
Advanced Complexity Exam (2020-21)

You may answer in English or in French. If you answer in French, and you
do not know the French equivalent of some English word that I am using, by all
means do not invent your own translation: use the English word instead in that
case.

Let me stress the value of rigor. In all arguments, you must: (a) stress the
important idea; (b) give explicit values for all required bounds (errors, probabil-
ities, time and space usage, and so on); (c) give explicit references to the results
you use, preferably by name (e.g., “the Immerman-Szelepcsényi theorem”).

In the whole question, # is a a separator (a letter) different from all other
letters. Section 1 and Section 2 are largely independent, but not completely.

1 Lipton fingerprints and graph coloring
The only interesting question in this section is Question 4, and will account for
more that half of the points of the whole question. (My solution to it takes almost
two pages, which is far more than any of the other questions.) The preceding
questions are simply warm-ups, the questions after that are easy variants, and
will not account for much either.

Two lists [x1, x2, . . . , xk] and [y1, y2, . . . , yk′ ] are equal up to permutation if and
only if k = k′ and there is a permutation π of {1, 2, · · · , k} such that yπ(1) = x1,
yπ(2) = x2, . . . , yπ(k) = xk.

Given a prime number p, we will admit without proof that two lists `def
=[x1,

x2, . . . , xk] and `′
def
=[y1, y2, . . . , yk′ ] of natural numbers in [0, p− 1], with k, k′ < p,

are equal up to permutation if and only the Lipton polynomial :

P (`, `′)
def
=

k∏
i=1

(X − xi)−
k′∏
j=1

(X − yj), (1)

which is a polynomial in Z/pZ[X], is the zero polynomial. Indeed, the Lipton
polynomial is zero if and only if the two polynomials

∏k
i=1(X−xi) and

∏k′

j=1(X−
yj) have the same roots, counting multiplicities. We require k, k′ < p in order
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to ensure that one can reason equivalently on polynomials or on polynomial
functions, without running the risk of mistakes.

The Lipton fingerprint (in French: empreinte de Lipton) Lip(`, r) of a list
`
def
=[x1, x2, . . . , xk] as above, taken at r (0 ≤ r ≤ p − 1), is the value of the

polynomial
∏k

i=1(X − xi) at X
def
=r mod p; in other words,

∏k
i=1(r − xi) mod p.

We define the following Lipton protocol. Its purpose is to decide whether
two lists `def

=[x1, x2, . . . , xk] and `′
def
=[y1, y2, . . . , yk′ ] of natural numbers in [0, p− 1]

(p prime, k, k′ < p) are equal up to permutation, with high probability. The
Lipton protocol draws a number r uniformly at random between 0 and p − 1,
and computes the fingerprints Lip(`, r) and Lip(`′, r). We accept if the two
fingerprints match (are equal), we reject otherwise.

Question 1 Show that the Lipton protocol does not make a mistake if ` and `′ are equal
up to permutation; in other words, it accepts in this case.

Question 2 What is the probability that the Lipton protocol makes a mistake when
` and `′ are not equal up to permutation? I am expecting an easy upper
bound, bounded by a polynomial in k and k′ (when p is fixed) and tending
to 0 as p tends to +∞.

Question 3 Why does the Lipton protocol (a) only require space O(log p)? (b) O(log p)
random bits on average? (c) How much time does it take on average? You
must state explicitly how you pick r at random, the space complexity of
arithmetic operations, and the algorithm you use in order to evaluate the
various Lipton fingerprints.

A graph Gdef
=(V,E) is a pair of a finite set V def

={1, 2, · · · , N} of so-called vertices
(singular: vertex; in French: sommet) and a subset E ⊆ V ×V or edges (French:
arcs). Note that N is the number of vertices; all of them are represented as
numbers in binary.

We represent G by its adjacency matrix. That is an N ×N matrix of bits M ,
which we write as a sequence of N2 bits. We will represent G as the word 0N1M ,
namely N zeros followed by a 1 (in order to specify N), followed by the N2 entries
of M . For any two vertices u and v (with 1 ≤ u, v ≤ N), there is an edge u→ v
in G if and only if the bit at position Nu + v in the word representation of the
graph is equal to 1. Positions start at 0.

Let Coldef
={R,G,B} be the set of so-called colors. A 3-coloring of G is a map

col : V → Col such that for every edge u→ v in G, col(u) 6= col(v). We will say
that col(u) is the color of u (with respect to col).

The 3-coloring problem 3-COL is:
INPUT: a graph G;
QUESTION: does G have a 3-coloring?

This is an NP-complete problem under logspace reductions.
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We will use a variant of the Lipton protocol in order to decide 3-COL between
Arthur and Merlin, using as little resources (space, number of random bits) as
we can. Let me use an example in order to explain the idea. Let us imagine that
Arthur and Merlin wish to decide whether the following graph has a 3-coloring.

1

2 3

4 5

6

0 1 0 1 0 0 
0 0 1 0 0 0 
0 0 0 0 0 1 
0 0 1 0 1 0 
0 0 0 0 0 1 
0 0 0 0 0 0

Matrice d’adjacence:

R

R

R

G

B

B

Of course, the answer is yes in this case, and I have taken the opportunity to
show one possible 3-coloring.

We encode a 3-coloring candidate function col as a list of words pos#b#c
where:

• pos is a natural number in binary such that N + 1 ≤ pos ≤ N2 + N ; in
other words, pos is a position in the M part of the input word representing
G;

• b ∈ {0, 1}; 0 means “source” and 1 means “target”;

• c ∈ Col.

Such a word is meant to say that pos is the position of an edge u → v (namely,
that pos = Nu+v and that u→ v really is an edge of G), and that c is the color,
either of its source u (if b = 0) or of its target v (if b = 1). In the example such
a list might be:

[ 8#0#R, 8#1#G, (edge (1, 2))
10#0#R, 10#1#B, (edge (1, 4))
15#0#G, 15#1#R, (edge (2, 3))
24#0#R, 24#1#B, (edge (3, 6))
27#0#B, 27#1#R, (edge (4, 3))
29#0#B, 29#1#R, (edge (4, 5))
36#0#R, 36#1#B ] (edge (5, 6))

(2)

(The comments between parentheses on the right are just comments, and are not
part of the words, or of the whole list of words. Numbers are shown in decimal
notation for readability.)
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The protocol is in two phases. In each one, Merlin sends a list, which he
claims are equal up to permutation. Each of these two lists is meant to be sorted,
but according to different criteria.

In phase 1, Merlins sends a list `1 as above to Arthur, and claims that `1
is sorted by increasing vertex numbers. The vertex number of pos#b#c, where
pos = Nu + v, is u if b = 0, v if b = 1. Merlin also claims that the colors are
consistent, namely that any two words with the same vertex number are given
the same color. In the example, an honest Merlin would play:

[ 8#0#R, 10#0#R, (vertex 1)
8#1#G, 15#0#G, (vertex 2)
15#1#R, 27#1#R, 24#0#R, (vertex 3)
10#1#B, 27#0#B, 29#0#B, (vertex 4)
29#1#R, 36#0#R, (vertex 5)
24#1#B, 36#1#B ] (vertex 6)

In phase 2, Merlin sends a similar list `2. He claims that `1 and `2 are equal up
to permutation, but that `2 is sorted by increasing positions k on the input tape,
that all the edges are listed exactly twice, once for each end of each edge, and
that the colors of those two ends are distinct. In the example, an honest Merlin
would play the list (2) mentioned earlier.

Question 4 Using this idea, show that 3-COL is in the class IP1 of interactive proofs
such that:

(a) the playing order is MAM (Merlin plays, then Arthur, then Merlin;
then Arthur decides);

(b) Merlin’s answers have polynomial size, and Arthur can only read them
from left to right when his turn comes, and cannot go back;

(c) Arthur does not ask any question when his turn comes (and therefore
does not reveal any random bit, although it will have to draw some
bits at random);

(d) Arthur works in logarithmic space (not counting the space used by
the communication tape between Arthur and Merlin, or by the input
tape) and polynomial time;

(e) Arthur only draws a logarithmic amount of random bits.

We agree that the final verification phase is done by Arthur, so all resource
constraints that apply to Arthur are also relevant for the final verification
phase. You will use the notations G, V , E, n, N , M , etc., given above.
Let me remind you that “logarithmic” means O(log n), where n is the size
of the input. Also, as usual, the communication tape between Arthur and
Merlin is reused, hence erased at each turn.
The acceptance conditions are:
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(f) If G has a 3-coloring, then Merlin has a way of making the protocol
accept.

(g) Otherwise, whatever Merlin’s strategy is, the protocol will accept with
probability at most 1/4.

You will pay special care to the details. For instance, time must be polyno-
mial in the worst case, not on average. Also, you can test whether a given
number p is prime in various ways, see Appendix A, but not all of them
may fit our purposes here. Finally, say explicitly how all of Merlin claims
are to be verified, and explain why all the various constraints on resources
are met, how many registers you need, holding numbers in binary or in
unary, and so on.

Question 5 Modify the previous interactive proof slightly, and show that 3-COL is also
in the class IP2 of interactive proofs where:

(a) the playing order is: Arthur plays once, then Merlin plays polynomially
many times;

(b) each of Merlin’s answers is exactly 1 bit long,

and conditions (c)–(g) are unchanged.

Question 6 Deduce that NP ⊆ IP1 and that NP ⊆ IP2.

2 Strategies
A strategy is just what we called a Merlin map in the lectures. It maps (public)
histories x#q1#y1#q2#y2# · · ·#qi to an answer yi by Merlin. We require all
questions qi and all answers yi to be of size bounded by a fixed polynomial in the
size n of x.

IP(logspace, lograndbits) is the class of languages decided by interactive proofs
where Arthur uses only O(log n) space and O(log n) random bits. The acceptance
conditions are: if x ∈ L, then the interactive proof will accept with probability at
least 3/4 (if Merlin plays honestly); if x 6∈ L, then it will accept with probabliity
at most 1/4, whichever strategy Merlin uses.

Question 7 We are given an IP protocol between Arthur and Merlin, with polyno-
mially many rounds, say p(n). Show that, if Arthur uses only O(log n)
random bits in that IP protocol, then there is a concise way of representing
any of Merlin’s strategies M on input x. By concise, we mean of polyno-
mial size. By a representation, we mean a data structure S(x), depending
on the input x, and a polynomial-time computable function f such that
f(S(x), x#q1#y1#q2#y2# · · ·#qi) =M(x#q1#y1#q2#y2# · · ·#qi) for all
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possible public histories x#q1#y1#q2#y2# · · ·#qi that may result from the
interaction between Arthur and Merlin on input x.

Question 8 Show that any language L in IP(logspace, lograndbits) has an MA protocol
(an Arthur-Merlin protocol where Merlin plays first, Arthur plays second
and there is no other round), with resource constraints as in the lectures,
except that Arthur uses only logarithmically many random bits; and where
the error probability is at most 1/4.

Question 9 Show that IP(logspace, lograndbits) ⊆ NP.

Question 10 Conclude that all the classes IP(logspace, lograndbits), NP, IP1 and IP2

are equal.

A Primality tests
Let p be a positive natural number. Its size is |p| = dlog2 pe+ 1.

1. One can test whether p is prime in deterministic polynomial time by an al-
gorithm due to Kayal, Agrawal, and Saxena. The space used is polynomial.

2. Primality is in coNP. One can check that p is prime by verifying that for
every x with 2 ≤ x ≤ p− 1, x does not divide p.

3. Primality is in NP, by a result of Pratt, using a recursive version of Lucas’
primality test. The idea is that a proof of primality of p is a tree whose root
is labeled by p and by a natural number x in [1, p−1], and whose immediate
subtrees are proofs of primality of numbers p1, . . . , pk in [1, p− 2]. In order
to verify such a proof, one checks that: either p = 2 and k = 0; or p ≥ 3 is
odd, x is between 1 and p − 1, the immediate subtrees are valid proofs of
primality of p1, . . . , pk,

∏k
i=1 pi = p − 1, x is prime with p, xp−1 = 1 mod

p, and x(p−1)/pi 6= 1 mod p for every i with 1 ≤ i ≤ k.

4. The Rabin-Miller test. We assume p odd: the even case is trivial. Then
one can write p as 1+ 2kq where q is odd. We draw x uniformly at random
between 1 and p−1, we verify that xq = 1 mod p or that x2jq = −1 mod p fr
some j with 1 ≤ j < k. If p is prime, the test always succeeds. Otherwise,
it fails with probabilty at least 3/4.

5. The Solovay-Strassen test. We again assume p odd. We draw x at random
as above, and we check that x(p−1)/2 =

(
x
p

)
mod p, where the Jacobi symbol(

x
p

)
is computed recursively by the following formulae (where n is odd):

•
(
m
n

)
=
(
m mod n

n

)
, if m ≥ n;
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•
(
1
n

)
= 1;

•
(
2m
n

)
=
(
m
n

)
if n is equal to 1 or 7 mod 8,

(
2m
n

)
= −

(
m
n

)
if n is equal

to 3 or 5 mod 8;

• when m is odd and m < n,
(
m
n

)
=
(
n
m

)
if n or m is equal to 1 mod 4,(

m
n

)
= −

(
n
m

)
if n = m = 3 mod 4.

If p is prime, the test always succeeds. Otherwise, it fails with probabilty
at least 1/2.
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