Advanced Complexity Exam 2020

All written documents allowed. No Internet access, no cell phone. The different sections are *not* independent.

1 CNF transforms

A propositional formula F is in *clausal form* if and only if it is a conjunction (\land) of clauses, where each clause is a disjunction (\lor) of literals, and literals are either propositional variables x or their negations $\neg x$.

SAT is the problem, given a formula in clausal form F, to decide whether F is satisfiable, and is a well-known **NP**-complete problem.

The usual translation from a formula F to a logically equivalent clausal form is exponential in time and space, in general. That translation is an algorithm which we call CNF: it takes a propositional formula F as input, pushes negations inwards, and distributes \land over \lor until a clausal form is obtained.

The purpose of this section is to explore a more clever translation, due to Tseitin (1957), and which preserves satisfiability, not logical equivalence.

Let F be a propositional formula, built from variables, negation \neg , truth \top , falsity \bot , binary conjunctions and disjunctions, and also binary exclusive or (\oplus) and \Leftrightarrow . Tseitin's algorithm works as follows. For each non-variable subformula G of F, we create a fresh variable y_G ; for each variable x occurring in F, we consider that the notation y_x denotes x itself; and we create the following clauses:

- for each non-variable subformula G of F, say $G = G_1$ op G_2 (where $op \in \{\land, \lor, \oplus, \Leftrightarrow\}$), we create $CNF(y_G = y_{G_1} \text{ op } y_{G_2})$;
- we do the same for the unary operator \neg (if $G = \neg G_1$, then we generate $\operatorname{CNF}(y_G = \neg y_{G_1})$) and for the nullary operators (if $G = \top$, then we generate $\operatorname{CNF}(y_G = \top)$, and similarly for \bot);
- finally, the unit clause y_F .

Let us call TSEITIN(F) the conjunction of all the clauses thus produced on the input formula F.

Let x_1, \ldots, x_m be an enumeration of the variables that occur in F. If ρ is an assignment that satisfies F, then the assignment ρ' that extends ρ and maps

 $\mathbf{2}$

Let us recall the **BP** \cdot operator from the lectures: for any complexity class \mathcal{C} . $\mathbf{BP} \cdot \mathcal{C}$ is the class of languages L such that there is a randomized polynomial time Turing machine \mathcal{A}' and a language $D' \in \mathcal{C}$ such that, on input x (of size n):

Question 4 Deduce that $\mathbf{MA} \subseteq \Sigma_2^p$.

3

lecture notes, pcp.pdf).

The Zachos Lemma

You must show that $\mathbf{MA} = \mathbf{MA}_0$. As a hint, you may imitate the proof of the Sipser-Gács-Lautemann Theorem (Proposition 1.24 in the second set of

• if $x \in L$ then there is a y of size p(n) such that, for every $r, (x, y, r) \in I$ D.

clause:

where the probabilities are taken over all random tapes r of size q(n), and p(n)

language $D \in \mathbf{P}$ such that, for every input x, of size n: • if $x \in L$ then there is a y of size p(n) such that $Pr_r[(x, y, r) \in D] \ge 1 - 1/2^{n^{\ell}}$;

2 The class MA

satisfiability.

Recall that **MA** is the class of languages L such that, for every $\ell \geq 0$, there is a

• if $x \notin L$ then for every y of size p(n), $Pr_r[(x, y, r) \in D] \leq 1/2^{n^{\ell}}$;

and q(n) are two polynomials (which may depend on ℓ).

Question 1 Why does TSEITIN work in polynomial time? You will concentrate on the

Question 2 A propositional formula F is *uniquely satisfiable* if and only if there is

complexity of the various calls to CNF.

each of the fresh variables y_G to the value of G under ρ satisfies TSEITIN(F). Conversely, if ρ' satisfies TSEITIN(F), then one can show by induction on the subformula G of F that the value of G under ρ' is equal to $\rho'(y_G)$; in particular, since ρ' satisfies the last clause y_F , ρ' satisfies F. Hence TSEITIN preserves

satisfiable if and only if TSEITIN(F) is uniquely satisfiable.

exactly one assignment ρ of truth values for each of the variables x_1, \ldots, x_n

 x_m that occur in F, such that ρ satisfies F. Show that F is uniquely

Easy. I use 9 lines, but I used am sure you don't need that much.

Very easy. 2 lines.

proof technique seen in class. 20 lines

Easy. 5 lines.

Application of a

Question 3 Show that we obtain the same class by requiring no error in the $x \in L$ case. In other words, let MA_0 be the class defined as above, except for the

- If $x \in L$, then $Pr_r[\mathcal{A}'(x,r) \in D'] \ge 2/3$;
- If $x \notin L$, then $Pr_r[\mathcal{A}'(x,r) \in D'] \leq 1/3$.

where probabilities are taken on random strings r of size q(n), for some polynomial q in n.

Recall that an oracle machine is a multi-tape machine with a specific query tape, three extra control states Q, YES and NO. Let A be a language. The semantics of the machine with oracle A is as usual, except that when the machine reaches state Q, it then proceeds to state YES if the contents of the query tape is in A, and to NO otherwise. The *relativized* classes \mathbf{P}^A , \mathbf{NP}^A , \mathbf{BPP}^A , etc., are obtained from their classical counterpart by changing the underlying Turing machine model to the corresponding oracle machine, with oracle A.

For a complexity class C, we write \mathbf{NP}^{C} for the union of the classes $\mathbf{NP}^{L'}$, $L' \in C$.

It is clear that $\mathcal{C} \subseteq \mathcal{C}'$ implies $\mathbf{NP}^{\mathcal{C}} \subseteq \mathbf{NP}^{\mathcal{C}'}$.

Question 5 Show that $NP^{BPP} \subseteq MA$.

Question 6 Show the Zachos Lemma: if $NP \subseteq BPP$, then $PH \subseteq BPP$. Here is the proof, your task is to replace the "why?" questions by appropriate justifications. If $NP \subseteq BPP$, then:

$\mathbf{PH} = \Sigma_2^p$	why? (1)
$= \mathbf{NP}^{\mathbf{NP}}$	final comments in the $\texttt{nl.pdf}$ lecture notes
$\subseteq \mathbf{NP^{BPP}}$	$\mathcal{C} \subseteq \mathcal{C}' ext{ implies } \mathbf{NP}^{\mathcal{C}} \subseteq \mathbf{NP}^{\mathcal{C}'}$
$\subseteq \mathbf{MA}$	Question 5
$\subseteq \mathbf{AM}$	why? (2)
$= \mathbf{BP} \cdot \mathbf{NP}$	why? (3)
$\subseteq \mathbf{BP} \cdot \mathbf{BPP}$	why? (4)
$\subseteq \mathbf{BPP}$	why? (5) .

4 The Valiant-Vazirani theorem

Let $\Sigma = \mathbb{Z}/2\mathbb{Z}$ in this Section. Recall that a linear hash function $h: \Sigma^m \to \Sigma^{m'}$ is a linear map from $\mathbb{Z}/2\mathbb{Z}^m$ to $\mathbb{Z}/2\mathbb{Z}^{m'}$.

Question 7 Let F be a propositional formula in clausal form, built on propositional variables x_1, \ldots, x_m , say. Let X be the set of environments (mappings from the propositional variables x_1, \ldots, x_m to truth-values) ρ that satisfy F (in notation, $\rho \models F$). Let $m' \ge 2$ be a number such that $2^{m'-2} \le |X| \le 2^{m'-1}$,

Requires a bit of work, but no crazy new idea. 29 lines.

Easy if you know your lessons. 15 lines, concentrated on one of the subquestions. where |X| is the cardinality of X. Identify each environment ρ with the obvious vector in Σ^m . Show that:

$$Pr_{h,b}[\exists ! \rho \in \Sigma^m \cdot \rho \models F \text{ and } h(\rho) = b] \ge \frac{1}{8}$$

where h is drawn at random uniformly among all linear hash functions from Σ^m to $\Sigma^{m'}$, and b is drawn at random uniformly, and independently, in $\Sigma^{m'}$. We write \exists ! for "there exists a unique". (Hint: given a fixed ρ , find a lower bound for the probability of the event $C_{\rho}(h, b)$, defined as holding whenever $h(\rho) = b$ but $h(\rho') \neq b$ for every $\rho' \in X$ such that $\rho' \neq \rho$.)

- Question 8 We take F and m as above, but we no longer assume that m' is known. Show that, if we draw m' at random uniformly among $\{2, 3, \ldots, m+1\}$, and a linear hash function $h: \Sigma^m \to \Sigma^{m'}$ and a vector b in $\Sigma^{m'}$ at random as before, then:
 - if F is satisfiable, then $Pr_{m',h,b}[\exists ! \rho \in \Sigma^m \cdot \rho \models F \text{ and } h(\rho) = b] \geq 1/(8m).$
- Question 9 Define a randomized polynomial time algorithm \mathcal{W} that takes a propositional formula F in clausal form as input (on m variables x_1, \ldots, x_m as above) and returns a propositional formula F' in clausal form such that: (a) if F is satisfiable, then F' is uniquely satisfiable with probability at least 1/(8m), and (b) if F is unsatisfiable, then F' is unsatisfiable.
- Question 10 On input F (a clausal form again), we now build k formulae F_1, \ldots, F_k in clausal form, by calling $\mathcal{W} k$ times, and where k is a parameter, depending polynomially on the size n of F. Let $\epsilon \in]0, 1[$ be an arbitrary parameter (possibly depending on the size n of F). We wish to find k such that: (a) if F is satisfiable, then at least one of F_1, \ldots, F_k is uniquely satisfiable, with probability at least 1ϵ , and (b) if F is unsatisfiable, then no formula F_i is uniquely satisfiable. Show that one can achieve this, by giving an explicit formula for k as a function of n and ϵ .
- Question 11 Deduce the Valiant-Vazirani theorem: if $USAT \in \mathbf{P}$, then $\mathbf{NP} = \mathbf{RP}$. Here USAT is the unique satisfiability problem: given a clausal form F (on variables x_1, \ldots, x_m), is there a unique $\rho \in \Sigma^m$ that satisfies F?

We define another operator \oplus ("parity") as follows: $L \in \oplus \mathcal{C}$ iff there is a language L' in \mathcal{C} , and a polynomial p(n), such that:

• $x \in L$ iff the number of strings y of size p(n) such that $(x, y) \in L'$ is odd.

I.e., $\oplus \cdot \mathbf{P}$ is the class of languages decidable on a (balanced, i.e., binary branching and whose branches all have the same length) non-deterministic Turing machine by accepting iff the number of accepting branches is odd.

Question 12 Using the same ideas as before, show that $NP \subseteq RP^{\oplus \cdot P}$.

As in class. 21 lines.

Very easy, 3 lines.

You need to combine a few things you know here. 11 lines.

Not too hard. 9

Elementary.

4

Largely doable. 9 lines.