
Advanced Complexity Exam (2020-21)

You may answer in English or in French. If you answer in French, and you
do not know the French equivalent of some English word that I am using, by all
means do not invent your own translation: use the English word instead in that
case.

Let me stress the value of rigor. In all arguments, you must: (a) stress the
important idea; (b) give explicit values for all required bounds (errors, probabil-
ities, time and space usage, and so on); (c) give explicit references to the results
you use, preferably by name (e.g., “the Immerman-Szelepcsényi theorem”).

In the whole question, # is a a separator (a letter) different from all other
letters. Section 1 and Section 2 are largely independent, but not completely.

1 Lipton fingerprints and graph coloring
The only interesting question in this section is Question 4, and will account for
more that half of the points of the whole question. (My solution to it takes almost
two pages, which is far more than any of the other questions.) The preceding
questions are simply warm-ups, the questions after that are easy variants, and
will not account for much either.

Two lists [x1, x2, . . . , xk] and [y1, y2, . . . , yk′] are equal up to permutation if and
only if k = k′ and there is a permutation π of {1, 2, · · · , k} such that yπ(1) = x1,
yπ(2) = x2, . . . , yπ(k) = xk.

Given a prime number p, we will admit without proof that two lists `def
=[x1,

x2, . . . , xk] and `′
def
=[y1, y2, . . . , yk′] of natural numbers in [0, p− 1], with k, k′ < p,

are equal up to permutation if and only the Lipton polynomial :

P (`, `′)
def
=

k∏
i=1

(X − xi)−
k′∏
j=1

(X − yj), (1)

which is a polynomial in Z/pZ[X], is the zero polynomial. Indeed, the Lipton
polynomial is zero if and only if the two polynomials

∏k
i=1(X−xi) and

∏k′

j=1(X−
yj) have the same roots, counting multiplicities. We require k, k′ < p in order

1

to ensure that one can reason equivalently on polynomials or on polynomial
functions, without running the risk of mistakes.

The Lipton fingerprint (in French: empreinte de Lipton) Lip(`, r) of a list
`
def
=[x1, x2, . . . , xk] as above, taken at r (0 ≤ r ≤ p − 1), is the value of the

polynomial
∏k

i=1(X − xi) at Xdef
=r mod p; in other words,

∏k
i=1(r − xi) mod p.

We define the following Lipton protocol. Its purpose is to decide whether
two lists `def

=[x1, x2, . . . , xk] and `′
def
=[y1, y2, . . . , yk′] of natural numbers in [0, p− 1]

(p prime, k, k′ < p) are equal up to permutation, with high probability. The
Lipton protocol draws a number r uniformly at random between 0 and p − 1,
and computes the fingerprints Lip(`, r) and Lip(`′, r). We accept if the two
fingerprints match (are equal), we reject otherwise.

Question 1 Show that the Lipton protocol does not make a mistake if ` and `′ are equal
up to permutation; in other words, it accepts in this case.

The Lipton polynomial P (`, `′) is the zero polynomial. Its value at any
number r is therefore equal to 0.

Question 2 What is the probability that the Lipton protocol makes a mistake when
` and `′ are not equal up to permutation? I am expecting an easy upper
bound, bounded by a polynomial in k and k′ (when p is fixed) and tending
to 0 as p tends to +∞.

In that case, P (`, `′) is not the zero polynomial. Its degree is at most
max(k, k′). By Lagrange interpolation (the dimension 1 case of the
Schwartz-Zippel lemma), it has at most max(k, k′) roots, among p possi-
ble values (in Z/pZ). The probability of error is at most max(k, k′)/p.

Question 3 Why does the Lipton protocol (a) only require space O(log p)? (b) O(log p)
random bits on average? (c) How much time does it take on average? You
must state explicitly how you pick r at random, the space complexity of
arithmetic operations, and the algorithm you use in order to evaluate the
various Lipton fingerprints.

We draw r by rejection sampling: draw r uniformly at random among all
|p|-bit numbers, until r < p. (|p| = Θ(log p) is the bit size of p.)

The average number of turns through a rejection sampling loop was seen
during the lectures when we proved ZPP = RP ∩ coRP, and is the
inverse of the probability of success, namely 2|p|/p ≤ 2. We multiply this
by the time needed to draw |p| bits at random, namely O(log p). Hence
the average time is 2O(log p) = O(log p).

The number of random bits used is also O(log p), by the same argument.

2

The space used so far is that used by r, that is, |p|. Then we must compute
the two Lipton fingerprints. Each arithmetic operation requires space
O(log p), because we use it on numbers < p, hence of |p| bits. Time is
O(log p) for additions (or subtractions) and O(log2 p) for multiplications
(although we can make the exponent smaller), even mod p, as we have
seen in the lectures.

We compute each of the two Lipton fingerprints
∏k

i=1(r−xi) mod p: this
requires k subtractions and k multiplications, so the total if O(k(log p +
log2 p)) = O(p log2 p), as we have seen in the lectures.

The space used is only O(log p), since we only need to keep on |p|-bit
register to compute r − xi and another one to multiply it to a register,
initialized to 1.

A graph Gdef
=(V,E) is a pair of a finite set V def

={1, 2, · · · , N} of so-called vertices
(singular: vertex; in French: sommet) and a subset E ⊆ V ×V or edges (French:
arcs). Note that N is the number of vertices; all of them are represented as
numbers in binary.

We represent G by its adjacency matrix. That is an N ×N matrix of bits M ,
which we write as a sequence of N2 bits. We will represent G as the word 0N1M ,
namely N zeros followed by a 1 (in order to specify N), followed by the N2 entries
of M . For any two vertices u and v (with 1 ≤ u, v ≤ N), there is an edge u→ v
in G if and only if the bit at position Nu + v in the word representation of the
graph is equal to 1. Positions start at 0.

Let Coldef
={R,G,B} be the set of so-called colors. A 3-coloring of G is a map

col : V → Col such that for every edge u→ v in G, col(u) 6= col(v). We will say
that col(u) is the color of u (with respect to col).

The 3-coloring problem 3-COL is:
INPUT: a graph G;
QUESTION: does G have a 3-coloring?

This is an NP-complete problem under logspace reductions.
We will use a variant of the Lipton protocol in order to decide 3-COL between

Arthur and Merlin, using as little resources (space, number of random bits) as
we can. Let me use an example in order to explain the idea. Let us imagine that
Arthur and Merlin wish to decide whether the following graph has a 3-coloring.

3

1

2 3

4 5

6

0 1 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 1 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

Matrice d’adjacence:

R

R

R

G

B

B

Of course, the answer is yes in this case, and I have taken the opportunity to
show one possible 3-coloring.

We encode a 3-coloring candidate function col as a list of words pos#b#c
where:

• pos is a natural number in binary such that N + 1 ≤ pos ≤ N2 + N ; in
other words, pos is a position in the M part of the input word representing
G;

• b ∈ {0, 1}; 0 means “source” and 1 means “target”;

• c ∈ Col.

Such a word is meant to say that pos is the position of an edge u → v (namely,
that pos = Nu+v and that u→ v really is an edge of G), and that c is the color,
either of its source u (if b = 0) or of its target v (if b = 1). In the example such
a list might be:

[8#0#R, 8#1#G, (edge (1, 2))
10#0#R, 10#1#B, (edge (1, 4))
15#0#G, 15#1#R, (edge (2, 3))
24#0#R, 24#1#B, (edge (3, 6))
27#0#B, 27#1#R, (edge (4, 3))
29#0#B, 29#1#R, (edge (4, 5))
36#0#R, 36#1#B] (edge (5, 6))

(2)

(The comments between parentheses on the right are just comments, and are not
part of the words, or of the whole list of words. Numbers are shown in decimal
notation for readability.)

The protocol is in two phases. In each one, Merlin sends a list, which he
claims are equal up to permutation. Each of these two lists is meant to be sorted,
but according to different criteria.

In phase 1, Merlins sends a list `1 as above to Arthur, and claims that `1
is sorted by increasing vertex numbers. The vertex number of pos#b#c, where
pos = Nu + v, is u if b = 0, v if b = 1. Merlin also claims that the colors are

4

consistent, namely that any two words with the same vertex number are given
the same color. In the example, an honest Merlin would play:

[8#0#R, 10#0#R, (vertex 1)
8#1#G, 15#0#G, (vertex 2)
15#1#R, 27#1#R, 24#0#R, (vertex 3)
10#1#B, 27#0#B, 29#0#B, (vertex 4)
29#1#R, 36#0#R, (vertex 5)
24#1#B, 36#1#B] (vertex 6)

In phase 2, Merlin sends a similar list `2. He claims that `1 and `2 are equal up
to permutation, but that `2 is sorted by increasing positions k on the input tape,
that all the edges are listed exactly twice, once for each end of each edge, and
that the colors of those two ends are distinct. In the example, an honest Merlin
would play the list (2) mentioned earlier.

Question 4 Using this idea, show that 3-COL is in the class IP1 of interactive proofs
such that:

(a) the playing order is MAM (Merlin plays, then Arthur, then Merlin;
then Arthur decides);

(b) Merlin’s answers have polynomial size, and Arthur can only read them
from left to right when his turn comes, and cannot go back;

(c) Arthur does not ask any question when his turn comes (and therefore
does not reveal any random bit, although it will have to draw some
bits at random);

(d) Arthur works in logarithmic space (not counting the space used by
the communication tape between Arthur and Merlin, or by the input
tape) and polynomial time;

(e) Arthur only draws a logarithmic amount of random bits.

We agree that the final verification phase is done by Arthur, so all resource
constraints that apply to Arthur are also relevant for the final verification
phase. You will use the notations G, V , E, n, N , M , etc., given above.
Let me remind you that “logarithmic” means O(log n), where n is the size
of the input. Also, as usual, the communication tape between Arthur and
Merlin is reused, hence erased at each turn.

The acceptance conditions are:

(f) If G has a 3-coloring, then Merlin has a way of making the protocol
accept.

(g) Otherwise, whatever Merlin’s strategy is, the protocol will accept with
probability at most 1/4.

5

You will pay special care to the details. For instance, time must be polyno-
mial in the worst case, not on average. Also, you can test whether a given
number p is prime in various ways, see Appendix A, but not all of them
may fit our purposes here. Finally, say explicitly how all of Merlin claims
are to be verified, and explain why all the various constraints on resources
are met, how many registers you need, holding numbers in binary or in
unary, and so on.

As far as (d) is concerned, polynomial time is automatic: if Arthur only
uses log space and terminates, then it terminates in polynomial time.

The basic idea is to let Merlin play according to phase 1 as described ear-
lier. Then Arthur verifies Merlin’s claims in log space, draws r mod
p uniformly at random, and computes Lip(`1, r). Then Merlin plays
according to phase 2. In order to decide, we verify Merlin’s claims
for that new phase, again in log space, and we compute Lip(`2, r). If
Lip(`1, r) = Lip(`2, r), then we accept, otherwise we reject.

If G has a 3-coloring, then Lip(`1, r) = Lip(`2, r) if Merlin plays honestly,
so (f) holds. Otherwise, the probability that we make a mistake, namely
that Lip(`1, r) = Lip(`2, r), is at most k/p, where k is the length of the
lists `1 and `2. Note that k is at most 2N2, hence at most 2n.

There are plenty of technical details to solve.

• It does not make sense to compute Lip(`1, r) and Lip(`2, r) per se,
because `1 and `2 are not lists of natural numbers in [0, p−1]. But we
can encode each word pos#b#c as a string of log n+O(1) bits, which
we can interpret as a natural number, in binary, of size log n+O(1).

• Next, we must find p so large that the error bound k/p be at most
1/4. For technical reasons, I will require that it is at most 1/5 (see
below). We have k = O(n), so we want p ≥ 5k, namely we require
a prime number of at least log n+O(1) bits.
We also require p to be larger than the length of `1, the length of `2,
and all the codes of elements of those lists. As far as the lengths of
lists are concerned, they are at most 2N2, namely at most 2n, so we
require p > 2n. It suffices to require p to has at least dlog2 ne + 1
bits, and that is again of the form log n+O(1).
Let us require p to be a number of size max(dlog2(5k)e, dlog2 ne) =
log n+O(1) bits exactly. This always exists by Bertrand’s postulate.

• We must obtain p in log space. The simplest way is to require Merlin
to give us p in the first turn, in addition to `1. One can also draw
p at random and use rejection sampling.

6

• We must check that p has the right size, and that it is prime. It may
seem that we could use any of the primality tests of Appendix A, ex-
cept number 2 (we do not have universal non-determinism). How-
ever, we need to use the Miller-Rabin test. This is the only one that
runs in sublinear space (in fact, log space) in the size of p, that is,
in space O(log n). The Agrawal-Kayal-Saxena test uses polynomial,
not linear, space: if the degree of the polynomial is a, that would
mean O(loga n) space, which is not acceptable.
• Drawing r at random (as well as p, if drawn at random) can be done
in average time O(log n), and a constant number of turns through
the rejection sampling loop (2). But we want a procedure that ter-
minates always. In order to achieve this, we can bound the number
of turns through the loop by some number K to be found later. If
Arthur has not found r < p after K turns of the loop, it stops the
whole game and accepts. This incurs an additional error, whose
probability is at most 2/K, by Markov’s inequality.
We require K ≥ 40, so that 2/K ≤ 1/20. When added to the error
1/5 (see item 2), this makes at most 1/4, which is the desired final
probability of error.
• Arthur must verify the format of Merlin’s answers. Notably, it must
check that the length of the lists provided by Merlin do not exceed
2N2. This requires scanning the list in time 2N2 = O(n), using a
binary counter of size O(log n).
Arthur must also verify the format of each entry pos#b#c, and
notably that the size of each does not exceed p. It is enough to
verify that pos ≤ N2 (or simply pos ≤ n), that b holds just one bit,
and that c ∈ {R,G,B}.
• Arthur checks Merlin’s claims in phase 1 in log space. The point is
that the consistency condition and the sorting condition only require
one to remember the last word pos#b#c encountered while scanning
the list `1.
In order to avoid some recomputation, we can also remember
the vertex number i of pos#b#c. When we read the next one,
pos′#b′#c′:
– We compute the vertex number i′ of pos′#b′#c′. This is done

by a Euclidean division of pos′ by N , returning the remainder
(if b′ = 1) or the quotient (if b′ = 0). We have got time,
but not much space. Since N is given in unary on the input
tape, the simplest solution is to copy pos′ into a register R′, and
to repeatedly substract N from R′, incrementing u′ (in binary,
initialized to 0), until R′ is no longer ≥ 1. At the end of this

7

process, R′ will hold the end vertex v′ of the supposed edge u′ →
v′ at position pos′. We compute i′, the required vertex number,
as being u′ if b′ = 1, and R′ = v′ otherwise.
In order to subtract a unary number (N) from a binary number
(pos′), it is enough to repeatedly subtract one.
That only requires a constant number of counters. Note that we
must represent i, i′, u′ and R′ in binary in order to only use log
space.

– If i = i′, then we check that c = c′ (consistency).
– Otherwise, we verify that i < i′ (sorting condition).

The sorting condition allows us to guarantee that we only need to
check the consistency of adjacent words pos#b#c.

• Meanwhile, Arthur computes Lip(`1, r) as in Question 3. That
requires one to store the code of the current word pos#b#c, plus
logarithmically many bits for the intermediate registers. Explicitly,
we keep a register R, initialized to 1. Each time Arthur reads a new
word pos#b#c from `1, it computes its code, subtracts it from r,
and multiplies the result by R mod p, storing the final result in R
again.

• In order to verify Merlin’s claims in phase 2 (except for the equality
of the Lipton fingerprints, which we will deal with later), we simply
read the adjacency matrix M from left to right, and we verify that `2
enumerates the following in the same order, namely for each position
pos in M :

– either exactly two words pos#0#c0 and pos#1#c1 (in this or-
der, even; that simplifies the checking task), with the right value
of pos in both cases, with c0 6= c1; it must also check that the
bit at position pos on the input tape is 1, namely that the edge
indeed exists!

– or nothing, if the bit at position pos on the input tape is 0.

We reject as soon as any check fails, namely if the value of pos is
not the expected one in the first case, for example; but also if at
the end of the scan of M , there remains words not yet seen in `2
(although this is not really required).

• Meanwhile, Arthur computes Lip(`2, r), as in Question 3, or more
precisely as in the computation of Lip(`1, r), and that still only re-
quires logarithmically many bits.

• Finally, deciding whether the two stored Lipton fingerprints are
equal is trivial.

8

Question 5 Modify the previous interactive proof slightly, and show that 3-COL is also
in the class IP2 of interactive proofs where:

(a) the playing order is: Arthur plays once, then Merlin plays polynomially
many times;

(b) each of Merlin’s answers is exactly 1 bit long,

and conditions (c)–(g) are unchanged.

First, Arthur has to produce p himself, and can no longer count on Merlin
for this task. (If you insisted on counting on Merlin, there was a more
complicated solution: draw three, or four candidates depending on the
actual probability bounds you aim four, for the values of r, at random
uniformly among bit strings of the same length as the awaited number p;
store them all, then once Merlin has given his number p, check that its
size is what we expected, and pick for r the first of the candidate values
that is strictly less than p—or accept if none of them is.)

Instead of drawing r at random after Merlin produces `1, Arthur draws
it at random before. That does not change anything, since Merlin must
play without knowing anything about r anyway.

Then, Merlin will provide the lists `1 and `2 one bit at a time. This
is possible since the Lipton fingerprints and the various checks are done
incrementally, and only require one to store each element pos#b#c as
they are received.

Question 6 Deduce that NP ⊆ IP1 and that NP ⊆ IP2.

3-COL is NP-complete under log space reductions, as we have said early
in the question. Polynomial time reductions are not enough! Indeed,
there is no (simple) way to guarantee that IP1 or IP2 is closed under
polynomial time reductions.

We then check that IP1 and IP2 are closed under log space reductions.
We use the usual trick of composing log space functions: instead of storing
and reading the intermediate tape, we simulate the whole computation of
the first function, keeping only the letter of its output tape that the second
function wishes to read.

2 Strategies
A strategy is just what we called a Merlin map in the lectures. It maps (public)
histories x#q1#y1#q2#y2# · · ·#qi to an answer yi by Merlin. We require all

9

questions qi and all answers yi to be of size bounded by a fixed polynomial in the
size n of x.

IP(logspace, lograndbits) is the class of languages decided by interactive proofs
where Arthur uses only O(log n) space and O(log n) random bits. The acceptance
conditions are: if x ∈ L, then the interactive proof will accept with probability at
least 3/4 (if Merlin plays honestly); if x 6∈ L, then it will accept with probabliity
at most 1/4, whichever strategy Merlin uses.

Erratum. IP(logspace, lograndbits) is the class of languages decided by in-
teractive proofs where Arthur uses only O(log n) space and O(log n) random bits,
and working in a polynomial number of rounds.

Question 7 We are given an IP protocol between Arthur and Merlin, with polyno-
mially many rounds, say p(n). Show that, if Arthur uses only O(log n)
random bits in that IP protocol, then there is a concise way of representing
any of Merlin’s strategies M on input x. By concise, we mean of polyno-
mial size. By a representation, we mean a data structure S(x), depending
on the input x, and a polynomial-time computable function f such that
f(S(x), x#q1#y1#q2#y2# · · ·#qi) = M(x#q1#y1#q2#y2# · · ·#qi) for all
possible public histories x#q1#y1#q2#y2# · · ·#qi that may result from the
interaction between Arthur and Merlin on input x.

On input x, any two plays played with the same strategy from Merlin and
with the same sequences of random bits must be equal. Assume Arthur
only uses k log n random bits. This makes at most 2k logn = nk possible
sequences of random bits, hence at most nk different possible histories.
Merlin only has to store up to p(n) answers to the p(n) questions asked
in the run obtained by fixing the random bits.

Hence S(x) is a table, or rather an association list, which maps any
of the at most p(n)nk possible public histories x#q1#y1#q2#y2# · · ·#qi
that may occur during the interaction between Arthur and Merlin to the
answer yi.

The size is S(x) is at most p(n)nk times the length of the largest history,
which is also a polynomial.

The function f simply looks up the public history in the association list
S(x), in polynomial time.

Question 8 Show that any language L in IP(logspace, lograndbits) has an MA protocol
(an Arthur-Merlin protocol where Merlin plays first, Arthur plays second
and there is no other round), with resource constraints as in the lectures,
except that Arthur uses only logarithmically many random bits; and where
the error probability is at most 1/4.

10

Given an IP(logspace, lograndbits) protocol π for L, we build the claimed
MA protocol by letting Merlin output a polynomial-size strategy first, or
rather the table S(x) found in Question 7. Then Arthur will play π
alone, simulating Merlin’s moves in π by consulting S(x) instead.

If x ∈ L, then Merlin had a way of winning π with probability at least
3/4. Playing the corresponding table S(x), Arthur will necessarily accept
with probability at least 3/4 as well.

If x 6∈ L, then whatever the polynomial-sized table S that Merlin plays in
the MA protocol, playing π by letting Merlin use the associated strategy
(obtained by looking S up) gets him no better chance of winning than by
any strategy, i.e., Merlin wins with probability at most 1/4. (If S is not
even correctly formatted as a table, Arthur simply rejects.)

Notice finally that it does not matter whether Arthur’s coins are public
(as required here) or private (as given in the original protocol π), because
Merlin will never play after Arthur.

Question 9 Show that IP(logspace, lograndbits) ⊆ NP.

We derandomize Arthur’s computations in the protocol of Ques-
tion Question 8. Since Arthur has only k log n random bits, we can
instead simulate all 2k logn = nk possible runs of Arthur, by enumerating
all k log n-bit random bit strings, and counting how many lead Arthur to
accept. Either at least 3/4 of them will lead to acceptance, and we accept;
or at most 1/4 lead to acceptance, and we reject.

This computation only takes polynomial time by Arthur. So we obtain an
MA protocol where Merlin plays first, and Arthur decides in polynomial
time. This is an M = NP protocol.

Question 10 Conclude that all the classes IP(logspace, lograndbits), NP, IP1 and IP2

are equal.

We have just proved IP(logspace, lograndbits) ⊆ NP. By Ques-
tion 6, NP is included in IP1 and in IP2. IP2 is clearly included
in IP(logspace, lograndbits), so IP(logspace, lograndbits) = IP2 = NP ⊆
IP1.

It remains to show that IP1 ⊆ IP(logspace, lograndbits), but that is obvi-
ous.

A Primality tests
Let p be a positive natural number. Its size is |p| = dlog2 pe+ 1.

11

1. One can test whether p is prime in deterministic polynomial time by an al-
gorithm due to Kayal, Agrawal, and Saxena. The space used is polynomial.

2. Primality is in coNP. One can check that p is prime by verifying that for
every x with 2 ≤ x ≤ p− 1, x does not divide p.

3. Primality is in NP, by a result of Pratt, using a recursive version of Lucas’
primality test. The idea is that a proof of primality of p is a tree whose root
is labeled by p and by a natural number x in [1, p−1], and whose immediate
subtrees are proofs of primality of numbers p1, . . . , pk in [1, p− 2]. In order
to verify such a proof, one checks that: either p = 2 and k = 0; or p ≥ 3 is
odd, x is between 1 and p − 1, the immediate subtrees are valid proofs of
primality of p1, . . . , pk,

∏k
i=1 pi = p − 1, x is prime with p, xp−1 = 1 mod

p, and x(p−1)/pi 6= 1 mod p for every i with 1 ≤ i ≤ k.

4. The Rabin-Miller test. We assume p odd: the even case is trivial. Then
one can write p as 1 + 2kq where q is odd. We draw x uniformly at random
between 1 and p−1, we verify that xq = 1 mod p or that x2jq = −1 mod p fr
some j with 1 ≤ j < k. If p is prime, the test always succeeds. Otherwise,
it fails with probabilty at least 3/4.

5. The Solovay-Strassen test. We again assume p odd. We draw x at random
as above, and we check that x(p−1)/2 =

(
x
p

)
mod p, where the Jacobi symbol(

x
p

)
is computed recursively by the following formulae (where n is odd):

•
(
m
n

)
=
(
m mod n

n

)
, if m ≥ n;

•
(
1
n

)
= 1;

•
(
2m
n

)
=
(
m
n

)
if n is equal to 1 or 7 mod 8,

(
2m
n

)
= −

(
m
n

)
if n is equal

to 3 or 5 mod 8;

• when m is odd and m < n,
(
m
n

)
=
(
n
m

)
if n or m is equal to 1 mod 4,(

m
n

)
= −

(
n
m

)
if n = m = 3 mod 4.

If p is prime, the test always succeeds. Otherwise, it fails with probabilty
at least 1/2.

12

