
Advanced Complexity Exam 2020

All written documents allowed. No Internet access, no cell phone.
The different sections are not independent.

1 CNF transforms

A propositional formula F is in clausal form if and only if it is a conjunction (∧)
of clauses, where each clause is a disjunction (∨) of literals, and literals are either
propositional variables x or their negations ¬x.

SAT is the problem, given a formula in clausal form F , to decide whether F
is satisfiable, and is a well-known NP-complete problem.

The usual translation from a formula F to a logically equivalent clausal form
is exponential in time and space, in general. That translation is an algorithm
which we call CNF: it takes a propositional formula F as input, pushes negations
inwards, and distributes ∧ over ∨ until a clausal form is obtained.

The purpose of this section is to explore a more clever translation, due to
Tseitin (1957), and which preserves satisfiability, not logical equivalence.

Let F be a propositional formula, built from variables, negation ¬, truth >,
falsity ⊥, binary conjunctions and disjunctions, and also binary exclusive or (⊕)
and⇔. Tseitin’s algorithm works as follows. For each non-variable subformula G
of F , we create a fresh variable yG; for each variable x occurring in F , we consider
that the notation yx denotes x itself; and we create the following clauses:

• for each non-variable subformula G of F , say G = G1 op G2 (where op ∈
{∧,∨,⊕,⇔}), we create CNF(yG = yG1 op yG2);

• we do the same for the unary operator ¬ (if G = ¬G1, then we generate
CNF(yG = ¬yG1)) and for the nullary operators (if G = >, then we generate
CNF(yG = >), and similarly for ⊥);

• finally, the unit clause yF .

Let us call TSEITIN(F) the conjunction of all the clauses thus produced on the
input formula F .

Let x1, . . . , xm be an enumeration of the variables that occur in F . If ρ is
an assignment that satisfies F , then the assignment ρ′ that extends ρ and maps

1

each of the fresh variables yG to the value of G under ρ satisfies TSEITIN(F).
Conversely, if ρ′ satisfies TSEITIN(F), then one can show by induction on the
subformula G of F that the value of G under ρ′ is equal to ρ′(yG); in particular,
since ρ′ satisfies the last clause yF , ρ′ satisfies F . Hence TSEITIN preserves
satisfiability.

Question 1 Why does TSEITIN work in polynomial time? You will concentrate on the
complexity of the various calls to CNF. Very easy. 2 lines.

Question 2 A propositional formula F is uniquely satisfiable if and only if there is
exactly one assignment ρ of truth values for each of the variables x1, . . . , Easy. I used

9 lines, but I
am sure you don’t
need that much.

xm that occur in F , such that ρ satisfies F . Show that F is uniquely
satisfiable if and only if TSEITIN(F) is uniquely satisfiable.

2 The class MA

Recall that MA is the class of languages L such that, for every ` ≥ 0, there is a
language D ∈ P such that, for every input x, of size n:

• if x ∈ L then there is a y of size p(n) such that Prr[(x, y, r) ∈ D] ≥ 1−1/2n
`
;

• if x 6∈ L then for every y of size p(n), Prr[(x, y, r) ∈ D] ≤ 1/2n
`
;

where the probabilities are taken over all random tapes r of size q(n), and p(n)
and q(n) are two polynomials (which may depend on `).

Question 3 Show that we obtain the same class by requiring no error in the x ∈ L
case. In other words, let MA0 be the class defined as above, except for the
clause:

• if x ∈ L then there is a y of size p(n) such that, for every r, (x, y, r) ∈
D.

You must show that MA = MA0. As a hint, you may imitate the proof of Application of a
proof technique
seen in class. 20
lines.

the Sipser-Gács-Lautemann Theorem (Proposition 1.24 in the second set of
lecture notes, pcp.pdf).

Question 4 Deduce that MA ⊆ Σp
2. Easy. 5 lines.

3 The Zachos Lemma

Let us recall the BP· operator from the lectures: for any complexity class C,
BP · C is the class of languages L such that there is a randomized polynomial
time Turing machine A′ and a language D′ ∈ C such that, on input x (of size n):

2

• If x ∈ L, then Prr[A′(x, r) ∈ D′] ≥ 2/3;

• If x 6∈ L, then Prr[A′(x, r) ∈ D′] ≤ 1/3.

where probabilities are taken on random strings r of size q(n), for some polynomial
q in n.

Recall that an oracle machine is a multi-tape machine with a specific query
tape, three extra control states Q, YES and NO. Let A be a language. The
semantics of the machine with oracle A is as usual, except that when the machine
reaches state Q, it then proceeds to state YES if the contents of the query tape
is in A, and to NO otherwise. The relativized classes PA, NPA, BPPA, etc.,
are obtained from their classical counterpart by changing the underlying Turing
machine model to the corresponding oracle machine, with oracle A.

For a complexity class C, we write NPC for the union of the classes NPL′
,

L′ ∈ C.
It is clear that C ⊆ C ′ implies NPC ⊆ NPC

′
.

Question 5 Show that NPBPP ⊆MA. Requires a bit
of work, but no
crazy new idea.
29 lines.Question 6 Show the Zachos Lemma: if NP ⊆ BPP, then PH ⊆ BPP. Here is
Easy if you know
your lessons. 15
lines, concen-
trated on one of
the subquestions.

the proof, your task is to replace the “why?” questions by appropriate
justifications. If NP ⊆ BPP, then:

PH = Σp
2 why? (1)

= NPNP final comments in the nl.pdf lecture notes

⊆ NPBPP C ⊆ C ′ implies NPC ⊆ NPC
′

⊆MA Question 5

⊆ AM why? (2)

= BP ·NP why? (3)

⊆ BP ·BPP why? (4)

⊆ BPP why? (5).

4 The Valiant-Vazirani theorem

Let Σ = Z/2Z in this Section. Recall that a linear hash function h : Σm → Σm′

is a linear map from Z/2Zm to Z/2Zm′
.

Question 7 Let F be a propositional formula in clausal form, built on propositional
variables x1, . . . , xm, say. Let X be the set of environments (mappings from
the propositional variables x1, . . . , xm to truth-values) ρ that satisfy F (in
notation, ρ |= F). Let m′ ≥ 2 be a number such that 2m

′−2 ≤ |X| ≤ 2m
′−1,

3

where |X| is the cardinality of X. Identify each environment ρ with the
obvious vector in Σm. Show that:

Prh,b[∃!ρ ∈ Σm · ρ |= F and h(ρ) = b] ≥ 1

8

where h is drawn at random uniformly among all linear hash functions from
Σm to Σm′

, and b is drawn at random uniformly, and independently, in Σm′
.

We write ∃! for “there exists a unique”. (Hint: given a fixed ρ, find a lower As in class. 21
lines.

bound for the probability of the event Cρ(h, b), defined as holding whenever
h(ρ) = b but h(ρ′) 6= b for every ρ′ ∈ X such that ρ′ 6= ρ.)

Question 8 We take F and m as above, but we no longer assume that m′ is known.
Show that, if we draw m′ at random uniformly among {2, 3, . . . ,m + 1},
and a linear hash function h : Σm → Σm′

and a vector b in Σm′
at random

as before, then: Very easy, 3 lines.

• if F is satisfiable, then Prm′,h,b[∃!ρ ∈ Σm · ρ |= F and h(ρ) = b] ≥
1/(8m).

Question 9 Define a randomized polynomial time algorithm W that takes a proposi-
tional formula F in clausal form as input (on m variables x1, . . . , xm as
above) and returns a propositional formula F ′ in clausal form such that: (a) You need to com-

bine a few things
you know here. 11
lines.

if F is satisfiable, then F ′ is uniquely satisfiable with probability at least
1/(8m), and (b) if F is unsatisfiable, then F ′ is unsatisfiable.

Question 10 On input F (a clausal form again), we now build k formulae F1, . . . , Fk in
clausal form, by calling W k times, and where k is a parameter, depending
polynomially on the size n of F . Let ε ∈]0, 1[be an arbitrary parameter
(possibly depending on the size n of F). We wish to find k such that: (a) if
F is satisfiable, then at least one of F1, . . . , Fk is uniquely satisfiable, with
probability at least 1− ε, and (b) if F is unsatisfiable, then no formula Fi is
uniquely satisfiable. Show that one can achieve this, by giving an explicit Elementary. 4

lines.

formula for k as a function of n and ε.

Question 11 Deduce the Valiant-Vazirani theorem: if USAT ∈ P, then NP = RP.
Here USAT is the unique satisfiability problem: given a clausal form F (on Not too hard. 9

lines.

variables x1, . . . , xm), is there a unique ρ ∈ Σm that satisfies F?

We define another operator ⊕· (“parity”) as follows: L ∈ ⊕ · C iff there is a
language L′ in C, and a polynomial p(n), such that:

• x ∈ L iff the number of strings y of size p(n) such that (x, y) ∈ L′ is odd .

I.e., ⊕·P is the class of languages decidable on a (balanced, i.e., binary branching
and whose branches all have the same length) non-deterministic Turing machine
by accepting iff the number of accepting branches is odd.

Question 12 Using the same ideas as before, show that NP ⊆ RP⊕·P. Largely doable. 9
lines.

4

