r86 = 16 mod 87

❖ ⇒ 87 is not prime (definitely)



Fermat’s little theorem in practice
❖ Thm (Fermat).  If p is prime, then for every r (1≤r<p), 

                            rp–1=1 mod p.

❖ ⇒ draw r in [2,p–2]; accept if rp–1=1 mod p.

❖ Is 87 prime?

❖ The probability (over r) 
of error is: 
             2/84 ≈ 0.024

r r86

2 4

3 9

4 16

5 25

6 36

7 49

8 64

9 81

10 13

r r86

11 34

12 57

13 82

14 22

15 51

16 82

17 28

18 63

19 13

20 52

r r86

21 6

22 49

23 7

24 54

25 16

26 67

27 33

28 1

29 58

30 30

r x86

31 4

32 67

33 45

34 25

35 7

36 78

37 64

38 52

39 42

40 34

r r86

41 28

42 24

43 22

44 22

45 24

46 28

47 34

48 42

49 52

50 64

r r86

51 78

52 7

53 25

54 45

55 67

56 4

57 30

58 58

59 1

60 33

r r86

61 67

62 16

63 54

64 7

65 49

66 6

67 52

68 13

69 63

70 28

r r86

71 82

72 51

73 22

74 82

75 57

76 34

77 13

78 81

79 64

80 49

r r86

81 36

82 25

83 16

84 9

85 4



Fermat’s little theorem in practice
❖ Thm (Fermat).  If p is prime, then for every r (1≤r<p), 

                            rp–1=1 mod p.

❖ ⇒ draw r in [2,p–2]; accept if rp–1=1 mod p.

❖ If p is prime, will succeed 
for every r

❖ Else, will fail with 
(hopefully) high probability 
(0.024 in the example, looks good); but…



Carmichael numbers
❖ A Carmichael number is a number p: 

— that is not prime 
— but passes all Fermat tests (rp–1=1 mod p for every r)

❖ I.e., on which our hopes of low error rate fail miserably

❖ Infinitely many of them [Alford, Granville, Pomerance 1994]: 
561, 1105, 1729, 2465, 2821, 6601 , 8911, 10585, 15841, etc.

❖ Frustrating: if p is not prime and passes at least one 
Fermat test, then it passes at least half of them…



The Miller-Rabin test (1/2)
❖ We use another basic fact: if p is prime, then 

       the only square roots of 1 mod p are 1 and –1

❖ Hence, if p is prime and odd (so p–1 = 2k q, q odd):

r^q … r^(2i–1 q) r^(2i q) … r^(2k–1 q) r^(2k q)
(don’t care … …. don’t care) –1 1 … 1 1

mod p

for some i, or:

(read from right to left :  ⃪ )

r^q … r^(2i–1 q) r^(2i q) … r^(2k–1 q) r^(2k q)
1 … 1 1 … 1 1

mod p



The Miller-Rabin test (2/2)
❖ On input p, 

draw r at random: 
— if the test shown here: 
     succeeds, then accept (p probably prime) 
— otherwise reject (p definitely not prime)

❖ Probability of error ≤ 1/4.  Excellent!  Hence:

❖ Theorem. PRIMALITY is in coRP.

❖ (Superseded by [AKS04]… 
 but Miller-Rabin works in log space, not [AKS04]!)



To know more

https://www.cis.upenn.edu/~jean/RSA-primality-testing.pdf



Error reduction
❖ What is so special about 

error 1/2?

❖ Nothing!

❖ Theorem. ∀ ε ∈ ]0, 1[, 
                 RP = RP(ε).

❖ Note: RP=RP(1/2) (def.)

error = 1 – 1/2
(= 1/2 here)

RP(ε)

1–ε

error = ε



RP(ε)

1–ε

error = ε

Error reduction: the easy direction
❖ Clearly, if η ≤ ε then 

         RP(η) ⊆ RP(ε)

❖ Proof: take any L ∈ RP(η) 
  … I’ll let you finish the 
       argument

❖ Note: RP(0)=P           (believed ≠ RP) 
           RP(1)={all languages} (why?)



The hard direction: repeating experiments

❖ Let L ∈ RP(ε), 0<η<ε<1

❖ On input x, let us do the 
following (at most) K times:

❖ Draw r at random, 
simulate M(x, r) and:

❖ If M(x, r) accepts, then exit the loop and accept;

❖ Otherwise, proceed and loop.

❖ At the end of the loop, reject. Remember: if M(x, r) accepts,
then x must be in L.

RP(ε)

1–ε

error = ε



Repeating experiments (pretty) formally

❖ We have defined a new 
randomized TM 
         M’(x, r[1]#…#r[K]) by:

❖ for i=1 to K:

❖ If M(x, r[i]) accepts, then exit the loop and accept;

❖ reject.
Remember: if M(x, r[i]) accepts,

then x must be in L.

RP(ε)

1–ε

error = ε



Acceptance: 1. if x ∈ L
❖ If x ∈ L (recall L in RP(ε)), then 

          letting r=r[1]#…#r[K], 
   Prr(M’(x, r) rejects)

❖ = Prr(∀i=1..K, M(x, r[i]) rejects)

❖ = Πi=1..K Prr[i](M(x, r[i]) rejects) 
               (independence)

❖ ≤ εK

❖ ⇒ If x ∈ L then 
     Prr(M’(x, r) accepts) ≥ 1–εK 

RP(ε)

1–ε

error = ε



Acceptance: 2. if x ∉ L; Complexity
❖ If x ∈ L (recall L in RP(ε)) then 

Prr(M’(x, r) accepts) ≥ 1–εK

❖ If x ∉ L, then 
M’(x, r) accepts for no r

❖ If M runs in time p(n), then 
   M’ runs in time O(Kp(n))

❖ Hence L is in RP(εK) 

RP(ε)

1–ε

error = ε



The hard direction: the end
❖ We have shown that every 

language L in RP(ε) 
                 is in RP(εK) 
(for any ε ∈ [0,1], K≥1)

❖ If 0<η<ε<1, 
choose K large enough 
so that εK≤η 
(explicitly, K≥η/log ε)

❖ Then L is in RP(η).  ☐ 

RP(ε)

1–ε

error = ε



Can we do even better?

❖ Hence we define the same class 
with error ε = 0.000000000001

❖ … or with error ε = 0.99999999!

❖ Can we make ε go to 0 as n→∞? 

RP(ε)

1–ε

error = ε



The hard direction revisited
❖ If x ∈ L (recall L in RP(ε)) then 

Prr(M’(x, r) accepts) ≥ 1–εK

❖ If x ∉ L, then 
M’(x, r) accepts for no r

❖ If M runs in time p(n), then 
   M’ runs in time O(Kp(n))

❖ Hence L is in RP(εK). 

RP(ε)

1–ε

error = ε

Let us take K = a polynomial q(n)

=O(q(n)p(n)), still polynomial time
error εK = εq(n) 

(exponentially small)



❖ Let ε=1/2.  We have proved:

❖ Theorem. RP=RP(1/2q(n)) 
    for every polynomial q(n).

❖ I.e., error can be made 
       exponentially small.

❖ (Note: RP(ε) called ∪p(n) RTIME(p(n),p(n),0,ε) 
            in the notes: ignore the complication)

The hard direction revisited

❖ Exercise: show that, conversely:

❖ Theorem. RP=RP(1–1/q(n)) 
    for every polynomial q(n).

❖ I.e., error can be assumed 
       « polynomially large » as well

RP(ε)

1–ε

error = ε



Relation to ordinary classes
❖ Theorem. P ⊆ RP ⊆ NP.

❖ Proof.  First, 
         P=RP(0) ⊆ RP(1/2) = RP

❖ Second, let L ∈ RP.

❖ If x ∈ L ⇒ for some r,           (in fact, for at least half of them!) 
                  M(x, r) accepts

❖ If x ∉ L ⇒ for no r.

❖ Hence L = {x | ∃r, M(x, r) accepts} is in NP.  ☐



Our second probabilistic class: ZPP

(also known as the class of
Las Vegas languages)

https://www.agoda.com/fr-fr/paris-las-vegas_8/hotel/las-vegas-nv-us.html?cid=1844104



ZPP
❖ ZPP = Zero Probability of error Polynomial-time

❖ Usually defined as the class of languages L 
which we can decide in average polynomial-time 
                                    (not worst-case!) 
with probability zero of making a mistake.

❖ Alternate definition: 
                  ZPP = RP ∩ coRP

❖ Not clear that those two definitions are equivalent, right?



❖ Let us start simple:

❖ Definition. ZPP = RP ∩ coRP

❖ I.e., L is in ZPP iff there are 
            two poly-time rand. TMs M1 and M2 such that:

❖ if x ∈ L then M1(x,r) accepts for every r  [no error] 
                      M2(x,r) accepts with prob.≥1/2

❖ if x ∉ L then M1(x,r) accepts with prob.≤1/2 
                      M2(x,r) rejects for every r    [no error]

ZPP

an RP machine for L

a coRP machine for L



❖ Let us define ZPP’ (for now) as the class of languages L 
which we can decide in average polynomial-time 
with probability zero of making a mistake.

❖ I claim that ZPP = ZPP’.

❖ The definition of ZPP’ has a few technical problems… 
                                                  (see next slides)

❖ we will need something called Markov’s inequality too

❖ … but before that, we explain why (intuitively) ZPP ⊆ ZPP’.

ZPP, alternate form



Deciding L in ZPP = RP ∩ coRP with no error

❖ Assume M1 and M2 such as here→

❖ Now run the following on input x: 
forever: 
   if M1(x,…) rejects: stop and reject 
   if M2(x,…) accepts: stop and accept

then x cannot be in L (sure)

then x must be in L (sure)

It may be that M1(x,…) accepted and M2(x,…) rejected, 
— in which case we loop
— and that happens with probability ≤1/2… 
     why?  
     (if you tell me that this is even ≤1/4, you are wrong)

Hence this machine never 
makes any mistake

We will see that this implies that 
the machine terminates in 

≤ 2 turns of the loop on average



A technical problem
❖ All this requires us to draw arbitrarily long bitstrings

❖ In fact, even infinite bit strings (for those computations 
that do not terminate)

❖ Requires measure theory: 
there is a unique measure μ on {0,1}ω 
          with σ-algebra generated by cylinders w.{0,1}ω 
          such that μ(w.{0,1}ω) = 1/2|w| (Carathéodory)

❖ We will happily ignore this.



Rejection sampling
❖ A classic probabilistic procedure (rejection sampling): 
forever: 
    compute something (with some random data r), x; 
   if P(x) holds: stop and return x

❖ Trick.  If: 
— the random bits are independent across turns of the loop 
— and P(x) holds with prob. ≥ α at each turn 
then rejection sampling terminates in 
         1/α turns of the loop on average.



prob. ≥ α

Rejection sampling
❖ An classic probabilistic procedure (rejection sampling): 
forever: 
    compute something (with some random data r), x; 
   if P(x) holds: stop and return x

❖ Proof. Let X be the random variable « # turns through the 
loop »

❖ Pr(X≥n) = Pr(P failed at turns 1, …, n–1) 
               ≤ (1– α)n–1    (by independence)

❖ E(X) = ∑n≥1 n.Pr(X=n) = ∑n≥1 Pr(X≥n) ≤ ∑n≥1 (1– α)n–1 = 1/α.  ☐

Expectation (average)



Rejection sampling: a typical application

❖ Draw a point inside the disc:

❖ Repeatedly draw a point 
inside the inscribing square

❖ If it is in the disc, return it.

❖ Terminates in ≤4/π 
                    ~ 1.27324 turns

❖ (Used as first step in the Box-Muller procedure drawing 
two independent numbers with a normal distribution)



Deciding L in ZPP = RP ∩ coRP with no error

❖ Assume M1 and M2 such as here:

❖ Now run the following on input x: 
forever: 
   if M1(x,…) rejects: stop and reject 
   if M2(x,…) accepts: stop and accept

then x cannot be in L (sure)

then x must be in L (sure)

It may be that M1(x,…) accepted and M2(x,…) rejected, 
— in which case we loop
— and that happens with probability ≤1/2… 
    (two cases: x in L, x not in L)

Hence this machine never 
makes any mistake

This is rejection sampling: 
stops in ≤2 turns on average

hence in polytime on average.



Markov’s inequality
❖ Hence: 

ZPP (= RP ∩ coRP) ⊆ ZPP’

❖ In order to show the reverse inclusion, we use:

❖ Theorem (Markov’s inequality). 
Let X be a non-negative real-valued random variable 
       with finite expectation E(X).  For every a>0: 
       Pr(X≥a.E(X)) ≤ 1/a.



Markov’s inequality
❖ Theorem (Markov’s inequality). 

Let X be a non-negative real-valued random variable 
       with finite expectation E(X).  For every a>0: 
       Pr(X≥a.E(X)) ≤ 1/a.

❖ Proof. E(X) = ∫t Pr(X≥t) dt 
           ≥ area of the blue rectangle 
           = a . E(X) . Pr(X≥a.E(X)) 
Then divide out 
          by a . E(X).  ☐

t

Pr(X≥t)

a.E(X)

Pr(X≥a.E(X))



The reverse inclusion ZPP’ ⊆ ZPP
❖ Let L in ZPP’, decided by M 

running in average poly. time p(n)    with no error.

❖ Define M1 as follows: on input x 
                                      (and random tape r of size a. p(n)) 
simulate M on x for at most a. p(n) steps (timeout). 
If timeout reached, then accept (that may be an error).

Recall ZPP = RP ∩ coRP



The reverse inclusion ZPP’ ⊆ ZPP
❖ Markov on r.v. X = 

time taken by M on x; 
also let a=2.

❖ E(X) ≤ p(n) finite OK

❖ If x ∉ L ⇒ error = Prr(M1(x,r) accepts) 
                            = Pr(X ≥ a. p(n))    (M makes no mistake) 
                            ≤ Pr(X ≥ a. E(X))   (E(X) ≤ p(n)) 
                            ≤ 1/a = 1/2            (Markov)

❖ If x ∈ L ⇒ M1(x,r) must accept.

❖ Hence L is in coRP.



The reverse inclusion ZPP’ ⊆ ZPP
❖ Markov on r.v. X = 

time taken by M on x; 
also let a=2.

❖ E(X) ≤ p(n) finite OK

❖ If x ∈ L ⇒ error = Prr(M1(x,r) accepts rejects) 
                            = Pr(X ≥ a. p(n))    (M makes no mistake) 
                            ≤ Pr(X ≥ a. E(X))   (E(X) ≤ p(n)) 
                            ≤ 1/a = 1/2            (Markov)

❖ If x ∉ L ⇒ M1(x,r) must accept reject.

❖ Hence L is in coRP RP.

Symmetrically:

reject

Hence L is both in RP and 
in coRP, namely in ZPP.  ☐

M2

M2

M2



coRP RP

❖ Definition. ZPP = RP ∩ coRP

❖ Theorem. ZPP is the class of languages L 
which we can decide in average polynomial-time 
with probability zero of making a mistake.

Summary on ZPP

P

ZPP

NPcoNP



Next time…



BPP: Bounded Prob. of Error Polynomial time

❖ A language L is in BPP if and only if 
there is a polynomial-time TM M 
such that for every input x (of size n):

❖ if x ∈ L then Prr [M(x,r) accepts] ≥ 2/3

❖ if x ∉ L then Prr [M(x,r) accepts] ≤ 1/3.

two-sided error: 
Prr [M(x,r) errs] ≤ 1/3


