1 The Zachos-Heller theorem

Let $\Sigma = \{0, 1\}$. All our random tapes r, r_1, r_2, \ldots, are strings over Σ.

Take $L \in \text{BPP}$, so that:

- if $x \in L$ then $\Pr_r[\mathcal{M}(x, r) \text{ accepts}] \geq 1 - 1/2^n$,
- if $x \not\in L$ then $\Pr_r[\mathcal{M}(x, r) \text{ accepts}] \leq 1/2^n$,

where \mathcal{M} is a deterministic Turing machine working in polynomial time $p(n)$, and using $q(n)$ random bits (meaning that the size of r is $q(n)$).

For a bit $b \in \Sigma$, say that $\mathcal{M}(x, r) = b$ to abbreviate « either $b = 1$ and $\mathcal{M}(x, r)$ accepts, or $b = 0$ and $\mathcal{M}(x, r)$ rejects ». $\mathcal{M}(x, r) \neq b$ is the negation of $\mathcal{M}(x, r) = b$. Let R_{xb} be the set of those r such that $\mathcal{M}(x, r) \neq b$.

Let also $b = (x \in L)$ mean « either $b = 1$ and $x \in L$, or $b = 0$ and $x \not\in L »$, and $b \neq (x \in L)$ be its negation.

1. Let L' be the language of all tuples (x, b, H) such that R_{xb} has a collision for H, where $b \in \Sigma$ and $H = (h_1, \cdots, h_\ell)$ is a tuple of linear hash functions from $\Sigma^{q(n)}$ to $\Sigma^{m'}$, and where ℓ and m' are polynomials in the size n of x, $\ell \geq m'$, to be determined later. Show that L' is in NP.

2. We define the following algorithm. On input x, we draw b and H (as described above) at random, uniformly and independently. Then we test whether $(x, b, H) \in L'$. If so, we return the special symbol fail, otherwise we return b.

(a) Show that if $b \neq (x \in L)$, then that algorithm must return fail... under a constraint on n, ℓ, and m' that you will give explicitly. We will name that constraint (A).

(b) Show that if $b = (x \in L)$, then the probability that the algorithm returns fail is smaller than or equal to $1/2^{\ell-m'+1} \ldots$ under a constraint on n, ℓ, and m' that you will give explicitly. We will name that constraint (B).

(c) We simply take $\ell = m'$. Show that, for n large enough, one can find m' so that (A) and (B) are satisfied, and such that m' is bounded by a polynomial in n.

All written documents allowed. No Internet access, no cell phone.
3. Conclude that \(\text{BPP} \) is included in the class \(\text{ZPP}^{\text{NP}} \) of languages that can be decided in expected polynomial time with zero error, on a randomized Turing machine with access to an \(\text{NP} \) oracle. This is the Zachos-Heller theorem.

4. Why is \(\text{ZPP}^{\text{NP}} \) equal to \(\text{RP}^{\text{NP}} \cap \text{coRP}^{\text{NP}} \)? A brief answer is enough. The classes \(\text{RP}^{\text{NP}} \) and \(\text{coRP}^{\text{NP}} \) are defined just like \(\text{RP} \) and \(\text{coRP} \), except the Turing machine has access to an oracle deciding some language in \(\text{NP} \).

5. Show that \(\text{RP}^{\text{NP}} \subseteq \Sigma^p_2 \).

6. Deduce a new proof of the Sipser-Gács-Lautemann theorem \(\text{BPP} \subseteq \Sigma^p_2 \cap \Pi^p_2 \).

2 \(\text{L/poly}, \text{branching programs}, \text{and BP} \cdot \text{L} \)

For a function \(f: \mathbb{N} \to \mathbb{N} \), a language \(L \) is in the class \(\text{L}/f \) if and only if there is a family of so-called advice words \((\text{adv}_n)_{n \in \mathbb{N}} \), where \(\text{adv}_n \) is of size \(O(f(n)) \) (and is not necessarily computable), and a logarithmic space deterministic Turing machine \(M \), such that for every input \(x \) of size \(n \), \(x \in L \) if and only if \(M(x, \text{adv}_n) \) accepts. Note that \(M \) works in space \(O(\log n) \), where \(n \) is the size of \(x \), not counting the size of \(\text{adv}_n \).

As usual, by space we mean the size used by the work tapes, and ignore all other tapes, notably the read-only input tape \(x \) and the read-only advice tape.

\(\text{L/poly} \) is the union of the classes \(\text{L}/f \) when \(f \) ranges over the polynomials with coefficients in \(\mathbb{N} \). We use that every input \(x \) is given in binary.

A branching program (for short, BP) \(\pi \) is just like a circuit, except that its gates are built from the \(\text{if } x_i \text{ then } _- \text{ else } _- \) connective instead of \(\land, \lor, \neg \); the notation \(x_i \) specifies bit \(i \) of the input \(x \). Additionally, the two wires 0 and 1 specify false (rejection) and true (acceptance) respectively. Formally, a net-list for \(\pi \) is a list of wire specifications of the form :

\[
m: \text{if } x_i \text{ then } j \text{ else } k
\]

where \(m > j, k, 1 \) (\(m, j \) and \(k \) are wire numbers), and where consecutive wire specifications have values of \(m \) that increase by exactly 1, and start at 2. For example, the following branching program computes (at its last specified wire, number 4) \((x_3 \land \neg x_5) \lor (\neg x_3 \land x_2) \):

\[
2: \text{if } x_5 \text{ then } 0 \text{ else } 1
3: \text{if } x_2 \text{ then } 1 \text{ else } 0
4: \text{if } x_3 \text{ then } 2 \text{ else } 3
\]

A BP \(\pi \) is of length \(n \) if it can take inputs of size \(n \), namely if every \(x_i \) in \(\pi \) is such that \(0 \leq i < n \). The size of \(\pi \) is its size as a net-list, where \(x_i \) is given by writing \(i \) in binary. Wire numbers are also written in binary.

We say that a BP accepts its input \(x \) if and only if the value of its final wire, evaluating each \(x_i \) as bit \(i \) of \(x \), is 1. A language \(L \) has polynomial BPs if and only if, for every \(n \in \mathbb{N} \), there is a length \(n \) branching program \(\pi_n \) of polynomial size \(p(n) \) such that for every input \(x \) of size \(n \), \(x \in L \) if and only if \(\pi_n \) accepts \(x \).
7. Show that every language L that has polynomial BPs is in L/poly. Be careful about the size of the work tapes your Turing machine uses.

8. Conversely, show that every language L in L/poly has polynomial BPs. Hint: given a logspace Turing machine M with polynomial advice, some form of the configuration graph of M on inputs of size n has polynomial size in n... and you need polynomially many wires. You may assume that M has only one work tape, and always terminates.

The class $\text{BP} \cdot L$ is defined as the class of languages L such that there is a deterministic Turing machine M such that if $x \in L$ then $\Pr_r[M(x, r) \text{ accepts}] \geq 2/3$, and otherwise $\Pr_r[M(x, r) \text{ accepts}] \leq 1/3$—and such that $M(x, r)$ works in space $k \log n$, where n is the size of x, for some constant k that (notably) does not depend on r.

9. Let $L \in \text{BP} \cdot L$. Let n denote the size of x. Why can we assume r to be of size polynomial in n?

10. Show that $\text{BP} \cdot L$ admits error reduction: for every language in L, for every polynomial q, there is a deterministic Turing machine M working in space $O(\log n)$ (independently of the size of r) such that if $x \in L$ then $\Pr_r[M(x, r) \text{ accepts}] \geq 1 - 1/2^{\varphi(n)}$, and otherwise $\Pr_r[M(x, r) \text{ accepts}] \leq 1/2^{\varphi(n)}$.

11. Show that every language of $\text{BP} \cdot L$ has polynomial branching programs.

Branching programs are a relaxed form of binary decision diagrams (BDD), a fundamental data structure used in symbolic model-checking. A BDD on an n-bit input x has exponential size in the worst case, and that worst case is attained often, even in practice. The above delineates when polynomial size is achievable.

3 PCP

A (R, Q, T)-restricted verifier is a randomized Turing machine with direct access to a proof tape that works in three phases:

- it computes $Q(n)$ positions on the proof tape, in polynomial time, while accessing the input tape x and the random tape r only (not the proof tape); the random tape contains only $R(n)$ bits;
- it reads the bits on the proof tape y at these positions;
- using x, r, and the bits just read from y, it decides to accept or reject in time $T(n)$ (in this phase, the machine cannot access the proof tape).

The class $\text{PCP}(R, Q, T)$ is the class of languages L such that there is an (R, Q, T)-restricted verifier V such that:

- if $x \in L$, then there is a proof y such that $\Pr_r[V(x, y, r) \text{ rejects}] = 0$;
- if $x \not\in L$, then for every proof y, $\Pr_r[V(x, y, r) \text{ accepts}] \leq 1/2$.

We do not require any particular bound on the size of y.

12. Show that graph non-isomorphism is in $\text{PCP}(O(n \log n), 1, O(1))$. You should of course get some inspiration from one of the algorithms we gave in the lectures for that problem.