Jean Goubault-Larrecq

Raﬂd()mized Today: RP, coRP,
and ZPP

complexity classes bl o
P

Tous droits réservés, Jean Goubault-Larrecq, professeur, ENS Paris-Saclay, Université Paris-Saclay
Cours « Complexité avancée » (M1), 2020-, ler semestre

Ce document est protégé par le droit d’auteur. Toute représentation ou reproduction intégrale ou
partielle faite sans le consentement de 1’auteur est illicite.

Today

* Randomized Turing machines
+* One-sided error: RP, coRP
+ No error: ZPP

* Next time: two-sided error BPP

Randomized Turing machines

Ordinary Turing machines

“ One read-only input tape |, (size 1x] =n)

* As many work tapes

as you need
(but only a constant
number!)

* (Possibly) one write-only

output tape

Drawing strings at random

« We will study probabilistic complexity classes,
where our TMs can now draw strings of bits at random

Drawing strings at random

« We will study probabilistic complexity classes,
where our TMs can now draw strings of bits at random

+ No need to invent a new TM model

Drawing strings at random

« We will study probabilistic complexity classes,
where our TMs can now draw strings of bits at random

+ No need to invent a new TM model

+ Choice 1: use a non-deterministic TM model K\

and draw execution branch at random

(we won’t do that; hard to do it right) o

Drawing strings at random

« We will study probabilistic complexity classes,
where our TMs can now draw strings of bits at random

+ No need to invent a new TM model

+ Choice 1: use a non-deterministic TM model K\

and draw execution branch at random

(we won’t do that; hard to do it right) o

+ Choice 2: ... next slide

Randomized Turing machines

e , random tape
* One read-only tapes X input tape

* As many work tapes

as you need
(but only a constant
number!)

* (Possibly) one write-only
output tape

Technical points 1/2

* We draw the random tape 7

uniformly at random

Technical points 1/2

random tape
input tape

* We draw the random tape 7

uniformly at random

“ We will be interested in probabilities, e.g.
Pr, ['M(x,r) accepts]

T'echnical points 1/2

random tape
input tape

* We draw the random tape r
uniformly at random

“ We will be interested in probabilities, e.g.
Pr, ['M(x,r) accepts]

* Random tape must not just be read-only:
we impose that no bit on r is ever read twice
(otherwise bits read are not independent)

Technical points 2/2

random tape
input tape

* = we need r to contain at least f(n) bits,

where f(n) is an upper bound on the time =1
taken by the TM. e

Technical points 2/2

random tape
input tape

* = we need r to contain at least f(n) bits,

where f(n) is an upper bound on the time =1
taken by the TM. e

* We will always assume that r is large enough

T'echnical points 2/2

random tape
input tape

* = we need r to contain at least f(n) bits,

where f(n) is an upper bound on the time =1
taken by the TM. e

* We will always assume that r is large enough

“ OK for classes defined by worst-case time,
will cause problems for classes defined with
no a priori upper bound on time (e.g., ZPP)

Our first probabilistic class: RP

(also sometimes known as the class of
Monte Carlo languages)

http://fr.casino-jackpot.com/wp-content/uploads/2018/04/casino-monaco. jpg

RP: Randomized Polynomial time

“ Alanguage L is in RP if and only if
there is a polynomial-time TM ‘M

such that for every input x (of size n):

RP: Randomized Polynomial time

i.e. there is also a polynomial p(n) /
‘M(x,r) terminates in time < p(n),

“ Alanguage L is in RP if and only if where 1= x1, in the worst case

(and for any value of r)

there is a polynomial-time TM ‘M

such that for every input x (of size n):

RP: Randomized Polynomial time

i.e. there is also a polynomial p(n) /
‘M(x,r) terminates in time < p(n),

“ Alanguage L is in RP if and only if where 1= x1, in the worst case

(and for any value of r)

there is a polynomial-time TM ‘M

such that for every input x (of size n):

... hence, implicitly,
we require |7 |>p(n)
(let us say Irl=p(n))

RP: Randomized Polynomial time

i.e. there is also a polynomial p(n) /
‘M(x,r) terminates in time < p(n),

“ Alanguage L is in RP if and only if where 1= x1, in the worst case

(and for any value of r)

there is a polynomial-time TM ‘M

such that for every input x (of size n):

... hence, implicitly,
we require |7 |>p(n)

« if x € L then Pr, [M(x,r) accepts] = 1/2 (let us say Ir1=p(m)

RP: Randomized Polynomial time

i.e. there is also a polynomial p(n) /
‘M(x,r) terminates in time < p(n),

“ Alanguage L is in RP if and only if where 1= x 1, in the worst case

(and for any value of r)

there is a polynomial-time TM ‘M

such that for every input x (of size n):

... hence, implicitly,
we require |7 |>p(n)

« if x € L then Pr, [M(x,r) accepts] = 1/2 (let us say Ir1=p(m)

probability taken over
all r € {0,1}p()

RP: Randomized Polynomial time

i.e. there is also a polynomial p(n) /
‘M(x,r) terminates in time < p(n),

“ Alanguage L is in RP if and only if where 1= x 1, in the worst case

(and for any value of r)

there is a polynomial-time TM ‘M

such that for every input x (of size n):

... hence, implicitly,
we require |7 |>p(n)

« if x € L then Pr, [M(x,r) accepts] = 1/2 (let us say Ir1=p(m)

« if x & L then ‘M(x,r) accepts for no r i el o
all r € {0,1}p()
(i.e., Pr, ['M(x,r) accepts]=0).

R/
0’0

RP: Randomized Polynomial time

i.e. there is also a polynomial p(n) /
‘M(x,r) terminates in time < p(n),

A language L is in RP if and only if where 1=, in the worst case

(and for any value of r)

there is a polynomial-time TM ‘M

such that for every input x (of size n):

... hence, implicitly,
we require |7 |>p(n)

if x € L then Pr, [M(x,r) accepts] = 1/2 (et us say |71= p(n)

if x & L then M(x,r) accepts for no r AR
all r € {0,1}p()
(i.e., Pr, ['M(x,r) accepts]=0).

one-sided error:
we make no error if x & L

RP: Randomized Polynomial time

i.e. there is also a polynomial p(n) /
e) : ‘M(x,r) terminates in time < p(n),
A language L 1S 1N RP 1f and Only 1f where n=1x1, in the worst case

(and for any value of r)

there is a polynomial-time TM ‘M

such that for every input x (of size n):

... hence, implicitly,
we require |7 |>p(n)

if x € L then Pr, [M(x,r) accepts] = 1/2 et us say |71=p(n)
lf X % L then M(x’r) accepts for nor probability taken over
all r € {0,1}p(m)

(i.e., Pr, ['M(x,r) accepts]=0).

Perhaps paradoxically, that means that we make no error if

‘M(x,r) accepts
one-sided error: (x,7) P

T S T L (so please do not confuse acceptance with being in the

language!)

RP: Randomized Polynomial time

“ Alanguage L is in RP if and only if
there is a polynomial-time TM ‘M

such that for every input x (of size n):

« if x € L then Pr, [M(x,r) accepts] = 1/2

« if x & L then ‘M(x,r) accepts for no r
(i.e., Pr, ['M(x,r) accepts]=0).

RP: Randomized Polynomial time

Note: RP-languages are not defined
by « RP-machines »
(there is no such notion)

“ Alanguage L is in RP if and-only-it
there is a polynomial-time TM ‘M

such that for every input x (of size n):

« if x € L then Pr, [M(x,r) accepts] = 1/2

« if x & L then ‘M(x,r) accepts for no r
(i.e., Pr, ['M(x,r) accepts]=0).

RP: Randomized Polynomial time

Note: RP-languages are not defined
by « RP-machines »
(there is no such notion)

* Alanguage L is in RP if and-only-if
there is a polynomial-time TM ‘M

such that for every input x (of size n):

» if x € L then Pr, ['M(x,r) accepts] = 1/2

« if x & L then ‘M(x,r) accepts for no r
(i.e., Pr, ['M(x,r) accepts]=0).

... but if we wanted to define « RP-machines »,
those would be machines ‘M such that, for every x,

— either Pr, [M(x,r) accepts] > 1/2
— or Pr, [M(x,r) accepts] =0

coRP

L is in coRP iff complement L¢ is in RP, hence:

coRP

L is in coRP iff complement L¢ is in RP, hence:

* Lisin coRP if and only if

there is a polynomial-time TM ‘M

such that for every input x (of size n):

« if x € L then Pr{Mbe+)aecceptst=1,2 M(x,r) accepts for every r
« if x & L then MEe+)-aceeptsforno+ Pr, [M(x,r) accepts] < 1/2

A motivating example for (co)RP

* PRIMALITY

INPUT: a natural number p, in binary
Q: 1s p prime?

A motivating example for (co)RP

* PRIMALITY

INPUT: a natural number p, in binary
Q: 1s p prime?

“ For a long time, not known to be in P
(now solved: indeed in P [Agrawal,Kayal,Saxena 2004])

A motivating example for (co)RP

* PRIMALITY

INPUT: a natural number p, in binary
Q: 1s p prime?

“ For a long time, not known to be in P
(now solved: indeed in P [Agrawal,Kayal,Saxena 2004])

* In coNP (guess a proper divisor)

A motivating example for (co)RP

* PRIMALITY

INPUT: a natural number p, in binary
Q: 1s p prime?

“ For a long time, not known to be in P

(now solved: indeed in P [Agrawal,Kayal,Saxena 2004])

* In coNP (guess a proper divisor)

In NP [Pratt 1975]

A motivating example for (co)RP

* PRIMALITY

INPUT: a natural number p, in binary
Q: 1s p prime?

“ For a long time, not known to be in P

(now solved: indeed in P [Agrawal,Kayal,Saxena 2004])

* In coNP (guess a proper divisor)

+ In NP [Pratt 1975]

Can also be solved efficiently with randomization...

Fermat's little theorem

* Thm (Fermat). If p is prime, then for every r (1<r<p),
rP-1=1 mod p.

Fermat’'s little theorem

* Thm (Fermat). If p is prime, then for every r (1<r<p),
rP-1=1 mod p.

* => draw r at random in [2,p-2]; accept if »-1=1 mod p.

Fermat’'s little theorem

* Thm (Fermat). If p is prime, then for every r (1<r<p),
rP-1=1 mod p.

* => draw r at random in [2,p-2]; accept if »-1=1 mod p.

“ Note: computing mod p is efficient:

size of all numbers bounded by size(p)=O(log »).
— addition mod p in time O(log p)

— mult. mod p in time O(log? p) (even O(logl+¢ p))

Fermat’'s little theorem

* Thm (Fermat). If p is prime, then for every r (1<r<p),
rP-1=1 mod p.

* => draw r at random in [2,p-2]; accept if »-1=1 mod p.

“ Note: computing mod p is efficient:

size of all numbers bounded by size(p)=O(log »).
— addition mod p in time O(log p)

— mult. mod p in time O(log? p) (even O(logl+¢ p))

* An experiment... (next slide)

Fermat's little theorem in practice

* Thm (Fermat). If p is prime, then for every r (1<r<p),
rP-1=1 mod p.

* => draw r at random in [2,p-2]; accept if »-1=1 mod p.

Fermat's little theorem in practice

* Thm (Fermat). If p is prime, then for every r (1<r<p),
rP-1=1 mod p.

* => draw r at random in [2,p-2]; accept if »-1=1 mod p.

“ Is 87 prime?

Fermat's little theorem in practice

* Thm (Fermat). If p is prime, then for every r (1<r<p),
rP-1=1 mod p.

“ => draw r at random in [2,p-2]; accept if r7-1=1 mod p.
“ Is 87 prime?

“ Draw r at random... say 25

Fermat's little theorem in practice

* Thm (Fermat). If p is prime, then for every r (1<r<p),
rP-1=1 mod p.

* => draw r at random in [2,p-2]; accept if r7-1=1 mod p.
“ Is 87 prime?
“ Draw r at random... say 25

» 186 =16 mod 87

Fermat's little theorem in practice

* Thm (Fermat). If p is prime, then for every r (1<r<p),
rP-1=1 mod p.

“ => draw r at random in [2,p-2]; accept if r7-1=1 mod p.
“ Is 87 prime?

“ Draw r at random... say 25

¢ 186 =16 mod 87

¢+ = 87 is not prime (definitely)

Fermat’s little theorem in practice

* Thm (Fermat). If p is prime, then for every r (1<r<p),
rP-1=1 mod p.

* => draw r in [2,p-2]; accept if r»-1=1 mod p.

<

“ Is 87 prime?

2
3
4
5
6
7
8
9

—_
(@)

7/
%

Fermat’s little theorem in practice

Thm (Fermat). If p is prime, then for every r (1<r<p),
rP-1=1 mod p.

= draw r in [2,p-2]; accept if r7-1=1 mod p.
Is 87 prime?

The probability (over r)

of error is:
2/84 = 0.024

.
2
3
4
5
6
7
8
9

—_
(@)

Fermat's little theorem in practice

* Thm (Fermat). If p is prime, then for every r (1<r<p),
rP-1=1 mod p.

* => draw r in [2,p-2]; accept if r»-1=1 mod p.

L is in coRP if and only if
there is a polynomial-time TM ‘M

such that for every input x (of size n):

if x € L then P Mlx1)-accepts]=1/2 M(x,r) accepts for every r
if x & L then Mlx1)-acceptsforno+ Pr. [M(x,r) accepts] <1/2

T — T ———

Fermat's little theorem in practice

* Thm (Fermat). If p is prime, then for every r (1<r<p),
rP-1=1 mod p.

* => draw r in [2,p-2]; accept if r»-1=1 mod p.

L is in coRP if and only if

X If p 18 prime, Will Succeed there is a polynomial-time TM ‘M
such that for every input x (of size n):
for every r if x € L then Re M 1)-aceepts}=1/2 M(x,r) accepts for every r

if x & L then Mlx1)-acceptsforno+ Pr. [M(x,r) accepts] <1/2

Fermat's little theorem in practice

* Thm (Fermat). If p is prime, then for every r (1<r<p),
rP-1=1 mod p.

* => draw r in [2,p-2]; accept if r»-1=1 mod p.

L is in coRP if and only if

X If p 18 prime, Will Succeed there is a polynomial-time TM ‘M
such that for every input x (of size n):
for every r if x € L then e M) -accepts}=1/2 M(x,r) accepts for every r
3 . = if x & L then Mlx1)-acceptsforno+ Pr. [M(x,r) accepts] < 1/2
+ Else, will fail with ~ —

(hopefully) high probability
(0.024 in the example, looks good); but...

Carmichael numbers

“ A Carmichael number is a number p:

— that is not prime
— but passes all Fermat tests (1-1=1 mod p for every r)

* JLe., on which our hopes of low error rate fail miserably

Carmichael numbers

“ A Carmichael number is a number p:
— that is not prime
— but passes all Fermat tests (1-1=1 mod p for every r)

* JLe., on which our hopes of low error rate fail miserably

< Inﬁnitely many of them [Alford, Granville, Pomerance 1994]-
561, 1105, 1729, 2465, 2821, 6601 , 8911, 10585, 15841, etc.

Carmichael numbers

“ A Carmichael number is a number p:
— that is not prime
— but passes all Fermat tests (1-1=1 mod p for every r)

* JLe., on which our hopes of low error rate fail miserably

< Inﬁnitely many of them [Alford, Granville, Pomerance 1994]-
561, 1105, 1729, 2465, 2821, 6601 , 8911, 10585, 15841, etc.

“ Frustrating: if p is not prime and passes at least one
Fermat test, then it passes at least half of them...

The Miller-Rabin test (1/2)

* We use another basic fact: if p is prime, then
the only square roots of 1 mod p are 1 and -1

The Miller-Rabin test (1/2)

* We use another basic fact: if p is prime, then
the only square roots of 1 mod p are 1 and -1

* Hence, if p is prime and odd (so p—1 = 2k g, g odd):

(read from right to left : <)
N2 g) N2 q) N2kl g) N2k g) ERlelel

1 for some i, or:

The Miller-Rabin test (1/2)

* We use another basic fact: if p is prime, then
the only square roots of 1 mod p are 1 and -1

* Hence, if p is prime and odd (so p—1 = 2k g, g odd):

(read from right to left : <)
AVUSTIRAVIIN mod p

(don’t caredon’t care) & | 1 —— 1

1 for some i, or:

1’/\(2k_1 q) TA(Zk q) mod p

The Miller-Rabin test (2/2)

- Hence, if p is prime and odd (so p-1 = 2k g, g odd):

(read from right to left : <)

o On iHPUt p, rN2-1g) rM2iq) e N2 g) N2k g) RRulel¥Z
EGaIE o oy dontcare 1 e come i or
draw r at random:
r’\(2 -1g) rN2igq) rN2k1g) N2k q) Rl
— if the test shown here: ! 1 T
succeeds, then accept (p proBably pr1me)

— otherwise reject (p definitely not prime)

R/
0‘0

The Miller-Rabin test (2/2)

. Hence, if p is prime and odd (so p-1 = 2k g, g odd):

(read from right to left : <)

On iﬂpUt p, e M21g) 1M (2ig) e N2K1g) N2k q) Rl
oare o o donttoare 1 e come i or
draw r at random:
r’\(2 -1g) rN2igq) e N2KLg) N2k g) RRulele¥Z
— if the test shown here: 1 1 T
succeeds, then accept (p proBably pr1me)
— otherwise reject (p definitely not prime)

Probability of error < 1/4. Excellent! Hence:

E—

The Miller-Rabin test (2/2)

- Hence, if p is prime and odd (so p-1 = 2k g, g odd):

(read from right to left : <)

On iﬂpUt p, e N2F1g) 1M(2iq) e N2K1g) N2k q) Rl
EGaIE o oy dontcare 1 e come i or
draw r at random:
r’\(2 -1g) M\ 2ig) e N2KLg) N2k g) RRulele¥Z
— if the test shown here: ! 1 T
B
succeeds, then accept (p proBably pr1me)

— otherwise reject (p definitely not prime)

Probability of error < 1/4. Excellent! Hence:
Theorem. PRIMALITY is in coRP.

The Miller-Rabin test (2/2)

. Hence, if p is prime and odd (so p-1 = 2k g, g odd):

(read from right to left : <)

* On input p, N TGy Q-
g i R ™ ..

— if the test shown here:
succeeds, then accept (p pmpnme)

— otherwise reject (p definitely not prime)

* Probability of error < 1/4. Excellent! Hence:

“ Theorem. PRIMALITY is in coRP.

« (Superseded by [AKS04]...
but Miller-Rabin works in log space, not [AKS04]!)

To know more

Notes on Primality Testing
And Public Key Cryptography

Part 1: Randomized Algorithms
Miller-Rabin and Solovay—Strassen Tests

Jean Gallier and Jocelyn Quaintance
Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104, USA
e-mail: jean@cis.upenn.edu

© Jean Gallier

February 27, 2019

https://www.cis.upenn.edu/~jean/RSA-primality-testing.pdf

Error reduction

error=1-1/2

(=1/2 here)
¢ A language L 1S In I\r 11 and o1 Ly 11

* What is so special about @ thereis a polynomial-time TM M
error 1 / Dk, such that for every input x (of size n):

« if x € L then Pr, [M(x,7) accepts] = 1/2

« if x & L then M(x,r) accepts for no r
(i.e., Prr [M(x,r) accepts]=0).

e

Error reduction

error=1-1/2

(=1/2 here)
¢ A language L 1S In I\r 11 and o1 Ly 11

* What is so special about @ thereis a polynomial-time TM M
error 1 / Dk, such that for every input x (of size n):

« if x € L then Pr, [M(x,7) accepts] = 1/2

* Nothing!

« if x & L then M(x,r) accepts for no r
(i.e., Prr [M(x,r) accepts]=0).

e

Error reduction

error=1-1/2

(=1/2 here)
¢ A language L 1S In I\r 11 and o1 Ly 11

* What is so special about @ thereis a polynomial-time TM M
error 1 / Dk, such that for every input x (of size n):

« if x € L then Pr, [M(x,r) accepts] = 1/2

* Nothing!

« if x & L then M(x,r) accepts for no r
(i.e., Prr [M(x,r) accepts]=0).

T—P— ‘1 d

* Alanguage L is in RP(¢) and only if
there is a polynomial-time TM ‘M
such that for every input x (of size n):

« if x € L then Pr, [M(x,r) accepts] = 1-¢

« if x & L then M(x,r) accepts for no

(i.e., Pr, [M(x/r) ac error = ¢

Error reduction

error=1-1/2
(=1/2 here)

* A language L 1s In K&K 11 ard o1 Ly 11

L)

* What is so special about @ thereis a polynomial-time TM M
error 1 / Dk, such that for every input x (of size n):

+ if x € L then Pr, [M(x,r) accepts] = 1/2

* Nothing!

« if x & L then M(x,r) accepts for no r
(i.e., Prr [M(x,r) accepts]=0).

+ Theorem. V € €]O, 1[/ * /; language L is in RP(g) and only if
there is a polynomial-time TM M
RP = RP(e).

such that for every input x (of size n):
« if x € L then Pr, [M(x,r) accepts] > 1—¢

« if x & L then M(x,r) accepts for no

(i.e., Prr [M(x/r) ac error = €

Error reduction

error=1-1/2

(=1/2 here)
¢ A language L 1S In I\K 1L ard o1 Ly 11

What 1S SO Specia] ab()ut there is a polynomial-time TM ‘M
error 1 / 5%, such that for every input x (of size n):

+ if x € L then Pr, [M(x,r) accepts] = 1/2

Nothing!

« if x & L then M(x,r) accepts for no r
(i.e., Prr [M(x,r) accepts]=0).

Theorem. V ¢ &] 0,1 [, % /; language L is in RP(g)and only if
there is a polynomial-time TM M
RP = RP(¢).

such that for every input x (of size n):

Note: RP:RP(l i 2) (def) + if x € L then Pr, [M(x,r) accepts] = 1-¢

« if x & L then M(x,r) accepts for no

(i.e., Prr [M(x/r) ac error = €

Error reduction: the easy direction

* Alanguage L is in RP(¢)and only if
& C]ear]yl 1f =¢ then there is a polynomial-time TM ‘M
RP (T]) C RP(S) such that for every input x (of size n):
« if x € L then Pr, ['M(x,r) accepts] = 1—¢

« if x & L then M(x,r) accepts for no
(i.e., Pr; ['M(x,r) ac

error = ¢

Error reduction: the easy direction

* Alanguage L is in RP(¢)and only if
& C]ear]yl 1f =¢ then there is a polynomial-time TM ‘M
RP (T]) C RP(S) such that for every input x (of size n):
« if x € L then Pr, [M(x,r) accepts] = 1-¢
+ Proof: take any L € RP
Y (T]) « if x & L then M(x,r) accepts for no

... I'll let you finish the (e, Pr, [M(x7) ac

error = ¢

argument S — —

Error reduction: the easy direction

* Alanguage L is in RP(¢)and only if
& C]ear]yl if =¢ then there is a polynomial-time TM ‘M

RP(T]) C RP(¢) such that for every input x (of size n):
if x € L then Pr, ['M(x,r) accepts] > 1-¢

« Proof: take any L € RP(n) s

if x & L then M(x,r) accepts for no

... I'll let you finish the (i.e., Pr, [M(x,7) ace el) |
argument * o
+ Note: RP(0)=P (believed = RP)

RP(1)={all languages} (why?)

The hard direction: repeating experiments

+ Alanguage L is in RP(¢)and only if

» Let L € RP(¢), O<n<e<]1 there is a polynomial-time TM ‘M
such that for every input x (of size n):

* On input x, let us do the

: : « if x € L then Pr, [M(x,r) accepts] > 1-¢
following (at most) K times:

« if x & L then M(x,r) accepts for no
(i.e., Pr, ['M(x,r) ac

error = ¢

The hard direction: repeating experiments

+ Alanguage L is in RP(g)and only if

» Let L € RP(¢), 0<n< ce<] there is a polynomial-time TM ‘M
such that for every input x (of size n):

* On input x, let us do the

: . « if x € L then Pr, [M(x,7) accepts] = 1-¢
following (at most) K times:

« if x & L then M(x,r) accepts for no
+ Draw r at random, (i.e., Pr, [M(x,r) ac

simulate ‘M(x, r) and: E— -

error = ¢

The hard direction: repeating experiments

* Alanguage L is in RP(¢) and only if

+ Let L € RP(¢), O<n< ce<] there is a polynomial-time TM ‘M
such that for every input x (of size n):

* On input x, let us do the

: . « if x € L then Pr, [M(x,r) accepts] > 1-¢
following (at most) K times:

« if x & L then M(x,r) accepts for no
+ Draw r at random, (i.e., Pr, [M(x,7) ac

simulate ‘M(x,) and: e — .

error = ¢

« If M(x, r) accepts, then exit the loop and accept;

Remember: if M(x, r) accepts,

then x must be in L.

The hard direction: repeating experiments

* Alanguage L is in RP(¢) and only if

+ Let L € RP(¢), O<n< ce<] there is a polynomial-time TM ‘M
such that for every input x (of size n):

* On input x, let us do the

: . « if x € L then Pr, [M(x,r) accepts] > 1-¢
following (at most) K times:

« if x & L then M(x,r) accepts for no
+ Draw r at random, (i.e., Pr, [M(x,7) ac

simulate ‘M(x,) and: e — .

error = ¢

« If M(x, r) accepts, then exit the loop and accept;

* Otherwise, proceed and loop.

Remember: if M(x, r) accepts,

then x must be in L.

The hard direction: repeating experiments

* Alanguage L is in RP(¢) and only if

+ Let L € RP(¢), O<n< ce<] there is a polynomial-time TM ‘M
such that for every input x (of size n):

* On input x, let us do the

: . « if x € L then Pr, [M(x,r) accepts] > 1-¢
following (at most) K times:

« if x & L then M(x,r) accepts for no
+ Draw r at random, (i.e., Pr, [M(x,7) ac

simulate M(x, r) and: e — -

error = ¢

« If M(x, r) accepts, then exit the loop and accept;

* Otherwise, proceed and loop.

« At the end of the loop, reject. Hememeds i ST, 7) aecepls
then x must be in L.

Repeating experiments (pretty) formally

* Alanguage L is in RP(¢) and only if
there is a polynomial-time TM ‘M

: such that for every input x (of size n):
+ We have defined a new L

s N « if x € L then Pr, [M(x,r) accepts] > 1-¢
M’(X, 7’[1]# e #T[K]) by « if x & L then M(x,r) accepts for no
(i.e., Pr, ['M(x,r) ac Asl=0).

—

* fori=1 to K;

« If M(x, r[i]) accepts, then exit the loop and accept;

“ reject.

Remember: if M(x, r[i]) accepts,

then x must be in L.

Acceptance: 1. ilxrE L

+ Alanguage L is in RP(¢) and only if

» If x € L (recall L in RP(¢)), then there is a polynomial-time TM ‘M
letting r=r[1]#...#7[K], such that for every input x (of size n):
Pr(M(x,) rejects) + if x € L then Pr, ['M(x,r) accepts] = 1-¢

« if x & L then M(x,r) accepts for no
(i.e., Pr, ['M(x,r) ac

error = ¢

« Define M'(x, r[1]#...#7[K]) by:
$ fori—1ltok:
« If M(x, r[i]) accepts, then exit the loop and accept;

“ reject.

Acceptance: 1. ilxrE L

+ Alanguage L is in RP(¢)and only if

» If x € L (recall L in RP(¢)), then there is a polynomial-time TM ‘M
letting r=r[1]#...#7[K], such that for every input x (of size n):
Pr(M(x,) rejects) + if x € L then Pr, [M(x,r) accepts] = 1-¢

» = Pr(Vi=1..K, M(x, r|i]) rejects) « if x & L then M(x,r) accepts for no
(i.e., Pr, ['M(x,r) ac tsl=0).

+ Define M’(x, r[1]#...#7[K]) by:
$ fori—1ltok:
« If M(x, r[i]) accepts, then exit the loop and accept;

“ reject.

Acceptance: 1. ilxrE L

+ Alanguage L is in RP(¢)and only if

» If x € L (recall L in RP(¢g)), then there is a polynomial-time TM ‘M
letting r=r[1]#...#7[K], such that for every input x (of size n):
Pr(M'(x, r) rejects) + if x € L then Pr, [M(x,r) accepts] = 1-¢
» = PrVi=1..K, M(x, r[i]) rejects) + if x & L then M(x,r) accepts for no
(i.e., Pr, ['M(x,r) ac

error = ¢

v = ITim1.x Proi(M(x, [i]) rejects)

(independence)

« Define M'(x, r[1]#...#7[K]) by:
¢ fori=1 toKk:
« If M(x, r[i]) accepts, then exit the loop and accept;

“ reject.

Acceptance: 1. ilxrE L

+ Alanguage L is in RP(¢)and only if

» If x € L (recall L in RP(¢g)), then there is a polynomial-time TM ‘M
letting r=r[1]#...#7[K], such that for every input x (of size n):
Pr(M'(x, r) rejects) + if x € L then Pr, [M(x,r) accepts] = 1-¢
» = PrVi=1..K, M(x, r[i]) rejects) + if x & L then M(x,r) accepts for no
(i.e., Pr, ['M(x,r) ac

error = ¢

v = ITim1.x Proi(M(x, [i]) rejects)

(independence)

« Define M'(x, r[1]#...#7[K]) by:
X3 K
< & % for i=1 to K;
« If M(x, r[i]) accepts, then exit the loop and accept;

“ reject.

Acceptance: 1. ilxrE L

+ Alanguage L is in RP(¢)and only if

» If x € L (recall L in RP(¢g)), then there is a polynomial-time TM ‘M
letting r=r[1]4...4#7[K], such that for every input x (of size n):
Pr(M(x, r) rejects) « if x € L then Pr, [M(x,r) accepts] > 1-¢
» = PrVi=1..K, M(x, r[i]) rejects) + if x & L then M(x,r) accepts for no
(i.e., Pr, ['M(x,r) ac).
¢ = ITiz1.x Pripi(M(x, r[i]) rejects) SO = £
(independence)
« Define M'(x, r[1]#...#7[K]) by:
et * for =l tok:
» =JfrcL th en « If M(x, r[i]) accepts, then exit the loop and accept;
Pr,(M'(x, r) accepts) = 1—¢K Sl

Acceptance: 2. if €& L; Complexity

+ Alanguage L is in RP(¢) and only if

- th I 1 1al-ti ™ M
+ If x € L (recall L in RP(¢)) then A R A

Pr(M’(x, r) accepts) > 1—eK

such that for every input x (of size n):
« if x € L then Pr, [M(x,r) accepts] > 1-¢

« if x & L then M(x,r) accepts for no
(i.e., Pr, ['M(x,r) ac

error = ¢

« Define M'(x, r[1]#...#7[K]) by:
$ fori—1ltok:
« If M(x, r[i]) accepts, then exit the loop and accept;

“ reject.

Acceptance: 2. if €& L; Complexity

+ Alanguage L is in RP(¢)and only if

- th I 1 1al-ti ™ M
+ If x € L (recall L in RP(¢)) then A R A

Pr(M’(x, r) accepts) > 1—eK

such that for every input x (of size n):

« if x € L then Pr, [M(x,r) accepts] > 1—¢

S ilfe then « if x € L then M(x,r) accepts for no
‘M’(x, r) accepts for no r (i.e., Pry [M(x,r) acceptsl=0). .

+ Define M’(x, r[1]#...#7[K]) by:
$ fori—1ltok:
« If M(x, r[i]) accepts, then exit the loop and accept;

“ reject.

Acceptance: 2. if €& L; Complexity

+ Alanguage L is in RP(¢)and only if

: there i 1 ial-time TM ‘M
+ If x € L (recall L in RP(¢)) then A R A

Pr(M’(x, r) accepts) > 1—eK

such that for every input x (of size n):

« if x € L then Pr, [M(x,r) accepts] > 1—¢

e ilfae |, then « if x € L then M(x,r) accepts for no
‘M’(x, 1) accepts for no r (i.e., Pr, [M(x,r) acceptsl=0). .
e — -

« If M runs in time p(n), then » Define M'(x, r[1]#...#r[K]) by:

‘M’ runs in time O(Kp(n)) N
« If M(x, r[i]) accepts, then exit the loop and accept;

“ reject.

Acceptance: 2. if €& L; Complexity

+ Alanguage L is in RP(¢)and only if

: there i 1 ial-time TM ‘M
+ If x € L (recall L in RP(¢)) then A R A

Pr(M’(x, r) accepts) > 1—eK

such that for every input x (of size n):

+ if x € L then Pr, [M(x,7) accepts] = 1-¢

S ilfe then « if x € L then M(x,r) accepts for no
‘M’(x, r) accepts for no r (i.e., Pry [M(x,r) acceptsl=0). .

« If M runs in time p(n), then » Define M'(x, r[1]#...#r[K]) by:

‘M’ runs in time O(Kp(n)) N

« If M(x, r[i]) accepts, then exit the loop and accept;
+ Hence L is in RP(&K) et

The hard direction: the end

* Alanguage L is in RP(¢) and only if
+ We have shown that every there is a polynomial-time TM ‘M

L)

language L in RP(¢) such that for every input x (of size n):
is in RP(eK) « if x € L then Pr, [M(x,r) accepts] > 1-¢

(fOI‘ SIbG S [O’ 1]’ Kzl) « if x & L then M(x,r) accepts for no
(i.e., Pr, ['M(x,r) ac tsl=0).

+ Define M’(x, r[1]#...#7[K]) by:
$ fori—1ltok:
« If M(x, r[i]) accepts, then exit the loop and accept;

“ reject.

The hard direction: the end

+ Alanguage L is in RP(¢)and only if

+ We have shown that every there is a polynomial-time TM ‘M
language L in RP(¢) such that for every input x (of size n):
is in RP(eK) « if x € L then Pr, [M(x,r) accepts] > 1-¢

(fOI‘ SIbG S [O’ 1]’ Kzl) « if x & L then M(x,r) accepts for no
+ If O<‘r]<€<1 : (e, Prr [M(x,r) ac error = ¢

choose K large enough
so that ek<n
(explicitly, K>n/log)

« Define M'(x, r[1]#...#7[K]) by:
¢ fori=1 toKk:
« If M(x, r[i]) accepts, then exit the loop and accept;

“ reject.

The hard direction: the end

* Alanguage L is in RP(¢) and only if
We have shown that every there is a polynomial-time TM ‘M

language L in RP(¢) such that for every input x (of size n):
is in RP(eK) + if x € L then Pr, [M(x,r) accepts] = 1-¢

(fOI‘ SIbG S [O’ 1]’ Kzl) « if x & L then M(x,r) accepts for no

If O<n<e<l, (i.e., Pr, [M(x,r) accepisl=0). .

choose K large enough
so that ek<n
(explicitly, K>n/log)

+ Define M’(x, r[1]#...#r[K]) by:
% For i=1 toK:

« If M(x, r[i]) accepts, then exit the loop and accept;

Then L is in RP(n). O * reject

T — B

(Can we do even better?

* Alanguage L is in RP(¢) and only if
there is a polynomial-time TM ‘M

such that for every input x (of size n):
« if x € L then Pr, [M(x,r) accepts] > 1-¢

« if x & L then M(x,r) accepts for no
(i.e., Pr, ['M(x,r) ac

error = ¢

(Can we do even better?

* Alanguage L is in RP(¢) and only if
there is a polynomial-time TM ‘M

such that for every input x (of size n):

+ if x € L then Pr, [M(x,7) accepts] = 1-¢

» Hence we define the same class

with error ¢ = 0.000000000001 ¢ if ¥ &L then M(x,r) accepts for no
(i.e., Pr, ['M(x,r) ac

error = ¢

(Can we do even better?

* Alanguage L is in RP(¢) and only if
there is a polynomial-time TM ‘M

such that for every input x (of size n):

+ if x € L then Pr, [M(x,7) accepts] =

» Hence we define the same class

with error ¢ = 0.000000000001 ¢ if ¥ &L then M(x,r) accepts for no
(i.e., Pr, ['M(x,r) ac

... or with error € = 0.99999999! —— —

error = ¢

(Can we do even better?

* Alanguage L is in RP(¢) and only if
there is a polynomial-time TM ‘M

such that for every input x (of size n):

+ if x € L then Pr, [M(x,r) accepts] = 1—-¢

» Hence we define the same class

with error ¢ = 0.000000000001 ¢ if ¥ &L then M(x,r) accepts for no
(i.e., Pr, ['M(x,r) ac

... or with error € = 0.99999999! —— —

error = ¢

» Can we make ¢ go to 0 as n—>c0?

The hard direction revisited

+ Alanguage L is in RP(¢)and only if

here i 1 ial-time T
If x € L (recall L in RP(¢)) then ep s po ynontla hime M 04

Pr(M’(x, r) accepts) > 1—eK

such that for every input x (of size n):

+ if x € L then Pr, [M(x,7) accepts] = 1-¢

L=t % Ji then « if x & L then M(x,r) accepts for no r
’.M’(x, 1’) accepts fornor (i.e., Prr [M(x,r) accepts]=0)
I — T CITO e

If ‘M runs in time p (Tl), then + Define M’(x, r[1]#...#7[K]) by:

‘M’ runs in time O(Kp(n)) N

« If M(x, r[i]) accepts, then exit the loop and accept;
Hence L is in RP(&K). . reject

The hard direction revisited

Let us take K = a polynomial g(n) o Alanguage L is in RP(E) and only if

here i 1 ial-time T
If x €L (recall L in RP(¢)) the R n et

Pr(M’(x, r) accepts) > 1—eK

such that for every input x (of size n):

+ if x € L then Pr, [M(x,7) accepts] =

[¢ &7 then « if x € L then M(x,r) accepts for no r
’.M’(x, 1’) accepts fornor (i.e., Prr [M(x,r) accepts]=0)
— T erToes

If M runs in time P (Tl), then « Define M'x, r[1]#...#7[K]) by:

‘M’ runs in time O(Kp(n)) N

« If M(x, r[i]) accepts, then exit the loop and accept;
Hence L is in RP(&eX). . reject

/7
%

) X4

The hard direction revisited

Let us take K = a polynomial g(n) o Alanguage L is in RP(&) and only if

here i 1 ial-time T
If x €L (recall L in RP(¢)) the R mane e line s

Pr(M’(x, r) accepts) > 1—eK

such that for every input x (of size n):

+ if x € L then Pr, [M(x,r) accepts] = 1—¢

[¢ I then « if x € L then M(x,r) accepts for no r
M'(x, 1) accepts fornor (i.e., Prr [M(x,r) accepts]=0)
I — o arroeass

If ‘M runs 1in time p (Tl), then # Define M'(x, r[1]#...#7[K]) by:

‘M’ runs in time O(Kp(n)) N
« If M(x, r[i]) accepts, then exit the loop and accept;
Hence L is in RP(&eX). . reject
L — B

=0O(g(n)p(n)), still polynomial time

The hard direction revisited

Let us take K = a polynomial g(n)

If x €L (recall L in RP(¢)) the
Pr(M’(x, r) accepts) > 1—eK

If x &L, then
‘M’(x, 1) accepts for no r

I[f M runs in time p(n), then
‘M’ runs in time O(Kp(n))

Hence L is in RP(&K).

error eX = gl
(exponentially small)

* Alanguage L is in RP(¢) and only if
there is a polynomial-time TM ‘M

such that for every input x (of size n):
« if x € L then Pr, [M(x,r) accepts] > 1-¢

« if x & L then M(x,r) accepts for no r
(i.e., Pry [M(x,r) accepts]=0)

. — —

error = €
« Define M'x, r[1]#...#7[K]) by:
¢ for i=1 toK:
« If M(x, r[i]) accepts, then exit the loop and accept;

“ reject.

=0O(g(n)p(n)), still polynomial time

The hard direction revisited

* Let e=1/2. We have proved:

* Theorem. RP=RP(1/24m)

for every polynomial g(n).

» J.e., error can be made

exponentially small.

(Note: RP(¢) called Uy RTIME(p(n),p(n),0,¢)
in the notes: ignore the complication)

* Alanguage L is in RP(¢) and only if

there is a polynomial-time TM ‘M

such that for every input x (of size n):

+ if x € L then Pr, [M(x,r) accepts] = 1—-¢

« if x & L then M(x,r) accepts for no r

(i.e., Pr, [M(x,r) accepts]=0)

S — . s
error = ¢

The hard direction revisited

* Let e=1/2. We have proved:

* Theorem. RP=RP(1/24m)

for every polynomial g(n).

» J.e., error can be made

exponentially small.

(Note: RP(¢) called Uy RTIME(p(n),p(n),0,¢)
in the notes: ignore the complication)

* Alanguage L is in RP(¢) and only if

there is a polynomial-time TM ‘M

such that for every input x (of size n):

+ if x € L then Pr, [M(x,7) accepts] = 1-¢

« if x & L then M(x,r) accepts for no r

(i.e., Pry [M(x,r) accepts]=0)

T — . —
error = ¢

» Exercise: show that, conversely:

* Theorem. RP=RP(1-1/g(n))

for every polynomial g(n).

» J.e., error can be assumed

« polynomially large » as well

Relation to ordinary classes

“ Alanguage L is in RP if and only if

+ Theorem. P C RP C NP. there is a polynomial-time TM ‘M

* Proof. First,

such that for every input x (of size n):

P—RP(0) C RP(1/2) = RP + if x € L then Pr, [M(x,r) accepts] = 1/2

« if x & L then M(x,r) accepts for no r
(i.e., Prr [M(x,r) accepts]=0).

Relation to ordinary classes

“ Alanguage L is in RP if and only if

+ Theorem. P C RP C NP. there is a polynomial-time TM ‘M

* Proof. First,

such that for every input x (of size n):

P—RP(0) CRP(1/2)=Rp | ~ *EhthenPriMinacceptsl=1/2

« if x & L then M(x,r) accepts for no r
+ Second, let L € RP. (i.e., Pr, ['M(x,r) accepts]=0).

Relation to ordinary classes

“ Alanguage L is in RP if and only if

+ Theorem. P C RP C NP. there is a polynomial-time TM ‘M

* Proof. First,

such that for every input x (of size n):

P—RP(0) CRP(1/2)=Rp | ~ *EhthenPriMinacceptsl=1/2

« if x & L then M(x,r) accepts for no r
+ Second, let L € RP. (i.e., Pr, [M(x,r) accepts]=0).

+ Ifx €L = for somer, (iﬁ?act, for at least half of them!)

‘M(x, r) accepts

Relation to ordinary classes

“ Alanguage L is in RP if and only if

+ Theorem. P C RP C NP. there is a polynomial-time TM ‘M

* Proof. First,

such that for every input x (of size n):

P—RP(0) CRP(1/2)=Rp | ~ *EhthenPriMinacceptsl=1/2

« if x & L then M(x,r) accepts for no r
+ Second, let L € RP. (i.e., Pr, [M(x,r) accepts]=0).

+ Ifx €L = for somer, (iﬁ?act, for at least half of them!)

‘M(x, r) accepts

+ [fx & L = fornor.

Relation to ordinary classes

“ Alanguage L is in RP if and only if

+ Theorem. P C RP C NP. there is a polynomial-time TM ‘M

* Proof. First,

such that for every input x (of size n):

P—RP(0) CRP(1/2)=Rp | ~ *EhthenPriMinacceptsl=1/2

« if x & L then M(x,r) accepts for no r
+ Second, let L € RP. (i.e., Pr, [M(x,r) accepts]=0).

« If x € L = for some 7, (in fact, for at least half of them!)

‘M(x, r) accepts

+ [fx & L = fornor.

» Hence L ={x | 3r, M(x, r) accepts} isin NP. O

Our second probabilistc class: ZPP

(also known as the class of
Las Vegas languages) L.

IRREY n{

LLd \ 1.‘»‘; g‘g

= e ﬁnz:;%z-

SISO OO

4T

https://www.agoda.com/fr-fr/paris-las-vegas 8/hotel/las-vegas-nv-us.html?cid=1844104

/PP

« ZPP = Zero Probability of error Polynomial-time

/PP

« ZPP = Zero Probability of error Polynomial-time

* Usually defined as the class of languages L

which we can decide in average polynomial-time
(not worst-case!)

with probability zero of making a mistake.

/PP

« ZPP = Zero Probability of error Polynomial-time

* Usually defined as the class of languages L

which we can decide in average polynomial-time
(not worst-case!)

with probability zero of making a mistake.

+ Alternate definition:

/ZPP = RP n coRP

/PP

« ZPP = Zero Probability of error Polynomial-time

* Usually defined as the class of languages L

which we can decide in average polynomial-time
(not worst-case!)

with probability zero of making a mistake.

+ Alternate definition:

/ZPP = RP n coRP

* Not clear that those two definitions are equivalent, right?

/PP

“ Let us start simple:

/PP

“ Let us start simple:

“ Definition. ZPP = RP N coRP

/PP

“ Let us start simple:

“ Definition. ZPP = RP N coRP

+ Le., Lis in ZPP iff there are

two poly-time rand. TMs M; and ‘M> such that:

« if x € L then Mi(x,r) accepts for every r [no error]

‘Ma(x,r) accepts with prob.>1/2

« if x & L then Mi(x,r) accepts with prob.<1/2

‘Ma(x,r) rejects for every v [no error]

/PP

“ Let us start simple:

“ Definition. ZPP = RP N coRP

an RP machine for L

+ Le., Lis in ZPP iff there are

two poly-time rand. TMs M; and ‘M> such that:

« if x € L then Mi(x,r) accepts for every r [no error]

‘Mo(x,r) accepts with prob.>1/2

« if x & L then Mi(x,r) accepts with prob.<1/2

‘Mo(x,r) rejects for every r [no error]

/PP

“ Let us start simple: a coRP machine for L

“ Definition. ZPP = RP N coRP

an RP machine for L

+ Le., Lis in ZPP iff there are

two poly-time rand. TMs M; and ‘M> such that:

« if x € L then Mi(x,r) accepts for every r [no error]

‘Ma(x,r) accepts with prob.>1/2

« if x & L then Mi(x,r) accepts with prob.<1/2

‘M(x,r) rejects for every r [no error]

/PP alternate form

* Let us define ZPP’ (for now) as the class of languages L
which we can decide in average polynomial-time
with probability zero of making a mistake.

+ I claim that ZPP = ZPP".

/PP alternate form

* Let us define ZPP’ (for now) as the class of languages L
which we can decide in average polynomial-time
with probability zero of making a mistake.

+ I claim that ZPP = ZPP".

* The definition of ZPP’ has a few technical problems...
(see next slides)

/PP alternate form

* Let us define ZPP’ (for now) as the class of languages L
which we can decide in average polynomial-time
with probability zero of making a mistake.

+ I claim that ZPP = ZPP".

* The definition of ZPP’ has a few technical problems...
(see next slides)

+ we will need something called Markov’s inequality too

/PP alternate form

* Let us define ZPP’ (for now) as the class of languages L
which we can decide in average polynomial-time
with probability zero of making a mistake.

+ I claim that ZPP = ZPP".

* The definition of ZPP’ has a few technical problems...
(see next slides)

+ we will need something called Markov’s inequality too

... but before that, we explain why (intuitively) ZPP C ZPP’.

Deciding Z in ZPP = RP M coRP with no error

Le., L is in ZPP iff there are
two poly-time rand. TMs ‘M; and M; such that:

X8 Assume Ml and Mz SUCh as here T « if x € L then Mi(x,r) accepts for every r [no error]

Ma(x,r) accepts with prob.>1/2

+ if x & L then Mi(x,r) accepts with prob.<1/2

* Now run the following on input x: Mo(s,) efects for every 7 o error]

Forever:
if Mi(x,...) rejects: stop and reject

if Mo(x,...) accepts: stop and accept

Deciding Z in ZPP = RP M coRP with no error

Le., L is in ZPP iff there are
two poly-time rand. TMs ‘M; and M; such that:

X8 Assume Ml and Mz SUCh as here = « if x € L then Mi(x,r) accepts for every r [no error]

Ma(x,r) accepts with prob.>1/2

+ if x & L then Mi(x,r) accepts with prob.<1/2

* Now run the following on input x: Mo(s,) efects for every 7 o error]

| — —

forever:

if Mi(x,...) rejects: stop and reject e)

if Mo(x,...) accepts: stop and accept

Deciding Z in ZPP = RP M coRP with no error

Le., L is in ZPP iff there are
two poly-time rand. TMs ‘M; and M; such that:

X8 Assume Ml and Mz SuCh as here = « if x € L then Mi(x,r) accepts for every r [no error]

Ma(x,r) accepts with prob.>1/2

+ if x & L then Mi(x,r) accepts with prob.<1/2

* Now run the following on input x: Mo(s,) efects for every 7 o error]

forever:

if Mi(x,...) rejects: stop and reject e)

3£ Q\/lz(x, o5) accepts: StOp and accept then x must be in L (sure)

Deciding Z in ZPP = RP M coRP with no error

Le., L is in ZPP iff there are
two poly-time rand. TMs M; and ‘M such that:

X8 Assume Ml and Mz SuCh as here = « if x € L then Mi(x,r) accepts for every r [no error]

Ma(x,r) accepts with prob.>1/2

+ if x & L then Mi(x,r) accepts with prob.<1/2

* Now run the following on input x: Ma(s) refects for every 7 [error]

forever:
then x cannot be in L (sure)

if Mi(x,...) rejects: stop and reject

if Mo(x,...) accepts: stop and accept then x mustbe in L (sure)

Hence this machine never
makes any mistake

Deciding Z in ZPP = RP M coRP with no error

Le., L is in ZPP iff there are
two poly-time rand. TMs ‘M; and M> such that:

X2 Assume Ml and MZ SUCh as here T « if x € L then Mi(x,r) accepts for every r [no error]

Ma(x,r) accepts with prob.>1/2

+ if x & L then Mi(x,r) accepts with prob.<1/2

* Now run the following on input x: MaGr) refects for every 7 [no error]

T — B

forever:
then x cannot be in L (sure)

if Mi(x,...) rejects: stop and reject

if Mo(x,...) accepts: stop and accept then x mustbe in L (sure)

Hence this machine never
[t may be that Mi(x,...) accepted and Ma(x, ...) rejected, makes any mistake

— in which case we loop
— and that happens with probability <1/2...
why?
(if you tell me that this is even <1/4, you are wrong)

Deciding Z in ZPP = RP M coRP with no error

Le., L is in ZPP iff there are
two poly-time rand. TMs ‘M; and M, such that:

X2 Assume Ml and Mz SUCh as here T + if x € L then Mi(x,r) accepts for every r [no error]

Ma(x,r) accepts with prob.>1/2

+ if x & L then Mi(x,r) accepts with prob.<1/2

* Now run the following on input x: MaGr) refects for every 7 [no error]

B

forever:
then x cannot be in L (sure)

if Mi(x,...) rejects: stop and reject

if Mo(x,...) accepts: stop and accept then x mustbe in L (sure)

Hence this machine never

[t may be that Mi(x,...) accepted and Mx(x,...) rejected, makes any mistake

— in which case we loop

— and that happens with probability <1/2... We will see that this implies that
why? the machine terminates in

(if you tell me that this is even <1/4, you are wrong) <2 turns of the loop on average

A technical problem

« All this requires us to draw arbitrarily long bitstrings

A technical problem

« All this requires us to draw arbitrarily long bitstrings

* In fact, even infinite bit strings (for those computations
that do not terminate)

A technical problem

« All this requires us to draw arbitrarily long bitstrings

* In fact, even infinite bit strings (for those computations
that do not terminate)

* Requires measure theory:

there is a unique measure u on {0,1}

with o-algebra generated by cylinders w.{0,1}®
such that u(w.{0,1}«) = 1/2!»! (Carathéodory)

A technical problem

« All this requires us to draw arbitrarily long bitstrings

* In fact, even infinite bit strings (for those computations
that do not terminate)

* Requires measure theory:

there is a unique measure u on {0,1}

with o-algebra generated by cylinders w.{0,1}®
such that u(w.{0,1}«) = 1/2!»! (Carathéodory)

+ We will happily ignore this.

Rejection sampling

* A classic probabilistic procedure (rejection sampling):
Eorever:
compute something (with some random data r), x;
if P(x) holds: stop and return x

+ Trick. If:

— the random bits are independent across turns of the loop
— and P(x) holds with prob. > a at each turn
then rejection sampling terminates in

1/a turns of the loop on average.

Rejection sampling

* A classic probabilistic procedure (rejection sampling):
Eorever:
compute something (with some random data r), x;
if P(x) holds: stop and return x

+ Trick. If:

— the random bits are independent across turns of the loop
— and P(x) holds with prob. > a at each turn
then rejection sampling terminates in

1/ turns of the loop on average.

Rejection sampling

* An classic probabilistic procedure (rejection sampling):
fOrever:

compute something (with some random data r), x;

if P(x) holds: stop and return x

prob. = «

“ Proof. Let X be the random variable « # turns through the
loop »

Rejection sampling

* An classic probabilistic procedure (rejection sampling):
forever:

compute something (with some random data r), x;

if P(x) holds: stop and return x

prob. = «

“ Proof. Let X be the random variable « # turns through the
loop »

* Pr(X=n) = Pr(P failed at turns 1, ..., n-1)

< (1-)1t (by independence)

Rejection sampling

* An classic probabilistic procedure (rejection sampling):
forever:

compute something (with some random data r), x;

if P(x) holds: stop and return x

prob. = «

“ Proof. Let X be the random variable « # turns through the
loop »

* Pr(X=n) = Pr(P failed at turns 1, ..., n-1)

< (1-)1t (by independence)

S BOC =% v PR =Y TR ey,

Expectation (average)

Rejection sampling: a typical application

* Draw a point inside the disc:

“ Repeatedly draw a point
inside the inscribing square

+ If it is in the disc, return it.

Rejection sampling: a typical application

* Draw a point inside the disc:

“ Repeatedly draw a point
inside the inscribing square

+ If it is in the disc, return it.

+ Terminates in <4/ m
~ 1.27324 turns

Rejection sampling: a typical application

* Draw a point inside the disc:

* Repeatedly draw a point
inside the inscribing square

+ If it is in the disc, return it.

+ Terminates in <4/ m
~ 1.27324 turns

* (Used as first step in the Box-Muller procedure drawing
two independent numbers with a normal distribution)

Deciding Z in ZPP = RP M coRP with no error

Le., L is in ZPP iff there are
two poly-time rand. TMs M; and ‘M such that:

X2 Assume Ml and MZ SUCh as here: « if x € L then Mi(x,r) accepts for every r [no error]

Ma(x,r) accepts with prob.>1/2

+ if x & L then Mi(x,r) accepts with prob.<1/2

* Now run the following on input x: MaGr) refects for every 7 [no error]

R — B ——.

forever:
then x cannot be in L (sure)

if Mi(x,...) rejects: stop and reject

if Mo(x,...) accepts: stop and accept then x mustbe in L (sure)

Hence this machine never

[t may be that Mi(x,...) accepted and Ma(x,...) rejected, makes any mistake

— in which case we loop
— and that happens with probability <1/2...
(two cases: x in L, x notin L)

Deciding Z in ZPP = RP M coRP with no error

Le., L is in ZPP iff there are
two poly-time rand. TMs ‘M; and M, such that:

X2 Assume Ml and Mz SUCh as here: + if x € L then Mi(x,r) accepts for every r [no error]

Ma(x,r) accepts with prob.>1/2

+ if x & L then Mi(x,r) accepts with prob.<1/2

* Now run the following on input x: MaGr) refects for every 7 [no error]

B

forever:
then x cannot be in L (sure)

if Mi(x,...) rejects: stop and reject

if Mo(x,...) accepts: stop and accept then x mustbe in L (sure)

Hence this machine never

[t may be that Mi(x,...) accepted and Ma(x,...) rejected, makes any mistake

— in which case we loop
— and that happens with probability <1/2...
(two cases: x in L, x notin L)

This is rejection sampling;:

stops 1n <2 turns on average
hence in polytime on average.

Markov’s inequality

Let us define ZPP’ (for now) as the class of languages L

g which we can decide in average polynomial-time
< Hence : with probability zero of making a mistake.
7PP (: RP N CORP) C ZPP’ I claim that ZPP = ZPP".

+ In order to show the reverse inclusion, we use:

* Theorem (Markov’s inequality).
Let X be a non-negative real-valued random variable
with finite expectation E(X). For every a>0:

Pr(X=a.E(X)) < 1/a.

Markov’s inequality

Let us define ZPP’ (for now) as the class of languages L

2 which we can decide in average polynomial-time
< Hence g with probability zero of making a mistake.
7PP (: RP N CORP) g 7PP’ I claim that ZPP = ZPP".
_ —

+ In order to show the reverse inclusion, we use:

* Theorem (Markov’s inequality).
Let X be a non-negative real-valued random variable
with finite expectation E(X). For every a>0:

Pr(X=a.E(X)) < 1/a.

Markov’s inequality

* Theorem (Markov’s inequality).

Let X be a non-negative real-valued random variable
with finite expectation E(X). For every a>0:
Pr(X=a.E(X)) < 1/a.

= Proof ECX)i={; Pr(X=t) di Lot

> area of the blue rectangle
=g . E(X) . Pr(X=a.E(X))
Then divide out Pr(X>a.E(X))

by a . E(X).

2.E(X)

The reverse mcluSlon re ¢ /vy

Let us define ZPP’ (for now) as the class of languages L
which we can decide in average polynomial-time
with probability zero of making a mistake.

+ Let L 1n ZPP’, decided by ‘M I claim that ZPP = ZPP". Recall ZPP = RP N coRP
E—

running in average poly. time p(11) with no error.

+ Define M, as follows: on input x

(and random tape r of size a. p(n))
simulate ‘M on x for at most a. p(n) steps (timeout).

[f timeout reached, then accept (that may be an error).

The reverse inclusion ZPP° C ZPP

- Let us define ZPP’ (for now) as the class of languages L
which we can decide in average polynomial-time
with probability zero of making a mistake.

Let L in ZPP’, decided by ‘M I claim that ZPP = ZPP". Recall ZPP = RP N coRP

K/
<4

Markov onr.v. X =

. running in average poly. time p(n) with no error.
time taken by M on x; |
Define M; as follows: on input x
also let a=2. (and random tape r of size a. p(n))
simulate M on x for at most a. p(n) steps (timeout).
= E(X) = P(”) finite OK If timeout reached, then accept (that may be an error).

The reverse inclusion ZPP° C ZPP

+ Let us define ZPP’ (for now) as the class of languages L
which we can decide in average polynomial-time
with probability zero of making a mistake.

Let L in ZPP’, decided by ‘M I claim that ZPP = ZPP". Recall ZPP = RP n coRP

—

* Markovonr.v. X =

running in average poly. time p(n) with no error.

time taken by M on x;

Define M; as follows: on input x

also let a=2. (and random tape r of size a. p(n))
simulate M on x for at most a. p(n) steps (timeout).
= E(X) = P(”) finite OK If timeout reached, then accept (that may be an error).
T — B

+ If x & L = error = Pr,(Mi(x,7) accepis)
=Pr(X>a.p(n)) (M makes no mistake)

< Pr(X >a. E(X)) (E(X)<p(n))
Al =l (Markov)

The reverse inclusion ZPP° C ZPP

+ Let us define ZPP’ (for now) as the class of languages L
which we can decide in average polynomial-time
with probability zero of making a mistake.

Let L in ZPP’, decided by ‘M I claim that ZPP = ZPP". Recall ZPP = RP n coRP

—

* Markovonr.v. X =

running in average poly. time p(n) with no error.

time taken by M on x;

Define M; as follows: on input x

also let a=2. (and random tape r of size a. p(n))
simulate M on x for at most a. p(n) steps (timeout).
= E(X) = P(”) finite OK If timeout reached, then accept (that may be an error).
T — B

+ If x & L = error = Pr,(Mi(x,7) accepis)
=Pr(X>a.p(n)) (M makes no mistake)

< Pr(X >a. E(X)) (E(X)<p(n))
Al =l (Markov)

« If x € L = Mu(x,r) must accept.

The reverse inclusion ZPP° C ZPP

+ Let us define ZPP’ (for now) as the class of languages L
which we can decide in average polynomial-time
with probability zero of making a mistake.

Let L in ZPP’, decided by ‘M I claim that ZPP = ZPP". Recall ZPP = RP N coRP

—

* Markovonr.v. X =

running in average poly. time p(n) with no error.

time taken by M on x;

Define M; as follows: on input x

also let a=2. (and random tape r of size a. p(n))
simulate M on x for at most a. p(n) steps (timeout).
= E(X) = P(”) finite OK If timeout reached, then accept (that may be an error).

+ If x & L = error = Pr,(Mi(x,7) acceidfs)
=Pr(X>a.p(n)) (M makes no mistake)

< Pr(X >a. E(X)) (E(X)<p(n))
Al =l (Markov)

« If x € L = Mu(x,r) must accept.

+ Hence L 1s in coRP.

The reverse inclusion ZPP° C ZPP

Symmetrically: S
with probability zero of making a mistake.
& Marku VONnrv X = Let L in Z.PP’, decided by M I claim that.ZPI’-:ZPP’. Recall ZPP = RP N coRP
. running in average poly. time p(n) with no error.
time taken by M on x; _ |
Define M, as follows: on input x
also let a=2. (and random tape r of size a. p(n))
simulate M on x for at most a. p(n) steps (timeout).
= E(X) = P(”) finite OK If timeout reached, then accept, that may be an error).

D

¢+ If x € L = error = Pr.(Ma(x,1) aeeepts rejects)
=Pr(X >a.p(n)) (M makes no mistake)

< Pr(X >a. E(X)) (E(X)<p(n))
Al =l (Markov)

« If x & L = Ma (x,7) must aeeept reject.

+ Hence L 1s in eeRP RP.

The reverse inclusion ZPP° C ZPP

Symmetrically:

+ Markov ot 1.v. A —
time taken by M on x;

also let a=2.

+ E(X) < p(n) finite OK

Let us define ZPP’ (for now) as the class of languages L
which we can decide in average polynomial-time
with probability zero of making a mistake.

Let L in ZPP’, decided by M I claim that ZPP = ZPP". Recall ZPP = RP N coRP

S

running in average poly. time p(n) with no error.

Define M, as follows: on input x

(and random tape r of size a. p(n))
simulate M on x for at most a. p(n) steps (timeout).

ect

If timeout reached, then that may be an error).

« If x € L = error = Pr(Mz(x,r) aceepts rejects)
=Pr(X >a.p(n)) (M makes no mistake)
< Pr(X >a. E(X)) (E(X)<p(n))

=1/a=1/2

(Markov)

« If x & L = Ma (x,7) must aeeept reject.

+ Hence L 1s in eeRP RP.

Hence L is both in RP and
in coRP, namely in ZPP. O

Summary on ZPP

+ Definition. ZPP = RP N coRP

* Theorem. ZPP is the class of languages L
which we can decide in average polynomial-time
with probability zero of making a mistake.

s

coNP
coRP

BPP: Bounded Prob. of Error Polynomial time

* Alanguage L is in BPP if and only if
there is a polynomial-time TM ‘M

such that for every input x (of size n):

« if x € L then Pr, [M(x,r) accepts] =2/3

« if x & L then Pr, ['M(x,r) accepts] < 1/3.

two-sided error:
Pr, [M(x,r) errs] <1/3

