Advanced Complexity Exam 2023-24

All written documents allowed. No Internet access, no cell phone. You can answer in French or in English. Every result you use must be properly cited (e.g., « by Shamir’s Theorem », or « by Question 4 », not « by a theorem of the lecture notes », not nothing either).

1 OMA

An oblivious Arthur-Merlin protocol is one where an honest Merlin can see the size of the history being presented to him, but not the history itself. A dishonest Merlin has access to the whole history. We will only look at the oblivious variants of MA and NP.

For every map \(err : \mathbb{N} \to [0, 1/2] \), the class \(\text{OMA}(err) \) (oblivious MA) is the class of languages \(L \) such that there is a family of words \(y_n, n \in \mathbb{N} \), of size equal to some polynomial \(p(n) \), and a language \(D \in \mathbb{P} \) such that for every input \(x \) (whose size is always written as \(n \)):

1. if \(x \in L \) then \(\Pr_r [x\#y_n\#r \in D] \geq 1 - err(n) \);
2. if \(x \notin L \) then for every word \(y \) of size equal to \(p(n) \), \(\Pr_r [x\#y\#r \in D] \leq err(n) \).

In other words, Merlin has to answer \(y_n \) when the input \(x \) has size \(n \), independently of what the value of \(x \) really is. Probabilities are taken over all random tapes \(r \) of some polynomial size \(q(n) \). The letter \# is a separator that does not appear in \(x, y_n, r \) or \(y \), which are all on the binary alphabet \(\Sigma \defeq \{0, 1\} \). We also say that \(L \) is decided by an \(\text{OMA}(err) \) protocol with language \(D \), witnesses \(y_n \), and sizes \(p(n), q(n) \).

When \(err \) is the constant function equal to \(\epsilon \in]0, 1/2[\), we write \(\text{OMA}(\epsilon) \) instead of \(\text{OMA}(err) \). The class OMA is defined as \(\text{OMA}(1/3) \).

The class ONP is the corresponding non-randomized variant : \(L \in \text{ONP} \) if and only if there is a family of words \(y_n, n \in \mathbb{N} \), of size equal to some polynomial \(p(n) \), and a language \(D \in \mathbb{P} \) such that for every input \(x \):

1. if \(x \in L \) then \(x\#y_n \in D \);
2. if \(x \notin L \) then for every word \(y \) of size equal to \(p(n) \), \(x\#y \notin D \).

It is clear that \(\text{ONP} \subseteq \text{OMA} \), and you don’t need to prove it.

Question 1 (*) Show that \(\text{OMA} \subseteq \text{OMA}(1/2^g(n)) \) for any polynomial \(g(n) \geq 1 \). Explicitly, fix \(g(n) \), consider any \(L \in \text{OMA} = \text{OMA}(1/3) \), with \(y_n \) and \(D \) as above, and define a new polynomial-time decidable language \(D' \), and polynomial-sized words \(y'_n, n \in \mathbb{N} \) in place of \(D \) and \(y_n \) so as to decide \(L \) with error at most \(1/2^g(n) \). (I am that explicit mostly in order to force you to use these notations, and to give me \(y'_n \) and \(D' \) explicitly.)

Hence \(\text{OMA} = \text{OMA}(1/2^g(n)) \) for every polynomial \(g(n) \geq 1 \) (no need to prove it).
Question 2 (*) Let \(L \) be decided by an \(\text{OMA}(1/2^{n+1}) \) protocol with language \(D \), witnesses \(y_n \), \(n \in \mathbb{N} \), and sizes \(p(n), q(n) \). Show that, for \(n \) large enough, there is a word \(r_n \) of size \(q(n) \) such that for every \(x \) (of size \(n \)), \(r_n \) makes no mistake on \(x \), meaning that:

- if \(x \in L \) then \(x \# y_n \# r_n \in D \);
- if \(x \notin L \) then for every word \(y \) of size equal to \(p(n) \), \(x \# y \# r_n \notin D \).

Question 3 (**) By imitating a theorem seen in class (give its name), show that \(\text{OMA} \subseteq \text{P/poly} \).

Question 4 (***) Show that, if \(\text{NP} \subseteq \text{P/poly} \), then \(\text{NP} \subseteq \text{ONP} \) (Imitate another theorem.)

Question 5 (*) Deduce that the following are equivalent:

(a) \(\text{NP} \subseteq \text{P/poly} \);
(b) \(\text{NP} \subseteq \text{ONP} \);
(c) \(\text{NP} \subseteq \text{OMA} \).

2 The Zachos Lemma

Let us recall the \(\text{BP} \cdot C \) operator from the lectures: for any complexity class \(C \), \(\text{BP} \cdot C \) is the class of languages \(L \) such that there is a randomized polynomial time Turing machine \(A' \) and a language \(D' \in C \) such that, on input \(x \) (of size \(n \)):

- If \(x \in L \), then \(\Pr_r[A'(x, r) \in D'] \geq 2/3 \);
- If \(x \notin L \), then \(\Pr_r[A'(x, r) \in D'] \leq 1/3 \).

where probabilities are taken on random strings \(r \) of size \(q(n) \), for some polynomial \(q \) in \(n \).

It is clear that \(C \subseteq C' \) implies \(\text{NP}^C \subseteq \text{NP}^{C'} \).

Question 6 (***) Show that \(\text{NP}^{\text{BPP}} \subseteq \text{MA} \).

Question 7 (**) Show that, if \(\text{NP} \subseteq \text{BPP} \), then \(\text{PH} \subseteq \text{BPP} \). Here is the proof; I am asking you to replace the “why?” questions by appropriate justifications. If \(\text{NP} \subseteq \text{BPP} \), then:

\[
\text{PH} = \Sigma_2^p \subseteq \text{NP}^{\text{BPP}} \subseteq \text{MA} = \text{BP} \cdot \text{NP} \subseteq \text{BP} \cdot \text{BPP} \subseteq \text{BPP}
\]

why? (1)

final comments in the n1.pdf lecture notes

\(\subseteq \text{NP}^{\text{BPP}} \)

\(\subseteq \text{MA} \)

\(\subseteq \text{AM} \)

\(= \text{BP} \cdot \text{NP} \)

why? (2)

\(\subseteq \text{BP} \cdot \text{BPP} \)

why? (3)

\(\subseteq \text{BPP} \)

why? (4)

\(\subseteq \text{AM} \)

why? (5)

3 Merlin in polynomial space

Question 8 (***) By an analysis of the Shen-Shamir protocol, show that QBF can be decided by an \(\text{IP} \) protocol in which Merlin computes his answers in polynomial space (in the length of the input formula).

Question 9 (***) Deduce that, if \(\text{PSPACE} \subseteq \text{P/poly} \), then \(\text{PSPACE} = \text{MA} \).