Randomized complexity classes

Today: \textit{RP}, \textit{coRP}, and \textit{ZPP}
(what a zoo!)
Today

- Randomized Turing machines
- One-sided error: RP, coRP
- No error: ZPP
- Next time: two-sided error BPP
Randomized Turing machines
Ordinary Turing machines

- One **read-only** input tape \(x \) (size \(|x| = n \))
- As many **work tapes** as you need
 (but only a constant number!)
- (Possibly) one **write-only** output tape
We will study **probabilistic** complexity classes, where our TMs can now **draw** strings of bits at random.
We will study **probabilistic** complexity classes, where our TMs can now **draw** strings of bits at random.

No need to invent a new TM model.
Drawing strings at random

- We will study **probabilistic** complexity classes, where our TMs can now **draw** strings of bits at random.
- No need to invent a new TM model.
- **Choice 1**: use a **non-deterministic** TM model and draw execution branch at random (we won’t do that; hard to do it right).
We will study **probabilistic** complexity classes, where our TMs can now **draw** strings of bits at random.

No need to invent a new TM model.

Choice 1: use a **non-deterministic** TM model and draw execution branch at random (we won’t do that; hard to do it right).

Choice 2: … next slide
Randomized Turing machines

Two

❖ One read-only tapes
❖ As many work tapes as you need (but only a constant number!)
❖ (Possibly) one write-only output tape

\[r \rightarrow \text{random tape} \]
\[x \rightarrow \text{input tape} \]
Technical points 1/2

- We draw the random tape r uniformly at random
Technical points 1/2

- We draw the random tape r uniformly at random
- We will be interested in probabilities, e.g. $\Pr_r [\mathcal{M}(x,r) \text{ accepts}]$
Technical points 1/2

- We draw the random tape \(r \) uniformly at random.

- We will be interested in \textbf{probabilities}, e.g. \(\Pr_r [M(x,r) \text{ accepts}] \).

- Random tape must not just be read-only: we impose that \textbf{no bit on} \(r \) \textbf{is ever read twice} (otherwise bits read are not independent).
we need \(r \) to contain at least \(f(n) \) bits, where \(f(n) \) is an upper bound on the time taken by the TM.
we need r to contain at least $f(n)$ bits, where $f(n)$ is an upper bound on the time taken by the TM.

We will always assume that r is large enough
we need \(r \) to contain at least \(f(n) \) bits, where \(f(n) \) is an upper bound on the time taken by the TM.

We will always assume that \(r \) is large enough

OK for classes defined by worst-case time, will cause problems for classes defined with no a priori upper bound on time (e.g., ZPP)
Our first probabilistic class: RP

(also sometimes known as the class of *Monte Carlo* languages)
A language L is in RP if and only if there is a polynomial-time $\text{TM } M$ such that for every input x (of size n):
RP: Randomized Polynomial

- A language L is in RP if and only if there is a polynomial-time TM M such that for every input x (of size n):

 i.e. there is also a polynomial $p(n)$ / $M(x,r)$ terminates in time $\leq p(n)$, where $n = |x|$, in the worst case (and for any value of r)
A language L is in RP if and only if there is a polynomial-time TM M such that for every input x (of size n):

- $M(x,r)$ terminates in time $\leq p(n)$, where $n=|x|$, in the worst case (and for any value of r).

... hence, implicitly, we require $|r| \geq p(n)$.

(Let us say $|r| = p(n)$.)
RP: Randomized Polynomial Time

- A language L is in **RP** if and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1/2$

- if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1/2$

i.e. there is also a polynomial $p(n)$ / $M(x,r)$ terminates in time $\leq p(n)$, where $n = |x|$, in the worst case (and for any value of r)

… hence, implicitly, we require $|r| \geq p(n)$ (let us say $|r| = p(n)$)
A language L is in **RP** if and only if there is a polynomial-time TM M such that for every input x (of size n):

- if $x \in L$ then $\operatorname{Pr}_r [M(x,r) \text{ accepts}] \geq 1/2$

... hence, implicitly, we require $|r| \geq p(n)$ (let us say $|r| = p(n)$)

probability taken over all $r \in \{0,1\}^{p(n)}$
RP: Randomized Polynomial Time

- A language L is in RP if and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1/2$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$).

i.e. there is also a polynomial $p(n)$ / $M(x,r)$ terminates in time $\leq p(n)$, where $n=|x|$, in the worst case (and for any value of r)

- ... hence, implicitly, we require $|r| \geq p(n)$ (let us say $|r| = p(n)$)

- probability taken over all $r \in \{0,1\}^{p(n)}$
RP: Randomized Polynomial Time

- A language L is in RP if and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r[M(x, r) \text{ accepts}] \geq 1/2$,
 - if $x \notin L$ then $M(x, r)$ accepts for no r (i.e., $\Pr_r[M(x, r) \text{ accepts}] = 0$).

- One-sided error: we make no error if $x \notin L$.

i.e. there is also a polynomial $p(n)$ / $M(x, r)$ terminates in time $\leq p(n)$, where $n = |x|$, in the worst case (and for any value of r)

... hence, implicitly, we require $|r| \geq p(n)$ (let us say $|r| = p(n)$)

probability taken over all $r \in \{0,1\}^{p(n)}$
A language L is in RP if and only if there is a polynomial-time TM M such that for every input x (of size n):

- if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1/2$
- if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$).

One-sided error: we make no error if $x \notin L$

Perhaps paradoxically, that means that we make no error if $M(x,r)$ accepts (so please do not confuse acceptance with being in the language!)

i.e. there is also a polynomial $p(n)$ such that $M(x,r)$ terminates in time $\leq p(n)$, where $n = |x|$, in the worst case (and for any value of r)

... hence, implicitly, we require $|r| \geq p(n)$ (let us say $|r| = p(n)$)

Probability taken over all $r \in \{0,1\}^{p(n)}$
A language L is in RP if and only if there is a polynomial-time TM M such that for every input x (of size n):

- if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1/2$
- if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$).
A language L is in **RP** if and only if there is a polynomial-time TM M such that for every input x (of size n):

- if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1/2$
- if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}]=0$).

Note: **RP**-languages are **not** defined by « **RP**-machines » (there is no such notion).
RP: Randomized Polynomial time

- A language L is in RP if and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1/2$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$).

Note: RP-languages are not defined by « RP-machines » (there is no such notion)

... but if we wanted to define « RP-machines », those would be machines M such that, for every x,
- either $\Pr_r [M(x,r) \text{ accepts}] \geq 1/2$
- or $\Pr_r [M(x,r) \text{ accepts}] = 0$
\[L \text{ is in } \text{coRP} \text{ iff complement } L^c \text{ is in RP, hence:} \]
coRP

- L is in coRP iff complement L^c is in RP, hence:
 - L is in coRP if and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq \frac{1}{2}$ $M(x,r)$ accepts for every r
 - if $x \notin L$ then $M(x,r)$ accepts for no r $\Pr_r [M(x,r) \text{ accepts}] \leq \frac{1}{2}$
A motivating example for (co)RP

- **PRIMALITY**
 INPUT: a natural number p, in binary
 Q: is p prime?
A motivating example for (co)RP

PRIMALITY
INPUT: a natural number p, in binary
Q: is p prime?

- For a long time, not known to be in \mathbb{P}
 (now solved: indeed in \mathbb{P} [Agrawal, Kayal, Saxena 2004])
A motivating example for (co)RP

❖ PRIMALITY
INPUT: a natural number p, in binary
Q: is p prime?

❖ For a long time, not known to be in \mathbb{P}
(now solved: indeed in \mathbb{P} [Agrawal,Kayal,Saxena 2004])

❖ In coNP (guess a proper divisor)
A motivating example for (co)RP

❖ PRIMALITY
INPUT: a natural number \(p \), in binary
Q: is \(p \) prime?

❖ For a long time, not known to be in \(\mathbb{P} \)
(now solved: indeed in \(\mathbb{P} \) [Agrawal,Kayal,Saxena 2004])

❖ In \(\text{coNP} \) (guess a proper divisor)

❖ In \(\text{NP} \) [Pratt 1975]
A motivating example for (co)RP

❖ PRIMALITY
INPUT: a natural number \(p \), in binary
Q: is \(p \) prime?

❖ For a long time, not known to be in \(\text{P} \)
 (now solved: indeed in \(\text{P} \) [Agrawal, Kayal, Saxena 2004])

❖ In \(\text{coNP} \) (guess a proper divisor)

❖ In \(\text{NP} \) [Pratt 1975]

❖ Can also be solved efficiently with randomization…
Fermat’s little theorem

- **Thm (Fermat).** If p is prime, then for every r ($1 \leq r < p$),

 $$r^{p-1} = 1 \mod p.$$
Fermat’s little theorem

- **Thm (Fermat).** If \(p \) is prime, then for every \(r \) \((1 \leq r < p) \),
 \[r^{p-1} = 1 \mod p. \]

- \(\Rightarrow \) draw \(r \) at random in \([2, p-2]\); accept if \(r^{p-1} = 1 \mod p \).
Fermat’s little theorem

- **Thm (Fermat).** If p is prime, then for every $r \ (1 \leq r < p)$,

 $r^{p-1} \equiv 1 \mod p$.

- \Rightarrow draw r at random in $[2, p-2]$; accept if $r^{p-1} \equiv 1 \mod p$.

- **Note:** computing mod p is **efficient**:
 - size of all numbers bounded by $\text{size}(p) = O(\log p)$.
 - addition mod p in time $O(\log p)$
 - mult. mod p in time $O(\log^2 p)$ (even $O(\log^{1+\varepsilon} p)$)
Fermat’s little theorem

- **Thm (Fermat).** If p is prime, then for every r ($1 \leq r < p$), $r^{p-1} = 1 \mod p$.

- \Rightarrow draw r at random in $[2, p-2]$; accept if $r^{p-1} = 1 \mod p$.

- **Note:** computing mod p is **efficient**:
 - size of all numbers **bounded** by $\text{size}(p) = O(\log p)$.
 - addition mod p in time $O(\log p)$
 - mult. mod p in time $O(\log^2 p)$ (even $O(\log^{1+\varepsilon} p)$)

- An experiment… (next slide)
Fermat’s little theorem in practice

- **Thm (Fermat).** If p is prime, then for every r ($1 \leq r < p$),
 \[r^{p-1} = 1 \mod p. \]

- Draw r at random in $[2, p-2]$; accept if $r^{p-1} = 1 \mod p$.
Fermat’s little theorem in practice

- **Thm (Fermat).** If \(p \) is prime, then for every \(r \) (\(1 \leq r < p \)), \(r^{p-1} = 1 \mod p \).

- \(\Rightarrow \) draw \(r \) at random in \([2, p-2]\); accept if \(r^{p-1} = 1 \mod p \).

- Is 87 prime?
Fermat’s little theorem in practice

- **Thm (Fermat).** If \(p \) is prime, then for every \(r \) \((1 \leq r < p) \),
 \[rp^{p-1} = 1 \mod p. \]

- \(\Rightarrow \) draw \(r \) at random in \([2, p-2]\); accept if \(rp^{p-1} = 1 \mod p \).

- Is 87 prime?

- Draw \(r \) at random… say 25
Fermat’s little theorem in practice

- **Thm (Fermat).** If p is prime, then for every r (1 ≤ r < p), $r^{p-1} = 1 \mod p$.

- ⇒ draw r at random in [2, p–2]; accept if $r^{p-1} = 1 \mod p$.

- Is 87 prime?

- Draw r at random… say 25

- $r^{86} = 16 \mod 87$
Fermat’s little theorem in practice

- **Thm (Fermat).** If p is prime, then for every r ($1 \leq r < p$),
 \[r^{p-1} \equiv 1 \pmod{p}. \]

- \Rightarrow draw r at random in $[2, p-2]$; accept if $r^{p-1} \equiv 1 \pmod{p}$.

- Is 87 prime?

- Draw r at random… say 25

- $r^{86} = 16 \pmod{87}$

- \Rightarrow 87 is **not prime** (definitely)
Fermat’s little theorem in practice

- **Thm (Fermat).** If p is prime, then for every r ($1 \leq r < p$), $r^{p-1} = 1 \mod p$.

- \Rightarrow draw r in $[2, p-2]$; accept if $r^{p-1} = 1 \mod p$.

- Is 87 prime?
Fermat’s little theorem in practice

- **Thm (Fermat).** If p is prime, then for every $r \ (1 \leq r < p)$,

 $r^{p-1} = 1 \mod p$.

- ⇒ draw r in $[2, p-2]$; accept if $r^{p-1} = 1 \mod p$.

- Is 87 prime?

- The probability (over r) of error is:

 $2/84 \approx 0.024$
Fermat’s little theorem in practice

- Thm (Fermat). If p is prime, then for every r ($1 \leq r < p$), $r^{p-1} \equiv 1 \mod p$.

- \Rightarrow draw r in $[2, p-2]$; accept if $r^{p-1} \equiv 1 \mod p$.
Thm (Fermat). If p is prime, then for every r ($1 \leq r < p$),
\[r^{p-1} = 1 \mod p. \]

⇒ draw r in $[2, p-2]$; accept if $r^{p-1} = 1 \mod p$.

If p is prime, will succeed for every r.
Fermat’s little theorem in practice

- **Thm (Fermat).** If p is prime, then for every r $(1 \leq r < p)$,
 $rp^{-1} = 1 \mod p$.

- ⇒ draw r in $[2, p-2]$; accept if $rp^{-1} = 1 \mod p$.

- If p is prime, will succeed for every r

- Else, will fail with (hopefully) high probability (0.024 in the example, looks good); but…
Carmichael numbers

- A Carmichael number is a number p:
 - that is not prime
 - but passes all Fermat tests ($r^{p-1}=1 \mod p$ for every r)

- I.e., on which our hopes of low error fail miserably
Carmichael numbers

- A Carmichael number is a number p:
 - that is not prime
 - but passes all Fermat tests ($r^{p-1} \equiv 1 \pmod{p}$ for every r)
- I.e., on which our hopes of low error fail miserably
- Infinitely many of them [Alford, Granville, Pomerance 1994]: 561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, etc.
Carmichael numbers

- A **Carmichael number** is a number p:
 - that is **not** prime
 - but passes all Fermat tests ($r^{p-1} \equiv 1 \pmod{p}$ for every r)
- I.e., on which our hopes of low error fail miserably
- Infinitely many of them [Alford, Granville, Pomerance 1994]: 561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, etc.
- Frustrating: if p is not prime and passes at least **one** Fermat test, then it passes at least **half** of them...
The Miller-Rabin test (1/2)

- We use another basic fact: if p is prime, then the only square roots of 1 mod p are 1 and −1.
The Miller-Rabin test (1/2)

- We use another basic fact: if p is prime, then the only square roots of 1 mod p are 1 and -1
- Hence, if p is prime and odd (so $p-1 = 2^k q$, q odd):

$$
egin{array}{ccccccc}
 r^q & \ldots & r^{(2^i-1)q} & r^{(2i)q} & \ldots & r^{(2^k-1)q} & r^{(2^k)q} & \mod p \\
 \text{(don’t care \ldots \ldots don’t care)} & -1 & 1 & \ldots & 1 & 1 & 1
\end{array}
$$

(read from right to left : \leftarrow)

for some i, or:
The Miller-Rabin test (1/2)

- We use another basic fact: if p is prime, then the only square roots of 1 mod p are 1 and -1.

- Hence, if p is prime and odd (so $p-1 = 2^k q$, q odd):

$$ r^q \quad \ldots \quad r^{(2^{i-1} q)} \quad r^{(2^i q)} \quad \ldots \quad r^{(2^{k-1} q)} \quad r^{(2^k q)} \mod p $$

(read from right to left: \leftarrow)

For some i, or:

$$ \begin{array}{cccccccc}
 r^q & \ldots & r^{(2^{i-1} q)} & r^{(2^i q)} & \ldots & r^{(2^{k-1} q)} & r^{(2^k q)} \\
 1 & \ldots & 1 & 1 & \ldots & 1 & 1 \\
\end{array} \mod p $$
On input p, draw r at random:
— if the test shown here succeeds, then accept (p probably prime)
— otherwise reject (p definitely not prime)
The Miller-Rabin test (2/2)

- On input p, draw r at random:
 - if the test shown here succeeds, then **accept** (p probably prime)
 - otherwise **reject** (p definitely not prime)

- Probability of error $\leq 1/4$. Excellent! Hence:

Hence, if p is prime and odd (so $p-1 = 2^k q$, q odd):

<table>
<thead>
<tr>
<th>r^q</th>
<th>$r^{2^i q}$</th>
<th>$r^{2^{i+1} q}$</th>
<th>$r^{2^{i+2} q}$</th>
<th>\ldots</th>
<th>$r^{2^{i+k-1} q}$</th>
<th>$r^{2^k q}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>\ldots</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(read from right to left: \leftarrow)

\pmod{p}

(see also $r^q \equiv 1 \pmod{p}$ and $r^{2^i q} \equiv -1 \pmod{p}$ for some i, or:)

1. $r^q \equiv 1 \pmod{p}$
2. $r^{2^i q} \equiv -1 \pmod{p}$
3. $r^{2^{i+1} q} \equiv r^{2^{i+2} q} \equiv \ldots \equiv r^{2^{i+k-1} q} \equiv r^{2^k q} \equiv 1 \pmod{p}$
The Miller-Rabin test (2/2)

- On input p, draw r at random:
 - if the test shown here: succeeds, then accept (p probably prime)
 - otherwise reject (p definitely not prime)

- Probability of error $\leq 1/4$. Excellent! Hence:

 Theorem. PRIMALITY is in coRP.
The Miller-Rabin test (2/2)

- On input \(p \), draw \(r \) at random:
 — if the test shown here succeeds, then accept \((p \text{ probably prime})\)
 — otherwise reject \((p \text{ definitely not prime})\)

- Probability of error \(\leq 1/4 \). Excellent! Hence:

 - **Theorem.** PRIMALITY is in \(\text{coRP} \).

- (Superseded by [AKS04]… but Rabin-Miller works in log space, not [AKS04]!)
To know more

Notes on Primality Testing
And Public Key Cryptography
Part 1: Randomized Algorithms
Miller–Rabin and Solovay–Strassen Tests

Jean Gallier and Jocelyn Quaintance
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104, USA
e-mail: jean@cis.upenn.edu

© Jean Gallier
February 27, 2019

https://www.cis.upenn.edu/~jean/RSA-primality-testing.pdf
Error reduction

- What is so special about error $1/2$?

A language L is in RP if and only if there is a polynomial-time TM M such that for every input x (of size n):
- if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1/2$
- if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$).
Error reduction

❖ What is so special about error 1/2?
❖ Nothing!

A language L is in RP if and only if there is a polynomial-time TM M such that for every input x (of size n):

- if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1/2$
- if $x \not\in L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$).

error = 1 − 1/2
(= 1/2 here)
Error reduction

- What is so special about error $1/2$?
- Nothing!

A language L is in **RP** if and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1/2$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}]=0$).

A language L is in **RP(ε)** and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1-\varepsilon$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}]=0$).
Error reduction

❖ What is so special about error 1/2?
❖ Nothing!

❖ Theorem. \(\forall \varepsilon \in]0, 1[, \ RP = \text{RP}(\varepsilon). \)

❖ A language \(L \) is in \(\text{RP} \) if and only if there is a \textbf{polynomial-time} TM \(M \) such that for every input \(x \) (of size \(n \)):
 ❖ if \(x \in L \) then \(\Pr_r [M(x,r)\text{ accepts}] \geq 1/2 \)
 ❖ if \(x \notin L \) then \(M(x,r) \) accepts for no \(r \) (i.e., \(\Pr_r [M(x,r)\text{ accepts}]=0 \)).

❖ A language \(L \) is in \(\text{RP}(\varepsilon) \) and only if there is a \textbf{polynomial-time} TM \(M \) such that for every input \(x \) (of size \(n \)):
 ❖ if \(x \in L \) then \(\Pr_r [M(x,r)\text{ accepts}] \geq 1-\varepsilon \)
 ❖ if \(x \notin L \) then \(M(x,r) \) accepts for no \(r \) (i.e., \(\Pr_r [M(x,r)\text{ accepts}]=0 \)).

error = 1 – 1/2
(= 1/2 here)

error = 1 – 1/2
(= 1/2 here)

error = \varepsilon
Error reduction

- What is so special about error 1/2?
 - Nothing!

- Theorem. \(\forall \varepsilon \in]0, 1[\), \(\text{RP} = \text{RP}(\varepsilon) \).
 - Note: \(\text{RP} = \text{RP}(1/2) \) (def.)

- A language \(L \) is in \(\text{RP} \) if and only if there is a polynomial-time TM \(M \) such that for every input \(x \) (of size \(n \)):
 - if \(x \in L \) then \(\Pr_r [M(x,r) \text{ accepts}] \geq 1/2 \)
 - if \(x \notin L \) then \(M(x,r) \) accepts for no \(r \) (i.e., \(\Pr_r [M(x,r) \text{ accepts}]=0 \)).

- A language \(L \) is in \(\text{RP}(\varepsilon) \) if and only if there is a polynomial-time TM \(M \) such that for every input \(x \) (of size \(n \)):
 - if \(x \in L \) then \(\Pr_r [M(x,r) \text{ accepts}] \geq 1-\varepsilon \)
 - if \(x \notin L \) then \(M(x,r) \) accepts for no \(r \) (i.e., \(\Pr_r [M(x,r) \text{ accepts}]=0 \)).

- Error = 1 - 1/2 (= 1/2 here)
Error reduction: the easy direction

- Clearly, if $\eta \leq \varepsilon$ then $\text{RP}(\eta) \subseteq \text{RP}(\varepsilon)$

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1-\varepsilon$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$)

- Error reduction: the easy direction

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1-\varepsilon$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$).
Error reduction: the easy direction

- Clearly, if $\eta \leq \varepsilon$ then $\text{RP}(\eta) \subseteq \text{RP}(\varepsilon)$
- Proof: take any $L \in \text{RP}(\eta)$ … I’ll let you finish the argument

A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
- if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1-\varepsilon$
- if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$)
Error reduction: the easy direction

- Clearly, if $\eta \leq \varepsilon$ then $\text{RP}(\eta) \subseteq \text{RP}(\varepsilon)$
- Proof: take any $L \in \text{RP}(\eta)$
 ... I’ll let you finish the argument
- Note: $\text{RP}(0)=\text{P}$ (believed $\not= \text{RP}$)
 $\text{RP}(1)=\{\text{all languages}\}$ (why?)

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1-\varepsilon$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$).
The hard direction: repeating experiments

- Let $L \in \text{RP}(\epsilon)$, $0 < \eta < \epsilon < 1$
- On input x, let us do the following (at most) K times:

- A language L is in $\text{RP}(\epsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1 - \epsilon$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$, $\text{error} = \epsilon$)
The hard direction: repeating experiments

- Let $L \in \text{RP}(\varepsilon)$, $0<\eta<\varepsilon<1$
- On input x, let us do the following (at most) K times:
 - Draw r at random, simulate $M(x,r)$ and:

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1-\varepsilon$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$, error $= \varepsilon$)
The hard direction: repeating experiments

- Let $L \in \text{RP}(\varepsilon)$, $0<\eta<\varepsilon<1$

- On input x, let us do the following (at most) K times:
 - Draw r at random, simulate $M(x, r)$ and:
 - If $M(x, r)$ accepts, then exit the loop and accept;

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1-\varepsilon$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$).

Remember: if $M(x, r)$ accepts, then x must be in L.
The hard direction: repeating experiments

- Let \(L \in \text{RP}(\varepsilon), \, 0 < \eta < \varepsilon < 1 \)

- On input \(x \), let us do the following (at most) \(K \) times:
 - Draw \(r \) at random, simulate \(M(x, r) \) and:
 - If \(M(x, r) \) accepts, then exit the loop and accept;
 - Otherwise, proceed and loop.

Remember: if \(M(x, r) \) accepts, then \(x \) must be in \(L \).
The hard direction: repeating experiments

- Let $L \in \text{RP}(\varepsilon)$, $0 < \eta < \varepsilon < 1$

- On input x, let us do the following (at most) K times:
 - Draw r at random, simulate $M(x, r)$ and:
 - If $M(x, r)$ accepts, then exit the loop and accept;
 - Otherwise, proceed and loop.
- At the end of the loop, reject.

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x, r) \text{ accepts}] \geq 1 - \varepsilon$
 - if $x \notin L$ then $M(x, r)$ accepts for no r (i.e., $\Pr_r [M(x, r) \text{ accepts}] = 0$),

Remember: if $M(x, r)$ accepts, then x must be in L.
Repeating experiments (pretty) formally

- We have defined a new randomized TM $M'(x, r[1]#...#r[K])$ by:

 - for $i=1$ to K:
 - If $M(x, r[i])$ accepts, then exit the loop and accept;
 - reject.

Remember: if $M(x, r[i])$ accepts, then x must be in L.

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1-\varepsilon$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$), $\text{error} = \varepsilon$
Acceptance: 1. if $x \in L$

- If $x \in L$ (recall L in $\text{RP}(\varepsilon)$), then letting $r=r[1]# \ldots # r[K]$, $\Pr_r(M'(x, r) \text{ rejects})$

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-timeTM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x, r) \text{ accepts}] \geq 1-\varepsilon$
 - if $x \notin L$ then $M(x, r)$ accepts for no r (i.e., $\Pr_r [M(x, r) \text{ accepts}] = 0$, $\text{error} = \varepsilon$)

- Define $M'(x, r[1]# \ldots # r[K])$ by:
 - for $i=1$ to K:
 - If $M(x, r[i])$ accepts, then exit the loop and accept;
 - reject.
Acceptance: 1. if \(x \in L \)

- If \(x \in L \) (recall \(L \) in \(\text{RP}(\varepsilon) \)), then letting \(r = r[1]\#\ldots\#r[K] \), \(\Pr_r(\mathcal{M}'(x, r) \text{ rejects}) \)
 \[= \Pr_r(\forall i = 1..K, \mathcal{M}(x, r[i]) \text{ rejects}) \]

- A language \(L \) is in \(\text{RP}(\varepsilon) \) and only if there is a polynomial-time TM \(\mathcal{M} \) such that for every input \(x \) (of size \(n \)):
 - if \(x \in L \) then \(\Pr_r[\mathcal{M}(x,r) \text{ accepts}] \geq 1 - \varepsilon \)
 - if \(x \notin L \) then \(\mathcal{M}(x,r) \text{ accepts for no } r \) (i.e., \(\Pr_r[\mathcal{M}(x,r) \text{ accepts}] = 0 \), \(\varepsilon \text{ error} = \varepsilon \))

- Define \(\mathcal{M}'(x, r[1]\#\ldots\#r[K]) \) by:
 - for \(i = 1 \) to \(K \):
 - If \(\mathcal{M}(x, r[i]) \text{ accepts} \), then exit the loop and accept;
 - reject.
Acceptance: 1. if $x \in L$

- If $x \in L$ (recall L in $\text{RP}(\epsilon)$), then letting $r=r[1]\#\ldots\#r[K]$, \(\Pr_r(M'(x, r) \text{ rejects}) \)
 - $= \Pr_r(\forall i=1..K, M(x, r[i]) \text{ rejects})$
 - $= \prod_{i=1..K} \Pr_{r[i]}(M(x, r[i]) \text{ rejects})$ (independence)

- A language L is in $\text{RP}(\epsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1-\epsilon$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$, error $= \epsilon$)

Define $M'(x, r[1]\#\ldots\#r[K])$ by:

- for $i=1$ to K:
 - If $M(x, r[i])$ accepts, then exit the loop and accept;
 - reject.
Acceptance: 1. if \(x \in L \)

- If \(x \in L \) (recall \(L \) in \(\text{RP}(\varepsilon) \)), then
 letting \(r=r[1]\#\ldots\#r[K] \),
 \(\Pr_r(M'(x, r) \text{ rejects}) \)
 \[= \Pr_r(\forall i=1..K, M(x, r[i]) \text{ rejects})\]
 \[= \prod_{i=1..K} \Pr_{r[i]}(M(x, r[i]) \text{ rejects}) \]
 (independence)
 \[\leq \varepsilon^K\]

- A language \(L \) is in \(\text{RP}(\varepsilon) \) and only if
 there is a polynomial-time TM \(M \)
 such that for every input \(x \) (of size \(n \)):
 - if \(x \in L \) then \(\Pr_r [M(x,r) \text{ accepts}] \geq 1-\varepsilon \)
 - if \(x \notin L \) then \(M(x,r) \) accepts for no \(r \)
 (i.e., \(\Pr_r [M(x,r) \text{ accepts}] = 0 \) error = \(\varepsilon \))

- Define \(M'(x, r[1]\ldots\#r[K]) \) by:
 - for \(i=1 \) to \(K \):
 - If \(M(x, r[i]) \) accepts, then exit the loop and accept;
 - reject.
Acceptance: 1. if \(x \in L \)

- If \(x \in L \) (recall \(L \) in RP(\(\varepsilon \))), then letting \(r = r[1]# \ldots r[K] \),
 \[\Pr_r(M'(x, r) \text{ rejects}) \]
 - \(= \Pr_r(\forall i=1..K, M(x, r[i]) \text{ rejects}) \)
 - \(= \prod_{i=1..K} \Pr_{r[i]}(M(x, r[i]) \text{ rejects}) \) (independence)
 - \(\leq \varepsilon^K \)
 - \(\Rightarrow \) If \(x \in L \) then \(\Pr_r(M'(x, r) \text{ accepts}) \geq 1-\varepsilon^K \)

- A language \(L \) is in RP(\(\varepsilon \)) and only if there is a polynomial-time TM \(M \) such that for every input \(x \) (of size \(n \)):
 - if \(x \in L \) then \(\Pr_r[M(x, r) \text{ accepts}] \geq 1-\varepsilon \)
 - if \(x \notin L \) then \(M(x, r) \text{ accepts} \) for no \(r \)
 (i.e., \(\Pr_r[M(x, r) \text{ accepts}] = 0 \), \(\text{error} = \varepsilon \))

Define \(M'(x, r[1]#\ldots#r[K]) \) by:
- for \(i=1 \) to \(K \):
 - If \(M(x, r[i]) \text{ accepts} \), then exit the loop and accept;
 - reject.
Acceptance: 2. if $x \notin L$; Complexity

- If $x \in L$ then
 \[\Pr_r(M'(x, r) \text{ accepts}) \geq 1 - \varepsilon^K \]

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1 - \varepsilon$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$, error = ε)

- Define $M'(x, r[1]\#\ldots\#r[K])$ by:
 - for $i=1$ to K:
 - If $M(x, r[i])$ accepts, then exit the loop and accept;
 - reject.
Acceptance: 2. if $x \notin L$; Complexity

- If $x \in L$ then
 $\Pr_r(M'(x, r) \text{ accepts}) \geq 1-\varepsilon^K$

- If $x \notin L$, then
 $M'(x, r)$ accepts for no r

A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):

- if $x \in L$ then $\Pr_r [M(x, r) \text{ accepts}] \geq 1-\varepsilon$
- if $x \notin L$ then $M(x, r)$ accepts for no r
 (i.e., $\Pr_r [M(x, r) \text{ accepts}] = 0$, error = ε)

Define $M'(x, r[1]\#\ldots\#r[K])$ by:

- for $i = 1$ to K:
 - If $M(x, r[i])$ accepts, then exit the loop and accept;
 - reject.
Acceptance: 2. if $x \not\in L$; Complexity

- If $x \in L$ then
 $\Pr_r(M'(x, r) \text{ accepts}) \geq 1 - \epsilon^K$

- If $x \not\in L$, then
 $M'(x, r) \text{ accepts for no } r$

- If M runs in time $p(n)$, then
 M' runs in time $O(Kp(n))$

A language L is in $\text{RP}(\epsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):

- if $x \in L$ then $\Pr_r[M(x, r) \text{ accepts}] \geq 1 - \epsilon$

- if $x \not\in L$ then $M(x, r)$ accepts for no r (i.e., $\Pr_r[M(x, r) \text{ accepts}] = 0$)

Define $M'(x, r[1]\#\ldots\#r[K])$ by:

1. for $i = 1$ to K:
 - If $M(x, r[i])$ accepts, then exit the loop and accept;
 - reject.
Acceptance: 2. if \(x \notin L \); Complexity

- If \(x \in L \) then
 \(\Pr_r(M'(x, r) \text{ accepts}) \geq 1-\varepsilon^K \)

- If \(x \notin L \), then
 \(M'(x, r) \) accepts for no \(r \)

- If \(M \) runs in time \(p(n) \), then
 \(M' \) runs in time \(O(Kp(n)) \)

- Hence \(L \) is in \(\text{RP}(\varepsilon^K) \)

- A language \(L \) is in \(\text{RP}(\varepsilon) \) and only if there is a \textbf{polynomial-time} TM \(M \) such that for every input \(x \) (of size \(n \)):
 - if \(x \in L \) then \(\Pr_r[\{M(x,r) \text{ accepts}] \geq 1-\varepsilon \)
 - if \(x \notin L \) then \(M(x,r) \) accepts for no \(r \)
 (i.e., \(\Pr_r[\{M(x,r) \text{ accepts}] \leq \varepsilon \))

- Define \(M'(x, r[1]\#\ldots\#r[K]) \) by:
 - for \(i=1 \) to \(K \):
 - If \(M(x, r[i]) \) accepts, then exit the loop and accept;
 - reject.
The hard direction continued

- If $x \in L$ (recall L in $\text{RP}(\varepsilon)$) then $\Pr_r(M'(x, r) \text{ accepts}) \geq 1 - \varepsilon^K$

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a **polynomial-time** TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r[M(x, r) \text{ accepts}] \geq 1 - \varepsilon$
 - if $x \notin L$ then $M(x, r)$ accepts for no r (i.e., $\Pr_r[M(x, r) \text{ accepts}] = 0$).

- Define $M'(x, r[1]\#\ldots\#r[K])$ by:
 - for $i=1$ to K:
 - If $M(x, r[i])$ accepts, then exit the loop and accept;
 - reject.
The hard direction continued

- If $x \in L$ (recall L in $\text{RP}(\varepsilon)$) then $\Pr_r(\mathcal{M}'(x, r) \text{ accepts}) \geq 1 - \varepsilon^K$
- If $x \not\in L$, then $\mathcal{M}'(x, r)$ accepts for no r

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM \mathcal{M} such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r[\mathcal{M}(x, r) \text{ accepts}] \geq 1 - \varepsilon$
 - if $x \not\in L$ then $\mathcal{M}(x, r)$ accepts for no r (i.e., $\Pr_r[\mathcal{M}(x, r) \text{ accepts}] = 0$, error = ε

- Define $\mathcal{M}'(x, r[1]\# \ldots \# r[K])$ by:
 - for $i=1$ to K:
 - If $\mathcal{M}(x, r[i])$ accepts, then exit the loop and accept;
 - reject.
The hard direction continued

- If $x \in L$ (recall L in $\text{RP}(\varepsilon)$) then $\Pr_r(M'(x, r) \text{ accepts}) \geq 1-\varepsilon^K$
- If $x \notin L$, then $M'(x, r)$ accepts for no r
- If M runs in time $p(n)$, then M' runs in time $O(Kp(n))$

A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
- if $x \in L$ then $\Pr_r [M(x, r) \text{ accepts}] \geq 1-\varepsilon$
- if $x \notin L$ then $M(x, r)$ accepts for no r (i.e., $\Pr_r [M(x, r) \text{ accepts}] = 0$)

Define $M'(x, r[1]\#\ldots\#r[K])$ by:
- for $i=1$ to K:
 - If $M(x, r[i])$ accepts, then exit the loop and accept;
 - reject.
The hard direction continued

- If $x \in L$ (recall L in $\text{RP}(\varepsilon)$) then $\Pr_r(M'(x, r) \text{ accepts}) \geq 1 - \varepsilon^K$
- If $x \notin L$, then $M'(x, r)$ accepts for no r
- If M runs in time $p(n)$, then M' runs in time $O(Kp(n))$
- Hence L is in $\text{RP}(\varepsilon^K)$.

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x, r) \text{ accepts}] \geq 1 - \varepsilon$
 - if $x \notin L$ then $M(x, r)$ accepts for no r (i.e., $\Pr_r [M(x, r) \text{ accepts}] = 0$, error $= \varepsilon$)

- Define $M'(x, r[1]\#\ldots\#r[K])$ by:
 - for $i=1$ to K:
 - If $M(x, r[i])$ accepts, then exit the loop and accept;
 - reject.
The hard direction: the end

- A language L is in $\text{RP}(\epsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1-\epsilon$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$), $\text{error} = \epsilon$

- Define $M'(x, r[1]\#...\#r[K])$ by:
 - for $i=1$ to K:
 - If $M(x, r[i])$ accepts, then exit the loop and accept;
 - reject.
The hard direction: the end

- We have shown that every language L in $\text{RP}(\varepsilon)$ is in $\text{RP}(\varepsilon^K)$ (for any $\varepsilon \in [0,1]$, $K \geq 1$)

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1-\varepsilon$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$, $\text{error} = \varepsilon$)

- Define $M'(x, r[1] \# \ldots \# r[K])$ by:
 - for $i=1$ to K:
 - If $M(x, r[i])$ accepts, then exit the loop and accept;
 - reject.
The hard direction: the end

- We have shown that every language \(L \) in \(\text{RP}(\varepsilon) \) is in \(\text{RP}(\varepsilon^K) \) (for any \(\varepsilon \in [0,1] \), \(K \geq 1 \)).

- If \(0 < \eta < \varepsilon < 1 \), choose \(K \) large enough so that \(\varepsilon^K \leq \eta \) (explicitly, \(K \geq \eta / \log \varepsilon \)).

- A language \(L \) is in \(\text{RP}(\varepsilon) \) and only if there is a polynomial-time TM \(M \) such that for every input \(x \) (of size \(n \)):
 - if \(x \in L \) then \(\Pr_r [M(x,r) \text{ accepts}] \geq 1 - \varepsilon \)
 - if \(x \notin L \) then \(M(x,r) \) accepts for no \(r \) (i.e., \(\Pr_r [M(x,r) \text{ accepts}] = 0 \)).

Define \(M'(x, r[1]\# \ldots \# r[K]) \) by:
- for \(i = 1 \) to \(K \):
 - If \(M(x, r[i]) \) accepts, then exit the loop and accept;
 - reject.
The hard direction: the end

- We have shown that every language L in $\text{RP}(\varepsilon)$ is in $\text{RP}(\varepsilon^K)$ (for any $\varepsilon \in [0,1]$, $K \geq 1$).

- If $0 < \eta < \varepsilon < 1$, choose K large enough so that $\varepsilon^K \leq \eta$ (explicitly, $K \geq \eta / \log \varepsilon$).

- Then L is in $\text{RP}(\eta)$. □

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1 - \varepsilon$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$, $\text{error} = \varepsilon$).

- Define $M'(x, r[1] \# \ldots \# r[K])$ by:
 - for $i = 1$ to K:
 - If $M(x, r[i])$ accepts, then exit the loop and accept;
 - reject.
Can we do even better?

- A language \(L \) is in \(\textbf{RP}(\varepsilon) \) and only if there is a polynomial-time TM \(M \) such that for every input \(x \) (of size \(n \)):
 - if \(x \in L \) then \(\Pr_r [M(x,r) \text{ accepts}] \geq 1 - \varepsilon \)
 - if \(x \notin L \) then \(M(x,r) \) accepts for no \(r \) (i.e., \(\Pr_r [M(x,r) \text{ accepts}] = 0 \), error = \(\varepsilon \))
Can we do even better?

- Hence we define the same class with error \(\varepsilon = 0.000000000001 \)

- A language \(L \) is in \(\text{RP}(\varepsilon) \) and only if there is a polynomial-time TM \(M \) such that for every input \(x \) (of size \(n \)):
 - If \(x \in L \) then \(\Pr_r [M(x,r) \text{ accepts}] \geq 1 - \varepsilon \)
 - If \(x \notin L \) then \(M(x,r) \) accepts for no \(r \) (i.e., \(\Pr_r [M(x,r) \text{ accepts}] = 0 \))
Can we do even better?

- Hence we define the same class with error $\varepsilon = 0.000000000001$
- ... or with error $\varepsilon = 0.9999999999999999$!

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a **polynomial-time** TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1 - \varepsilon$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$).

 \[\text{error} = \varepsilon \]
Can we do even better?

- Hence we define the same class with error $\epsilon = 0.000000000000001$
- ... or with error $\epsilon = 0.99999999999999!$
- Can we make ϵ go to 0 as $n \to \infty$?

- A language L is in $\text{RP}(\epsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1 - \epsilon$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$).
The hard direction revisited

- If \(x \in L \) (recall \(L \) in \(\text{RP}(\varepsilon) \)) then
 \(\Pr_r(M'(x, r) \text{ accepts}) \geq 1 - \varepsilon^K \)

- If \(x \notin L \), then
 \(M'(x, r) \) accepts for no \(r \)

- If \(M \) runs in time \(p(n) \), then
 \(M' \) runs in time \(O(Kp(n)) \)

- Hence \(L \) is in \(\text{RP}(\varepsilon^K) \).

- A language \(L \) is in \(\text{RP}(\varepsilon) \) and only if there is a polynomial-time TM \(M \) such that for every input \(x \) (of size \(n \)):
 - if \(x \in L \) then \(\Pr_r[M(x,r) \text{ accepts}] \geq 1 - \varepsilon \)
 - if \(x \notin L \) then \(M(x,r) \) accepts for no \(r \) (i.e., \(\Pr_r[M(x,r) \text{ accepts}] = 0 \)) error = \(\varepsilon \)

- Define \(M'(x, r[1]\#\ldots\#r[K]) \) by:
 - for \(i = 1 \) to \(K \):
 - If \(M(x, r[i]) \) accepts, then exit the loop and accept;
 - reject.
Let us take $K = a$ polynomial $q(n)$.

- If $x \in L$ (recall L in $\text{RP}(\varepsilon)$) then $\Pr_r(M'(x, r) \text{ accepts}) \geq 1 - \varepsilon^K$
- If $x \notin L$, then $M'(x, r)$ accepts for no r
- If M runs in time $p(n)$, then M' runs in time $O(Kp(n))$
- Hence L is in $\text{RP}(\varepsilon^K)$.

A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
- if $x \in L$ then $\Pr_r [M(x, r) \text{ accepts}] \geq 1 - \varepsilon$
- if $x \notin L$ then $M(x, r)$ accepts for no r (i.e., $\Pr_r [M(x, r) \text{ accepts}] = 0$)

Define $M'(x, r[1]\#\ldots\#r[K])$ by:
- For $i=1$ to K:
 - If $M(x, r[i])$ accepts, then exit the loop and accept;
 - reject.
The hard direction revisited

- If $x \in L$ (recall L in $\text{RP}(\varepsilon)$) then
 $\Pr_r(M'(x, r) \text{ accepts}) \geq 1 - \varepsilon^K$

- If $x \notin L$, then
 $M'(x, r) \text{ accepts for no } r$

- If M runs in time $p(n)$, then M' runs in time $O(Kp(n))$

- Hence L is in $\text{RP}(\varepsilon^K)$.

A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):

- if $x \in L$ then $\Pr_r [M(x, r) \text{ accepts}] \geq 1 - \varepsilon$

- if $x \notin L$ then $M(x, r)$ accepts for no r (i.e., $\Pr_r [M(x, r) \text{ accepts}] = 0$).

Let us take $K = \text{a polynomial } q(n)$

$\text{Define } M'(x, r[1]\#...\#r[K]) \text{ by:}$

$\text{for } i=1 \text{ to } K:$

- If $M(x, r[i]) \text{ accepts, then exit the loop and accept;}$
- reject.

$=O(q(n)p(n))$, still polynomial time
The hard direction revisited

- If $x \in L$ (recall L in $\text{RP}(\epsilon)$) then $\Pr_r(M'(x, r) \text{ accepts}) \geq 1 - \epsilon^K$
- If $x \notin L$, then $M'(x, r)$ accepts for no r
- If M runs in time $p(n)$, then M' runs in time $O(Kp(n))$
- Hence L is in $\text{RP}(\epsilon^K)$.

Let us take $K = a$ polynomial $q(n)$

A language L is in $\text{RP}(\epsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
- if $x \in L$ then $\Pr_r [M(x, r) \text{ accepts}] \geq 1 - \epsilon$
- if $x \notin L$ then $M(x, r)$ accepts for no r
 (i.e., $\Pr_r [M(x, r) \text{ accepts}] = 0$)

Define $M'(x, r[1]\#\ldots\#r[K])$ by:
- for $i=1$ to K:
 - If $M(x, r[i])$ accepts, then exit the loop and accept;
 - reject.

$\text{error } \epsilon^K = \epsilon q(n)$
(exponentially small)

$= O(q(n)p(n))$, still polynomial time
Let \(\varepsilon = 1/2 \). We have proved:

Theorem. \(\text{RP} = \text{RP}(1/2^{q(n)}) \) for every polynomial \(q(n) \).

I.e., error can be made exponentially small.

(Note: \(\text{RP}(\varepsilon) \) called \(\cup_{p(n)} \text{RTIME}(p(n),p(n),0,\varepsilon) \) in the notes: ignore the complication)

A language \(L \) is in \(\text{RP}(\varepsilon) \) and only if there is a polynomial-time TM \(M \) such that for every input \(x \) (of size \(n \)):

- if \(x \in L \) then \(\Pr_r [M(x,r) \text{ accepts}] \geq 1 - \varepsilon \)
- if \(x \notin L \) then \(M(x,r) \) accepts for no \(r \) (i.e., \(\Pr_r [M(x,r) \text{ accepts}] = 0 \))

\(\varepsilon \) error = \(\varepsilon \)
Let $\varepsilon = 1/2$. We have proved:

Theorem. $\text{RP} = \text{RP}(1/2^{q(n)})$

for every polynomial $q(n)$.

I.e., error can be made exponentially small.

(Note: $\text{RP}(\varepsilon)$ called $\cup_{p(n)} \text{RTIME}(p(n), p(n), 0, \varepsilon)$ in the notes: ignore the complication)

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1 - \varepsilon$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts} | x \notin L] = 0$)

Exercise: show that, conversely:

Theorem. $\text{RP} = \text{RP}(1 - 1/q(n))$

for every polynomial $q(n)$.

I.e., error can be assumed « polynomially large » as well.
Relation to ordinary classes

- **Theorem.** \(P \subseteq \text{RP} \subseteq \text{NP} \).

- **Proof.** First,
 \[P = \text{RP}(0) \subseteq \text{RP}(1/2) = \text{RP} \]

- A language \(L \) is in \(\text{RP} \) if and only if there is a polynomial-time TM \(M \) such that for every input \(x \) (of size \(n \)):
 - if \(x \in L \) then \(\Pr_r [M(x,r) \text{ accepts}] \geq 1/2 \)
 - if \(x \notin L \) then \(M(x,r) \text{ accepts for no } r \)
 (i.e., \(\Pr_r [M(x,r) \text{ accepts}] = 0 \)).
Relation to ordinary classes

- **Theorem.** \(P \subseteq \text{RP} \subseteq \text{NP} \).

- **Proof.** First, \(P = \text{RP}(0) \subseteq \text{RP}(1/2) = \text{RP} \).

- Second, let \(L \in \text{RP} \).

- A language \(L \) is in \(\text{RP} \) if and only if there is a polynomial-time TM \(M \) such that for every input \(x \) (of size \(n \)):
 - if \(x \in L \) then \(\Pr_r [M(x,r) \text{ accepts}] \geq 1/2 \)
 - if \(x \notin L \) then \(M(x,r) \) accepts for no \(r \) (i.e., \(\Pr_r [M(x,r) \text{ accepts}] = 0 \)).
Theorem. \(\mathcal{P} \subseteq \mathcal{RP} \subseteq \mathcal{NP} \).

Proof. First,
\(\mathcal{P} = \mathcal{RP}(0) \subseteq \mathcal{RP}(1/2) = \mathcal{RP} \).

Second, let \(L \in \mathcal{RP} \).

If \(x \in L \Rightarrow \) for some \(r \),
\(M(x, r) \) accepts.

A language \(L \) is in \(\mathcal{RP} \) if and only if there is a polynomial-time TM \(M \) such that for every input \(x \) (of size \(n \)):

- if \(x \in L \) then \(\Pr_r [M(x, r) \text{ accepts}] \geq 1/2 \)
- if \(x \notin L \) then \(M(x, r) \) accepts for no \(r \)
 (i.e., \(\Pr_r [M(x, r) \text{ accepts}] = 0 \)).

(in fact, for at least half of them!)
Relation to ordinary classes

- **Theorem.** $P \subseteq RP \subseteq NP$.

- **Proof.** First,

 $P = RP(0) \subseteq RP(1/2) = RP$

- Second, let $L \in RP$.

 - If $x \in L \Rightarrow$ for some r, $M(x, r)$ accepts

 - If $x \notin L \Rightarrow$ for no r.

- A language L is in RP if and only if there is a **polynomial-time** TM M such that for every input x (of size n):

 - if $x \in L$ then $Pr_r [M(x, r) \text{ accepts}] \geq 1/2$

 - if $x \notin L$ then $M(x, r)$ accepts for no r (i.e., $Pr_r [M(x, r) \text{ accepts}] = 0$).

 (in fact, for at least half of them!)
Theorem. $P \subseteq RP \subseteq NP$.

Proof. First,
$P=RP(0) \subseteq RP(1/2) = RP$

Second, let $L \in RP$.

- If $x \in L \Rightarrow$ for some r, $M(x, r)$ accepts
- If $x \notin L \Rightarrow$ for no r. (in fact, for at least half of them!)

Hence $L = \{x \mid \exists r, M(x, r) \text{ accepts}\}$ is in NP. \Box

A language L is in RP if and only if there is a polynomial-time TM M such that for every input x (of size n):
- if $x \in L$ then $Pr_r [M(x, r) \text{ accepts}] \geq 1/2$
- if $x \notin L$ then $M(x, r)$ accepts for no r (i.e., $Pr_r [M(x, r) \text{ accepts}] = 0$).
Our second probabilistic class: ZPP

(also known as the class of Las Vegas languages)
ZPP

- ZPP = Zero Probability of error Polynomial-time
ZPP

- ZPP = Zero Probability of error Polynomial-time
- Usually defined as the class of languages L which we can decide in average polynomial-time (not worst-case!) with probability zero of making a mistake.
ZPP

- **ZPP = Zero Probability of error Polynomial-time**

- Usually defined as the class of languages L which we can decide in **average** polynomial-time (not worst-case!) with probability **zero** of making a mistake.

- Alternate definition:
 \[\text{ZPP} = \text{RP} \cap \text{coRP} \]
ZPP

- **ZPP = Zero Probability of error Polynomial-time**
- Usually defined as the class of languages L which we can decide in **average** polynomial-time (not worst-case!) with probability zero of making a mistake.
- Alternate definition: $\text{ZPP} = \text{RP} \cap \text{coRP}$
- Not clear that those two definitions are equivalent, right?
Let us start simple:
Let us start simple:

Definition. \(ZPP = \text{RP} \cap \text{coRP} \)
Let us start simple:

Definition. $\textbf{ZPP} = \textbf{RP} \cap \textbf{coRP}$

I.e., L is in \textbf{ZPP} iff there are two poly-time rand. TMs M_1 and M_2 such that:

- if $x \in L$ then $M_1(x, r)$ accepts for every r [no error] $M_2(x, r)$ accepts with prob. $\geq 1/2$

- if $x \notin L$ then $M_1(x, r)$ accepts with prob. $\leq 1/2$ $M_2(x, r)$ rejects for every r [no error]
Let us start simple:

Definition.
ZPP = RP ∩ coRP

I.e., \(L \) is in ZPP iff there are two poly-time rand. TMs \(M_1 \) and \(M_2 \) such that:

- if \(x \in L \) then \(M_1(x,r) \) accepts for every \(r \) [no error]
 - \(M_2(x,r) \) accepts with prob. \(\geq 1/2 \)

- if \(x \notin L \) then \(M_1(x,r) \) accepts with prob. \(\leq 1/2 \)
 - \(M_2(x,r) \) rejects for every \(r \) [no error]
Let us start simple:

Definition. \(\text{ZPP} = \text{RP} \cap \text{coRP} \)

I.e., \(L \) is in \(\text{ZPP} \) iff there are two poly-time rand. TMs \(M_1 \) and \(M_2 \) such that:

- if \(x \in L \) then \(M_1(x,r) \) accepts for every \(r \) [no error]
 \(M_2(x,r) \) accepts with prob. \(\geq 1/2 \)
- if \(x \notin L \) then \(M_1(x,r) \) accepts with prob. \(\leq 1/2 \)
 \(M_2(x,r) \) rejects for every \(r \) [no error]
Let us define ZPP' (for now) as the class of languages L which we can decide in average polynomial-time with probability zero of making a mistake.

I claim that $\text{ZPP} = \text{ZPP}'$.

ZPP, alternate form
Let us define ZPP' (for now) as the class of languages L which we can decide in average polynomial-time with probability zero of making a mistake.

I claim that $\text{ZPP} = \text{ZPP}'$.

The definition of ZPP' has a few technical problems… (see next slides)
Let us define ZPP' (for now) as the class of languages L which we can decide in average polynomial-time with probability zero of making a mistake.

I claim that $ZPP = ZPP'$.

The definition of ZPP' has a few technical problems… (see next slides)

we will need something called Markov’s inequality too
Let us define \(\text{ZPP}' \) (for now) as the class of languages \(L \) which we can decide in average polynomial-time with probability zero of making a mistake.

I claim that \(\text{ZPP} = \text{ZPP}' \).

The definition of \(\text{ZPP}' \) has a few technical problems… (see next slides)

we will need something called Markov’s inequality too

… but before that, we explain why (intuitively) \(\text{ZPP} \subseteq \text{ZPP}' \).
Deciding L in $\text{ZPP} = \text{RP} \cap \text{coRP}$ with no error

- Assume M_1 and M_2 such as here→

- Now run the following on input x:
 forever:
 - if $M_1(x,\ldots)$ rejects: stop and reject
 - if $M_2(x,\ldots)$ accepts: stop and accept

I.e., L is in ZPP iff there are two poly-time rand. TMs M_1 and M_2 such that:
- if $x \in L$ then $M_1(x,r)$ accepts for every r [no error]
 - $M_2(x,r)$ accepts with prob. $\geq 1/2$
- if $x \notin L$ then $M_1(x,r)$ accepts with prob. $\leq 1/2$
 - $M_2(x,r)$ rejects for every r [no error]
Deciding L in $\text{ZPP} = \text{RP} \cap \text{coRP}$ with no error

- Assume M_1 and M_2 such as here→

- Now run the following on input x:
 forever:
 if $M_1(x,\ldots)$ rejects: stop and reject
 if $M_2(x,\ldots)$ accepts: stop and accept

I.e., L is in ZPP iff there are two poly-time rand. TMs M_1 and M_2 such that:

- if $x \in L$ then $M_1(x,r)$ accepts for every r [no error]
 $M_2(x,r)$ accepts with prob.$\geq1/2$

- if $x \notin L$ then $M_1(x,r)$ accepts with prob.$\leq1/2$
 $M_2(x,r)$ rejects for every r [no error]
Deciding \(L \) in \(\text{ZPP} = \text{RP} \cap \text{coRP} \) with no error

- Assume \(M_1 \) and \(M_2 \) such as here→

- Now run the following on input \(x \):
 forever:
 - if \(M_1(x,\ldots) \) rejects: stop and \textbf{reject}
 - if \(M_2(x,\ldots) \) accepts: stop and \textbf{accept}

I.e., \(L \) is in \(\text{ZPP} \) iff there are two poly-time rand. TMs \(M_1 \) and \(M_2 \) such that:
 - if \(x \in L \) then \(M_1(x,r) \) accepts for every \(r \) [no error]
 - \(M_2(x,r) \) accepts with prob. \(\geq 1/2 \)
 - if \(x \notin L \) then \(M_1(x,r) \) accepts with prob. \(\leq 1/2 \)
 - \(M_2(x,r) \) rejects for every \(r \) [no error]
Deciding L in $\text{ZPP} = \text{RP} \cap \text{coRP}$ with no error

- Assume M_1 and M_2 such as here→

- Now run the following on input x: forever:
 - if $M_1(x,\ldots)$ rejects: stop and reject
 - if $M_2(x,\ldots)$ accepts: stop and accept

Hence this machine never makes any mistake

I.e., L is in ZPP iff there are two poly-time rand. TMs M_1 and M_2 such that:
- if $x \in L$ then $M_1(x,r)$ accepts for every r [no error]
 $M_2(x,r)$ accepts with prob.$\geq 1/2$
- if $x \not\in L$ then $M_1(x,r)$ accepts with prob.$\leq 1/2$
 $M_2(x,r)$ rejects for every r [no error]
Deciding L in $\text{ZPP} = \text{RP} \cap \text{coRP}$ with no error

- Assume M_1 and M_2 such as here→
- Now run the following on input x:
 forever:
 - if $M_1(x,\ldots)$ rejects: stop and reject
 - if $M_2(x,\ldots)$ accepts: stop and accept

It may be that $M_1(x,\ldots)$ accepted and $M_2(x,\ldots)$ rejected, — in which case we loop — and that happens with probability $\leq 1/2$...

why?
(if you tell me that this is even $\leq 1/4$, you are wrong)

Hence this machine never makes any mistake
Deciding L in $\text{ZPP} = \text{RP} \cap \text{coRP}$ with no error

- Assume M_1 and M_2 such as here→
- Now run the following on input x: forever:
 - if $M_1(x,\ldots)$ rejects: stop and reject
 - if $M_2(x,\ldots)$ accepts: stop and accept

It may be that $M_1(x,\ldots)$ accepted and $M_2(x,\ldots)$ rejected, — in which case we loop — and that happens with probability $\leq 1/2$... why? (if you tell me that this is even $\leq 1/4$, you are wrong)

Hence this machine never makes any mistake

We will see that this implies that the machine terminates in ≤ 2 turns of the loop on average
A technical problem

- All this requires us to draw *arbitrarily long* bitstrings
A technical problem

- All this requires us to draw **arbitrarily long** bitstrings
- In fact, even **infinite** bit strings (for those computations that do not terminate)
A technical problem

- All this requires us to draw **arbitrarily long** bitstrings.
- In fact, even **infinite** bit strings (for those computations that do not terminate).
- Requires **measure theory**: there is a unique measure μ on $\{0,1\}^\omega$ with σ-algebra generated by cylinders $w.\{0,1\}^\omega$ such that $\mu(w.\{0,1\}^\omega) = 1/2^{|w|}$ (Carathéodory).
A technical problem

- All this requires us to draw **arbitrarily long** bitstrings.
- In fact, even **infinite** bit strings (for those computations that do not terminate).
- Requires **measure theory**: there is a unique measure μ on $\{0,1\}^\omega$ with σ-algebra generated by cylinders $w.\{0,1\}^\omega$ such that $\mu(w.\{0,1\}^\omega) = 1/2^{\|w\|}$ (Carathéodory).
- We will happily ignore this.
Rejection sampling

❖ An classic probabilistic procedure (rejection sampling):
forever:
 compute something (with some random data r), x;
 if $P(x)$ holds: stop and return x

❖ Trick. If:
 — the random bits are independent across turns of the loop
 — and $P(x)$ holds with prob. $\geq \alpha$ at each turn
then rejection sampling terminates in
 $1/\alpha$ turns of the loop on average.
Rejection sampling

- An classic probabilistic procedure (rejection sampling):
 forever:
 compute something (with some random data r), x;
 if $P(x)$ holds: stop and return x

- Trick. If:
 — the random bits are independent across turns of the loop
 — and $P(x)$ holds with prob. $\geq \alpha$ at each turn
 then rejection sampling terminates in $1/\alpha$ turns of the loop on average.
Rejection sampling

- An classic probabilistic procedure (rejection sampling): forever:
 - compute something (with some random data r), x;
 - if $P(x)$ holds: stop and return x

- Proof. Let X be the random variable « # turns through the loop »
Rejection sampling

- An classic probabilistic procedure (rejection sampling):

  ```
  forever:
  compute something (with some random data \( r \)), \( x \);
  if \( P(x) \) holds: stop and return \( x \)
  ```

- **Proof.** Let \(X \) be the random variable « # turns through the loop »

- \(\Pr(X \geq n) = \Pr(P \text{ failed at turns } 1, \ldots, n-1) \)

 \[\leq (1 - \alpha)^{n-1} \quad \text{(by independence)} \]
An classic probabilistic procedure (rejection sampling):

forever:

compute something (with some random data \(r \)), \(x \);

if \(P(x) \) holds: stop and return \(x \)

Proof. Let \(X \) be the random variable « # turns through the loop »

\[
\Pr(X \geq n) = \Pr(P \text{ failed at turns } 1, \ldots, n-1) \\
\leq (1 - \alpha)^{n-1} \quad \text{(by independence)}
\]

\[
\mathbb{E}(X) = \sum_{n \geq 1} n \cdot \Pr(X = n) = \sum_{n \geq 1} \Pr(X \geq n) \leq \sum_{n \geq 1} (1 - \alpha)^{n-1} = 1/\alpha. \quad \square
\]
Rejection sampling: a typical application

- Draw a point inside the disc:
- Repeatedly draw a point inside the inscribing square
 - If it is in the disc, return it.
Rejection sampling: a typical application

- Draw a point inside the disc:
- Repeatedly draw a point inside the inscribing square
 - If it is in the disc, return it.
- Terminates in $\leq \frac{4}{\pi}$
 ~ 1.27324 turns
Rejection sampling: a typical application

- Draw a point inside the disc:
- Repeatedly draw a point inside the inscribing square
 - If it is in the disc, return it.
- Terminates in $\leq \frac{4}{\pi} \approx 1.27324$ turns
- (Used as first step in the **Box-Muller** procedure drawing two independent numbers with a normal distribution)
Deciding L in \(ZPP = \text{RP} \cap \text{coRP} \) with no error

- Assume M_1 and M_2 such as here:
- Now run the following on input x:

 forever:

 - if $M_1(x, \ldots)$ rejects: stop and reject
 - if $M_2(x, \ldots)$ accepts: stop and accept

It may be that $M_1(x, \ldots)$ accepted and $M_2(x, \ldots)$ rejected,
— in which case we loop
— and that happens with probability $\leq 1/2$
(two cases: x in L, x not in L)

I.e., L is in \(ZPP \) iff there are
\begin{itemize}
 \item two poly-time rand. TMs M_1 and M_2 such that:
 \begin{itemize}
 \item if $x \in L$ then $M_1(x, r)$ accepts for every r [no error]
 \item $M_2(x, r)$ accepts with prob. $\geq 1/2$
 \item if $x \notin L$ then $M_1(x, r)$ accepts with prob. $\leq 1/2$
 \item $M_2(x, r)$ rejects for every r [no error]
 \end{itemize}
\end{itemize}

then x cannot be in L (sure)

then x must be in L (sure)

Hence this machine never makes any mistake
Deciding L in $\text{ZPP} = \text{RP} \cap \text{coRP}$ with no error

- Assume M_1 and M_2 such as here:
- Now run the following on input x:
 forever:
 if $M_1(x,\ldots)$ rejects: stop and reject
 if $M_2(x,\ldots)$ accepts: stop and accept

 It may be that $M_1(x,\ldots)$ accepts and $M_2(x,\ldots)$ rejected, — in which case we loop — and that happens with probability $\leq 1/2$...

 (two cases: x in L, x not in L)

 Then x cannot be in L (sure)
 Then x must be in L (sure)

 This is rejection sampling: stops in ≤ 2 turns on average hence in polytime on average.

Hence this machine never makes any mistake.

I.e., L is in ZPP iff there are two poly-time rand. TMs M_1 and M_2 such that:

- if $x \in L$ then $M_1(x,r)$ accepts for every r [no error]
 $M_2(x,r)$ accepts with prob. $\geq 1/2$
- if $x \notin L$ then $M_1(x,r)$ accepts with prob. $\leq 1/2$
 $M_2(x,r)$ rejects for every r [no error]
Markov’s inequality

- Hence:
 \[ZPP \,(=\ RP \cap coRP) \subseteq ZPP' \]

- In order to show the reverse inclusion, we use:

- **Theorem (Markov’s inequality).**
 Let \(X \) be a **non-negative real-valued** random variable with **finite** expectation \(E(X) \). For every \(a \geq 0 \):
 \[\Pr(X \geq a \cdot E(X)) \leq 1/a. \]

Let us define \(ZPP' \) (for now) as the class of languages \(L \) which we can decide in **average** polynomial-time with probability **zero** of making a mistake.

I claim that \(ZPP = ZPP' \).
Markov’s inequality

- Hence:
 \[ZPP \ (= \ RP \cap \text{coRP}) \subseteq ZPP' \]

- In order to show the reverse inclusion, we use:

- **Theorem (Markov’s inequality).**
 Let \(X \) be a non-negative real-valued random variable with finite expectation \(E(X) \). For every \(a \geq 0 \):
 \[\Pr(X \geq a \cdot E(X)) \leq \frac{1}{a}. \]
Markov’s inequality

- Theorem (Markov’s inequality). Let X be a non-negative real-valued random variable with finite expectation $E(X)$. For every $a > 0$: \(\Pr(X \geq a \cdot E(X)) \leq 1/a \).

- Proof. \[E(X) = \int t \Pr(X \geq t) \, dt \geq \text{area of the blue rectangle} = a \cdot E(X) \cdot \Pr(X \geq a \cdot E(X)) \]
Then divide out by $a \cdot E(X)$. \square
Markov’s inequality

❖ **Theorem (Markov’s inequality).**
Let X be a **non-negative real-valued** random variable with **finite** expectation $E(X)$. For every $a > 0$:

$$\Pr(X \geq a \cdot E(X)) \leq \frac{1}{a}.$$

❖ **Proof.**

$$E(X) = \int t \Pr(X \geq t) \, dt$$

\[\geq \text{area of the blue rectangle} \]

\[= a \cdot E(X) \cdot \Pr(X \geq a \cdot E(X)) \]

Then divide out by $a \cdot E(X)$. \square
The reverse inclusion $\text{ZPP}' \subseteq \text{ZPP}$

- Let L in ZPP', decided by M running in average poly. time $p(n)$ with no error.

- Define M_1 as follows: on input x

 (and random tape r of size $a. p(n)$)

 simulate M on x for at most $a. p(n)$ steps (timeout).

 If timeout reached, then accept (that may be an error).
The reverse inclusion $\text{ZPP}' \subseteq \text{ZPP}$

- Markov on r.v. $X = \text{time taken by } M \text{ on } x$; also let $a=2$.
- $E(X) \leq p(n)$ finite OK

Let $L \in \text{ZPP}'$, decided by M running in average poly. time $p(n)$ with no error.

Define M_1 as follows: on input x

- (and random tape r of size $a \cdot p(n)$) simulate M on x for at most $a \cdot p(n)$ steps (timeout).
- If timeout reached, then accept (that may be an error).
The reverse inclusion $\text{ZPP}' \subseteq \text{ZPP}$

- Markov on r.v. X = time taken by M on x; also let $a=2$.
- $E(X) \leq p(n)$ finite OK
- If $x \notin L \Rightarrow$ error $= \Pr_r(M_1(x,r) \text{ accepts})$

 \[= \Pr(X \geq a \cdot p(n)) \quad (M \text{ makes no mistake}) \]
 \[\leq \Pr(X \geq a \cdot E(X)) \quad (E(X) \leq p(n)) \]
 \[\leq \frac{1}{a} = \frac{1}{2} \quad (\text{Markov}) \]

Let L in ZPP', decided by M running in average poly. time $p(n)$ with no error.

Define M_1 as follows: on input x

- (and random tape r of size $a \cdot p(n)$)
- simulate M on x for at most $a \cdot p(n)$ steps (timeout).
- If timeout reached, then accept (that may be an error).
The reverse inclusion $\text{ZPP}' \subseteq \text{ZPP}$

- Markov on r.v. $X =$ time taken by \mathcal{M} on x; also let $a=2$.
- $E(X) \leq p(n)$ **finite** OK
- If $x \notin L \Rightarrow$ error $= \Pr_r(\mathcal{M}_1(x,r) \text{ accepts})$
 $= \Pr(X \geq a \cdot p(n))$ (\mathcal{M} makes no mistake)
 $\leq \Pr(X \geq a \cdot E(X))$ ($E(X) \leq p(n)$)
 $\leq 1/a = 1/2$ (Markov)
- If $x \in L \Rightarrow \mathcal{M}_1(x,r)$ must accept.
The reverse inclusion $\text{ZPP}' \subseteq \text{ZPP}$

- Markov on r.v. $X =$ time taken by M on x; also let $a=2$.
- $E(X) \leq p(n)$ finite OK
- If $x \notin L \Rightarrow$ error $= \Pr_r(M_1(x,r) \text{ accepts})$
 - $= \Pr(X \geq a \cdot p(n))$ (M makes no mistake)
 - $\leq \Pr(X \geq a \cdot E(X))$ ($E(X) \leq p(n)$)
 - $\leq 1/a = 1/2$ (Markov)
- If $x \in L \Rightarrow M_1(x,r)$ must accept.
- Hence L is in coRP.
The reverse inclusion \(\text{ZPP}' \subseteq \text{ZPP} \)

- Markov on r.v. \(X \) = time taken by \(M \) on \(x \); also let \(a=2 \).
- \(E(X) \leq p(n) \) finite OK
- If \(x \in L \implies \text{error} = \Pr_r(M_2(x,r) \text{ accepts rejects}) = \Pr(X \geq a \cdot p(n)) \) (\(M \) makes no mistake)
 \[\leq \Pr(X \geq a \cdot E(X)) \] (\(E(X) \leq p(n) \))
 \[\leq 1/a = 1/2 \] (Markov)
- If \(x \notin L \implies M_2(x,r) \text{ must accept reject.} \)
- Hence \(L \) is in \(\text{coRP} \).
The reverse inclusion $\text{ZPP}' \subseteq \text{ZPP}$

- Markov on r.v. $X = \text{time taken by} \ M$ on x; also let $a=2$.
- $E(X) \leq p(n)$ finite OK
- If $x \in L \Rightarrow \text{error} = \Pr_r(\ M_2(x,r) \ \text{accepts rejects})$
 \[= \Pr(X \geq a \cdot p(n)) \quad (M \text{ makes no mistake}) \]
 \[\leq \Pr(X \geq a \cdot E(X)) \quad (E(X) \leq p(n)) \]
 \[\leq 1/a = 1/2 \quad (\text{Markov}) \]
- If $x \notin L \Rightarrow M_2(x,r)$ must accept reject.
- Hence L is in coRP RP.

Symmetrically:

Let L in ZPP', decided by M running in average poly. time $p(n)$ with no error.
Define M_2 as follows: on input x
 (and random tape r of size $a \cdot p(n)$)
simulate M on x for at most $a \cdot p(n)$ steps (timeout).
If timeout reached, then reject (that may be an error).

Hence L is both in RP and in coRP, namely in ZPP. \[\Box\]
Definition. $\text{ZPP} = \text{RP} \cap \text{coRP}$

Theorem. ZPP is the class of languages L which we can decide in average polynomial-time with probability zero of making a mistake.
Next time...
BPP: Bounded Prob. of Error Polynomial time

- A language L is in **BPP** if and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 2/3$
 - if $x \notin L$ then $\Pr_r [M(x,r) \text{ accepts}] \leq 1/3$.

two-sided error:
$\Pr_r [M(x,r) \text{ errs}] \leq 1/3$