Randomized complexity classes

Today: RP, coRP, and ZPP (what a zoo!)
Today

- Randomized Turing machines
- One-sided error: RP, coRP
- No error: ZPP
- Next time: two-sided error BPP
Randomized Turing machines
Ordinary Turing machines

- One **read-only** input tape x (size $|x| = n$)
- As many **work tapes** as you need (but only a constant number!)
- (Possibly) one **write-only** output tape
Drawing strings at random

- We will study **probabilistic** complexity classes, where our TMs can now **draw** strings of bits at random.
We will study **probabilistic** complexity classes, where our TMs can now **draw** strings of bits at random.

- No need to invent a new TM model.
Drawing strings at random

- We will study **probabilistic** complexity classes, where our TMs can now **draw** strings of bits at random.
- No need to invent a new TM model.
- **Choice 1**: use a **non-deterministic** TM model and draw execution branch at random (we won’t do that; hard to do it right).
Drawing strings at random

- We will study **probabilistic** complexity classes, where our TMs can now **draw** strings of bits at random.
- No need to invent a new TM model.
- **Choice 1**: use a **non-deterministic** TM model and draw execution branch at random (we won’t do that; hard to do it right).
- **Choice 2**: … next slide.
Randomized Turing machines

- Two tapes
 - One \textit{read-only} tapes
 - As many \textit{work} tapes as you need
 (but only a constant number!)
 - (Possibly) one \textit{write-only} output tape
- \textit{random} tape
- \textit{input} tape

$(size=n)$
We draw the random tape r uniformly at random
We draw the random tape r uniformly at random.

We will be interested in probabilities, e.g. $\Pr_r [\mathcal{M}(x,r) \text{ accepts}]$.
We draw the random tape r uniformly at random.

We will be interested in probabilities, e.g. $\Pr_{r} [M(x,r) \text{ accepts}]$.

Random tape must not just be read-only: we impose that no bit on r is ever read twice (otherwise bits read are not independent).
we need r to contain at least $f(n)$ bits, where $f(n)$ is an upper bound on the time taken by the TM.
we need \(r \) to contain at least \(f(n) \) bits, where \(f(n) \) is an upper bound on the time taken by the TM.

We will always assume that \(r \) is large enough.
we need r to contain at least $f(n)$ bits, where $f(n)$ is an upper bound on the time taken by the TM.

We will always assume that r is large enough

OK for classes defined by worst-case time, will cause problems for classes defined with no a priori upper bound on time (e.g., ZPP)
Our first probabilistic class: \(\text{RP} \)

(also sometimes known as the class of *Monte Carlo* languages)
A language L is in \textbf{RP} if and only if there is a \textit{polynomial-time} TM M such that for every input x (of size n):
A language L is in RP if and only if there is a polynomial-time TM M such that for every input x (of size n):

- i.e. there is also a polynomial $p(n)$ / $M(x,r)$ terminates in time $\leq p(n)$, where $n = |x|$, in the worst case (and for any value of r)
A language L is in \textbf{RP} if and only if there is a polynomial-time TM M such that for every input x (of size n):

\[M(x,r) \text{ terminates in time } \leq p(n), \]

where $n = |x|$, in the worst case (and for any value of r)

\[\text{hence, implicitly, we require } |r| \geq p(n), \]

(let us say $|r| = p(n)$)
RP: **Randomized Polynomial time**

- A language L is in **RP** if and only if there is a **polynomial-time** TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x, r) \text{ accepts}] \geq 1/2$

i.e. there is also a **polynomial** $p(n)$ / $M(x, r)$ terminates in time $\leq p(n)$, where $n = |x|$, in the worst case (and for any value of r)

... hence, implicitly, we require $|r| \geq p(n)$ (let us say $|r| = p(n)$)
RP: Randomized Polynomial time

- A language L is in RP if and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1/2$

i.e. there is also a polynomial $p(n)$ / $M(x,r)$ terminates in time $\leq p(n)$, where $n = |x|$, in the worst case (and for any value of r)

... hence, implicitly, we require $|r| \geq p(n)$ (let us say $|r| = p(n)$)

probability taken over all $r \in \{0,1\}^{p(n)}$
A language L is in **RP** if and only if there is a polynomial-time TM M such that for every input x (of size n):

- if $x \in L$ then $Pr_r [M(x,r) \text{ accepts}] \geq 1/2$
- if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $Pr_r [M(x,r) \text{ accepts}] = 0$).

... hence, implicitly, we require $|r| \geq p(n)$ (let us say $|r| = p(n)$)

probability taken over all $r \in \{0,1\}^{p(n)}$

i.e. there is also a polynomial $p(n)$ / $M(x,r)$ terminates in time $\leq p(n)$, where $n = |x|$, in the worst case (and for any value of r)
RP: Randomized Polynomial time

- A language L is in **RP** if and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1/2$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$).

 i.e. there is also a polynomial $p(n)$ / $M(x,r)$ terminates in time $\leq p(n)$, where $n = |x|$, in the worst case (and for any value of r)

 ... hence, implicitly, we require $|r| \geq p(n)$ (let us say $|r| = p(n)$)

 probability taken over all $r \in \{0,1\}^{p(n)}$

 one-sided error: we make no error if $x \notin L$
A language L is in **RP** if and only if there is a polynomial-time TM M such that for every input x (of size n):

- if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1/2$
- if $x \not\in L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$).

One-sided error: we make no error if $x \not\in L$.
RP: Randomized Polynomial time

- A language L is in **RP** if and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\text{Pr}_r [M(x,r) \text{ accepts}] \geq 1/2$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\text{Pr}_r [M(x,r) \text{ accepts}]=0$).
RP: Randomized Polynomial time

- A language L is in RP if and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1/2$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$).

Note: RP-languages are not defined by « RP-machines » (there is no such notion).
RP: Randomized Polynomial time

- A language L is in **RP** if and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1/2$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$).

Note: **RP-languages** are **not** defined by « **RP-machines» » (there is no such notion)

... but if we wanted to define « **RP-machines» », those would be machines M such that, for every x,
- either $\Pr_r [M(x,r) \text{ accepts}] \geq 1/2$
- or $\Pr_r [M(x,r) \text{ accepts}] = 0$
coRP

- L is in coRP iff complement L^c is in RP, hence:
coRP

- \(L \) is in \(\text{coRP} \) iff complement \(L^c \) is in \(\text{RP} \), hence:
- \(L \) is in \(\text{coRP} \) if and only if
 - there is a polynomial-time TM \(M \)
 - such that for every input \(x \) (of size \(n \)):
 - if \(x \in L \) then \(\Pr_r [M(x,r) \text{ accepts}] \geq 1/2 \)
 - if \(x \not\in L \) then \(M(x,r) \) accepts for no \(r \)
 - \(\Pr_r [M(x,r) \text{ accepts}] \leq 1/2 \)
A motivating example for (co)RP

❖ PRIMALITY
INPUT: a natural number \(p \), in binary
Q: is \(p \) prime?
A motivating example for (co)RP

PRIMALITY
INPUT: a natural number p, in binary
Q: is p prime?

For a long time, not known to be in P
(now solved: indeed in P [Agrawal, Kayal, Saxena 2004])
A motivating example for (co)RP

❖ PRIMALITY
INPUT: a natural number p, in binary
Q: is p prime?

❖ For a long time, not known to be in P (now solved: indeed in P [Agrawal, Kayal, Saxena 2004])

❖ In coNP (guess a proper divisor)
A motivating example for (co)RP

❖ PRIMALITY
INPUT: a natural number \(p \), in binary
Q: is \(p \) prime?

❖ For a long time, not known to be in \(\text{P} \)
(now solved: indeed in \(\text{P} \) [Agrawal, Kayal, Saxena 2004])

❖ In \(\text{coNP} \) (guess a proper divisor)

❖ In \(\text{NP} \) [Pratt 1975]
A motivating example for (co)RP

- **PRIMALITY**
 - INPUT: a natural number p, in binary
 - Q: is p prime?

- For a long time, not known to be in \mathbf{P}
 (now solved: indeed in \mathbf{P} [Agrawal, Kayal, Saxena 2004])

- In coNP (guess a proper divisor)

- In \mathbf{NP} [Pratt 1975]

- Can also be solved efficiently with randomization…
Thm (Fermat). If p is prime, then for every r $(1 \leq r < p)$, $r^{p-1} = 1 \mod p$.
Fermat’s little theorem

- **Thm (Fermat).** If \(p \) is prime, then for every \(r \) (\(1 \leq r < p \)),
 \[r^{p-1} = 1 \pmod{p}. \]

- \(\Rightarrow \) draw \(r \) at random in \([2, p-2]\); accept if \(r^{p-1} = 1 \pmod{p} \).
Fermat’s little theorem

- **Thm (Fermat).** If p is prime, then for every r ($1 \leq r < p$),
 \[r^{p-1} \equiv 1 \mod p. \]

- **⇒** draw r at random in $[2, p-2]$; accept if $r^{p-1} \equiv 1 \mod p$.

- **Note:** computing mod p is **efficient**:
 - size of all numbers **bounded** by $\text{size}(p) = O(\log p)$.
 - addition mod p in time $O(\log p)$
 - mult. mod p in time $O(\log^2 p)$ (even $O(\log^{1+\varepsilon} p)$)
Thm (Fermat). If \(p \) is prime, then for every \(r \) (\(1 \leq r < p \)),
\[r^{p-1} = 1 \mod p. \]

\[\Rightarrow \] draw \(r \) at random in \([2, p-2]\); accept if \(r^{p-1} = 1 \mod p \).

Note: computing mod \(p \) is efficient:
size of all numbers bounded by \(\text{size}(p) = O(\log p) \).
— addition mod \(p \) in time \(O(\log p) \)
— mult. mod \(p \) in time \(O(\log^2 p) \) (even \(O(\log^{1+\epsilon} p) \))

An experiment… (next slide)
Fermat’s little theorem in practice

- **Thm (Fermat).** If p is prime, then for every $r \ (1 \leq r < p)$,
 $$r^{p-1} = 1 \mod p.$$

- \Rightarrow draw r at random in $[2, p-2]$; accept if $r^{p-1} = 1 \mod p$.
Thm (Fermat). If \(p \) is prime, then for every \(r \) (\(1 \leq r < p \)),
\[r^{p-1} = 1 \pmod{p}. \]

⇒ draw \(r \) at random in \([2, p-2]\); accept if \(r^{p-1} = 1 \pmod{p} \).

Is 87 prime?
Fermat’s little theorem in practice

- **Thm (Fermat).** If p is prime, then for every r ($1 \leq r < p$),
 \[r^{p-1} \equiv 1 \pmod{p}. \]

- \[\Rightarrow \text{draw } r \text{ at random in } [2, p-2]; \text{ accept if } r^{p-1} \equiv 1 \pmod{p}. \]

- Is 87 prime?

- Draw r at random… say 25
Fermat’s little theorem in practice

- **Thm (Fermat).** If \(p \) is prime, then for every \(r \) (\(1 \leq r < p \)),
 \[r^{p-1} = 1 \mod p. \]

- \(\Rightarrow \) draw \(r \) at random in \([2, p-2]\); accept if \(r^{p-1} = 1 \mod p \).

- Is 87 prime?

- Draw \(r \) at random… say 25

- \(r^{86} = 16 \mod 87 \)
Fermat’s little theorem in practice

- **Thm (Fermat).** If \(p \) is prime, then for every \(r \) (\(1 \leq r < p \)),
 \[r^{p-1} = 1 \mod p. \]

- ⇒ draw \(r \) at random in \([2, p-2]\); accept if \(r^{p-1} = 1 \mod p \).

- Is 87 prime?

- Draw \(r \) at random… say 25

- \(r^{86} = 16 \mod 87 \)

- ⇒ 87 is **not prime** (definitely)
Fermat’s little theorem in practice

- **Thm (Fermat).** If p is prime, then for every r (1 ≤ r < p),
 $r^{p-1} = 1 \mod p$.

- ⇒ draw r in $[2, p-2]$; accept if $r^{p-1} = 1 \mod p$.

- Is 87 prime?
Fermat’s little theorem in practice

- **Thm (Fermat).** If p is prime, then for every $r \ (1 \leq r < p)$,
 $$r^{p-1} = 1 \mod p.$$

- Imply draw r in $[2, p-2]$; accept if $r^{p-1} = 1 \mod p$.

- Is 87 prime?

- The probability (over r) of error is:
 $$2/84 \approx 0.024$$
Fermat’s little theorem in practice

- Thm (Fermat). If \(p \) is prime, then for every \(r \) (1 \(\leq \) \(r \) \(< \) \(p \)),
 \[rp^{-1} = 1 \mod p. \]

- \(\Rightarrow \) draw \(r \) in \([2, p-2]\); accept if \(rp^{-1} = 1 \mod p. \)
Fermat’s little theorem in practice

- **Thm (Fermat).** If \(p \) is prime, then for every \(r \) \((1 \leq r < p)\), \(r^{p-1} = 1 \text{ mod } p \).

- ⇒ draw \(r \) in \([2, p-2]\); accept if \(r^{p-1} = 1 \text{ mod } p \).

- If \(p \) is prime, will succeed for every \(r \)
Fermat’s little theorem in practice

- **Thm (Fermat).** If p is prime, then for every r ($1 \leq r < p$), $r^{p-1} \equiv 1 \pmod{p}$.

- \Rightarrow draw r in $[2, p-2]$; accept if $r^{p-1} \equiv 1 \pmod{p}$.

- If p is prime, will succeed for every r.

- Else, will fail with (hopefully) high probability (0.024 in the example, looks good); but…
A **Carmichael number** is a number \(p \):
— that is **not** prime
— but passes all Fermat tests \(r^{p-1} \equiv 1 \mod p \) for every \(r \)

I.e., on which our hopes of low error rate fail miserably
Carmichael numbers

- A Carmichael number is a number \(p \):
 - that is not prime
 - but passes all Fermat tests \(r^{p-1}=1 \mod p \) for every \(r \)
- I.e., on which our hopes of low error rate fail miserably
- Infinitely many of them [Alford, Granville, Pomerance 1994]: 561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, etc.
Carmichael numbers

- A Carmichael number is a number p:
 — that is not prime
 — but passes all Fermat tests ($r^{p-1}=1 \mod p$ for every r)
- I.e., on which our hopes of low error rate fail miserably
- Infinitely many of them [Alford, Granville, Pomerance 1994]: 561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, etc.
- Frustrating: if p is not prime and passes at least one Fermat test, then it passes at least half of them...
The Miller-Rabin test (1/2)

- We use another basic fact: if \(p \) is prime, then the only square roots of 1 mod \(p \) are 1 and \(-1\).
The Miller-Rabin test (1/2)

- We use another basic fact: if p is prime, then the only square roots of 1 mod p are 1 and -1.

- Hence, if p is prime and odd (so $p - 1 = 2^k q$, q odd):

 \[
 r^q \quad \ldots \quad r^{(2^{i-1}q)} \quad r^{(2^i q)} \quad \ldots \quad r^{(2^{k-1}q)} \quad r^{(2^k q)} \quad \mod p
 \]

 (read from right to left: \leftarrow)

 (don’t care don’t care) -1 1 \ldots 1 1 for some i, or:
The Miller-Rabin test (1/2)

- We use another basic fact: if \(p \) is prime, then the only square roots of 1 mod \(p \) are 1 and –1

- Hence, if \(p \) is prime and odd (so \(p–1 = 2^k q \), \(q \) odd):

\[
\begin{array}{ccccccc}
 r^q & \ldots & r^{(2^{i-1} q)} & r^{(2^i q)} & \ldots & r^{(2^{k-1} q)} & r^{(2^k q)} \\
 \text{mod } p \\
 \text{(don’t care don’t care)} & -1 & 1 & \ldots & 1 & 1 & 1
\end{array}
\]

(Read from right to left : \(\leftarrow \)) for some \(i \), or:

\[
\begin{array}{ccccccc}
 1 & \ldots & 1 & 1 & \ldots & 1 & 1 \\
 \text{mod } p
\end{array}
\]
The Miller-Rabin test (2/2)

- On input p, draw r at random:
 - if the test shown here: succeeds, then accept (p probably prime)
 - otherwise reject (p definitely not prime)
The Miller-Rabin test (2/2)

- On input p, draw r at random:
 - if the test shown here:
 - succeeds, then accept (p probably prime)
 - otherwise reject (p definitely not prime)

- Probability of error $\leq 1/4$. Excellent! Hence:

Hence, if p is prime and odd (so $p-1 = 2^k q$, q odd):

<table>
<thead>
<tr>
<th>r^q</th>
<th>$r^{q(2^i q)}$</th>
<th>$r^{q(2^i q)}$</th>
<th>$r^{q(2^i q)}$</th>
<th>$r^{q(2^i q)}$</th>
<th>$r^{q(2^i q)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>\ldots</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(Read from right to left: \rightarrow)`
The Miller-Rabin test (2/2)

- On input p, draw r at random:
 - if the test shown here succeeds, then accept (p probably prime)
 - otherwise reject (p definitely not prime)

- Probability of error $\leq 1/4$. Excellent! Hence:

- Theorem. PRIMALITY is in coRP.
The Miller-Rabin test (2/2)

- On input \(p \), draw \(r \) at random:
 — if the test shown here: succeeds, then accept (\(p \) probably prime)
 — otherwise reject (\(p \) definitely not prime)

- Probability of error \(\leq 1/4 \). Excellent! Hence:

 - **Theorem. PRIMALITY is in coRP.**

 - (Superseded by [AKS04]… but Miller-Rabin works in log space, not [AKS04]!)

Hence, if \(p \) is prime and odd (so \(p-1 = 2^k q, q \) odd):

\[
\begin{array}{cccccccc}
 r^q & \ldots & r^{(2^i-1)q} & r^{(2^i q)} & \ldots & r^{(2^{i+1}-1)q} & r^{(2^{i+1} q)} \\
 (-1) & 1 & \ldots & 1 & 1 & \ldots & 1 \\
\end{array}
\mod p
\]

(read from right to left: \(\rightarrow \))
Notes on Primality Testing
And Public Key Cryptography
Part 1: Randomized Algorithms
Miller–Rabin and Solovay–Strassen Tests

Jean Gallier and Jocelyn Quaintance
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104, USA
e-mail: jean@cis.upenn.edu

© Jean Gallier
February 27, 2019

https://www.cis.upenn.edu/~jean/RSA-primality-testing.pdf
Error reduction

- What is so special about error 1/2?

- A language L is in RP if and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r[M(x,r) \text{ accepts}] \geq 1/2$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r[M(x,r) \text{ accepts}]=0$).

- $\text{error} = 1 - 1/2$ (= 1/2 here)
Error reduction

- What is so special about error $1/2$?
- Nothing!

A language L is in RP if and only if there is a *polynomial-time* TM M such that for every input x (of size n):
- if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1/2$
- if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$).
Error reduction

- What is so special about error $1/2$?
- Nothing!

A language L is in RP if and only if there is a polynomial-time TM M such that for every input x (of size n):
- if $x \in L$ then $\Pr_r [M(x, r) \text{ accepts}] \geq 1/2$
- if $x \notin L$ then $M(x, r)$ accepts for no r (i.e., $\Pr_r [M(x, r) \text{ accepts}] = 0$).

A language L is in $\text{RP}(\epsilon)$ if and only if there is a polynomial-time TM M such that for every input x (of size n):
- if $x \in L$ then $\Pr_r [M(x, r) \text{ accepts}] \geq 1-\epsilon$
- if $x \notin L$ then $M(x, r)$ accepts for no r (i.e., $\Pr_r [M(x, r) \text{ accepts}] = 0$).

$\text{error} = 1 - 1/2$ (= $1/2$ here)
Error reduction

- What is so special about error $1/2$?
 - Nothing!

- **Theorem.** $\forall \varepsilon \in]0, 1[,$ $\text{RP} = \text{RP}(\varepsilon)$.

- A language L is in RP if and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1/2$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$).

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1-\varepsilon$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$).

- $\text{error} = 1 - 1/2$ ($= 1/2$ here)
Error reduction

- What is so special about error 1/2?
 - Nothing!

- **Theorem.** ∀ ε ∈]0, 1[, $\text{RP} = \text{RP}(ε)$.

- **Note:** $\text{RP} = \text{RP}(1/2)$ (def.)

- A language L is in RP if and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\text{Pr}_r [M(x,r) \text{ accepts}] \geq 1/2$
 - if $x \not\in L$ then $M(x,r)$ accepts for no r (i.e., $\text{Pr}_r [M(x,r) \text{ accepts}] = 0$).

- A language L is in $\text{RP}(ε)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\text{Pr}_r [M(x,r) \text{ accepts}] \geq 1 - ε$
 - if $x \not\in L$ then $M(x,r)$ accepts for no r (i.e., $\text{Pr}_r [M(x,r) \text{ accepts}] = 0$).
Error reduction: the easy direction

- Clearly, if $\eta \leq \varepsilon$ then $\text{RP}(\eta) \subseteq \text{RP}(\varepsilon)$

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x, r) \text{ accepts}] \geq 1 - \varepsilon$
 - if $x \notin L$ then $M(x, r)$ accepts for no r (i.e., $\Pr_r [M(x, r) \text{ accepts}] = 0$).
Error reduction: the easy direction

- Clearly, if $\eta \leq \varepsilon$ then $\text{RP}(\eta) \subseteq \text{RP}(\varepsilon)$

- Proof: take any $L \in \text{RP}(\eta)$

... I’ll let you finish the argument

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1 - \varepsilon$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$).

- error $= \varepsilon$
Error reduction: the easy direction

- Clearly, if $\eta \leq \varepsilon$ then $\text{RP}(\eta) \subseteq \text{RP}(\varepsilon)$

- Proof: take any $L \in \text{RP}(\eta)$
 ... I’ll let you finish the argument

- Note: $\text{RP}(0) = \text{P}$ (believed $\neq \text{RP}$)
 $\text{RP}(1) = \{\text{all languages}\}$ (why?)

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1 - \varepsilon$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$)
The hard direction: repeating experiments

- Let $L \in \text{RP}(\epsilon)$, $0<\eta<\epsilon<1$

- On input x, let us do the following (at most) K times:
 - A language L is in $\text{RP}(\epsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x, r) \text{ accepts}] \geq 1-\epsilon$
 - if $x \notin L$ then $M(x, r)$ accepts for no r (i.e., $\Pr_r [\text{M(x, r) accepts}] = 0$, $\text{error} = \epsilon$)
The hard direction: repeating experiments

- Let $L \in \text{RP}(\varepsilon)$, $0<\eta<\varepsilon<1$
- On input x, let us do the following (at most) K times:
 - Draw r at random, simulate $M(x, r)$ and:

\[
\text{error} = \varepsilon
\]

A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):

- if $x \in L$ then $\Pr_r [M(x, r) \text{ accepts}] \geq 1-\varepsilon$
- if $x \notin L$ then $M(x, r)$ accepts for no r (i.e., $\Pr_r [M(x, r) \text{ accepts}] = 0$)
The hard direction: repeating experiments

- Let $L \in \text{RP}(\varepsilon)$, $0<\eta<\varepsilon<1$

- On input x, let us do the following (at most) K times:
 - Draw r at random, simulate $M(x, r)$ and:
 - If $M(x, r)$ accepts, then exit the loop and accept;

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x, r) \text{ accepts}] \geq 1-\varepsilon$
 - if $x \notin L$ then $M(x, r)$ accepts for no r (i.e., $\Pr_r [M(x, r) \text{ accepts}] = 0$).

Remember: if $M(x, r)$ accepts, then x must be in L.
Let $L \in \text{RP}(\varepsilon)$, $0 < \eta < \varepsilon < 1$

On input x, let us do the following (at most) K times:

- Draw r at random, simulate $M(x, r)$ and:
 - If $M(x, r)$ accepts, then exit the loop and accept;
 - Otherwise, proceed and loop.

Remember: if $M(x, r)$ accepts, then x must be in L.

A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):

- if $x \in L$ then $\Pr_r [M(x, r) \text{ accepts}] \geq 1 - \varepsilon$
- if $x \notin L$ then $M(x, r)$ accepts for no r (i.e., $\Pr_r [M(x, r) \text{ accepts}] = 0$).

$\text{error} = \varepsilon$
The hard direction: repeating experiments

- Let $L \in \text{RP}(\varepsilon)$, $0 < \eta < \varepsilon < 1$
- On input x, let us do the following (at most) K times:
 - Draw r at random, simulate $M(x, r)$ and:
 - If $M(x, r)$ accepts, then exit the loop and accept;
 - Otherwise, proceed and loop.
 - At the end of the loop, reject.

A language L is in $\text{RP}(\varepsilon)$ if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x, r) \text{ accepts}] \geq 1 - \varepsilon$
 - if $x \notin L$ then $M(x, r)$ accepts for no r (i.e., $\Pr_r [M(x, r) \text{ accepts}] = 0$).

Remember: if $M(x, r)$ accepts, then x must be in L.
Repeating experiments (pretty) formally

- We have defined a new randomized TM $M'(x, r[1]\# \ldots \# r[K])$ by:
 - for $i=1$ to K:
 - If $M(x, r[i])$ accepts, then exit the loop and accept;
 - reject.

Remember: if $M(x, r[i])$ accepts, then x must be in L.

- A language L is in **RP(ε)** and only if there is a **polynomial-time** TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x, r) \text{ accepts}] \geq 1-\varepsilon$
 - if $x \notin L$ then $M(x, r)$ accepts for no r (i.e., $\Pr_r [M(x, r) \text{ accepts}] = 0$).

Error $= \varepsilon$
Acceptance: 1. if $x \in L$

- If $x \in L$ (recall L in $\text{RP}(\varepsilon)$), then letting $r=r[1]\#\ldots\#r[K]$, $\Pr_r(M'(x, r) \text{ rejects})$

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r[M(x,r) \text{ accepts}] \geq 1-\varepsilon$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r[M(x,r) \text{ accepts}] = 0$), error $= \varepsilon$

- Define $M'(x, r[1]\#\ldots\#r[K])$ by:
 - for $i=1$ to K:
 - If $M(x, r[i])$ accepts, then exit the loop and accept;
 - reject.
Acceptance: 1. if $x \in L$

- If $x \in L$ (recall L in $\text{RP}(\varepsilon)$), then letting $r=r[1]#...#r[K]$, $\Pr_r(M'(x, r) \text{ rejects})$
 - $= \Pr_r(\forall i=1..K, M(x, r[i]) \text{ rejects})$

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1-\varepsilon$
 - if $x \notin L$ then $M(x,r)$ accepts for no r
 (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$, $\text{error} = \varepsilon$

Define $M'(x, r[1]#...#r[K])$ by:

- for $i=1$ to K:
 - If $M(x, r[i])$ accepts, then exit the loop and accept;
 - reject.
Acceptance: 1. if $x \in L$

- If $x \in L$ (recall L in $\text{RP}(\varepsilon)$), then letting $r=r[1] \# \ldots \# r[K]$, $\text{Pr}_r(M'(x, r) \text{ rejects})$
 - $= \text{Pr}_r(\forall i=1..K, M(x, r[i]) \text{ rejects})$
 - $= \Pi_{i=1..K} \text{Pr}_{r[i]}(M(x, r[i]) \text{ rejects})$ (independence)

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\text{Pr}_r[M(x,r) \text{ accepts}] \geq 1-\varepsilon$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\text{Pr}_r[M(x,r) \text{ accepts}] = 0$)

- Define $M'(x, r[1] \# \ldots \# r[K])$ by:
 - for $i=1$ to K:
 - If $M(x, r[i])$ accepts, then exit the loop and accept;
 - reject.
Acceptance: 1. if $x \in L$

- If $x \in L$ (recall L in $\text{RP}(\varepsilon)$), then letting $r=r[1]# \ldots # r[K]$,
 $\Pr_r(M'(x, r) \text{ rejects})$

 - $= \Pr_r(\forall i=1..K, M(x, r[i]) \text{ rejects})$

 - $= \prod_{i=1..K} \Pr_{r[i]}(M(x, r[i]) \text{ rejects})$
 (independence)

 - $\leq \varepsilon^K$

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x, r) \text{ accepts}] \geq 1 - \varepsilon$
 - if $x \notin L$ then $M(x, r) \text{ accepts for no } r$
 (i.e., $\Pr_r [M(x, r) \text{ accepts}] = 0$), error $= \varepsilon$

Define $M'(x, r[1]# \ldots # r[K])$ by:

- for $i=1$ to K:
 - If $M(x, r[i]) \text{ accepts, then exit the loop and accept; }$
 - reject.
Acceptance: 1. if \(x \in L \)

- If \(x \in L \) (recall \(L \) in \(\text{RP}(\varepsilon) \)), then
 letting \(r=r[1]\#\ldots\#r[K] \),
 \(\Pr_r(\mathcal{M}'(x, r) \text{ rejects}) \)
 \[= \Pr_r(\forall i=1..K, \mathcal{M}(x, r[i]) \text{ rejects}) \]
 \[= \prod_{i=1..K} \Pr_{r[i]}(\mathcal{M}(x, r[i]) \text{ rejects}) \] (independence)
 \[\leq \varepsilon^K \]

- \(\Rightarrow \) If \(x \in L \) then
 \(\Pr_r(\mathcal{M}'(x, r) \text{ accepts}) \geq 1-\varepsilon^K \)

- A language \(L \) is in \(\text{RP}(\varepsilon) \) and only if
 there is a polynomial-time TM \(\mathcal{M} \)
 such that for every input \(x \) (of size \(n \)):
 - if \(x \in L \) then \(\Pr_r [\mathcal{M}(x,r) \text{ accepts}] \geq 1-\varepsilon \)
 - if \(x \not\in L \) then \(\mathcal{M}(x,r) \text{ accepts for no } r \)
 (i.e., \(\Pr_r [\mathcal{M}(x,r) \text{ accepts}] = 0 \), \(\text{error} = \varepsilon \))

- Define \(\mathcal{M}'(x, r[1]\#\ldots\#r[K]) \) by:
 - for \(i=1 \) to \(K \):
 - If \(\mathcal{M}(x, r[i]) \text{ accepts} \), then exit the loop and \text{accept};
 - \text{reject.}
Acceptance: 2. if \(x \notin L \); Complexity

- If \(x \in L \) (recall \(L \) in \(\text{RP}(\varepsilon) \)) then \(\Pr_r(\mathcal{M}'(x, r) \text{ accepts}) \geq 1 - \varepsilon^K \)
- A language \(L \) is in \(\text{RP}(\varepsilon) \) and only if there is a polynomial-time TM \(\mathcal{M} \) such that for every input \(x \) (of size \(n \)):
 - if \(x \in L \) then \(\Pr_r(\mathcal{M}(x, r) \text{ accepts}) \geq 1 - \varepsilon \)
 - if \(x \notin L \) then \(\mathcal{M}(x, r) \) accepts for no \(r \) (i.e., \(\Pr_r(\mathcal{M}(x, r) \text{ accepts}) = 0 \), error = \(\varepsilon \))

Define \(\mathcal{M}'(x, r[1]\#\ldots\#r[K]) \) by:

- for \(i=1 \) to \(K \):
 - If \(\mathcal{M}(x, r[i]) \) accepts, then exit the loop and accept;
 - reject.
Acceptance: 2. if \(x \notin L \); Complexity

- If \(x \in L \) (recall \(L \) in \(\text{RP}(\varepsilon) \)) then
 \[\Pr_r(\mathcal{M}'(x, r) \text{ accepts}) \geq 1 - \varepsilon^K \]

- If \(x \notin L \), then
 \(\mathcal{M}'(x, r) \) accepts for no \(r \)

- A language \(L \) is in \(\text{RP}(\varepsilon) \) and only if there is a polynomial-time TM \(\mathcal{M} \) such that for every input \(x \) (of size \(n \)):
 - if \(x \in L \) then \(\Pr_r [\mathcal{M}(x, r) \text{ accepts}] \geq 1 - \varepsilon \)
 - if \(x \notin L \) then \(\mathcal{M}(x, r) \) accepts for no \(r \)
 (i.e., \(\Pr_r [\mathcal{M}(x, r) \text{ accepts}] = 0 \))
 \(\text{error} = \varepsilon \)

- Define \(\mathcal{M}'(x, r[1] \ldots \#r[K]) \) by:
 - for \(i = 1 \) to \(K \):
 - If \(\mathcal{M}(x, r[i]) \) accepts, then exit the loop and accept;
 - reject.
Acceptance: 2. if $x \notin L$; Complexity

- If $x \in L$ (recall L in $\text{RP}(\varepsilon)$) then $\Pr_r(M'(x, r) \text{ accepts}) \geq 1 - \varepsilon^K$
- If $x \notin L$, then $M'(x, r)$ accepts for no r
- If M runs in time $p(n)$, then M' runs in time $O(Kp(n))$

A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):

- if $x \in L$ then $\Pr_r [M(x, r) \text{ accepts}] \geq 1 - \varepsilon$
- if $x \notin L$ then $M(x, r)$ accepts for no r
 (i.e., $\Pr_r [M(x, r) \text{ accepts}] = 0$
- error = ε

Define $M'(x, r[1]\#\ldots\#r[K])$ by:
- for $i=1$ to K:
 - If $M(x, r[i])$ accepts, then exit the loop and accept;
 - reject.
Acceptance: 2. if $x \not\in L$; Complexity

- If $x \in L$ (recall L in $\text{RP}(\varepsilon)$) then $\Pr_r(M'(x, r) \text{ accepts}) \geq 1 - \varepsilon^K$
- If $x \not\in L$, then $M'(x, r)$ accepts for no r
- If M runs in time $p(n)$, then M' runs in time $O(KP(n))$
- Hence L is in $\text{RP}(\varepsilon^K)$

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x, r) \text{ accepts}] \geq 1 - \varepsilon$
 - if $x \not\in L$ then $M(x, r)$ accepts for no r (i.e., $\Pr_r [M(x, r) \text{ accepts}] = 0$)

- Define $M'(x, r[1]\#\ldots\#r[K])$ by:
 - for $i = 1$ to K:
 - If $M(x, r[i])$ accepts, then exit the loop and accept;
 - reject.
The hard direction: the end

- We have shown that every language L in $\text{RP}(\varepsilon)$ is in $\text{RP}(\varepsilon^K)$ (for any $\varepsilon \in [0,1]$, $K \geq 1$)

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1 - \varepsilon$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$)

- Define $M'(x, r[1] \ldots r[K])$ by:
 - for $i = 1$ to K:
 - If $M(x, r[i])$ accepts, then exit the loop and accept;
 - reject.
The hard direction: the end

- We have shown that every language \(L \) in \(\text{RP}(\varepsilon) \) is in \(\text{RP}(\varepsilon^K) \) (for any \(\varepsilon \in [0,1] \), \(K \geq 1 \))

- If \(0 < \eta < \varepsilon < 1 \), choose \(K \) large enough so that \(\varepsilon^K \leq \eta \) (explicitly, \(K \geq \eta / \log \varepsilon \))

- A language \(L \) is in \(\text{RP}(\varepsilon) \) and only if there is a polynomial-time TM \(M \) such that for every input \(x \) (of size \(n \)):
 - if \(x \in L \) then \(\Pr_r [M(x, r) \text{ accepts}] \geq 1 - \varepsilon \)
 - if \(x \notin L \) then \(M(x, r) \) accepts for no \(r \) (i.e., \(\Pr_r [M(x, r) \text{ accepts}] = 0 \))

- Define \(M'(x, r[1] \# \ldots \# r[K]) \) by:
 - for \(i = 1 \) to \(K \):
 - If \(M(x, r[i]) \) accepts, then exit the loop and accept;
 - reject.
The hard direction: the end

- We have shown that every language L in $\text{RP}(\varepsilon)$ is in $\text{RP}(\varepsilon^K)$ (for any $\varepsilon \in [0,1]$, $K\geq 1$).

- If $0<\eta<\varepsilon<1$, choose K large enough so that $\varepsilon^K \leq \eta$ (explicitly, $K\geq \eta / \log \varepsilon$).

- Then L is in $\text{RP}(\eta)$. ☐

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\text{Pr}_r [M(x,r) \text{ accepts}] \geq 1-\varepsilon$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\text{Pr}_r [M(x,r) \text{ accepts}] = 0$, $\text{error} = \varepsilon$)

- Define $M'(x, r[1]\#\ldots\#r[K])$ by:
 - for $i=1$ to K:
 - If $M(x, r[i])$ accepts, then exit the loop and accept; reject.
Can we do even better?

- A language L is in $\text{RP}(\epsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1-\epsilon$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$)
Can we do even better?

- Hence we define the same class with error $\varepsilon = 0.000000000001$

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1-\varepsilon$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$).
Can we do even better?

- Hence we define the same class with error $\varepsilon = 0.000000000001$
- ... or with error $\varepsilon = 0.99999999$!

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1 - \varepsilon$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$)
Can we do even better?

- Hence we define the same class with error $\varepsilon = 0.000000000001$
- ... or with error $\varepsilon = 0.99999999$!
- Can we make ε go to 0 as $n \to \infty$?

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1 - \varepsilon$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$)
The hard direction revisited

- If $x \in L$ (recall L in $\text{RP}(\varepsilon)$) then $\Pr_r(M'(x, r) \text{ accepts}) \geq 1 - \varepsilon^K$
- If $x \notin L$, then $M'(x, r)$ accepts for no r
- If M runs in time $p(n)$, then M' runs in time $O(Kp(n))$
- Hence L is in $\text{RP}(\varepsilon^K)$.

A language L is in $\text{RP}(\varepsilon)$ and only if there is a **polynomial-time** TM M such that for every input x (of size n):
- if $x \in L$ then $\Pr_r [M(x, r) \text{ accepts}] \geq 1 - \varepsilon$
- if $x \notin L$ then $M(x, r)$ accepts for no r (i.e., $\Pr_r [M(x, r) \text{ accepts}] = 0$).

Define $M'(x, r[1]\#\ldots\#r[K])$ by:
- for $i=1$ to K:
 - If $M(x, r[i])$ accepts, then exit the loop and accept;
 - reject.

error $= \varepsilon$
The hard direction revisited

Let us take \(K = \text{a polynomial} \ q(n) \)

- If \(x \in L \) (recall \(L \) in \(\text{RP}(\varepsilon) \)) then
 \(\Pr_r(M'(x, r) \text{ accepts}) \geq 1-\varepsilon^K \)
- If \(x \notin L \), then
 \(M'(x, r) \text{ accepts for no } r \)
- If \(M \) runs in time \(p(n) \), then
 \(M' \) runs in time \(O(Kp(n)) \)
- Hence \(L \) is in \(\text{RP}(\varepsilon^K) \).

A language \(L \) is in \(\text{RP}(\varepsilon) \) and only if there is a polynomial-time TM \(M \) such that for every input \(x \) (of size \(n \)):

- if \(x \in L \) then \(\Pr_r [M(x, r) \text{ accepts}] \geq 1-\varepsilon \)
- if \(x \notin L \) then \(M(x, r) \text{ accepts for no } r \) (i.e., \(\Pr_r [M(x, r) \text{ accepts}] = 0 \)).

Define \(M'(x, r[1]\#\ldots\#r[K]) \) by:

- for \(i=1 \) to \(K \):
 - If \(M(x, r[i]) \text{ accepts} \), then exit the loop and accept;
 - reject.
The hard direction revisited

- If \(x \in L \) (recall \(L \) in \(\text{RP}(\varepsilon) \)) then
 \[\Pr_r(M'(x, r) \text{ accepts}) \geq 1 - \varepsilon^K \]

- If \(x \notin L \), then
 \(M'(x, r) \) accepts for no \(r \)

- If \(M \) runs in time \(p(n) \), then
 \(M' \) runs in time \(O(Kp(n)) \)

- Hence \(L \) is in \(\text{RP}(\varepsilon^K) \).
The hard direction revisited

- If \(x \in L \) (recall \(L \) in \(\text{RP}(\varepsilon) \)) then
 \(\Pr_r(\mathcal{M}'(x, r) \text{ accepts}) \geq 1-\varepsilon^K \)
- If \(x \notin L \), then
 \(\mathcal{M}'(x, r) \) accepts for no \(r \)
- If \(\mathcal{M} \) runs in time \(p(n) \), then
 \(\mathcal{M}' \) runs in time \(O(Kp(n)) \)
- Hence \(L \) is in \(\text{RP}(\varepsilon^K) \).

Let us take \(K = \text{a polynomial } q(n) \)

- A language \(L \) is in \(\text{RP}(\varepsilon) \) and only if there is a polynomial-time TM \(\mathcal{M} \) such that for every input \(x \) (of size \(n \)):
 - if \(x \in L \) then \(\Pr_r[\mathcal{M}(x, r) \text{ accepts}] \geq 1-\varepsilon \)
 - if \(x \notin L \) then \(\mathcal{M}(x, r) \) accepts for no \(r \) (i.e., \(\Pr_r[\mathcal{M}(x, r) \text{ accepts}] = 0 \)).

Error \(\varepsilon^K = \varepsilon^{q(n)} \) (exponentially small)

Define \(\mathcal{M}'(x, r[1] \# \ldots \# r[K]) \) by:
- for \(i=1 \) to \(K \):
 - If \(\mathcal{M}(x, r[i]) \) accepts, then exit the loop and accept;
 - reject.

Error = \(\varepsilon \)

\(\gamma = O(q(n)p(n)) \), still polynomial time
Let $\varepsilon = 1/2$. We have proved:

Theorem. \(\text{RP} = \text{RP}(1/2^{q(n)}) \) for every polynomial \(q(n) \).

I.e., error can be made exponentially small.

(Note: \(\text{RP}(\varepsilon) \) called \(\cup_{p(n)} \text{RTIME}(p(n), p(n), 0, \varepsilon) \) in the notes: ignore the complication)

A language \(L \) is in \(\text{RP}(\varepsilon) \) and only if there is a polynomial-time TM \(M \) such that for every input \(x \) (of size \(n \)):

- if \(x \in L \) then \(\Pr_r [M(x, r) \text{ accepts}] \geq 1 - \varepsilon \)
- if \(x \not\in L \) then \(M(x, r) \) accepts for no \(r \) (i.e., \(\Pr_r [M(x, r) \text{ accepts}] = 0 \)).
The hard direction revisited

- Let $\varepsilon = 1/2$. We have proved:
 - **Theorem.** $\text{RP} = \text{RP}(1/2^{q(n)})$ for every polynomial $q(n)$.
 - I.e., error can be made exponentially small.
 - (Note: $\text{RP}(\varepsilon)$ called $\cup_{p(n)} \text{RTIME}(p(n),p(n),0,\varepsilon)$ in the notes: ignore the complication)

- A language L is in $\text{RP}(\varepsilon)$ and only if there is a **polynomial-time** TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 1-\varepsilon$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $\Pr_r [M(x,r) \text{ accepts}] = 0$)

- Exercise: show that, conversely:
 - **Theorem.** $\text{RP} = \text{RP}(1-1/q(n))$ for every polynomial $q(n)$.
 - I.e., error can be assumed « polynomially large » as well
Relation to ordinary classes

❖ Theorem. $P \subseteq RP \subseteq NP$.

❖ Proof. First, $P = RP(0) \subseteq RP(1/2) = RP$.

❖ A language L is in RP if and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $Pr_r [M(x,r) \text{ accepts}] \geq 1/2$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $Pr_r [M(x,r) \text{ accepts}] = 0$).
Relation to ordinary classes

- **Theorem.** $P \subseteq RP \subseteq NP$.

- **Proof.** First,

 $P=RP(0) \subseteq RP(1/2) = RP$

- Second, let $L \in RP$.

- A language L is in RP if and only if there is a **polynomial-time** TM M such that for every input x (of size n):
 - if $x \in L$ then $Pr_r [M(x,r) \text{ accepts}] \geq 1/2$
 - if $x \notin L$ then $M(x,r)$ accepts for no r (i.e., $Pr_r [M(x,r) \text{ accepts}] = 0$).
Relation to ordinary classes

❖ Theorem. \(P \subseteq \text{RP} \subseteq \text{NP} \).

❖ Proof. First,

\[P = \text{RP}(0) \subseteq \text{RP}(1/2) = \text{RP} \]

Second, let \(L \in \text{RP} \).

❖ If \(x \in L \) \(\Rightarrow \) for some \(r \),

\[M(x, r) \text{ accepts} \]
Theorem. $P \subseteq RP \subseteq NP$.

Proof. First,

$$P = \text{RP}(0) \subseteq \text{RP}(1/2) = \text{RP}$$

Second, let $L \in \text{RP}$.

- If $x \in L \Rightarrow$ for some r, $M(x, r)$ accepts
- If $x \not\in L \Rightarrow$ for no r.

A language L is in RP if and only if there is a polynomial-time TM M such that for every input x (of size n):

- if $x \in L$ then $\Pr_r [M(x, r) \text{ accepts}] \geq 1/2$
- if $x \not\in L$ then $M(x, r)$ accepts for no r (i.e., $\Pr_r [M(x, r) \text{ accepts}] = 0$).
Relation to ordinary classes

- **Theorem.** \(P \subseteq \text{RP} \subseteq \text{NP} \).

- **Proof.** First,
 \[P = \text{RP}(0) \subseteq \text{RP}(1/2) = \text{RP} \]
- Second, let \(L \in \text{RP} \).
 - If \(x \in L \implies \) for some \(r \), \(M(x, r) \) accepts
 - (in fact, for at least half of them!)
 - If \(x \notin L \implies \) for no \(r \).
- Hence \(L = \{x \mid \exists r, M(x, r) \text{ accepts}\} \) is in \(\text{NP} \). \(\square \)
Our second probabilistic class: ZPP

(also known as the class of Las Vegas languages)
ZPP

- ZPP = Zero Probability of error Polynomial-time
ZPP

- **ZPP = Zero Probability of error Polynomial-time**

- Usually defined as the class of languages L which we can decide in **average** polynomial-time (not worst-case!) with probability **zero** of making a mistake.
ZPP

- ZPP = Zero Probability of error Polynomial-time
- Usually defined as the class of languages L which we can decide in average polynomial-time (not worst-case!) with probability zero of making a mistake.
- Alternate definition: $\text{ZPP} = \text{RP} \cap \text{coRP}$
ZPP

- ZPP = Zero Probability of error Polynomial-time
- Usually defined as the class of languages \(L \) which we can decide in average polynomial-time (not worst-case!) with probability zero of making a mistake.
- Alternate definition:
 \[ZPP = RP \cap coRP \]
- Not clear that those two definitions are equivalent, right?
Let us start simple:
Let us start simple:

Definition. $\text{ZPP} = \text{RP} \cap \text{coRP}$
Let us start simple:

Definition. ZPP = RP \cap \text{coRP}

I.e., \(L \) is in ZPP iff there are two poly-time rand. TMs \(M_1 \) and \(M_2 \) such that:

- if \(x \in L \) then \(M_1(x,r) \) accepts for every \(r \) [no error] \(M_2(x,r) \) accepts with prob. \(\geq 1/2 \)
- if \(x \notin L \) then \(M_1(x,r) \) accepts with prob. \(\leq 1/2 \) \(M_2(x,r) \) rejects for every \(r \) [no error]
Let us start simple:

Definition. \(ZPP = \text{RP} \cap \text{coRP} \)

I.e., \(L \) is in \(ZPP \) iff there are two poly-time rand. TMs \(M_1 \) and \(M_2 \) such that:

- if \(x \in L \) then \(M_1(x,r) \) accepts for every \(r \) [no error]
 \(M_2(x,r) \) accepts with prob. \(\geq 1/2 \)

- if \(x \notin L \) then \(M_1(x,r) \) accepts with prob. \(\leq 1/2 \)
 \(M_2(x,r) \) rejects for every \(r \) [no error]
Let us start simple:

Definition. \(ZPP = \text{RP} \cap \text{coRP} \)

I.e., \(L \) is in \(ZPP \) iff there are two poly-time rand. TMs \(M_1 \) and \(M_2 \) such that:

- if \(x \in L \) then \(M_1(x,r) \) accepts for every \(r \) [no error] \(M_2(x,r) \) accepts with prob. \(\geq 1/2 \)
- if \(x \notin L \) then \(M_1(x,r) \) accepts with prob. \(\leq 1/2 \) \(M_2(x,r) \) rejects for every \(r \) [no error]
Let us define \(ZPP' \) (for now) as the class of languages \(L \) which we can decide in \textit{average} polynomial-time with probability \textit{zero} of making a mistake.

I claim that \(ZPP = ZPP' \).
Let us define \(\text{ZPP}' \) (for now) as the class of languages \(L \) which we can decide in average polynomial-time with probability \(\text{zero} \) of making a mistake.

I claim that \(\text{ZPP} = \text{ZPP}' \).

The definition of \(\text{ZPP}' \) has a few technical problems… (see next slides)
Let us define ZPP' (for now) as the class of languages L which we can decide in average polynomial-time with probability zero of making a mistake.

I claim that $\text{ZPP} = \text{ZPP}'$.

The definition of ZPP' has a few technical problems… (see next slides)

we will need something called Markov’s inequality too
Let us define \(ZPP' \) (for now) as the class of languages \(L \) which we can decide in average polynomial-time with probability zero of making a mistake.

I claim that \(ZPP = ZPP' \).

The definition of \(ZPP' \) has a few technical problems… (see next slides)

we will need something called Markov’s inequality too

… but before that, we explain why (intuitively) \(ZPP \subseteq ZPP' \).
Deciding L in $\text{ZPP} = \text{RP} \cap \text{coRP}$ with no error

- Assume M_1 and M_2 such as here→
- Now run the following on input x:

 forever:
 if $M_1(x,\ldots)$ rejects: stop and reject
 if $M_2(x,\ldots)$ accepts: stop and accept
Deciding L in $\text{ZPP} = \text{RP} \cap \text{coRP}$ with no error

- Assume M_1 and M_2 such as here→
- Now run the following on input x:

 forever:

 if $M_1(x,\ldots)$ rejects: stop and reject

 if $M_2(x,\ldots)$ accepts: stop and accept

I.e., L is in ZPP iff there are two poly-time rand. TMs M_1 and M_2 such that:

- if $x \in L$ then $M_1(x,r)$ accepts for every r [no error]
 $M_2(x,r)$ accepts with prob.$\geq 1/2$

- if $x \notin L$ then $M_1(x,r)$ accepts with prob.$\leq 1/2$
 $M_2(x,r)$ rejects for every r [no error]

then x cannot be in L (sure)
Deciding L in $\text{ZPP} = \text{RP} \cap \text{coRP}$ with no error

- Assume M_1 and M_2 such as here:
- Now run the following on input x:
 forever:
 - if $M_1(x,\ldots)$ rejects: stop and reject
 - if $M_2(x,\ldots)$ accepts: stop and accept

I.e., L is in ZPP iff there are two poly-time rand. TMs M_1 and M_2 such that:
- if $x \in L$ then $M_1(x,r)$ accepts for every r [no error]
 $M_2(x,r)$ accepts with prob. $\geq 1/2$
- if $x \notin L$ then $M_1(x,r)$ accepts with prob. $\leq 1/2$
 $M_2(x,r)$ rejects for every r [no error]
Deciding \(L \) in \(\text{ZPP} = \text{RP} \cap \text{coRP} \) with no error

- Assume \(\mathcal{M}_1 \) and \(\mathcal{M}_2 \) such as here→

- Now run the following on input \(x \):
 forever:
 - if \(\mathcal{M}_1(x,\ldots) \) rejects: stop and reject
 - if \(\mathcal{M}_2(x,\ldots) \) accepts: stop and accept

I.e., \(L \) is in \(\text{ZPP} \) iff there are two poly-time rand. TMs \(\mathcal{M}_1 \) and \(\mathcal{M}_2 \) such that:
- if \(x \in L \) then \(\mathcal{M}_1(x,r) \) accepts for every \(r \) [no error]
 - \(\mathcal{M}_2(x,r) \) accepts with prob.\(\geq 1/2 \)
- if \(x \notin L \) then \(\mathcal{M}_1(x,r) \) accepts with prob.\(\leq 1/2 \)
 - \(\mathcal{M}_2(x,r) \) rejects for every \(r \) [no error]

then \(x \) cannot be in \(L \) (sure)

then \(x \) must be in \(L \) (sure)

Hence this machine never makes any mistake
Deciding L in ZPP = $\text{RP} \cap \text{coRP}$ with no error

- Assume \mathcal{M}_1 and \mathcal{M}_2 such as here→
- Now run the following on input x:

 forever:

 if $\mathcal{M}_1(x,\ldots)$ rejects: stop and reject
 if $\mathcal{M}_2(x,\ldots)$ accepts: stop and accept

 then x cannot be in L (sure)
 then x must be in L (sure)

 Hence this machine never makes any mistake

It may be that $\mathcal{M}_1(x,\ldots)$ accepted and $\mathcal{M}_2(x,\ldots)$ rejected,
— in which case we loop
— and that happens with probability $\leq 1/2$...
 why?
 (if you tell me that this is even $\leq 1/4$, you are wrong)
Deciding L in $\text{ZPP} = \text{RP} \cap \text{coRP}$ with no error

- Assume M_1 and M_2 such as here→
- Now run the following on input x:
 forever:
 if $M_1(x,\ldots)$ rejects: stop and reject
 if $M_2(x,\ldots)$ accepts: stop and accept

It may be that $M_1(x,\ldots)$ accepted and $M_2(x,\ldots)$ rejected,
— in which case we loop
— and that happens with probability $\leq 1/2$...
why?
(if you tell me that this is even $\leq 1/4$, you are wrong)

Hence this machine never makes any mistake

We will see that this implies that the machine terminates in
≤ 2 turns of the loop on average
A technical problem

- All this requires us to draw \textit{arbitrarily long} bitstrings
A technical problem

- All this requires us to draw **arbitrarily long** bitstrings
- In fact, even **infinite** bit strings (for those computations that do not terminate)
A technical problem

- All this requires us to draw arbitrarily long bitstrings
- In fact, even infinite bit strings (for those computations that do not terminate)
- Requires measure theory:
 there is a unique measure μ on $\{0,1\}^\omega$
 with σ-algebra generated by cylinders $w.\{0,1\}^\omega$
 such that $\mu(w.\{0,1\}^\omega) = 1/2^{\|w\|}$ (Carathéodory)
A technical problem

- All this requires us to draw arbitrarily long bitstrings.
- In fact, even infinite bit strings (for those computations that do not terminate).
- Requires measure theory: there is a unique measure μ on $\{0,1\}^\omega$ with σ-algebra generated by cylinders $w.\{0,1\}^\omega$ such that $\mu(w.\{0,1\}^\omega) = 1/2^{|w|}$ (Carathéodory).
- We will happily ignore this.
Rejection sampling

- A classic probabilistic procedure (rejection sampling):
 forever:
 compute something (with some random data \(r \)), \(x \);
 if \(P(x) \) holds: stop and return \(x \)

- Trick. If:
 — the random bits are independent across turns of the loop
 — and \(P(x) \) holds with prob. \(\geq \alpha \) at each turn
 then rejection sampling terminates in
 \(1/\alpha \) turns of the loop on average.
Rejection sampling

- A classic probabilistic procedure (rejection sampling):
 forever:

 - compute something (with some random data r), x;
 - if $P(x)$ holds: stop and return x

- **Trick.** If:
 - the random bits are independent across turns of the loop
 - and $P(x)$ holds with prob. $\geq \alpha$ at each turn
 then rejection sampling terminates in

 $\frac{1}{\alpha}$ turns of the loop on average.
Rejection sampling

- An classic probabilistic procedure (rejection sampling):
 forever:
 compute something (with some random data r), x;
 if $P(x)$ holds: stop and return x

- Proof. Let X be the random variable « # turns through the loop »
Rejection sampling

- An classic probabilistic procedure (rejection sampling): forever:
 compute something (with some random data \(r \)), \(x \);
 if \(P(x) \) holds: stop and return \(x \)

- Proof. Let \(X \) be the random variable « # turns through the loop »

- \(\Pr(X \geq n) = \Pr(P \text{ failed at turns 1, } \ldots, n-1) \)
 \(\leq (1 - \alpha)^{n-1} \) (by independence)
Rejection sampling

- An classic probabilistic procedure (**rejection sampling**): forever:
 - compute something (with some random data r), x;
 - if $P(x)$ holds: stop and return x

- Proof. Let X be the random variable « # turns through the loop »

- $\Pr(X \geq n) = \Pr(P \text{ failed at turns } 1, \ldots, n-1)$
 - $\leq (1-\alpha)^{n-1}$ (by independence)

- $\mathbb{E}(X) = \sum_{n \geq 1} n \cdot \Pr(X = n) = \sum_{n \geq 1} \Pr(X \geq n) \leq \sum_{n \geq 1} (1-\alpha)^{n-1} = 1/\alpha$. ☐

Expectation (average)
Rejection sampling: a typical application

- Draw a point inside the disc:
- Repeatedly draw a point inside the inscribing square
- If it is in the disc, return it.
Rejection sampling: a typical application

- Draw a point inside the disc:
- Repeatedly draw a point inside the inscribing square
 - If it is in the disc, return it.
- Terminates in $\leq 4/\pi$
 ~ 1.27324 turns
Rejection sampling: a typical application

- Draw a point inside the disc:
- Repeatedly draw a point inside the inscribing square
 - If it is in the disc, return it.
- Terminates in $\leq \frac{4}{\pi} \approx 1.27324$ turns

(Used as first step in the Box-Muller procedure drawing two independent numbers with a normal distribution)
Deciding L in $\text{ZPP} = \text{RP} \cap \text{coRP}$ with no error

- Assume M_1 and M_2 such as here:

- Now run the following on input x:

  ```
  forever:
  if $M_1(x,\ldots)$ rejects: stop and reject
  if $M_2(x,\ldots)$ accepts: stop and accept
  ```

 It may be that $M_1(x,\ldots)$ accepted and $M_2(x,\ldots)$ rejected, — in which case we loop — and that happens with probability $\leq 1/2$… (two cases: x in L, x not in L)

- Hence this machine never makes any mistake

I.e., L is in ZPP iff there are two poly-time rand. TMs M_1 and M_2 such that:

- if $x \in L$ then $M_1(x,r)$ accepts for every r [no error]
 $M_2(x,r)$ accepts with prob.$\geq 1/2$

- if $x \notin L$ then $M_1(x,r)$ accepts with prob.$\leq 1/2$
 $M_2(x,r)$ rejects for every r [no error]
Deciding \(L \) in \(\text{ZPP} = \text{RP} \cap \text{coRP} \) with no error

- Assume \(M_1 \) and \(M_2 \) such as here:

- Now run the following on input \(x \):
 - forever:
 - if \(M_1(x,\ldots) \) rejects: stop and reject
 - if \(M_2(x,\ldots) \) accepts: stop and accept

 It may be that \(M_1(x,\ldots) \) accepted and \(M_2(x,\ldots) \) rejected, — in which case we loop — and that happens with probability \(\leq 1/2 \)… (two cases: \(x \) in \(L \), \(x \) not in \(L \))

Hence this machine never makes any mistake

This is rejection sampling: stops in \(\leq 2 \) turns on average hence in polytime on average.

I.e., \(L \) is in \(\text{ZPP} \) iff there are two poly-time rand. TMs \(M_1 \) and \(M_2 \) such that:
 - if \(x \in L \) then \(M_1(x,r) \) accepts for every \(r \) [no error]
 - \(M_2(x,r) \) accepts with prob.\(\geq 1/2 \)
 - if \(x \notin L \) then \(M_1(x,r) \) accepts with prob.\(\leq 1/2 \)
 - \(M_2(x,r) \) rejects for every \(r \) [no error]
Markov’s inequality

- Hence:
 \[ZPP \ (= \ RP \cap \ coRP) \subseteq ZPP' \]

- In order to show the reverse inclusion, we use:

- **Theorem (Markov’s inequality).**
 Let \(X \) be a **non-negative real-valued** random variable with **finite** expectation \(E(X) \). For every \(a > 0 \):
 \[\Pr(X \geq a \cdot E(X)) \leq \frac{1}{a}. \]
Markov’s inequality

- Hence:
 \(\text{ZPP} (= \text{RP} \cap \text{coRP}) \subseteq \text{ZPP}' \)

- In order to show the reverse inclusion, we use:

 - Theorem (Markov’s inequality).
 Let \(X \) be a non-negative real-valued random variable with finite expectation \(E(X) \). For every \(a > 0 \):
 \[\Pr(X \geq a \cdot E(X)) \leq \frac{1}{a}. \]
Markov’s inequality

Theorem (Markov’s inequality). Let X be a non-negative real-valued random variable with finite expectation $E(X)$. For every $a > 0$: $\Pr(X \geq a \cdot E(X)) \leq 1/a$.

Proof. $E(X) = \int_t \Pr(X \geq t) \, dt$

\geq \text{area of the blue rectangle}

= a \cdot E(X) \cdot \Pr(X \geq a \cdot E(X))$

Then divide out by $a \cdot E(X)$. \square
The reverse inclusion $\text{ZPP}' \subseteq \text{ZPP}$

- Let L in ZPP', decided by M running in average polynomial-time with no error.
- Define M_1 as follows: on input x
 (and random tape r of size $a \cdot p(n)$)
 simulate M on x for at most $a \cdot p(n)$ steps (timeout).
 If timeout reached, then accept (that may be an error).
The reverse inclusion $\text{ZPP}' \subseteq \text{ZPP}$

- Markov on r.v. $X =$ time taken by M on x; also let $a=2$.
- $E(X) \leq p(n)$ finite OK

Let L in ZPP', decided by M running in average poly. time $p(n)$ with no error.

Define M_1 as follows: on input x

(simulate M on x for at most $a \cdot p(n)$ steps (timeout).

If timeout reached, then accept (that may be an error).
The reverse inclusion $\text{ZPP}' \subseteq \text{ZPP}$

- Markov on r.v. $X =$ time taken by \mathcal{M} on x; also let $a=2$.
- $E(X) \leq p(n)$ finite OK
- If $x \notin L \Rightarrow \text{error} = \Pr_r(\mathcal{M}_1(x, r) \text{ accepts})$
 $$= \Pr(X \geq a \cdot p(n)) \quad (\mathcal{M} \text{ makes no mistake})$$
 $$\leq \Pr(X \geq a \cdot E(X)) \quad (E(X) \leq p(n))$$
 $$\leq 1/a = 1/2 \quad (\text{Markov})$$
The reverse inclusion $\text{ZPP}' \subseteq \text{ZPP}$

- Markov on r.v. $X =$ time taken by \mathcal{M} on x; also let $a=2$.
- $E(X) \leq p(n)$ finite OK
- If $x \notin L \Rightarrow$ error $= \Pr_r(\mathcal{M}_1(x,r) \text{ accepts})$
 \[= \Pr(X \geq a \cdot p(n)) \quad (\mathcal{M} \text{ makes no mistake}) \]
 \[\leq \Pr(X \geq a \cdot E(X)) \quad (E(X) \leq p(n)) \]
 \[\leq 1/a = 1/2 \quad (\text{Markov}) \]
- If $x \in L \Rightarrow \mathcal{M}_1(x,r)$ must accept.
The reverse inclusion $\text{ZPP}' \subseteq \text{ZPP}$

- Markov on r.v. $X =$ time taken by M on x;
 also let $a=2$.
- $E(X) \leq p(n)$ finite OK
- If $x \notin L \Rightarrow$ error $= \Pr_r(M_1(x,r) \text{ accepts})$
 $= \Pr(X \geq a \cdot p(n))$ (M makes no mistake)
 $\leq \Pr(X \geq a \cdot E(X))$ (E(X) $\leq p(n)$)
 $\leq 1/a = 1/2$ (Markov)
- If $x \in L \Rightarrow M_1(x,r)$ must accept.
- Hence L is in coRP.

Let L in ZPP', decided by M running in average poly. time $p(n)$ with no error.
Define M_1 as follows: on input x
and random tape r of size $a \cdot p(n)$
simulate M on x for at most $a \cdot p(n)$ steps (timeout).
If timeout reached, then accept (that may be an error).
The reverse inclusion \(\text{ZPP}' \subseteq \text{ZPP} \)

- Markov on r.v. \(X = \) time taken by \(M \) on \(x \); also let \(a=2 \).
- \(E(X) \leq p(n) \) finite OK
- If \(x \in L \Rightarrow \text{error} = \Pr_r(\text{M}_2(x,r) \text{ accepts rejects}) \)
 \[= \Pr(X \geq a \cdot p(n)) \quad (M \text{ makes no mistake}) \]
 \[\leq \Pr(X \geq a \cdot E(X)) \quad (E(X) \leq p(n)) \]
 \[\leq 1/a = 1/2 \quad (\text{Markov}) \]
- If \(x \notin L \Rightarrow \text{M}_2(x,r) \text{ must accept reject.} \)
- Hence \(L \) is in \(\text{coRP} \cap \text{RP} \).
The reverse inclusion $ZPP' \subseteq ZPP$

- Markov on r.v. $X =$ time taken by M on x; also let $a=2$.
- $E(X) \leq p(n)$ finite OK
- If $x \in L \Rightarrow$ error $= \Pr_r(M_2(x,r) \text{ accepts } \text{ rejects})$

 $= \Pr(X \geq a \cdot p(n))$ (M makes no mistake)

 $\leq \Pr(X \geq a \cdot E(X))$ ($E(X) \leq p(n)$)

 $\leq 1/a = 1/2$ (Markov)
- If $x \notin L \Rightarrow M_2(x,r)$ must accept reject.
- Hence L is in $\text{coRP} \cap \text{RP}$.

Symmetrically:

Let L in ZPP', decided by M running in average poly. time $p(n)$ with no error.
Define M_2 as follows: on input x

 simulate M on x for at most $a \cdot p(n)$ steps (timeout).

 If timeout reached, then reject (that may be an error).

Hence L is both in RP and coRP, namely in ZPP. \square
Summary on ZPP

- **Definition.** $\text{ZPP} = \text{RP} \cap \text{coRP}$

- **Theorem.** ZPP is the class of languages L which we can decide in average polynomial-time with probability zero of making a mistake.
Next time...
BPP: Bounded Prob. of Error Polynomial time

- A language L is in **BPP** if and only if there is a polynomial-time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x,r) \text{ accepts}] \geq 2/3$
 - if $x \notin L$ then $\Pr_r [M(x,r) \text{ accepts}] \leq 1/3$.

two-sided error: $\Pr_r [M(x,r) \text{ errs}] \leq 1/3$