Jean Goubault-Larrecq

andomized

, Today: BPP (part 1)
complexity classes

Tous droits réservés, Jean Goubault-Larrecq, professeur, ENS Paris-Saclay, Université Paris-Saclay
Cours « Complexité avancée » (M1), 2020-, ler semestre

Ce document est protégé par le droit d’auteur. Toute représentation ou reproduction intégrale ou
partielle faite sans le consentement de 1’auteur est illicite.

Today

+ Two-sided error: BPP
* Error reduction, voting, Chernoff’s bound

* The Sipser-Gacs-Lautemann theorem

Our third probabilistic class: BPP

(also sometimes known as the class of
Metropolis languages, although
some speak of Monte Carlo here again)

|

NlChO'l‘aS Me [l.s-g 1S
= ' .‘::_- A -i

http://fr.casino-jackpot.com/wp-content/uploads/2018/04/casino-monaco. jpg
httos://upload . wikimedia.ora/wikivedia/commons/5/56/Nicholas Metropolis crooped.PNG

BPP: Bounded Prob. of Error Polynomial time

i.e. there is also a polynomial p(n) /

* Alanguage L is in BPP if and only if Flpnicminates in tme <p().

where n=1x1, in the worst case

there iS ad P()lynomial-time TM M (and for any value of r)

such that for every input x (of size n):

... hence, implicitly,
we require | r|>p(n)

@ lf b= L then Prr [M(X,T) aCCQPtS] = 2/3 (let us say |7 1= p(n))

R/
0’0

if x & L then Pr, ['M(x,r) accepts] < 1/3. Flonaes i ash o

all r € {0,1}r(n)

two-sided error:
Pr, [M(x,r) errs] <1/3

Examples

page discussion view source history
https://compeap.com/wp-content/uploads/Land-of-I-Dont-Know. jpg

PolyMath The complexity class BPP

Examples

The problem of determining whether a multivariate polynomial vanishes ¢ is in BPP. The idea of the randomized algorithm is to compute the polynomial at a small number of randomly chosen

points. For a non-zero polynomial the probability that it vanishes at all those points decreases rapidly with the number of points, and so if it vanishes at all those points we can say with some
here, then the algorithm is guaranteed to output 1.

It would be good to have more examples. In particular, it would be nice to have an example that isn't obviously in RP or co-RP.

https://asone.ai/polymath/index.php?title=The complexity class BPP

/
%?

Error reduction

What is so special about
error 1/37?

Nothing!

Theorem. V ¢ €]0,1/2],
BPP = BPP(¢).

Note: BPP=BPP(1/3) (def.)

error = 1/3 here

A language L is 1n BPF 1f and only 1
there is a polynomial-time TM ‘M

such that for every input x (of size n:

if x & L then Pr, [M(x,r) accepts] < 1/3.

T — T ————=

A language L is in BPP(&)nd only if
there is a polynomial-time TM M
such that for every input x (of size n):

if x & L then Pr, [M(x,r) accepts] < &

- _—‘r — ﬁ?‘

BPP(e)={all languages} if e>1/2...

BPP(0)=P

error = ¢

The easy cases: error amplification(!)

« Clearly, if n < € then
BPP(n) C BPP(¢)

+ Note: BPP(0)=P (sometimes believed = BPP)
BPP(e)={all languages} for every e>1/2

+ In the middle, hence, we will see that all the
intermediate BPP(¢) (¢ €]0, 1/2[) are equal to BPP.

Error reduction

+ We will show that BPP (= BPP(1/3)) is included in
BPP(¢) for every € € |0, 1/2[, arbitrarily close to 0.

* The technique we used for RP

does not work: why?

* Hence we must proceed
differently

+ Let L € RP(¢), O<n<e<l

* On input x, let us do the

¢+ Draw r at random,

* At the end of the loop, reject.

The hard direction: repeating experiments

Alanguage L is inRP(g)and only if
there is a polynomial-time TM ‘M
such that for every input x (of size n):

: i + if x € L then Pr, [M(x,r) accepts] = 1-¢
following (at most) K times:
« if x & L then M(x,r) accepts for no

(i.e., Prr [M(x/r) ac error = €

simulate M(x, r) and: —
« If M(x, r) accepts, then exit the loop and accept;

+ Otherwise, proceed and loop.

Remember: if M(x, r) accepts,
then x must be in L.

L

Majority voung

« Imagine running ‘M(x,r) for

various values of 7, and
tallying the votes

+ Redo the vote N times

(here N=4)

* Here 3 accepts/1 reject
= majority is for acceptance

QOutcome

accept

accept

reject

accept

Majority voung

This is typical of what
happens when x € L
running a large number of
votes should produce a
majority of accepts,
with high probability

* ... but how high?

QOutcome

accept

accept

reject

accept

Chernoff’s bound

+ Intuittive contents:

Imagine Pr(yes) = p
Then Pr(proportion of yeses among N voters is close to p)
goes to 1 exponentially fast as N—co.

* Theorem. Let X3, ..., Xy be independent rand. vars

with values in {0, 1} and
with the same law: Pr(X;=1)=p. | @ |

Then Pr(Xi+...+Xx=>(1+6)pN) HHHE
< exp(-c(0)pN) \ We expect Xi+...+ Xy ~ pN]

/\ 1+6 measures how large the

For all practical purposes, c(0) ~ 62/3] deviation we allow for can be |
R e - & = o = N

Proof of Chernoff’s bound (1/4)

Theorem. Let X3, ..., Xy be independent rand. vars
with values in {0, 1} and

..

; i with the same law: Pr(Xi=1)=p. o)
+ Lett, a >0 to be fixed later |thenprxi+. +xxz(+oyN)

< exp(-c(6)pN)

+ Define the rand. var bl
X = exp((X1+...+Xn)) . o —

* Note that E(X) < exp(fN) < e, so we can use Markov’s
ine quality Theorem (Markov’s inequality).

Let X be a non-negative real-valued random variable
with finite expectation E(X). For every a>0:
Pr(X=a.E(X)) < 1/a.

Pr(X=a.E(X))<1/a

+ Let U= 0 to be fixed later Then Pr(Xi+...+Xn=(1+0)pN)

+ Define the rand. var

Proof of Chernoff’s bound (2/4)

- Theorem. Let Xj, ..., Xy be independent rand. vars
with values in {0 1} and

...

with the same law: Pr(Xi=1)=p.)

< exp(-c(6)pN)

X = exp(H(X1+...+XN)) TR e
Pr(X=a.E(X))<1/a (from last slide)

* Let us fix a = exp(t(1+0)pN) / E(X), hence:

Pr(X=exp(t(1+0)pN))<E(X) exp(-t(1+6)pN))

This is just Pr(Xi+...+Xn=(1+0)pN)

* Let t>0, to be fixed later Then Pr(X+...+Xnz(1+0)pN)

Proof of Chernoff’s bound (3/4)

- Theorem. Let Xj, ..., Xy be independent rand. vars
with values in {0, 1} and
with the same law: Pr(Xi=1)=p. | .0y @ = =

< exp(-c(0)pN)

+ X = exp(HX1+...+Xn))

T —

* Pr(Xi+...+Xn=(1+6)pN) < E(X) exp(—t(1+0)pN)) (from last slide)

e EEG— E(EL (N exp(G))

= [Ti-1NV E(exp(tX;)) (independence)
=IT-1N (p exp(t) + 1-p) (def. of the law of X))
= (p exp(t) + 1-p)N

= (1+p(exp(t)-1))N < exp((exp(f)-1)pN)

take logs:
N log(1+p(exp(t)-1)) < Np(exp(t)-1)

+ Let =0, to be fixed later Then Pr(Xi+...+Xn=(1+0)pN)

Proof of Chernoff’s bound (4./4)

- Theorem. Let Xj, ..., Xy be independent rand. vars
with values in {0 1} and

..

with the same law: Pr(Xi=1)=p.)

< exp(-c(6)pN)

¢ X = exp(HX1+...+Xn))

“ PI‘(Xl-I- £ .+XN2(1+6);9N)
< exp((exp(t)-1)pN) exp(—t(1+6)pN))

(from last slide)

« Let t =log(1+0), so (exp(t)-1)pN = OpN, hence

Db Done!
< exp((6- (1+6)log(1+6)) N).

Call this —c(0)

A few properties of ¢(0)=-0+(1+0)log(1+0)

* Prop 1. c(0) is monotonic (for 6=0) |

+ Proof. ¢’(0) =log(1+8) =0

A few properties of ¢(0)=-0+(1+0)log(1+0)

C(@)‘
A3

+ Prop 1. ¢(0) is monotonic (for 6=0)

« Prop 2. For 0<0<1, c¢(0) = 02/3

* Proof. c(0)=0
c’'(0)=0 (recall ¢’(0) =log(1+6))
c’(0)=1 (c”(6)=1/(1+0))
c”’(0)=—1 (c’(0)=-1/(1+0)?)

* S0 ¢(0)=062/2-063/6+ c4(B9)/24 for some 0<0p<0O (Taylor)
>02/2-03/6 (since c®(0)=2/(1+0)3=0)
>02/3 (since 6<1)

A few properties of ¢(0)=-0+(1+0)log(1+0)

C(@) |
7 92/3

+ Prop 1. c(0) is monotonic (for 6=0) | S| BRI mIE

* Prop 2. For 0<0<1, c¢(0) = 02/3

* Prop 3. c(0)/(1+0) is monotonic too.

z Broof (@) (1:10) =—0/(110) +loc (1--6)
Derivative: =1/(1+0)2+1/(1+0)=0/(1+0)2=0

Application to voting (1/4)

= Assume that Pr.(M(x,r) errs) <1/3,

+ Let X; =1 iff M(x,7;) errs: | ThenPr(X;+...+Xy=(1+0)pN)

what is the probability P that more than 1/2 of N votes

M(x , 11) e M(x ’ TN) err ? Theorem. Let X3, ..., Xy be independent rand. vars

with values in {0, 1} and
With the same law: PI'(X1=1):p. C(O) """""""""""""""""""""""

< exp(-c(6)pN)

(Chernoff)

all assumptions satisfied

+ Take 6=1/(2p)-1,s0 (1+0)p =1/2: P < exp(-c(0)pN)

Application to voting (2/4)

+» Assume that Pr(M(x,r) errs) < 1 /3,

what is the probability P that more than 1/2 of N votes M(x,r1),

., M(x,rn) err?

+ Take 0=1/(2p)-1, so (1+0)p =1/2: P< exp(C(@)pN)
from '-
(Prop 1. c(0) is monotonic (for 6=0)
B3 I.e., P< eXp(_C(e)/(1+6)] /2 N) Prop 2. For 0<0<1, c(0) = 62/3
Prop 3. ¢(6)/(1+6) is monotonic too.
=exp S22 N o ————

(since p<1/3, so 6=1/2; plus Prop 3)

<exp(—(1/2)2/3/(3/2).1/2 N) (Prop 2)
= exp(-N/36)

Application to voting (3/4)

= Assume that Pr.(M(x,r) errs) <1/3,

what is the probability P that more than 1/2 of N votes
M(x,71), ..., M(x,rn) err?

* Answer: at most exp(-N /36)

Error reduction for BPP

+ First, a useftul trick.

Let us say that ‘M(x,r) errs
iff (x € L and M(x,r) rejects)
or (x & L and M(x,r) accepts)

* (That used to be implicit.)

+ Then:

A language L is in BPP if and only if
there is a polynomial-time TM ‘M

such that for every input x (of size n):

Pr, [M(x,r) errs] < 1/3.

A language L is in BPP(&)nd only if
there is a polynomial-time TM M
such that for every input x (of size n):

Pr, [M(x,r) errs] < «.

error = ¢

_‘i 1

Error reduction for BPP

A language L is in BPP if and only if
+ Let L be in BPP, as here — there is a polynomial-time TM ‘M

such that for every input x (of size n):

+ Build new rand. TM ‘M’ by: Pr, (M(x,7) errs) <1/ 3.

+ yeas =0

for i=1 to N: A language L is in BPP(&)nd only if
there is a polynomial-time TM M

—ﬂ .

draw r at random

such that for every input x (of size n):
if :
Mlx,r) accepts Pr, (M(x,r) errs) < e.
yeas++
accept if yeas>N/?2, else reject

= ‘—?,

error = ¢

Error reduction for BPP

+ Let L be in BPP + ‘M’ errs on input x

iff at least half of the

+ Build new rand. TM ‘M’ by:
calls to M(x,r) err

g vieas =0 * That happens with
Eorg | to N: probability
draw r at random <exp(-N/36)
if M(x,r) accepts: * ... < & provided that
yeas++ we pick N =-36 log ¢

accept if yeas>N/2, else reject

Note: if M runs in polytime p(n),
then M’ runs in polytime = -36 log € p(n) + cst.

Error reduction for BPP

+ Hence BPP(= BPP(1/3)) C BPP(¢)
for € arbitrarily close to 0

* By a similar argument, we can replace 1/3 by
any 1, 0<n<1/2, so BPP(n) € BPP(¢)
for € arbitrarily close to 0

* Recalling that BPP(e) € BPP(n) if < n, we obtain:
* Theorem. For every ¢, 0< e<1/2, BPP=BPP(¢).

+ ... but can we do better?

Application to voting (4/4)

Application to voting (3/4

X8 Assume that Prr(g\/[(x,r) errS) < 1 /3, » Assume that Pr.(M(x,r) errs) < 1/3,

what is the probability P that more than 1/2 of 1

how large should N be so that R M"""N)e:”/ |
“ Answer: at most exp(-N/36
the probability P that more than 1/2

of N votes M(x,71), ..., M(x,rn) err

is < 1/2q9(m)?

The only magical formula
you’ll need to remember

> Answer: at least 36 q(n) log 2 for error reduction by majority voting

* Proof. exp(-N/36) < 1/24(iff Note:) s polynomil,
_N / 36 S q (n) 1 O g 2 this is polynomial, too

Error reduction for BPP revisited

+ Let L be in BPP + ‘M’ errs on input x

iff at least half of the

+ Build new rand. TM ‘M’ by:
calls to M(x,r) err

g vieas =0 * That happens with
for i=1to N :=36 g(n) log 2: probability
draw r at random <1 /24
if ‘M(x,r) accepts:
yeas++

accept if yeas>N/?2, else reject

Note: if M runs in polytime p(n), and g(n) is polynomial

then M’ runs in polytime = O(q(n) p(n) log n) [log n for operations on the counter 7]

Error reduction for BPP revisited

A language L is in BPP(&)nd only if
there is a polynomial-time TM ‘M
such that for every input x (of size n):

if x & L then Pr, [M(x,r) accepts] < &

error = ¢

* Theorem. BPP is equal to:
— BPP(¢) for every ¢, 0< e<1/2
— BPP(1/24m) for every polynomial g(n)

T'he new landscape

BPP vs. other complexity classes

+ Both RP and coRP are included in BPP

+ ... but what is

(if you make a mistake with prob. 0, then this prob. is <1/3!)
“ BPP is closed under complements: BPP=coBPP
(easy)
BPP
|

6

the relation
between BPP, coNP
NP, coNP, etc.? coRP

NP
RP

BPP cannot be too large

« It is unknown whether BPP C/2 NP (eqv., coNP)
... but we will see that BPP © NP would have
drastic (and unlikely) consequences We start with this one

» We will also see that BPP C Ypr,nIIr, BPP
|

“ ... no significantly ‘

better result known! coNP f

although some coRP
believe BPP=P.

NP
RP

The Sipser-Gacs-Lautemann

o o

http://lpcs.math.msu.su/~ver/photo _album/Collegues/lautemann+allender+wagn

https://gravatar.com/avatar/dc36e666740££9480eb738e556c887a4?s=200

https://upload.wikimedia.org/wikipedia/commons/thumb/3/34/MIT-Science Sipser Michael.jpg/440px-MIT-Science Sipser Michael.jpg

The Sipser-Gacs-Lautemann theorem

* Theorem (Sipser-Gacs-Lautemann, Prop. 1.24.)

BPP C) pon1Ip;.

“ Proof sketch. Of course: Yp2 is a non-
It is enough to prove BPP C Y p,. randomized class...
Proceeds by derandomization. seaL 3 koNP
In order to do so, we will to prove (=3-V-P)

the existence of something
Funnily, this will involve Erd6s” probabilistic method.

To prove that 3 ¢, P(¢),
just show that Pr«(P(t))=0, or
equivalently that Pr(—P(f)) < 1

l.autemann’s trlck

A language L is in BPP(&)nd only if
there is a polynomial-time TM M

» Let L € BPP, decided with error such that for every input x (of size n):

c=1 / n (n()t 1 / 3) if x € L then Pr, [M(x,r) accepts] >
n p()lytlme p(n) if x & L then Pr, [M(x,r) accepts] < &

» Fix x. Then R = {r € {0,1}r®™ | M(x,r) accepts} is

{0,1}r(m) error € = 1/2n
either huge, if x € L

(covers a proportion
> (1-1/27) of the whole space)

l.autemann’s trlck

A language L is in BPP(&)nd only if
there is a polynomial-time TM M

» Let L € BPP, decided with error such that for every input x (of size n):

c=1 / n (n()t 1 / 3) if x € L then Pr, [M(x,r) accepts] >
n p()lytlme p(n) if x & L then Pr, [M(x,r) accepts] < &

» Fix x. Then R = {r € {0,1}r®™ | M(x,r) accepts} is

(0,110 error ¢ =1/2n

or tiny, if x & L
(covers a proportion <1 /27
of the whole space)

l.autemann’s trick

« R={re&{0,1}r0 | M(x,r) accepts} is huge or tiny

+ We claim there are translations R @ t; of R such t

nat;

— if R huge, then the translations cover the who!
— if R tiny, they do not.

e space

Translatons?

* The computer science view:
@ is bitwise exclusive-or

026 0-0-3-0=120-0 1001201001 200508 051
0 Q050405904 110 =005 < ORls O] =]

R e ey

Translations?

* The algebraist’s view: {0,1} is the field Z /27,
— exclusive or @ is addition (mod 2)
— {0,1}r is a p(n)-dimensional vector space
— and translation R@® t={r®t | r € R} is:

{0,1}p(m) 0,1t R

The huge case (1/3)

* Assume card R > (1-1/27)2r(0 (« R is huge ») "«

« Claim!{ 3 fo, ..., trmm (m=p(n)) such that
R @ tO, cooy R @ trm/n_' cover {O,l}m.

* By the probabilistic method. Let t=to, ..., trm/n".

* PriR @ to, ..., R® tryynn does not cover {0,1}m)

* =PrJr,rER@frand ... and r E R ® tr)

* <Y, Prilr&ER®Dtpand ... and r € R D trrpn)

Sum bound: Pr(3...)<) Pr(...) Oh yes, that is a sum of 2¢(") terms here!

The huge case (2/3)

« Assume card R = (1-1/27)2r() (« R is huge ») "¢

« Claim!{ 3 fo, ..., trmm (m=p(n)) such that
R @ tO, cooy R @ trm/n_' cover {O,l}m.

* PrdR® ty, ..., R® tryyn does not cover {0,1}m)

TS ZT PI'I(T % R® to and ... and r ¢ R ® t"m/n") (from last slide)

v =%, [T, min Pr; (1/ % R @ ti) (independence)

R ZT Hi:()rm/”—l Prt (r @ t; % R) (rER®t iff rotER. .. but ®=06 mod 2)

The huge case (3/3)

Assume card R = (1-1/27)2r (« R is huge »)

« Claim!{ 3 fo, ..., trmm (m=p(n)) such that
R @ t(), cooy R @ trm/n_' cover {O,l}m.

* PrdR® ty, ..., R® tryyn does not cover {0,1}m)

* < ZT [T, min” Pl‘t (1’ G % R) (from last slide)

» < 92m (1 /Zn)rm/n—l+1 <1 /2” = (at least if n=0). Done!

= ZT Hl,:orm/n" PI‘t (t ¢ R) (ti » t2r @ t; bijection,

preserves cardinalities)

T'he tiny case

if n>ng

* Assuine card R < (1/27)2r(1) (« R is tiny »)

* Claim. V tO, 5 G trm/n (m_p(n))
R®ty, ..., R® try,n does not cover {O 1}m,

* card Ui R@® t) < ("m/n+1) (1/27)2p()

= O(poly(n)/2m) 2v@)

strictly smaller than card {0,1}m=2r(n)
.. if n large enough (say n=no).

* R®tgy, ..., R® tryyy covers {0,1}m iff:

+ iff: Vir@tgERor...orr® try ER

Testing huge vs. tny m

Yr.rER®gor ... otrrER ® tr

+ (Now remember that R = {r € {0,1}r® | M(x,r) accepts].)
iff: Vr, M(x,r ® to) or ... or M(x,r ® trmm~) accepts.

st e EH S

Vr, M(x,r @ to) or ... or M(x,r ® trm/n~) accepts.

* If x €L, such ty, ..., trmm do not exist (for n=ny).

The algorithm

* Hence, for every x of size n>ny,

X E L lff 3 t(), ay trm/n_',

Vr, M(x,r @ to) or ... or M(x,r @ tryuy,) accepts.
o e s e

polytime (note "m/n"="p(n)/n"=poly(n))

* For n<no, tabulate the answers.

+ Hence L is in) Po.

« Since L is arbitrary in BPP, BPP C) p».

The Sipser-Gacs-Lautemann theorem

Theorem (Sipser-Gacs-Lautemann, Prop. 1.24.)
BPP C) pon1Ip;.

End of proof.
We have shown BPP C Y p,.

Now BPP = coBPP C co) po=I1rs.

Useful Lemma. Given two classes Ci, Co,
if C1C€C, then coC1CcoCo.
(Let L € coCi. The complement of L is in C; hence in C».)

No, coC is not the complement of C.

It is the class of complements of languages in C.

P/poly

* We will introduce a strange complexity class
defined by families of circuits:

P/poly

* Studying it, we will eventually show that
BPP probably does not contain NP
... otherwise PH would collapse at level 2!

