Jean Goubault-Larrecq

Randomized complexity classes

Today: RP, coRP, and ZPP (what a zoo!)

Today

- Randomized Turing machines
- * One-sided error: RP, coRP
- * No error: **ZPP**
- * Next time: two-sided error BPP

Randomized Turing machines

Ordinary Turing machines

- * One read-only input tape

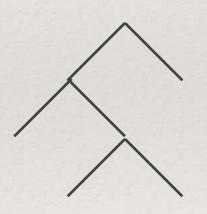
As many work tapes
 as you need
 (but only a constant
 number!)

* (Possibly) one write-only output tape

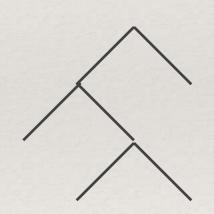
* We will study **probabilistic** complexity classes, where our TMs can now **draw** strings of bits at random

- * We will study **probabilistic** complexity classes, where our TMs can now **draw** strings of bits at random
- * No need to invent a new TM model

- * We will study **probabilistic** complexity classes, where our TMs can now **draw** strings of bits at random
- * No need to invent a new TM model
- Choice 1: use a non-deterministic TM model and draw execution branch at random (we won't do that; hard to do it right)



- * We will study **probabilistic** complexity classes, where our TMs can now **draw** strings of bits at random
- * No need to invent a new TM model
- Choice 1: use a non-deterministic TM model and draw execution branch at random (we won't do that; hard to do it right)



* Choice 2: ... next slide

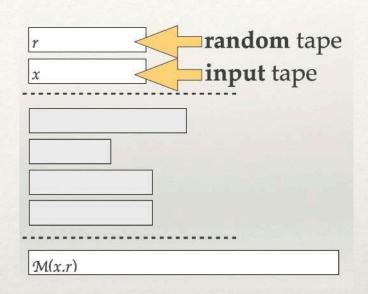
Randomized Turing machines

Two random tape One read-only tapes input tape * As many work tapes as you need (but only a constant number!) * (Possibly) one write-only

output tape

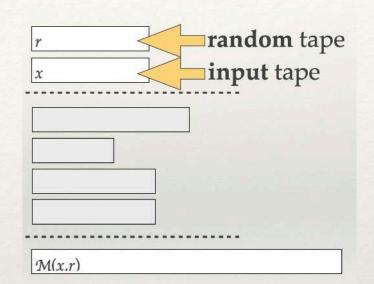
Technical points 1/2

We draw the random tape r uniformly at random



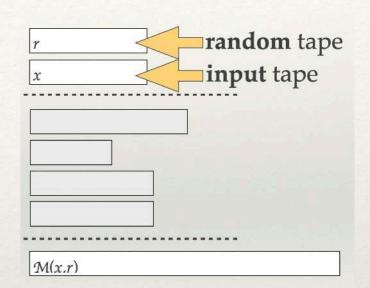
Technical points 1/2

- We draw the random tape r uniformly at random
- * We will be interested in **probabilities**, e.g. $Pr_r[\mathcal{M}(x,r) \text{ accepts}]$



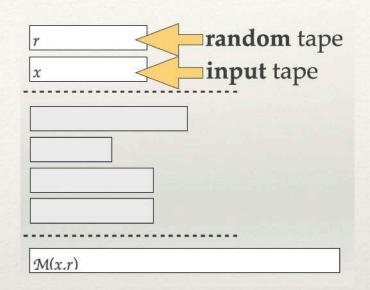
Technical points 1/2

- We draw the random tape r uniformly at random
- * We will be interested in **probabilities**, e.g. $Pr_r[\mathcal{M}(x,r)]$ accepts]
- * Random tape must not just be read-only: we impose that **no bit on** *r* **is ever read twice** (otherwise bits read are not independent)



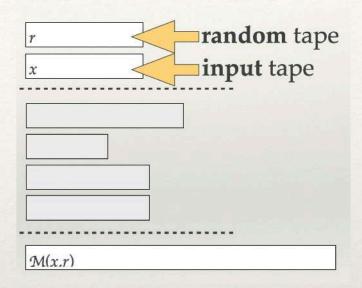
Technical points 2/2

* \Rightarrow we need r to contain at least f(n) bits, where f(n) is an upper bound on the **time** taken by the TM.



Technical points 2/2

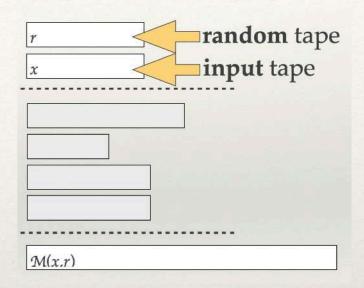
* \Rightarrow we need r to contain at least f(n) bits, where f(n) is an upper bound on the **time** taken by the TM.



* We will always assume that *r* is **large enough**

Technical points 2/2

* \Rightarrow we need r to contain at least f(n) bits, where f(n) is an upper bound on the **time** taken by the TM.



- * We will always assume that *r* is **large enough**
- * OK for classes defined by worst-case time, will cause problems for classes defined with no a priori upper bound on time (e.g., **ZPP**)

Our first probabilistic class: RP

(also sometimes known as the class of *Monte Carlo* languages)

http://fr.casino-jackpot.com/wp-content/uploads/2018/04/casino-monaco.jpg

* A language *L* is in **RP** if and only if there is a **polynomial-time** TM *M* such that for every input *x* (of size *n*):

* A language *L* is in **RP** if and only if there is a **polynomial-time** TM *M* such that for every input *x* (of size *n*):

i.e. there is also a **polynomial** p(n) / $\mathcal{M}(x,r)$ terminates in time $\leq p(n)$, where n=|x|, in the worst case (and for any value of r)

* A language *L* is in **RP** if and only if there is a **polynomial-time** TM *M* such that for every input *x* (of size *n*):

i.e. there is also a **polynomial** p(n) / $\mathcal{M}(x,r)$ terminates in time $\leq p(n)$, where n=|x|, in the worst case (and for any value of r)

... hence, implicitly, we require $|r| \ge p(n)$ (let us say |r| = p(n))

- * A language *L* is in **RP** if and only if there is a **polynomial-time** TM *M* such that for every input *x* (of size *n*):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1/2$

i.e. there is also a **polynomial** p(n) / $\mathcal{M}(x,r)$ terminates in time $\leq p(n)$, where n=|x|, in the worst case (and for any value of r)

... hence, implicitly, we require $|r| \ge p(n)$ (let us say |r| = p(n))

- * A language *L* is in **RP** if and only if there is a **polynomial-time** TM *M* such that for every input *x* (of size *n*):
- * if $x \in L$ then $\Pr_r[\mathcal{M}(x,r) \text{ accepts}] \ge 1/2$

i.e. there is also a **polynomial** p(n) / $\mathcal{M}(x,r)$ terminates in time $\leq p(n)$, where n=|x|, in the worst case (and for any value of r)

... hence, implicitly, we require $|r| \ge p(n)$ (let us say |r| = p(n))

probability taken over all $r \in \{0,1\}^{p(n)}$

- * A language *L* is in **RP** if and only if there is a **polynomial-time** TM *M* such that for every input *x* (of size *n*):
- * if $x \in L$ then $\Pr_r[\mathcal{M}(x,r) \text{ accepts}] \ge 1/2$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r (i.e., $\Pr_r[\mathcal{M}(x,r) \text{ accepts}]=0$).

i.e. there is also a **polynomial** p(n) / $\mathcal{M}(x,r)$ terminates in time $\leq p(n)$, where n=|x|, in the worst case (and for any value of r)

... hence, implicitly, we require $|r| \ge p(n)$ (let us say |r| = p(n))

probability taken over all $r \in \{0,1\}^{p(n)}$

- * A language *L* is in **RP** if and only if there is a **polynomial-time** TM *M* such that for every input *x* (of size *n*):
- * if $x \in L$ then $\Pr_r[\mathcal{M}(x,r) \text{ accepts}] \ge 1/2$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r (i.e., $\Pr_r[\mathcal{M}(x,r) \text{ accepts}]=0$).

i.e. there is also a **polynomial** p(n) / $\mathcal{M}(x,r)$ terminates in time $\leq p(n)$, where n=|x|, in the worst case (and for any value of r)

... hence, implicitly, we require $|r| \ge p(n)$ (let us say |r| = p(n))

probability taken over all $r \in \{0,1\}^{p(n)}$

one-sided error: we make **no** error if $x \notin L$

- * A language *L* is in **RP** if and only if there is a **polynomial-time** TM *M* such that for every input *x* (of size *n*):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1/2$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r (i.e., $\Pr_r[\mathcal{M}(x,r) \text{ accepts}]=0$).

i.e. there is also a **polynomial** p(n) / $\mathcal{M}(x,r)$ terminates in time $\leq p(n)$, where n=|x|, in the worst case (and for any value of r)

... hence, implicitly, we require $|r| \ge p(n)$ (let us say |r| = p(n))

probability taken over all $r \in \{0,1\}^{p(n)}$

one-sided error: we make **no** error if $x \notin L$

Perhaps paradoxically, that means that we make **no** error if $\mathcal{M}(x,r)$ **accepts**

(so please do not confuse acceptance with being in the language!)

- * A language *L* is in **RP** if and only if there is a **polynomial-time** TM M such that for every input *x* (of size *n*):
- * if $x \in L$ then $\Pr_r[\mathcal{M}(x,r) \text{ accepts}] \ge 1/2$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r (i.e., $\Pr_r[\mathcal{M}(x,r) \text{ accepts}]=0$).

- * A language *L* is in **RP** if and only if there is a **polynomial-time** TM *M* such that for every input *x* (of size *n*):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1/2$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r (i.e., $\Pr_r[\mathcal{M}(x,r) \text{ accepts}]=0$).

Note: **RP**-languages are **not** defined by « **RP**-machines » (there is no such notion)

- * A language *L* is in **RP** if and only if there is a **polynomial-time** TM M such that for every input *x* (of size *n*):
- Note: **RP**-languages are **not** defined by « **RP**-machines » (there is no such notion)

- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1/2$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r (i.e., $\Pr_r[\mathcal{M}(x,r) \text{ accepts}]=0$).

```
... but if we wanted to define « RP-machines », those would be machines \mathcal{M} such that, for every x, — either \Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1/2
```

— or $Pr_r[\mathcal{M}(x,r) \text{ accepts}] = 0$

coRP

* L is in **coRP** iff complement L^c is in **RP**, hence:

coRP

- * L is in **coRP** iff complement L^c is in **RP**, hence:
- * *L* is in **coRP** if and only if there is a **polynomial-time** TM M such that for every input *x* (of size *n*):
- * if $x \in L$ then $\Pr_{\tau} \{ \mathcal{M}(x,r) \text{ accepts} \} \ge 1/2 \mathcal{M}(x,r) \text{ accepts for every } r$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r $\Pr_r[\mathcal{M}(x,r) \text{ accepts}] \le 1/2$

* PRIMALITY

INPUT: a natural number *p*, in binary

* PRIMALITY

INPUT: a natural number *p*, in binary

Q: is *p* prime?

* For a long time, not known to be in **P** (now solved: indeed in **P** [Agrawal, Kayal, Saxena 2004])

* PRIMALITY

INPUT: a natural number *p*, in binary

- * For a long time, not known to be in **P** (now solved: indeed in **P** [Agrawal, Kayal, Saxena 2004])
- * In coNP (guess a proper divisor)

* PRIMALITY

INPUT: a natural number *p*, in binary

- * For a long time, not known to be in **P** (now solved: indeed in **P** [Agrawal, Kayal, Saxena 2004])
- * In coNP (guess a proper divisor)
- In NP [Pratt 1975]

* PRIMALITY

INPUT: a natural number *p*, in binary

- * For a long time, not known to be in **P** (now solved: indeed in **P** [Agrawal, Kayal, Saxena 2004])
- * In coNP (guess a proper divisor)
- In NP [Pratt 1975]
- * Can also be solved efficiently with randomization...

Fermat's little theorem

* Thm (Fermat). If p is prime, then for every r ($1 \le r < p$), $r^{p-1}=1 \mod p$.

Fermat's little theorem

- **Thm (Fermat).** If *p* is prime, then for every r (1≤r<p), r^{p-1} =1 mod p.
- * \Rightarrow draw r at random in [2,p-2]; accept if $r^{p-1}=1 \mod p$.

Fermat's little theorem

- * Thm (Fermat). If p is prime, then for every r ($1 \le r < p$), $r^{p-1}=1 \mod p$.
- * \Rightarrow draw r at random in [2,p-2]; accept if $r^{p-1}=1 \mod p$.
- * Note: computing mod p is **efficient**: size of all numbers **bounded** by $size(p)=O(\log p)$.
 - addition mod p in time $O(\log p)$
 - mult. mod p in time $O(\log^2 p)$ (even $O(\log^{1+\epsilon} p)$)

Fermat's little theorem

- * Thm (Fermat). If p is prime, then for every r ($1 \le r < p$), $r^{p-1}=1 \mod p$.
- * \Rightarrow draw r at random in [2,p-2]; accept if $r^{p-1}=1 \mod p$.
- * Note: computing mod p is **efficient**: size of all numbers **bounded** by $size(p)=O(\log p)$.
 - addition mod p in time $O(\log p)$
 - mult. mod p in time $O(\log^2 p)$ (even $O(\log^{1+\epsilon} p)$)
- An experiment... (next slide)

- * Thm (Fermat). If p is prime, then for every r ($1 \le r < p$), $r^{p-1}=1 \mod p$.
- * \Rightarrow draw r at random in [2,p-2]; accept if $r^{p-1}=1 \mod p$.

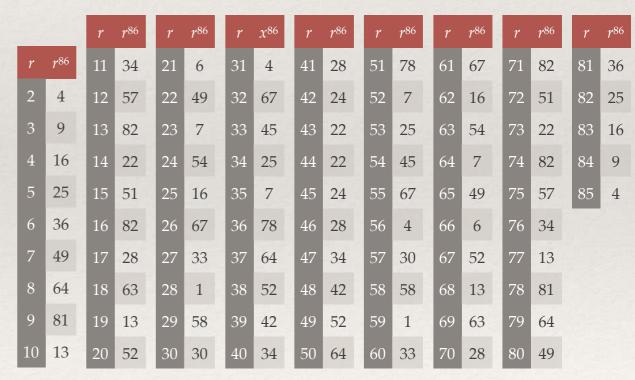
- * Thm (Fermat). If p is prime, then for every r ($1 \le r < p$), $r^{p-1}=1 \mod p$.
- * \Rightarrow draw r at random in [2,p-2]; accept if $r^{p-1}=1 \mod p$.
- * Is 87 prime?

- * Thm (Fermat). If p is prime, then for every r ($1 \le r < p$), $r^{p-1}=1 \mod p$.
- * \Rightarrow draw r at random in [2,p-2]; accept if $r^{p-1}=1 \mod p$.
- * Is 87 prime?
- * Draw r at random... say 25

- * Thm (Fermat). If p is prime, then for every r ($1 \le r < p$), $r^{p-1}=1 \mod p$.
- * \Rightarrow draw r at random in [2,p-2]; accept if $r^{p-1}=1 \mod p$.
- * Is 87 prime?
- * Draw r at random... say 25
- $* r^{86} = 16 \mod 87$

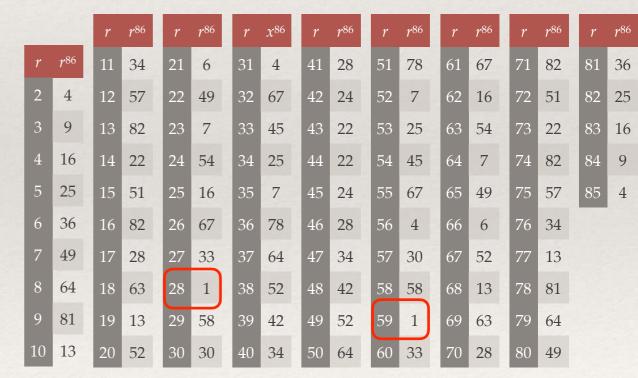
- * Thm (Fermat). If p is prime, then for every r ($1 \le r < p$), $r^{p-1}=1 \mod p$.
- * \Rightarrow draw r at random in [2,p-2]; accept if $r^{p-1}=1 \mod p$.
- * Is 87 prime?
- * Draw r at random... say 25
- * $r^{86} = 16 \mod 87$
- $* \Rightarrow 87$ is **not prime** (definitely)

- * Thm (Fermat). If p is prime, then for every r ($1 \le r < p$), $r^{p-1}=1 \mod p$.
- * \Rightarrow draw r in [2,p-2]; accept if $r^{p-1}=1 \mod p$.
- * Is 87 prime?



- * Thm (Fermat). If p is prime, then for every r ($1 \le r < p$), $r^{p-1}=1 \mod p$.
- * \Rightarrow draw r in [2,p-2]; accept if $r^{p-1}=1 \mod p$.
- * Is 87 prime?
- * The probability (over *r*) of error is:

 $2/84 \approx 0.024$



- * Thm (Fermat). If p is prime, then for every r ($1 \le r < p$), $r^{p-1}=1 \mod p$.
- * \Rightarrow draw r in [2,p-2]; accept if $r^{p-1}=1 \mod p$.

```
L is in coRP if and only if there is a polynomial-time TM \mathcal{M} such that for every input x (of size n): if x \in L then \Pr_{r}[\mathcal{M}(x,r) \text{ accepts}] \ge 1/2 \mathcal{M}(x,r) accepts for every r if x \notin L then \mathcal{M}(x,r) accepts for no r \Pr_{r}[\mathcal{M}(x,r) \text{ accepts}] \le 1/2
```

- * Thm (Fermat). If p is prime, then for every r ($1 \le r < p$), $r^{p-1}=1 \mod p$.
- * \Rightarrow draw r in [2,p-2]; accept if $r^{p-1}=1 \mod p$.
- * If *p* is prime, will succeed for every *r*

```
L is in coRP if and only if there is a polynomial-time TM \mathcal{M} such that for every input x (of size n): if x \in L then \Pr_{x} [\mathcal{M}(x,x) \text{ accepts}] \ge 1/2 \mathcal{M}(x,x) accepts for every r if x \notin L then \mathcal{M}(x,x) accepts for no r \Pr_{x} [\mathcal{M}(x,x) \text{ accepts}] \le 1/2
```

L is in coRP if and only if

there is a polynomial-time TM \mathcal{M}

such that for every input *x* (of size *n*):

if $x \in L$ then $\Pr[\mathcal{M}(x,r) \text{ accepts}] \ge 1/2 \mathcal{M}(x,r)$ accepts for every r

- * Thm (Fermat). If p is prime, then for every r ($1 \le r < p$), $r^{p-1}=1 \mod p$.
- * \Rightarrow draw r in [2,p-2]; accept if $r^{p-1}=1 \mod p$.
- * If *p* is prime, will succeed for every *r*
- * Else, will fail with (hopefully) **high probability** (0.024 in the example, looks good); but...

Carmichael numbers

- * A Carmichael number is a number *p*:
 - that is **not** prime
 - but passes all Fermat tests ($r^{p-1}=1 \mod p$ for every r)
- * I.e., on which our hopes of low error rate fail miserably

Carmichael numbers

- * A Carmichael number is a number *p*:
 - that is **not** prime
 - but passes all Fermat tests ($r^{p-1}=1 \mod p$ for every r)
- * I.e., on which our hopes of low error rate fail miserably
- * Infinitely many of them [Alford, Granville, Pomerance 1994]: 561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, etc.

Carmichael numbers

- * A Carmichael number is a number *p*:
 - that is **not** prime
 - but passes all Fermat tests ($r^{p-1}=1 \mod p$ for every r)
- * I.e., on which our hopes of low error rate fail miserably
- * Infinitely many of them [Alford, Granville, Pomerance 1994]: 561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, etc.
- * Frustrating: if *p* is not prime and passes at least **one** Fermat test, then it passes at least **half** of them...

♦ We use another basic fact: if *p* is prime, then
the only square roots of 1 mod *p* are 1 and −1

- ♦ We use another basic fact: if *p* is prime, then
 the only square roots of 1 mod *p* are 1 and −1
- * Hence, if *p* is prime and odd (so $p-1 = 2^k q$, q odd):

(read from right to left : ←)

r^q	•••	$r^{(2i-1)}q)$	$r^{\wedge}(2^i q)$	•••	$r^{(2k-1)}q)$	$r^{(2k q)}$	mod p
(don't care	don't care)	-1	1	• • •	1	1 for	some <i>i</i> , or:

- We use another basic fact: if *p* is prime, then
 the only square roots of 1 mod *p* are 1 and −1
- * Hence, if *p* is prime and odd (so $p-1 = 2^k q$, q odd):

(read from right to left : ←)

$$r^{n}q$$
 ... $r^{n}(2^{i-1}q)$ $r^{n}(2^{i}q)$... $r^{n}(2^{k-1}q)$ $r^{n}(2^{k}q)$ mod p
 $r^{n}q$... $r^{n}(2^{i-1}q)$ $r^{n}(2^{i}q)$... $r^{n}(2^{k-1}q)$ $r^{n}(2^{k}q)$ mod p
 $r^{n}q$... $r^{n}(2^{i-1}q)$ $r^{n}(2^{i}q)$... $r^{n}(2^{k-1}q)$ $r^{n}(2^{k}q)$ mod p
 $r^{n}q$... $r^{n}q$...

(don't care ... don't care)

Hence, if *p* is prime and odd (so $p-1 = 2^k q$, *q* odd):

(read from right to left : \leftarrow)

 $r^{(2k-1)} q$ $r^{(2k)} \mod p$

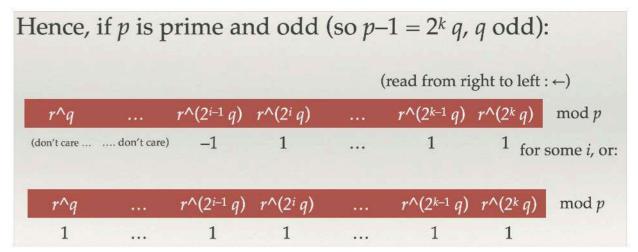
1 for some i, or:

mod p

- * On input *p*, draw *r* at random:
 - if the test shown here: $\frac{r^{n}q}{1} \cdot \dots \cdot \frac{r^{n}(2^{i-1}q) \cdot r^{n}(2^{i}q)}{1} \cdot \dots \cdot \frac{r^{n}(2^{i}q) \cdot r^{n}(2^{i}q)}{1} \cdot \dots \cdot \frac{r^{n}(2^{i}q) \cdot r^{n}(2^{i}q)}{1} \cdot \dots \cdot \frac{r^{n}(2^{i}q)}{1} \cdot \dots \cdot \frac{r^{n}(2^{i}q)}{$
 - otherwise **reject** (*p* definitely not prime)

- * On input *p*, draw *r* at random:
 - if the test shown here:

 succeeds, then accept (p probably prime)
 - otherwise **reject** (*p* definitely not prime)
- ❖ Probability of error ≤ 1/4. Excellent! Hence:



Hence, if *p* is prime and odd (so $p-1 = 2^k q$, *q* odd):

(read from right to left : \leftarrow)

 $r^{(2k-1)} q$ $r^{(2k)} \mod p$

1 for some *i*, or:

mod p

- * On input *p*, draw *r* at random:
 - if the test shown here: $\frac{r^{n}q}{1} = \frac{r^{n}(2^{i-1}q)}{1} = \frac{r^{n}(2$
 - otherwise **reject** (*p* definitely not prime)
- ♦ Probability of error ≤ 1/4. Excellent! Hence:
- * Theorem. PRIMALITY is in coRP.

Hence, if *p* is prime and odd (so $p-1 = 2^k q$, *q* odd):

(read from right to left : \leftarrow)

 $r^{(2k-1)} q) r^{(2k)}$

1 for some *i*, or:

mod p

- * On input *p*, draw *r* at random:
 - if the test shown here:

 | r^q | ... | r^(2i-1q) | r^(2i-q) |
 | 1 | ... | 1 | 1 |
 | succeeds, then accept (p probably prime)
 - otherwise **reject** (*p* definitely not prime)
- ❖ Probability of error ≤ 1/4. Excellent! Hence:
- * Theorem. PRIMALITY is in coRP.
- * (Superseded by [AKS04]... but Miller-Rabin works in log space, not [AKS04]!)

To know more

Notes on Primality Testing
And Public Key Cryptography
Part 1: Randomized Algorithms
Miller–Rabin and Solovay–Strassen Tests

Jean Gallier and Jocelyn Quaintance
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104, USA
e-mail: jean@cis.upenn.edu

© Jean Gallier

February 27, 2019

https://www.cis.upenn.edu/~jean/RSA-primality-testing.pdf

- * What is so special about error 1/2?
- * A language *L* is in **RP** if and only if there is a **polynomial-time** TM M such that for every input *x* (of size *n*):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1/2$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r (i.e., $\Pr_r[\mathcal{M}(x,r) \text{ accepts}]=0$).

- * What is so special about error 1/2?
- * Nothing!

- * A language *L* is in **RP** if and only if there is a **polynomial-time** TM M such that for every input *x* (of size *n*):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1/2$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r (i.e., $\Pr_r[\mathcal{M}(x,r) \text{ accepts}]=0$).

- * What is so special about error 1/2?
- * Nothing!

- * A language *L* is in **RP** if and only if there is a **polynomial-time** TM M such that for every input *x* (of size *n*):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1/2$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r (i.e., $\Pr_r[\mathcal{M}(x,r) \text{ accepts}]=0$).
- * A language L is in $\mathbb{RP}(\varepsilon)$ and only if there is a **polynomial-time** TM M such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r [\mathcal{M}(x,r)]$ accepts $r \in \mathcal{E}$

error = 1 - 1/2(= 1/2 here)

- * What is so special about error 1/2?
- * Nothing!
- A language L is in RP if and only if there is a **polynomial-time** TM M such that for every input x (of size n):
 - * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1/2$
 - * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $Pr_r[\mathcal{M}(x,r) \text{ accepts}]=0$).

- * Theorem. $\forall \epsilon \in [0, 1[$, $\mathbf{RP} = \mathbf{RP}(\varepsilon)$.
- A language L is in $\mathbf{RP}(\varepsilon)$ and only if there is a **polynomial-time** TM M such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r[\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no (i.e., $Pr_r[M(x,r) accepts = 0]$

- * What is so special about error 1/2?
- * Nothing!

- * A language *L* is in **RP** if and only if there is a **polynomial-time** TM M such that for every input *x* (of size *n*):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1/2$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r (i.e., $\Pr_r[\mathcal{M}(x,r) \text{ accepts}]=0$).

- * Theorem. $\forall \epsilon \in]0, 1[$, $RP = RP(\epsilon)$.
- * Note: $\mathbf{RP} = \mathbf{RP}(1/2)$ (def.)
- * A language L is in $\mathbb{RP}(\varepsilon)$ and only if there is a **polynomial-time** TM M such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] = 0$).

Error reduction: the easy direction

* Clearly, if $\eta \le \varepsilon$ then $\mathbf{RP}(\eta) \subseteq \mathbf{RP}(\varepsilon)$

- * A language L is in $RP(\varepsilon)$ and only if there is a **polynomial-time** TM M such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r[\mathcal{M}(x,r)]$ accepts $= \varepsilon$

Error reduction: the easy direction

- * Clearly, if $\eta \leq \varepsilon$ then $\mathbf{RP}(\eta) \subseteq \mathbf{RP}(\varepsilon)$
- * Proof: take any $L \in \mathbf{RP}(\eta)$... I'll let you finish the argument
- * A language L is in $\mathbf{RP}(\varepsilon)$ and only if there is a **polynomial-time** TM \mathcal{M} such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r[\mathcal{M}(x,r)]$ accepts r

Error reduction: the easy direction

- * Clearly, if $\eta \le \varepsilon$ then $\mathbf{RP}(\eta) \subseteq \mathbf{RP}(\varepsilon)$
- * Proof: take any $L \in \mathbf{RP}(\eta)$... I'll let you finish the argument
- * A language L is in $RP(\varepsilon)$ and only if there is a **polynomial-time** TM M such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r[\mathcal{M}(x,r)]$ accepts e
- * Note: RP(0)=P (believed $\neq RP$) $RP(1)=\{all\ languages\}\ (why?)$

- * Let $L \in \mathbf{RP}(\varepsilon)$, $0 < \eta < \varepsilon < 1$
- * On input *x*, let us do the following (at most) *K* times:

- * A language L is in $RP(\varepsilon)$ and only if there is a **polynomial-time** TM \mathcal{M} such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r (i.e., $\Pr_r[\mathcal{M}(x,r) \text{ accepts} = 0]$)

- * Let $L \in \mathbf{RP}(\varepsilon)$, $0 < \eta < \varepsilon < 1$
- * On input *x*, let us do the following (at most) *K* times:
- * Draw r at random, simulate $\mathcal{M}(x, r)$ and:

- * A language L is in $RP(\varepsilon)$ and only if there is a **polynomial-time** TM \mathcal{M} such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r (i.e., $\Pr_r[\mathcal{M}(x,r)]$ accepts $= \varepsilon$

- * Let $L \in \mathbf{RP}(\varepsilon)$, $0 < \eta < \varepsilon < 1$
- * On input *x*, let us do the following (at most) *K* times:
- * Draw r at random, simulate $\mathcal{M}(x, r)$ and:

- * A language L is in $RP(\varepsilon)$ and only if there is a **polynomial-time** TM \mathcal{M} such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r (i.e., $\Pr_r[\mathcal{M}(x,r)]$ accepts e

* If $\mathcal{M}(x, r)$ accepts, then exit the loop and accept;

Remember: if $\mathcal{M}(x, r)$ accepts, then x **must** be in L.

- * Let $L \in \mathbf{RP}(\varepsilon)$, $0 < \eta < \varepsilon < 1$
- * On input *x*, let us do the following (at most) *K* times:
- * Draw r at random, simulate $\mathcal{M}(x, r)$ and:

- * A language L is in $RP(\varepsilon)$ and only if there is a **polynomial-time** TM \mathcal{M} such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r (i.e., $\Pr_r[\mathcal{M}(x,r)]$ accepts $= \varepsilon$

- * If $\mathcal{M}(x, r)$ accepts, then exit the loop and accept;
- * Otherwise, proceed and loop.

Remember: if $\mathcal{M}(x, r)$ accepts, then x **must** be in L.

- * Let $L \in \mathbf{RP}(\varepsilon)$, $0 < \eta < \varepsilon < 1$
- * On input *x*, let us do the following (at most) *K* times:
- * Draw r at random, simulate $\mathcal{M}(x, r)$ and:

- * A language L is in $RP(\varepsilon)$ and only if there is a **polynomial-time** TM \mathcal{M} such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r (i.e., $\Pr_r[\mathcal{M}(x,r)]$ accepts e

- * If M(x, r) accepts, then exit the loop and accept;
- * Otherwise, proceed and loop.
- * At the end of the loop, reject.

Remember: if $\mathcal{M}(x, r)$ accepts, then x **must** be in L.

Repeating experiments (pretty) formally

- * We have defined a **new** randomized TM $\mathcal{M}'(x, r[1]\# ...\#r[K])$ by:
- * A language L is in $RP(\varepsilon)$ and only if there is a **polynomial-time** TM \mathcal{M} such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r [\mathcal{M}(x,r)]$ accepts $= \varepsilon$

- * for i=1 to K:
 - * If $\mathcal{M}(x, r[i])$ accepts, then exit the loop and accept;
- * reject.

Remember: if $\mathcal{M}(x, r[i])$ accepts,

then *x* must be in *L*.

* If $x \in L$ (recall L in $\mathbf{RP}(\varepsilon)$), then letting r=r[1]#...#r[K], $\Pr_r(\mathcal{M}'(x, r) \text{ rejects})$

- * A language L is in $\mathbb{RP}(\varepsilon)$ and only if there is a **polynomial-time** TM \mathcal{M} such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r [\mathcal{M}(x,r)]$ accepts $r \in \mathcal{E}$
- * Define $\mathcal{M}'(x, r[1] # ... # r[K])$ by:
- * for i=1 to K:
 - * If $\mathcal{M}(x, r[i])$ accepts, then exit the loop and **accept**;
- reject.

- * If $x \in L$ (recall L in $\mathbf{RP}(\varepsilon)$), then letting r=r[1]#...#r[K], $\Pr_r(\mathcal{M}'(x, r) \text{ rejects})$
 - $* = \Pr_r(\forall i=1..K, \mathcal{M}(x, r[i]) \text{ rejects})$

- * A language L is in $RP(\varepsilon)$ and only if there is a **polynomial-time** TM \mathcal{M} such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r [\mathcal{M}(x,r)]$ accepts $error = \varepsilon$
- * Define $\mathcal{M}'(x, r[1] # ... # r[K])$ by:
- * for i=1 to K:
 - * If $\mathcal{M}(x, r[i])$ accepts, then exit the loop and **accept**;
- reject.

- * If $x \in L$ (recall L in $\mathbf{RP}(\varepsilon)$), then letting r=r[1]#...#r[K], $\Pr_r(\mathcal{M}'(x, r) \text{ rejects})$
 - $* = \Pr_r(\forall i=1..K, \mathcal{M}(x, r[i]) \text{ rejects})$
 - * = $\prod_{i=1..K} \Pr_{r[i]}(\mathcal{M}(x, r[i]) \text{ rejects})$ (independence)

- * A language L is in $RP(\varepsilon)$ and only if there is a **polynomial-time** TM \mathcal{M} such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r[\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r [\mathcal{M}(x,r)]$ accepts $error = \varepsilon$
- * Define $\mathcal{M}'(x, r[1] # ... # r[K])$ by:
- * for i=1 to K:
 - * If $\mathcal{M}(x, r[i])$ accepts, then exit the loop and **accept**;
- reject.

- * If $x \in L$ (recall L in $\mathbf{RP}(\varepsilon)$), then letting r=r[1]#...#r[K], $\Pr_r(\mathcal{M}'(x, r) \text{ rejects})$
 - $* = \Pr_r(\forall i=1..K, \mathcal{M}(x, r[i]) \text{ rejects})$
 - * = $\prod_{i=1..K} \Pr_{r[i]}(\mathcal{M}(x, r[i]) \text{ rejects})$ (independence)
 - $* \leq \varepsilon^K$

- * A language L is in $RP(\varepsilon)$ and only if there is a **polynomial-time** TM \mathcal{M} such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] = 0$)
- * Define $\mathcal{M}'(x, r[1] # ... # r[K])$ by:
- * for i=1 to K:
 - * If $\mathcal{M}(x, r[i])$ accepts, then exit the loop and **accept**;
- reject.

- * If $x \in L$ (recall L in $\mathbf{RP}(\varepsilon)$), then letting r=r[1]#...#r[K], $\Pr_r(\mathcal{M}'(x, r) \text{ rejects})$
 - $* = \Pr_r(\forall i=1..K, \mathcal{M}(x, r[i]) \text{ rejects})$
 - * = $\prod_{i=1..K} \Pr_{r[i]}(\mathcal{M}(x, r[i]) \text{ rejects})$ (independence)
 - $* \leq \varepsilon^K$
- * \Rightarrow If $x \in L$ then $\Pr_r(\mathcal{M}'(x, r) \text{ accepts}) \ge 1 \varepsilon^K$

- * A language L is in $RP(\varepsilon)$ and only if there is a **polynomial-time** TM \mathcal{M} such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] = 0$).
- * Define $\mathcal{M}'(x, r[1] # ... # r[K])$ by:
- * for i=1 to K:
 - * If $\mathcal{M}(x, r[i])$ accepts, then exit the loop and **accept**;
- reject.

* If $x \in L$ (recall L in $\mathbf{RP}(\varepsilon)$) then $\Pr_r(\mathcal{M}'(x, r) \text{ accepts}) \ge 1-\varepsilon^K$

- * A language L is in $RP(\varepsilon)$ and only if there is a **polynomial-time** TM \mathcal{M} such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r[\mathcal{M}(x,r)]$ accepts e
- * Define $\mathcal{M}'(x, r[1] # ... # r[K])$ by:
- for i=1 to K:
 - * If $\mathcal{M}(x, r[i])$ accepts, then exit the loop and **accept**;
- reject.

- * If $x \in L$ (recall L in $\mathbf{RP}(\varepsilon)$) then $\Pr_r(\mathcal{M}'(x, r) \text{ accepts}) \ge 1-\varepsilon^K$
- * If $x \notin L$, then $\mathcal{M}'(x, r)$ accepts for no r

- * A language L is in $RP(\varepsilon)$ and only if there is a **polynomial-time** TM \mathcal{M} such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r[\mathcal{M}(x,r) \text{ accepts}] = \epsilon$
- * Define $\mathcal{M}'(x, r[1] # ... # r[K])$ by:
- * for i=1 to K:
 - * If $\mathcal{M}(x, r[i])$ accepts, then exit the loop and **accept**;
- reject.

- * If $x \in L$ (recall L in $\mathbf{RP}(\varepsilon)$) then $\Pr_r(\mathcal{M}'(x, r) \text{ accepts}) \ge 1-\varepsilon^K$
- * If $x \notin L$, then $\mathcal{M}'(x, r)$ accepts for no r
- * If M runs in time p(n), then M runs in time O(Kp(n))

- * A language L is in $RP(\varepsilon)$ and only if there is a **polynomial-time** TM \mathcal{M} such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r \left[\mathcal{M}(x,r) \text{ accepts} \right] = \varepsilon$
- * Define M'(x, r[1]#...#r[K]) by:
- * for i=1 to K:
 - * If $\mathcal{M}(x, r[i])$ accepts, then exit the loop and **accept**;
- reject.

- * If $x \in L$ (recall L in $\mathbf{RP}(\varepsilon)$) then $\Pr_r(\mathcal{M}'(x, r) \text{ accepts}) \ge 1-\varepsilon^K$
- * If $x \notin L$, then $\mathcal{M}'(x, r)$ accepts for no r
- * If M runs in time p(n), then M runs in time O(Kp(n))
- * Hence L is in $\mathbf{RP}(\varepsilon^K)$

- * A language L is in $RP(\varepsilon)$ and only if there is a **polynomial-time** TM \mathcal{M} such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r[\mathcal{M}(x,r) \text{ accepts}] = 0$)
- * Define M'(x, r[1]#...#r[K]) by:
- for i=1 to K:
 - * If $\mathcal{M}(x, r[i])$ accepts, then exit the loop and **accept**;
- reject.

The hard direction: the end

* We have shown that every language L in $\mathbf{RP}(\varepsilon)$ is in $\mathbf{RP}(\varepsilon^K)$ (for any $\varepsilon \in [0,1], K \ge 1$)

- * A language L is in $RP(\varepsilon)$ and only if there is a **polynomial-time** TM \mathcal{M} such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r [\mathcal{M}(x,r)]$ accepts $error = \varepsilon$
- * Define $\mathcal{M}'(x, r[1] # ... # r[K])$ by:
- * for i=1 to K:
 - * If $\mathcal{M}(x, r[i])$ accepts, then exit the loop and **accept**;
- reject.

The hard direction: the end

- * We have shown that every language L in $\mathbf{RP}(\varepsilon)$ is in $\mathbf{RP}(\varepsilon^K)$ (for any $\varepsilon \in [0,1], K \ge 1$)
- * If $0 < \eta < \epsilon < 1$, choose K large enough so that $\epsilon^K \le \eta$ (explicitly, $K \ge \eta / \log \epsilon$)

- * A language L is in $RP(\varepsilon)$ and only if there is a **polynomial-time** TM \mathcal{M} such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r[\mathcal{M}(x,r)]$ accepts $error = \varepsilon$
- * Define $\mathcal{M}'(x, r[1] # ... # r[K])$ by:
- for *i*=1 to *K*:
 - * If $\mathcal{M}(x, r[i])$ accepts, then exit the loop and **accept**;
- reject.

The hard direction: the end

- * We have shown that every language L in $\mathbf{RP}(\varepsilon)$ is in $\mathbf{RP}(\varepsilon^K)$ (for any $\varepsilon \in [0,1], K \ge 1$)
- * If $0 < \eta < \epsilon < 1$, choose K large enough so that $\epsilon^K \le \eta$ (explicitly, $K \ge \eta / \log \epsilon$)
- * Then *L* is in $\mathbf{RP}(\eta)$. \square

- * A language L is in $RP(\varepsilon)$ and only if there is a **polynomial-time** TM \mathcal{M} such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r[\mathcal{M}(x,r)]$ accepts e
- * Define $\mathcal{M}'(x, r[1] # ... # r[K])$ by:
- for *i*=1 to *K*:
 - * If $\mathcal{M}(x, r[i])$ accepts, then exit the loop and **accept**;
- reject.

- * A language L is in $RP(\varepsilon)$ and only if there is a **polynomial-time** TM \mathcal{M} such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r (i.e., $\Pr_r[\mathcal{M}(x,r) \text{ accepts}] = \varepsilon$

* Hence we define the same class with error $\varepsilon = 0.0000000000001$

- * A language L is in $RP(\varepsilon)$ and only if there is a **polynomial-time** TM \mathcal{M} such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] = 0$).

- * Hence we define the same class with error $\varepsilon = 0.0000000000001$

- * A language L is in $RP(\varepsilon)$ and only if there is a **polynomial-time** TM \mathcal{M} such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] = 0$).

- * Hence we define the same class with error $\varepsilon = 0.0000000000001$
- ∗ Can we make ε go to 0 as $n \rightarrow ∞$?

- * A language L is in $RP(\varepsilon)$ and only if there is a **polynomial-time** TM \mathcal{M} such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r(i.e., $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] = 0$).

- * If $x \in L$ (recall L in $\mathbf{RP}(\varepsilon)$) then $\Pr_r(\mathcal{M}'(x, r) \text{ accepts}) \ge 1-\varepsilon^K$
- * If $x \notin L$, then $\mathcal{M}'(x, r)$ accepts for no r
- * If M runs in time p(n), then M runs in time O(Kp(n))
- * Hence *L* is in **RP**(ε^K).

- * A language L is in $RP(\varepsilon)$ and only if there is a **polynomial-time** TM \mathcal{M} such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r (i.e., $\Pr_r[\mathcal{M}(x,r) \text{ accepts}]=0$)

error = ε

- * Define M'(x, r[1]#...#r[K]) by:
- for *i*=1 to *K*:
 - * If $\mathcal{M}(x, r[i])$ accepts, then exit the loop and **accept**;
- * reject.

Let us take K = a **polynomial** q(n)

- * If $x \in L$ (recall L in $\mathbf{RP}(\varepsilon)$) the $\Pr_r(\mathcal{M}'(x, r) \text{ accepts}) \ge 1-\varepsilon^K$
- * If $x \notin L$, then $\mathcal{M}'(x, r)$ accepts for no r
- * If M runs in time p(n), then M runs in time O(Kp(n))
- * Hence *L* is in **RP**(ε^K).

- * A language L is in $RP(\varepsilon)$ and only if there is a **polynomial-time** TM \mathcal{M} such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r (i.e., $\Pr_r[\mathcal{M}(x,r) \text{ accepts}]=0$)

error = ϵ

- * Define $\mathcal{M}'(x, r[1] # ... # r[K])$ by:
- for i=1 to K:
 - * If $\mathcal{M}(x, r[i])$ accepts, then exit the loop and **accept**;
- reject.

Let us take K = a **polynomial** q(n)

- * If $x \in L$ (recall L in $\mathbf{RP}(\varepsilon)$) the $\Pr_r(\mathcal{M}'(x, r) \text{ accepts}) \ge 1-\varepsilon^K$
- * If $x \notin L$, then $\mathcal{M}'(x, r)$ accepts for no r
- * If M runs in time p(n), then M runs in time O(Kp(n))
- * Hence *L* is in **RP**(ε^K).

- * A language L is in $RP(\varepsilon)$ and only if there is a **polynomial-time** TM \mathcal{M} such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r (i.e., $\Pr_r[\mathcal{M}(x,r) \text{ accepts}]=0$)

error = ϵ

- * Define M'(x, r[1]#...#r[K]) by:
- * for i=1 to K:
 - * If $\mathcal{M}(x, r[i])$ accepts, then exit the loop and **accept**;
- * reject.

=O(q(n)p(n)), still **polynomial time**

Let us take K = a **polynomial** q(n)

- * If $x \in L$ (recall L in $\mathbf{RP}(\varepsilon)$) the $\Pr_r(\mathcal{M}'(x, r) \text{ accepts}) \ge 1-\varepsilon^K$
- * If $x \notin L$, then $\mathcal{M}'(x, r)$ accepts for no r
- * If M runs in time p(n), then M runs in time O(Kp(n))
- * Hence *L* is in **RP**(ε^K).

- * A language L is in $RP(\varepsilon)$ and only if there is a **polynomial-time** TM \mathcal{M} such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r (i.e., $\Pr_r[\mathcal{M}(x,r) \text{ accepts}]=0$)

error = ϵ

- * Define M'(x, r[1]#...#r[K]) by:
- for *i*=1 to *K*:
 - * If $\mathcal{M}(x, r[i])$ accepts, then exit the loop and **accept**;
- * reject.

error $\varepsilon^K = \varepsilon^{q(n)}$ (exponentially small)

=O(q(n)p(n)), still **polynomial time**

- * Let $\varepsilon = 1/2$. We have proved:
- * Theorem. RP=RP(1/2q(n)) for every polynomial q(n).
- * I.e., error can be made exponentially small.
- * (Note: **RP**(ε) called $\cup_{p(n)}$ **RTIME**(p(n),p(n),0, ε) in the notes: ignore the complication)

- * A language L is in $RP(\varepsilon)$ and only if there is a **polynomial-time** TM \mathcal{M} such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r (i.e., $\Pr_r[\mathcal{M}(x,r) \text{ accepts}]=0$)

error = ϵ

- * Let $\varepsilon = 1/2$. We have proved:
- * Theorem. RP=RP(1/2q(n)) for every polynomial q(n).
- I.e., error can be made exponentially small.
- * (Note: **RP**(ε) called $\cup_{p(n)}$ **RTIME**(p(n),p(n),0, ε) in the notes: ignore the complication)

- * A language L is in $RP(\varepsilon)$ and only if there is a **polynomial-time** TM \mathcal{M} such that for every input x (of size n):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1-\varepsilon$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r (i.e., $\Pr_r[\mathcal{M}(x,r) \text{ accepts}]=0$)

error = ε

- * Exercise: show that, conversely:
- * Theorem. RP=RP(1-1/q(n)) for every polynomial q(n).
- I.e., error can be assumed« polynomially large » as well

- * Theorem. $P \subseteq RP \subseteq NP$.
- * *Proof.* First, $P=RP(0) \subseteq RP(1/2) = RP$
- * A language *L* is in **RP** if and only if there is a **polynomial-time** TM M such that for every input *x* (of size *n*):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1/2$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r (i.e., $\Pr_r[\mathcal{M}(x,r) \text{ accepts}]=0$).

- * Theorem. $P \subseteq RP \subseteq NP$.
- * *Proof.* First, $P=RP(0) \subseteq RP(1/2) = RP$
- * Second, let $L \in \mathbb{RP}$.

- * A language *L* is in **RP** if and only if there is a **polynomial-time** TM *M* such that for every input *x* (of size *n*):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1/2$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r (i.e., $\Pr_r[\mathcal{M}(x,r) \text{ accepts}]=0$).

- * Theorem. $P \subseteq RP \subseteq NP$.
- * *Proof.* First, $P=RP(0) \subseteq RP(1/2) = RP$
- * Second, let $L \in \mathbf{RP}$.
 - * If $x \in L \Rightarrow$ for some r, $\mathcal{M}(x, r) \text{ accepts}$

- * A language *L* is in **RP** if and only if there is a **polynomial-time** TM M such that for every input *x* (of size *n*):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1/2$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r (i.e., $\Pr_r[\mathcal{M}(x,r) \text{ accepts}]=0$).

(in fact, for at least half of them!)

- * Theorem. $P \subseteq RP \subseteq NP$.
- * *Proof.* First, $P=RP(0) \subseteq RP(1/2) = RP$
- * Second, let $L \in \mathbb{RP}$.
 - * If $x \in L \Rightarrow$ for some r, $\mathcal{M}(x, r) \text{ accepts}$
 - * If $x \notin L \Rightarrow$ for no r.

- * A language *L* is in **RP** if and only if there is a **polynomial-time** TM *M* such that for every input *x* (of size *n*):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1/2$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r (i.e., $\Pr_r[\mathcal{M}(x,r) \text{ accepts}]=0$).

(in fact, for at least half of them!)

- * Theorem. $P \subseteq RP \subseteq NP$.
- * *Proof.* First, $P=RP(0) \subseteq RP(1/2) = RP$
- * Second, let $L \in \mathbb{RP}$.
 - * If $x \in L \Rightarrow$ for some r, $\mathcal{M}(x, r) \text{ accepts}$
 - * If $x \notin L \Rightarrow$ for no r.
- * Hence $L = \{x \mid \exists r, \mathcal{M}(x, r) \text{ accepts} \}$ is in **NP**. \square

- * A language *L* is in **RP** if and only if there is a **polynomial-time** TM *M* such that for every input *x* (of size *n*):
- * if $x \in L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \ge 1/2$
- * if $x \notin L$ then $\mathcal{M}(x,r)$ accepts for no r (i.e., $\Pr_r[\mathcal{M}(x,r) \text{ accepts}]=0$).

(in fact, for at least half of them!)

Our second probabilistic class: ZPP

(also known as the class of Las Vegas languages)

* $\mathbf{ZPP} = \underline{\mathbf{Z}}$ ero $\underline{\mathbf{P}}$ robability of error $\underline{\mathbf{P}}$ olynomial-time

- * $\mathbf{ZPP} = \underline{\mathbf{Z}}$ ero $\underline{\mathbf{P}}$ robability of error $\underline{\mathbf{P}}$ olynomial-time
- * Usually defined as the class of languages *L* which we can decide in **average** polynomial-time (not worst-case!) with probability **zero** of making a mistake.

- * **ZPP** = **Z**ero **P**robability of error **P**olynomial-time
- * Usually defined as the class of languages *L* which we can decide in **average** polynomial-time (not worst-case!) with probability **zero** of making a mistake.
- * Alternate definition:

 $ZPP = RP \cap coRP$

- * **ZPP** = <u>Zero Probability of error Polynomial-time</u>
- * Usually defined as the class of languages *L* which we can decide in **average** polynomial-time (not worst-case!) with probability **zero** of making a mistake.
- * Alternate definition:

$$ZPP = RP \cap coRP$$

Not clear that those two definitions are equivalent, right?

* Let us start simple:

- * Let us start simple:
- * Definition. $ZPP = RP \cap coRP$

- * Let us start simple:
- * Definition. $ZPP = RP \cap coRP$
- * I.e., *L* is in **ZPP** iff there are **two** poly-time rand. TMs \mathcal{M}_1 and \mathcal{M}_2 such that:
 - * if $x \in L$ then $\mathcal{M}_1(x,r)$ accepts for every r [no error] $\mathcal{M}_2(x,r)$ accepts with prob. $\geq 1/2$
 - * if $x \notin L$ then $M_1(x,r)$ accepts with prob. $\leq 1/2$ $M_2(x,r)$ rejects for every r [no error]

ZPP

- Let us start simple:
- * Definition. $ZPP = RP \cap coRP$

an **RP** machine for L

- * I.e., *L* is in **ZPP** iff there are **two** poly-time rand. TMs \mathcal{M}_1 and \mathcal{M}_2 such that:
 - * if $x \in L$ then $\mathcal{M}_1(x,r)$ accepts for every r [no error] $\mathcal{M}_2(x,r)$ accepts with prob. $\geq 1/2$
 - * if $x \notin L$ then $M_1(x,r)$ accepts with prob. $\leq 1/2$ $M_2(x,r)$ rejects for every r [no error]

ZPP

- * Let us start simple:
- * Definition. $ZPP = RP \cap coRP$
- * I.e., *L* is in **ZPP** iff there are

two poly-time rand. TMs M_1 and M_2 such that:

- * if $x \in L$ then $\mathcal{M}_1(x,r)$ accepts for every r [no error] $\mathcal{M}_2(x,r)$ accepts with prob. $\geq 1/2$
- * if $x \notin L$ then $\mathcal{M}_1(x,r)$ accepts with prob. $\leq 1/2$ $\mathcal{M}_2(x,r)$ rejects for every r [no error]

a **coRP** machine for *L*

an **RP** machine for L

- * Let us define **ZPP'** (for now) as the class of languages *L* which we can decide in **average** polynomial-time with probability **zero** of making a mistake.
- * I claim that **ZPP** = **ZPP**′.

- * Let us define **ZPP'** (for now) as the class of languages *L* which we can decide in **average** polynomial-time with probability **zero** of making a mistake.
- * I claim that **ZPP** = **ZPP**′.
- * The definition of **ZPP'** has a few technical problems... (see next slides)

- * Let us define **ZPP'** (for now) as the class of languages *L* which we can decide in **average** polynomial-time with probability **zero** of making a mistake.
- * I claim that **ZPP** = **ZPP**′.
- * The definition of **ZPP'** has a few technical problems... (see next slides)
- * we will need something called Markov's inequality too

- * Let us define **ZPP'** (for now) as the class of languages *L* which we can decide in **average** polynomial-time with probability **zero** of making a mistake.
- * I claim that **ZPP** = **ZPP**′.
- * The definition of **ZPP'** has a few technical problems... (see next slides)
- * we will need something called Markov's inequality too
- * ... but before that, we explain why (intuitively) $ZPP \subseteq ZPP'$.

- * Assume M_1 and M_2 such as here \rightarrow
- * Now run the following on input *x*: forever:

if $M_1(x,...)$ rejects: stop and reject

if $M_2(x,...)$ accepts: stop and accept

I.e., L is in **ZPP** iff there are \underline{two} poly-time rand. TMs \mathcal{M}_1 and \mathcal{M}_2 such that:

- * if $x \in L$ then $\mathcal{M}_1(x,r)$ accepts for every r [no error] $\mathcal{M}_2(x,r)$ accepts with prob. $\geq 1/2$
- * if $x \notin L$ then $\mathcal{M}_1(x,r)$ accepts with prob. $\leq 1/2$ $\mathcal{M}_2(x,r)$ rejects for every r [no error]

- * Assume M_1 and M_2 such as here \rightarrow
- * Now run the following on input *x*: forever:

if $M_1(x,...)$ rejects: stop and reject

if $M_2(x,...)$ accepts: stop and accept

I.e., L is in **ZPP** iff there are \underline{two} poly-time rand. TMs \mathcal{M}_1 and \mathcal{M}_2 such that:

- * if x ∈ L then $\mathcal{M}_1(x,r)$ accepts for every r [no error] $\mathcal{M}_2(x,r)$ accepts with prob.≥1/2
- * if $x \notin L$ then $\mathcal{M}_1(x,r)$ accepts with prob. $\leq 1/2$ $\mathcal{M}_2(x,r)$ rejects for every r [no error]

then x cannot be in L (sure)

- * Assume M_1 and M_2 such as here \rightarrow
- * Now run the following on input *x*: forever:

if $M_1(x,...)$ rejects: stop and reject

if $M_2(x,...)$ accepts: stop and accept

I.e., L is in **ZPP** iff there are $\underline{\text{two}}$ poly-time rand. TMs \mathcal{M}_1 and \mathcal{M}_2 such that:

- * if $x \in L$ then $M_1(x,r)$ accepts for every r [no error] $M_2(x,r)$ accepts with prob.≥1/2
- * if $x \notin L$ then $\mathcal{M}_1(x,r)$ accepts with prob. $\leq 1/2$ $\mathcal{M}_2(x,r)$ rejects for every r [no error]

then x cannot be in L (sure)

then x must be in L (sure)

- * Assume M_1 and M_2 such as here \rightarrow
- * Now run the following on input *x*: forever:

if $M_1(x,...)$ rejects: stop and reject

if $M_2(x,...)$ accepts: stop and accept

I.e., L is in **ZPP** iff there are \underline{two} poly-time rand. TMs \mathcal{M}_1 and \mathcal{M}_2 such that:

- * if x ∈ L then $\mathcal{M}_1(x,r)$ accepts for every r [no error] $\mathcal{M}_2(x,r)$ accepts with prob.≥1/2
- * if $x \notin L$ then $\mathcal{M}_1(x,r)$ accepts with prob. $\leq 1/2$ $\mathcal{M}_2(x,r)$ rejects for every r [no error]

then x cannot be in L (sure)

then *x* must be in *L* (sure)

Hence this machine **never makes any mistake**

- * Assume M_1 and M_2 such as here \rightarrow
- * Now run the following on input *x*: forever:

if $M_1(x,...)$ rejects: stop and reject

if $M_2(x,...)$ accepts: stop and accept

then x cannot be in L (sure)

two poly-time rand. TMs M_1 and M_2 such that:

 $\mathcal{M}_2(x,r)$ accepts with prob. $\geq 1/2$

 $\mathcal{M}_2(x,r)$ rejects for every r [no error]

* if $x \in L$ then $\mathcal{M}_1(x,r)$ accepts for every r [no error]

* if $x \notin L$ then $\mathcal{M}_1(x,r)$ accepts with prob. $\leq 1/2$

I.e., L is in **ZPP** iff there are

then *x* must be in *L* (sure)

Hence this machine never makes any mistake

It may be that $\mathcal{M}_1(x,...)$ accepted and $\mathcal{M}_2(x,...)$ rejected,

- in which case we loop
- and that happens with probability ≤1/2... why?

(if you tell me that this is even ≤1/4, you are wrong)

- * Assume M_1 and M_2 such as here \rightarrow
- * Now run the following on input *x*: forever:

if $M_1(x,...)$ rejects: stop and reject

if $M_2(x,...)$ accepts: stop and accept

I.e., L is in **ZPP** iff there are $\underline{\mathbf{two}}$ poly-time rand. TMs \mathcal{M}_1 and \mathcal{M}_2 such that:

- * if x ∈ L then $\mathcal{M}_1(x,r)$ accepts for every r [no error] $\mathcal{M}_2(x,r)$ accepts with prob.≥1/2
- * if $x \notin L$ then $\mathcal{M}_1(x,r)$ accepts with prob. $\leq 1/2$ $\mathcal{M}_2(x,r)$ rejects for every r [no error]

then x cannot be in L (sure)

then x must be in L (sure)

Hence this machine never makes any mistake

It may be that $\mathcal{M}_1(x,...)$ accepted and $\mathcal{M}_2(x,...)$ rejected,

- in which case we loop
- and that happens with probability ≤1/2... why?

(if you tell me that this is even ≤1/4, you are wrong)

We will see that this implies that the machine terminates in ≤ 2 turns of the loop on average

* All this requires us to draw arbitrarily long bitstrings

- * All this requires us to draw arbitrarily long bitstrings
- * In fact, even **infinite** bit strings (for those computations that do not terminate)

- * All this requires us to draw arbitrarily long bitstrings
- * In fact, even **infinite** bit strings (for those computations that do not terminate)
- * Requires **measure theory**: there is a unique measure μ on $\{0,1\}^{\omega}$ with σ -algebra generated by cylinders $w.\{0,1\}^{\omega}$ such that $\mu(w.\{0,1\}^{\omega}) = 1/2^{|w|}$ (Carathéodory)

- * All this requires us to draw arbitrarily long bitstrings
- * In fact, even **infinite** bit strings (for those computations that do not terminate)
- * Requires **measure theory**: there is a unique measure μ on $\{0,1\}^{\omega}$ with σ -algebra generated by cylinders $w.\{0,1\}^{\omega}$ such that $\mu(w.\{0,1\}^{\omega}) = 1/2^{|w|}$ (Carathéodory)
- * We will happily ignore this.

- * A classic probabilistic procedure (rejection sampling): forever:
 - compute something (with some random data r), x; if P(x) holds: stop and return x
- * Trick. If:
 - the random bits are independent across turns of the loop
 - and P(x) holds with **prob.** $\geq \alpha$ at each turn
 - then rejection sampling terminates in
 - $1/\alpha$ turns of the loop on average.

* A classic probabilistic procedure (rejection sampling): forever:

compute something (with some random data r), x; if P(x) holds: stop and return x

* Trick. If:

- the random bits are independent across turns of the loop
- and P(x) holds with **prob.** $\geq \alpha$ at each turn
- then rejection sampling terminates in
 - $1/\alpha$ turns of the loop on average.

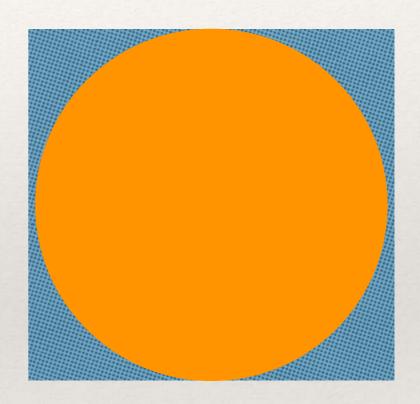
- An classic probabilistic procedure (rejection sampling):
 forever:
 - compute something (with some random data r), x; if P(x) holds: stop and return x prob. $\geq \alpha$
- * *Proof.* Let *X* be the random variable « # turns through the loop »

- An classic probabilistic procedure (rejection sampling):
 forever:
 - compute something (with some random data r), x; if P(x) holds: stop and return x prob. $\geq \alpha$
- * *Proof.* Let *X* be the random variable « # turns through the loop »
- * $Pr(X \ge n) = Pr(P \text{ failed at turns } 1, ..., n-1)$ $\le (1-\alpha)^{n-1}$ (by independence)

- * An classic probabilistic procedure (rejection sampling): forever:
 - compute something (with some random data r), x; if P(x) holds: stop and return x prob. $\geq \alpha$
- * *Proof.* Let *X* be the random variable « # turns through the loop »
- * $Pr(X \ge n) = Pr(P \text{ failed at turns } 1, ..., n-1)$ $\le (1-\alpha)^{n-1}$ (by **independence**)
- * $E(X) = \sum_{n\geq 1} n \cdot \Pr(X=n) = \sum_{n\geq 1} \Pr(X\geq n) \leq \sum_{n\geq 1} (1-\alpha)^{n-1} = 1/\alpha.$

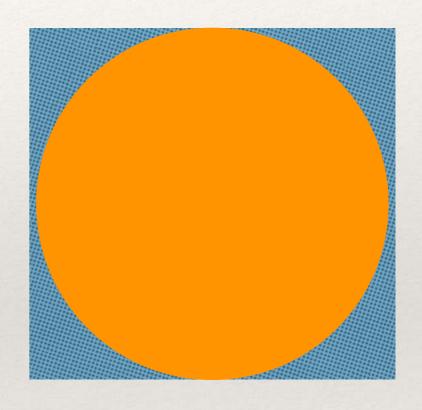
Rejection sampling: a typical application

- Draw a point inside the disc:
- * Repeatedly draw a point inside the inscribing square
 - * If it is in the disc, return it.



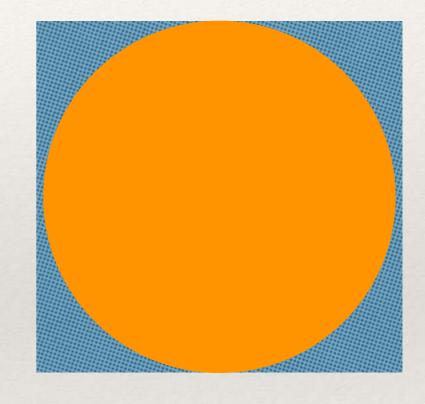
Rejection sampling: a typical application

- Draw a point inside the disc:
- * Repeatedly draw a point inside the inscribing square
 - * If it is in the disc, return it.
- Terminates in ≤4/π~ 1.27324 turns



Rejection sampling: a typical application

- Draw a point inside the disc:
- * Repeatedly draw a point inside the inscribing square
 - * If it is in the disc, return it.
- Terminates in ≤4/π~ 1.27324 turns



* (Used as first step in the **Box-Muller** procedure drawing two independent numbers with a normal distribution)

- * Assume M₁ and M₂ such as here:
- * Now run the following on input *x*: forever:

if $M_1(x,...)$ rejects: stop and reject

if $M_2(x,...)$ accepts: stop and accept

It may be that $\mathcal{M}_1(x,...)$ accepted and $\mathcal{M}_2(x,...)$ rejected,

- in which case we loop
- and that happens with probability $\leq 1/2...$ (two cases: x in L, x not in L)

I.e., L is in **ZPP** iff there are two poly-time rand. TMs \mathcal{M}_1 and \mathcal{M}_2 such that:

- * if x ∈ L then $\mathcal{M}_1(x,r)$ accepts for every r [no error] $\mathcal{M}_2(x,r)$ accepts with prob.≥1/2
- * if $x \notin L$ then $\mathcal{M}_1(x,r)$ accepts with prob. $\leq 1/2$ $\mathcal{M}_2(x,r)$ rejects for every r [no error]

then x cannot be in L (sure)

then *x* must be in *L* (sure)

Hence this machine **never makes any mistake**

- Assume M_1 and M_2 such as here:
- * Now run the following on input *x*: forever:

if $M_1(x,...)$ rejects: stop and reject

if $M_2(x,...)$ accepts: stop and accept

* if $x \notin L$ then $\mathcal{M}_1(x,r)$ accepts with prob. $\leq 1/2$

two poly-time rand. TMs M_1 and M_2 such that:

 $\mathcal{M}_2(x,r)$ accepts with prob. $\geq 1/2$

 $\mathcal{M}_2(x,r)$ rejects for every r [no error]

* if $x \in L$ then $\mathcal{M}_1(x,r)$ accepts for every r [no error]

I.e., L is in **ZPP** iff there are

then *x* must be in *L* (sure)

then *x* cannot be in *L* (sure)

Hence this machine **never**

makes any mistake

This is **rejection sampling**: stops in ≤2 turns on average hence in polytime on average.

It may be that $M_1(x,...)$ accepted and $M_2(x,...)$ rejected,

- in which case we loop
- and that happens with probability $\leq 1/2...$

(two cases: x in L, x not in L)

Markov's inequality

* Hence: $ZPP (= RP \cap coRP) \subseteq ZPP'$

 $\Pr(X \ge a.E(X)) \le 1/a.$

Let us define **ZPP'** (for now) as the class of languages *L* which we can decide in **average** polynomial-time with probability **zero** of making a mistake.

I claim that **ZPP** = **ZPP'**.

- * In order to show the reverse inclusion, we use:
- * Theorem (Markov's inequality).

 Let *X* be a **non-negative real-valued** random variable with **finite** expectation E(*X*). For every *a*>0:

Markov's inequality

* Hence: $ZPP (= RP \cap coRP) \subseteq ZPP'$

Let us define **ZPP'** (for now) as the class of languages *L* which we can decide in **average** polynomial-time with probability **zero** of making a mistake.

I claim that ZPP = ZPP'.

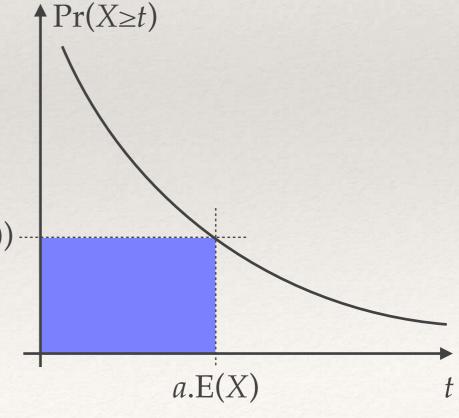
- * In order to show the reverse inclusion, we use:
- * Theorem (Markov's inequality). Let X be a non-negative real-valued random variable with finite expectation E(X). For every a>0: $Pr(X \ge a.E(X)) \le 1/a$.

Markov's inequality

Theorem (Markov's inequality).

Let X be a **non-negative real-valued** random variable with **finite** expectation E(X). For every a>0: $Pr(X \ge a. E(X)) \le 1/a$.

* *Proof.* $E(X) = \int_t Pr(X \ge t) dt$ \ge area of the blue rectangle $= a \cdot E(X) \cdot Pr(X \ge a \cdot E(X))$ Then divide out $Pr(X \ge a \cdot E(X))$ by $a \cdot E(X)$. \square



The reverse inclusion ZPP' ZPP

- * Let L in **ZPP'**, decided by \mathfrak{M} running in **average** poly. time p(n)
- Let us define **ZPP'** (for now) as the class of languages *L* which we can decide in **average** polynomial-time with probability **zero** of making a mistake.

I claim that ZPP = ZPP'. Recall $ZPP = RP \cap coRP$

running in **average** poly. time p(n) with **no** error.

* Define M_1 as follows: on input x

(and random tape r of size a. p(n))

simulate \mathcal{M} on x for at most a. p(n) steps (timeout).

If timeout reached, then accept (that may be an error).

The reverse inclusion ZPP' ZPP

- Markov on r.v. X =time taken by M on x; also let a=2.
- * $E(X) \le p(n)$ finite OK

Let us define ZPP' (for now) as the class of languages L which we can decide in average polynomial-time with probability zero of making a mistake. Recall $ZPP = RP \cap coRP$

Let L in **ZPP**', decided by MI claim that ZPP = ZPP'.

running in **average** poly. time p(n)with no error.

Define M_1 as follows: on input x

(and random tape r of size a. p(n))

simulate \mathcal{M} on x for at most a. p(n) steps (**timeout**).

If timeout reached, then **accept** (that may be an error).

The reverse inclusion ZPP' ⊆ ZPP

- * Markov on r.v. X = time taken by M on x; also let a=2.
- * $E(X) \le p(n)$ finite OK

Let L in **ZPP**', decided by Mrunning in **average** poly. time p(n) with **no** error.

Define M_1 as follows: on input x(and random tape r of size a. p(n))

Let us define **ZPP'** (for now) as the class of languages *L* which we can decide in **average** polynomial-time with probability **zero** of making a mistake.

simulate \mathcal{M} on x for at most a. p(n) steps (**timeout**). If timeout reached, then **accept** (that may be an error).

* If $x \notin L \Rightarrow \text{error} = \Pr_r(\mathcal{M}_1(x,r) \text{ accepts})$ $= \Pr(X \ge a. \ p(n)) \quad (\mathcal{M} \text{ makes no mistake})$ $\leq \Pr(X \ge a. \ E(X)) \quad (E(X) \le p(n))$ $\leq 1/a = 1/2 \qquad (\text{Markov})$

The reverse inclusion ZPP' ⊆ ZPP

- * Markov on r.v. X = time taken by M on x; also let a=2.
- * $E(X) \le p(n)$ finite OK

Let L in **ZPP**', decided by Mrunning in **average** poly. time p(n) with **no** error.

Define M_1 as follows: on input x(and random tape r of size a. p(n))

simulate M on x for at most a. p(n) steps (timeout).

If timeout reached, then **accept** (that may be an error).

Let us define **ZPP'** (for now) as the class of languages *L* which we can decide in **average** polynomial-time

```
* If x \notin L \Rightarrow \text{error} = \Pr_r(\mathcal{M}_1(x,r) \text{ accepts})
= \Pr(X \ge a. \ p(n)) \quad (\mathcal{M} \text{ makes no mistake})
\leq \Pr(X \ge a. \ E(X)) \quad (E(X) \le p(n))
\leq 1/a = 1/2 \qquad (\text{Markov})
```

* If $x \in L \Rightarrow \mathcal{M}_1(x,r)$ must accept.

The reverse inclusion ZPP' ⊆ ZPP

- * Markov on r.v. X = time taken by M on x; also let a=2.
- * $E(X) \le p(n)$ finite OK

Let L in **ZPP'**, decided by Mrunning in **average** poly. time p(n) with **no** error.

Define M_1 as follows: on input x(and random tape r of size a. p(n))

simulate M on x for at most a. p(n) steps (timeout).

If timeout reached, then **accept** (that may be an error).

Let us define **ZPP'** (for now) as the class of languages *L* which we can decide in **average** polynomial-time

```
* If x \notin L \Rightarrow \text{error} = \Pr_r(\mathcal{M}_1(x,r) \text{ accepts})
= \Pr(X \ge a. \ p(n)) \quad (\mathcal{M} \text{ makes no mistake})
\leq \Pr(X \ge a. \ E(X)) \quad (E(X) \le p(n))
\leq 1/a = 1/2 \qquad (\text{Markov})
```

- * If $x \in L \Rightarrow \mathcal{M}_1(x,r)$ must accept.
- * Hence L is in **coRP**.

The reverse inclusion ZPP' ZPP

Symmetrically:

- * Markov on r.v. X =time taken by M on x; also let a=2.
- * $E(X) \le p(n)$ finite OK

Let L in $\mathbb{Z}PP'$, decided by Mrunning in $\mathbb{Z}PP'$, decided by $\mathbb{Z}PP'$ running in $\mathbb{Z}PP'$ as follows: on input $\mathbb{Z}PP'$ as follows: on input $\mathbb{Z}PP'$ as for at most $\mathbb{Z}PP'$ as $\mathbb{Z}PP'$ running in $\mathbb{Z}PP'$ as for at most $\mathbb{Z}PP'$ running in $\mathbb{Z}PP'$ as for at most $\mathbb{Z}PP'$ running in $\mathbb{Z}PP'$ recall $\mathbb{Z}PP' = \mathbb{Z}PP'$. Recall $\mathbb{Z}PP' = \mathbb{Z}PP'$ running in $\mathbb{Z}PP' = \mathbb{Z}PP'$ running in $\mathbb{Z}PP' = \mathbb{Z}PP'$ recall $\mathbb{Z}PP' = \mathbb{Z}PP'$ running in $\mathbb{Z}PP' = \mathbb{Z}PP'$ recall $\mathbb{Z}PP' = \mathbb{Z}PP'$ recall $\mathbb{Z}PP' = \mathbb{Z}PP'$ running in $\mathbb{Z}PP' = \mathbb{Z}PP'$ recall $\mathbb{Z}PP' = \mathbb{Z}PP'$ running in $\mathbb{Z}PP' = \mathbb{Z}PP'$ recall $\mathbb{Z}PP' = \mathbb{Z}PP'$ recall

Let us define ZPP' (for now) as the class of languages L

```
* If x \in L \Rightarrow \text{error} = \Pr_r(\mathcal{M}_2(x,r) \text{ accepts} \text{ rejects})
= \Pr(X \ge a. \ p(n)) \quad (\mathcal{M} \text{ makes no mistake})
\leq \Pr(X \ge a. \ E(X)) \quad (E(X) \le p(n))
\leq 1/a = 1/2 \qquad (\text{Markov})
```

- * If $x \notin L \Rightarrow \mathcal{M}_2(x,r)$ must accept reject.
- * Hence *L* is in coRP RP.

The reverse inclusion ZPP' ZPP

Symmetrically:

- * Markov on r.v. X = time taken by M on x; also let a=2.
- * $E(X) \le p(n)$ finite OK

Let L in $\mathbb{ZPP'}$, decided by \mathbb{M} running in average poly. time p(n) with no error.

Define \mathbb{M}_2 as follows: on input x(and random tape r of size a. p(n))

simulate \mathbb{M} on x for at most a. p(n) steps (timeout).

If timeout reached, then reject that may be an error).

Let us define ZPP' (for now) as the class of languages L

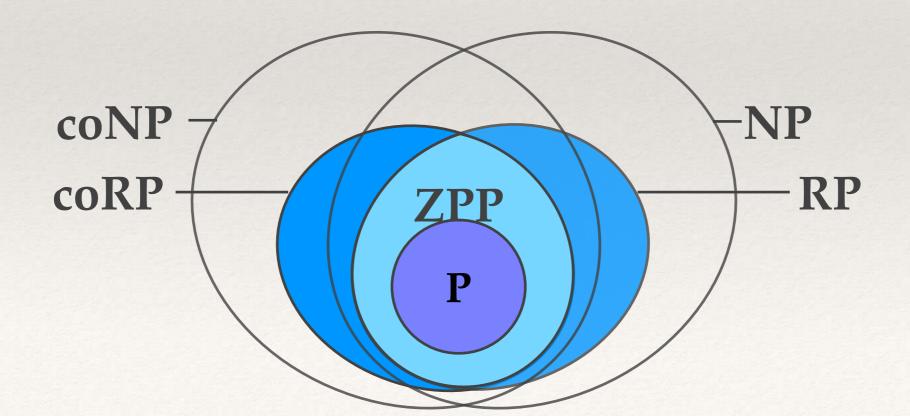
```
* If x \in L \Rightarrow \text{error} = \Pr_r(\mathcal{M}_2(x,r) \text{ accepts} \text{ rejects})
= \Pr(X \ge a. \ p(n)) \quad (\mathcal{M} \text{ makes no mistake})
\leq \Pr(X \ge a. \ E(X)) \quad (E(X) \le p(n))
\leq 1/a = 1/2 \qquad (\text{Markov})
```

- * If $x \notin L \Rightarrow \mathcal{M}_2(x,r)$ must accept reject.
- * Hence *L* is in coRP RP.

Hence L is both in **RP** and in **coRP**, namely in **ZPP**. \square

Summary on ZPP

- **⋄** Definition. $ZPP = RP \cap coRP$
- * **Theorem. ZPP** is the class of languages *L* which we can decide in **average** polynomial-time with probability **zero** of making a mistake.



Next time...

BPP: Bounded Prob. of Error Polynomial time

- * A language *L* is in **BPP** if and only if there is a **polynomial-time** TM M such that for every input *x* (of size *n*):
- * if $x \in L$ then $Pr_r[\mathcal{M}(x,r) \text{ accepts}] \ge 2/3$
- * if $x \notin L$ then $\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \leq 1/3$.

two-sided error:

 $\Pr_r \left[\mathcal{M}(x,r) \text{ errs} \right] \le 1/3$