All written documents allowed. No Internet access, no cell phone. The different sections are not independent.

1 CNF transforms

A propositional formula F is in clausal form if and only if it is a conjunction (\land) of clauses, where each clause is a disjunction (\lor) of literals, and literals are either propositional variables x or their negations $\neg x$.

SAT is the problem, given a formula in clausal form F, to decide whether F is satisfiable, and is a well-known NP-complete problem.

The usual translation from a formula F to a logically equivalent clausal form is exponential in time and space, in general. That translation is an algorithm which we call CNF: it takes a propositional formula F as input, pushes negations inwards, and distributes \land over \lor until a clausal form is obtained.

The purpose of this section is to explore a more clever translation, due to Tseitin (1957), and which preserves satisfiability, not logical equivalence.

Let F be a propositional formula, built from variables, negation \neg, truth \top, falsity \bot, binary conjunctions and disjunctions, and also binary exclusive or (\oplus) and \iff. Tseitin’s algorithm works as follows. For each non-variable subformula G of F, we create a fresh variable y_G; for each variable x occurring in F, we consider that the notation y_x denotes x itself; and we create the following clauses:

- for each non-variable subformula G of F, say $G = G_1 \ op G_2$ (where $\ op \in \{\land, \lor, \oplus, \iff\}$), we create CNF($y_G = y_{G_1} \ op y_{G_2}$);
- we do the same for the unary operator \neg (if $G = \neg G_1$, then we generate CNF($y_G = \neg y_{G_1}$)) and for the nullary operators (if $G = \top$, then we generate CNF($y_G = \top$), and similarly for \bot);
- finally, the unit clause y_F.

Let us call TSEITIN(F) the conjunction of all the clauses thus produced on the input formula F.

Let x_1, \ldots, x_m be an enumeration of the variables that occur in F. If ρ is an assignment that satisfies F, then the assignment ρ' that extends ρ and maps
each of the fresh variables y_G to the value of G under ρ satisfies TSEITIN(F). Conversely, if ρ' satisfies TSEITIN(F), then one can show by induction on the subformula G of F that the value of G under ρ' is equal to $\rho'(y_G)$; in particular, since ρ' satisfies the last clause y_F, ρ' satisfies F. Hence TSEITIN preserves satisfiability.

Question 1 Why does TSEITIN work in polynomial time? You will concentrate on the complexity of the various calls to CNF.

Question 2 A propositional formula F is uniquely satisfiable if and only if there is exactly one assignment ρ of truth values for each of the variables x_1, \ldots, x_m that occur in F, such that ρ satisfies F. Show that F is uniquely satisfiable if and only if TSEITIN(F) is uniquely satisfiable.

2 The class MA

Recall that MA is the class of languages L such that, for every $\ell \geq 0$, there is a language $D \in \mathcal{P}$ such that, for every input x, of size n:

- if $x \in L$ then there is a y of size $p(n)$ such that $Pr_r[(x, y, r) \in D] \geq 1 - 1/2^{n^\ell}$;
- if $x \not\in L$ then for every y of size $p(n)$, $Pr_r[(x, y, r) \in D] \leq 1/2^{n^\ell}$;

where the probabilities are taken over all random tapes r of size $q(n)$, and $p(n)$ and $q(n)$ are two polynomials (which may depend on ℓ).

Question 3 Show that we obtain the same class by requiring no error in the $x \in L$ case. In other words, let MA$_0$ be the class defined as above, except for the clause:

- if $x \in L$ then there is a y of size $p(n)$ such that, for every r, $(x, y, r) \in D$.

You must show that MA = MA$_0$. As a hint, you may imitate the proof of the Sipser-Gács-Lautemann Theorem (Proposition 1.24 in the second set of lecture notes, pcp.pdf).

Question 4 Deduce that MA $\subseteq \Sigma_2^p$.

3 The Zachos Lemma

Let us recall the BP· operator from the lectures: for any complexity class \mathcal{C}, $\text{BP} \cdot \mathcal{C}$ is the class of languages L such that there is a randomized polynomial time Turing machine \mathcal{A}' and a language $D' \in \mathcal{C}$ such that, on input x (of size n):
where probabilities are taken on random strings r of size $q(n)$, for some polynomial q in n.

Recall that an oracle machine is a multi-tape machine with a specific query tape, three extra control states Q, YES and NO. Let A be a language. The semantics of the machine with oracle A is as usual, except that when the machine reaches state Q, it then proceeds to state YES if the contents of the query tape is in A, and to NO otherwise. The relativized classes P^A, NP^A, BPP^A, etc., are obtained from their classical counterpart by changing the underlying Turing machine model to the corresponding oracle machine, with oracle A.

For a complexity class C, we write NP^C for the union of the classes $NP^{L'}$, $L' \in C$.

It is clear that $C \subseteq C'$ implies $NP^C \subseteq NP^{C'}$.

Question 5 Show that $NP^{BPP} \subseteq MA$.

Question 6 Show the Zachos Lemma: if $NP \subseteq BPP$, then $PH \subseteq BPP$. Here is the proof, your task is to replace the “why?” questions by appropriate justifications. If $NP \subseteq BPP$, then:

\[
PH = \Sigma_2^P = NP^{NP} \subseteq NP^{BPP} \subseteq MA \subseteq AM \subseteq BP \cdot NP \subseteq BP \cdot BPP \subseteq BPP
\]

Question 7 Let F be a propositional formula in clausal form, built on propositional variables x_1, \ldots, x_m, say. Let X be the set of environments (mappings from the propositional variables x_1, \ldots, x_m to truth-values) ρ that satisfy F (in notation, $\rho \models F$). Let $m' \geq 2$ be a number such that $2^{m'-2} \leq |X| \leq 2^{m'-1}$,
where \(|X|\) is the cardinality of \(X\). Identify each environment \(\rho\) with the obvious vector in \(\Sigma^m\). Show that:

\[
Pr_{h,b}[\exists! \rho \in \Sigma^m \cdot \rho \models F \text{ and } h(\rho) = b] \geq \frac{1}{8}
\]

where \(h\) is drawn at random uniformly among all linear hash functions from \(\Sigma^m\) to \(\Sigma^{m'}\), and \(b\) is drawn at random uniformly, and independently, in \(\Sigma^{m'}\).

We write \(\exists!\) for “there exists a unique”. (Hint: given a fixed \(\rho\), find a lower bound for the probability of the event \(C_\rho(h,b)\), defined as holding whenever \(h(\rho) = b\) but \(h(\rho') \neq b\) for every \(\rho' \in X\) such that \(\rho' \neq \rho\).)

Question 8 We take \(F\) and \(m\) as above, but we no longer assume that \(m'\) is known. Show that, if we draw \(m'\) at random uniformly among \(\{2, 3, \ldots, m+1\}\), and a linear hash function \(h : \Sigma^m \to \Sigma^{m'}\) and a vector \(b\) in \(\Sigma^{m'}\) at random as before, then:

- if \(F\) is satisfiable, then \(Pr_{m',h,b}[\exists! \rho \in \Sigma^m \cdot \rho \models F \text{ and } h(\rho) = b] \geq \frac{1}{8m}\).

Question 9 Define a randomized polynomial time algorithm \(W\) that takes a propositional formula \(F\) in clausal form as input (on \(m\) variables \(x_1, \ldots, x_m\) as above) and returns a propositional formula \(F'\) in clausal form such that: (a) if \(F\) is satisfiable, then \(F'\) is uniquely satisfiable with probability at least \(1/(8m)\), and (b) if \(F\) is unsatisfiable, then \(F'\) is unsatisfiable.

Question 10 On input \(F\) (a clausal form again), we now build \(k\) formulae \(F_1, \ldots, F_k\) in clausal form, by calling \(W\) \(k\) times, and where \(k\) is a parameter, depending polynomially on the size \(n\) of \(F\). Let \(\epsilon \in]0, 1[\) be an arbitrary parameter (possibly depending on the size \(n\) of \(F\)). We wish to find \(k\) such that: (a) if \(F\) is satisfiable, then at least one of \(F_1, \ldots, F_k\) is uniquely satisfiable, with probability at least \(1 - \epsilon\), and (b) if \(F\) is unsatisfiable, then no formula \(F_i\) is uniquely satisfiable. Show that one can achieve this, by giving an explicit formula for \(k\) as a function of \(n\) and \(\epsilon\).

Question 11 Deduce the Valiant-Vazirani theorem: if \(USAT \in \text{P}\), then \(\text{NP} = \text{RP}\).

Here \(USAT\) is the unique satisfiability problem: given a clausal form \(F\) (on variables \(x_1, \ldots, x_m\)), is there a unique \(\rho \in \Sigma^m\) that satisfies \(F\)?

We define another operator \(\oplus\) (“parity”) as follows: \(L \in \oplus \cdot \text{C}\) iff there is a language \(L'\) in \(\text{C}\), and a polynomial \(p(n)\), such that:

- \(x \in L\) iff the number of strings \(y\) of size \(p(n)\) such that \((x, y) \in L'\) is odd.

I.e., \(\oplus \cdot \text{P}\) is the class of languages decidable on a (balanced, i.e., binary branching and whose branches all have the same length) non-deterministic Turing machine by accepting iff the number of accepting branches is odd.

Question 12 Using the same ideas as before, show that \(\text{NP} \subseteq \text{RP}^{\oplus \cdot \text{P}}\).