
Jean Goubault-Larrecq

Randomized
complexity classes Today: BPP (part 1)

Tous droits réservés, Jean Goubault-Larrecq, professeur, ENS Paris-Saclay, Université Paris-Saclay 
Cours « Complexité avancée » (M1), 2020-, 1er semestre 
Ce document est protégé par le droit d’auteur. Toute représentation ou reproduction intégrale ou
partielle faite sans le consentement de l’auteur est illicite.

Today

❖ Two-sided error: BPP

❖ Error reduction, voting, Chernoff’s bound

❖ The Sipser-Gács-Lautemann theorem

Our third probabilistic class: BPP
(also sometimes known as the class of

Metropolis languages, although 
some speak of Monte Carlo here again)

http://fr.casino-jackpot.com/wp-content/uploads/2018/04/casino-monaco.jpg
https://upload.wikimedia.org/wikipedia/commons/5/56/Nicholas_Metropolis_cropped.PNG

Nicholas Metropolis

probability taken over
all r ∈ {0,1}p(n)

i.e. there is also a polynomial p(n) / 
M(x,r) terminates in time ≤ p(n), 
where n=|x|, in the worst case

(and for any value of r)

BPP: Bounded Prob. of Error Polynomial time

❖ A language L is in BPP if and only if 
there is a polynomial-time TM M 
such that for every input x (of size n):

❖ if x ∈ L then Prr [M(x,r) accepts] ≥ 2/3

❖ if x ∉ L then Prr [M(x,r) accepts] ≤ 1/3.

… hence, implicitly, 
we require |r|≥ p(n)
(let us say |r|= p(n))

two-sided error: 

  

error 1/3?

❖ Nothing!

❖ Theorem. ∀ ε ∈]0, 1/2[, 
 BPP = BPP(ε).

❖ Note: BPP=BPP(1/3) (def.) 
 BPP(ε)={all languages} if ε≥1/2… 
 BPP(0)=P

error = 1/3 here

BPP(ε)

1–ε

error = ε

ε

The easy cases: error amplification(!)

❖ Clearly, if η ≤ ε then 
 BPP(η) ⊆ BPP(ε)

❖ Note: BPP(0)=P (sometimes believed ≠ BPP) 
 BPP(ε)={all languages} for every ε≥1/2

❖ In the middle, hence, we will see that all the
intermediate BPP(ε) (ε ∈]0, 1/2[) are equal to BPP.

Error reduction
❖ We will show that BPP (= BPP(1/3)) is included in

BPP(ε) for every ε ∈]0, 1/2[, arbitrarily close to 0.

❖ The technique we used for RP 
does not work: why?

❖ Hence we must proceed 
differently

Majority voting
❖ Imagine running M(x,r) for

various values of r, and
tallying the votes

❖ Redo the vote N times 
(here N=4)

❖ Here 3 accepts/1 reject 
⇒ majority is for acceptance

yea!
nay!

yea!
nay!

yea!
nay!

yea!
nay!

Outcome

accept

accept

reject

accept

Majority voting
❖ This is typical of what

happens when x ∈ L: 
running a large number of
votes should produce a
majority of accepts, 
with high probability

❖ … but how high?

yea!
nay!

yea!
nay!

yea!
nay!

yea!
nay!

Outcome

accept

accept

reject

accept

c(θ)

Chernoff’s bound
❖ Intuitive contents: 

Imagine Pr(yes) = p 
Then Pr(proportion of yeses among N voters is close to p) 
 goes to 1 exponentially fast as N→∞.

❖ Theorem. Let X1, …, XN be independent rand. vars 
 with values in {0, 1} and 
 with the same law: Pr(Xi=1)=p. 
Then Pr(X1+…+XN≥(1+θ)pN) 
 ≤ exp(-c(θ)pN)

For all practical purposes, c(θ) ≈ θ2/3

We expect X1+…+XN ≈ pN

1+θ measures how large the
deviation we allow for can be

❖ Let t, a > 0 to be fixed later

❖ Define the rand. var 
X = exp(t(X1+…+XN))

❖ Note that E(X) ≤ exp(tN) < ∞, so we can use Markov’s
inequality: 
 
 Pr(X≥a.E(X)) ≤ 1/a

Proof of Chernoff’s bound (1/4)

❖ Let t, a > 0 to be fixed later

❖ Define the rand. var 
X = exp(t(X1+…+XN))

❖ Pr(X≥a.E(X)) ≤ 1/a (from last slide)

❖ Let us fix a = exp(t(1+θ)pN) / E(X), hence:

❖ Pr(X≥exp(t(1+θ)pN))≤E(X) exp(–t(1+θ)pN))

Proof of Chernoff’s bound (2/4)

This is just Pr(X1+…+XN≥(1+θ)pN)

❖ Let t>0, to be fixed later

❖ X = exp(t(X1+…+XN))

❖ Pr(X1+…+XN≥(1+θ)pN) ≤ E(X) exp(–t(1+θ)pN)) (from last slide)

❖ E(X) = E(Πi=1N exp(tXi)) 
 = Πi=1N E(exp(tXi)) (independence) 
 = Πi=1N (p exp(t) + 1–p) (def. of the law of Xi) 
 = (p exp(t) + 1–p)N 
 = (1+p(exp(t)–1))N ≤ exp((exp(t)–1)pN)

Proof of Chernoff’s bound (3/4)

take logs: 
N log(1+p(exp(t)–1)) ≤ Np(exp(t)–1)

❖ Let t>0, to be fixed later

❖ X = exp(t(X1+…+XN))

❖ Pr(X1+…+XN≥(1+θ)pN) 
 ≤ exp((exp(t)–1)pN) exp(–t(1+θ)pN)) 
 (from last slide)

❖ Let t = log(1+θ), so (exp(t)–1)pN = θpN, hence

❖ Pr(X1+…+XN≥(1+θ)pN) 
 ≤ exp((θ–(1+θ)log(1+θ))pN).

Proof of Chernoff’s bound (4/4)

Call this –c(θ)

Done! ☐

A few properties of c(θ)=–θ+(1+θ)log(1+θ)

❖ Prop 1. c(θ) is monotonic (for θ≥0)

❖ Proof. c’(θ) = log(1+θ) ≥ 0

c(θ)

c(θ)

θ2/3

A few properties of c(θ)=–θ+(1+θ)log(1+θ)

❖ Prop 1. c(θ) is monotonic (for θ≥0)

❖ Prop 2. For 0≤θ≤1, c(θ) ≥ θ2/3

❖ Proof. c(0)=0 
 c’(0)=0 (recall c’(θ) = log(1+θ)) 
 c’’(0)=1 (c’’(θ) = 1/(1+θ)) 
 c’’’(0)=–1 (c’’’(θ) = –1/(1+θ)2)

❖ So c(θ) = θ2/2 - θ3/6 + c(4)(θ0)/24 for some 0≤θ0≤θ (Taylor) 
 ≥ θ2/2 - θ3/6 (since c(4)(θ) = 2/(1+θ)3≥0) 
 ≥ θ2/3 (since θ≤1) ☐

c(θ)

θ2/3

A few properties of c(θ)=–θ+(1+θ)log(1+θ)

❖ Prop 1. c(θ) is monotonic (for θ≥0)

❖ Prop 2. For 0≤θ≤1, c(θ) ≥ θ2/3

❖ Prop 3. c(θ)/(1+θ) is monotonic too.

❖ Proof. c(θ)/(1+θ) =–θ/(1+θ) + log (1+θ) 
 Derivative: –1/(1+θ)2 + 1/(1+θ) = θ/(1+θ)2 ≥ 0 ☐

Application to voting (1/4)
❖ Assume that Prr(M(x,r) errs) ≤ 1/3, 

what is the probability P that more than 1/2 of N votes
M(x,r1), …, M(x,rN) err?

❖ Let Xi = 1 iff M(x,ri) errs: 
all assumptions satisfied 
with p≤1/3

❖ Take θ=1/(2p)–1, so (1+θ)p = 1/2: P ≤ exp(-c(θ)pN)

(Chernoff)

Application to voting (2/4)
❖ Assume that Prr(M(x,r) errs) ≤ 1/3, 

what is the probability P that more than 1/2 of N votes M(x,r1),
…, M(x,rN) err?

❖ Take θ=1/(2p)–1, so (1+θ)p = 1/2: P ≤ exp(-c(θ)pN) 
 (from last slide)

❖ I.e., P ≤ exp(–c(θ)/(1+θ) . 1/2 N)

❖ ≤ exp(–c(1/2)/(3/2) . 1/2 N) 
 (since p≤1/3, so θ≥1/2; plus Prop 3)

❖ ≤ exp(–(1/2)2/3/(3/2) . 1/2 N) (Prop 2) 
 = exp(–N/36)

Application to voting (3/4)
❖ Assume that Prr(M(x,r) errs) ≤ 1/3, 

what is the probability P that more than 1/2 of N votes
M(x,r1), …, M(x,rN) err?

❖ Answer: at most exp(–N/36)

❖ First, a useful trick. 
Let us say that M(x,r) errs 
iff (x ∈ L and M(x,r) rejects) 
or (x ∉ L and M(x,r) accepts)

❖ (That used to be implicit.)

❖ Then:

Error reduction for BPP

BPP(ε)

1–ε

error = ε

ε

Prr [M(x,r) errs] ≤ 1/3.

Prr [M(x,r) errs] ≤ ε.

❖ Let L be in BPP, as here →

❖ Build new rand. TM M’ by:

❖ yeas := 0 
for i=1 to N: 
 draw r at random 
 if M(x,r) accepts: 
 yeas++ 
accept if yeas≥N/2, else reject

Error reduction for BPP

BPP(ε)

1–ε

error = ε

ε

Prr (M(x,r) errs) ≤ 1/3.

Prr (M(x,r) errs) ≤ ε.

❖ Let L be in BPP

❖ Build new rand. TM M’ by:

❖ yeas := 0 
for i=1 to N: 
 draw r at random 
 if M(x,r) accepts: 
 yeas++ 
accept if yeas≥N/2, else reject

Error reduction for BPP
❖ M’ errs on input x 

iff at least half of the 
calls to M(x,r) err

❖ That happens with
probability 
 ≤exp(–N/36)

❖ … ≤ ε provided that 
 we pick N ≥ -36 log ε

Note: if M runs in polytime p(n),
then M’ runs in polytime = -36 log ε p(n) + cst.

❖ Hence BPP(= BPP(1/3)) ⊆ BPP(ε) 
 for ε arbitrarily close to 0

❖ By a similar argument, we can replace 1/3 by 
any η, 0<η<1/2, so BPP(η) ⊆ BPP(ε) 
 for ε arbitrarily close to 0

❖ Recalling that BPP(ε) ⊆ BPP(η) if ≤ η, we obtain:

❖ Theorem. For every ε, 0< ε<1/2, BPP=BPP(ε).

❖ … but can we do better?

Error reduction for BPP

❖ Assume that Prr(M(x,r) errs) ≤ 1/3, 
how large should N be so that 
the probability P that more than 1/2 
 of N votes M(x,r1), …, M(x,rN) err 
is ≤ 1/2q(n)?

❖ Answer: at least 36 q(n) log 2

❖ Proof. exp(–N/36) ≤ 1/2q(n) iff 
 –N/36 ≤ –q(n) log 2

Application to voting (4/4)

The only magical formula
you’ll need to remember

for error reduction by majority voting

Note: if q(n) is polynomial,
this is polynomial, too

❖ M’ errs on input x 
iff at least half of the 
calls to M(x,r) err

❖ That happens with
probability 
 ≤1/2q(n)

❖ Let L be in BPP

❖ Build new rand. TM M’ by:

❖ yeas := 0 
for i=1 to N: 
 draw r at random 
 if M(x,r) accepts: 
 yeas++ 
accept if yeas≥N/2, else reject

Error reduction for BPP revisited

Note: if M runs in polytime p(n), and q(n) is polynomial
then M’ runs in polytime = O(q(n) p(n) log n) [log n for operations on the counter i]

:= 36 q(n) log 2:

❖ Theorem. BPP is equal to: 
— BPP(ε) for every ε, 0< ε<1/2 
— BPP(1/2q(n)) for every polynomial q(n)

Error reduction for BPP revisited
BPP(ε)

1–ε

error = ε

ε

The new landscape

BPP vs. other complexity classes
❖ Both RP and coRP are included in BPP 

 (if you make a mistake with prob. 0, then this prob. is ≤1/3!)

❖ BPP is closed under complements: BPP=coBPP 
 (easy)

❖ … but what is 
the relation 
between BPP, 
NP, coNP, etc.? coRP RP

P

ZPP

NPcoNP

BPP

BPP cannot be too large
❖ It is unknown whether BPP ⊆/⊇ NP (eqv., coNP) 

… but we will see that BPP ⊇ NP would have 
 drastic (and unlikely) consequences

❖ We will also see that BPP ⊆ ∑p2 ∩ Πp2

❖ … no significantly 
better result known! 
although some 
believe BPP=P.

We start with this one

coRP RP

P

ZPP

NPcoNP

BPP

The Sipser-Gács-Lautemann
Theorem

https://upload.wikimedia.org/wikipedia/commons/thumb/3/34/MIT-Science_Sipser_Michael.jpg/440px-MIT-Science_Sipser_Michael.jpg

http://lpcs.math.msu.su/~ver/photo_album/Collegues/lautemann+allender+wagner.jpg

https://gravatar.com/avatar/dc36e666740ff9480eb738e556c887a4?s=200

The Sipser-Gács-Lautemann theorem
❖ Theorem (Sipser-Gács-Lautemann, Prop. 1.24.) 

BPP ⊆ ∑p2 ∩ Πp2.

❖ Proof sketch. 
 It is enough to prove BPP ⊆ ∑p2. 
 Proceeds by derandomization. 
 In order to do so, we will to prove 
 the existence of something 
 Funnily, this will involve Erdös’ probabilistic method.

Of course: ∑p2 is a non-
randomized class…

∑p2 = ∃ · coNP 
(= ∃ · ∀ · P)

To prove that ∃ t, P(t),
just show that Prt(P(t))≠0, or

equivalently that Prt(¬P(t)) < 1

Lautemann’s trick
❖ Let L ∈ BPP, decided with error 

 ε = 1/2n (not 1/3) 
in polytime p(n)

❖ Fix x. Then R = {r ∈ {0,1}p(n) |M(x,r) accepts} is

BPP(ε)

1–ε

error ε = 1/2n

ε

{0,1}p(n)

R either huge, if x ∈ L 
(covers a proportion 
 ≥ (1–1/2n) of the whole space)

Lautemann’s trick
❖ Let L ∈ BPP, decided with error 

 ε = 1/2n (not 1/3) 
in polytime p(n)

❖ Fix x. Then R = {r ∈ {0,1}p(n) |M(x,r) accepts} is

BPP(ε)

1–ε

error ε = 1/2n

ε

{0,1}p(n)

R
or tiny, if x ∉ L 
(covers a proportion ≤1/2n 

 of the whole space)

Lautemann’s trick
❖ R = {r ∈ {0,1}p(n) |M(x,r) accepts} is huge or tiny

❖ We claim there are translations R ⊕ ti of R such that: 
— if R huge, then the translations cover the whole space 
— if R tiny, they do not.

{0,1}p(n)

R ⊕ t0

R ⊕ t1
R ⊕ t2

R ⊕ t3

R ⊕ t4

⃪ huge 

(x ∈ L)

{0,1}p(n)

R ⊕ t0

R ⊕ t1
R ⊕ t2

R ⊕ t3

R ⊕ t4

tiny → 
(x ∉ L)

Translations?
❖ The computer science view: 

 ⊕ is bitwise exclusive-or 
 
 

❖ R ⊕ t = {r ⊕ t | r ∈ R}

r 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 1

t 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 1 1

r ⊕ t 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 1 0 1 0 0 0

Translations?
❖ The algebraist’s view: {0,1} is the field ℤ/2ℤ, 

 — exclusive or ⊕ is addition (mod 2) 
 — {0,1}p(n) is a p(n)-dimensional vector space 
 — and translation R ⊕ t = {r ⊕ t | r ∈ R} is:

{0,1}p(n)

R

{0,1}p(n)

R
R ⊕ t

⟼

The huge case (1/3)
❖ Assume card R ≥ (1–1/2n)2p(n) (« R is huge »)

❖ Claim. ∃ t0, …, t⌜m/n⌝ (m=p(n)) such that 
 R ⊕ t0, …, R ⊕ t⌜m/n⌝ cover {0,1}m.

❖ By the probabilistic method. Let t=t0, …, t⌜m/n⌝.

❖ Prt(R ⊕ t0, …, R ⊕ t⌜m/n⌝ does not cover {0,1}m)

❖ = Prt(∃r, r ∉ R ⊕ t0 and … and r ∉ R ⊕ t⌜m/n⌝)

❖ ≤ ∑r Prt(r ∉ R ⊕ t0 and … and r ∉ R ⊕ t⌜m/n⌝)

Sum bound: Pr(∃…)≤∑ Pr(…) Oh yes, that is a sum of 2p(n) terms here!

The huge case (2/3)
❖ Assume card R ≥ (1–1/2n)2p(n) (« R is huge »)

❖ Claim. ∃ t0, …, t⌜m/n⌝ (m=p(n)) such that 
 R ⊕ t0, …, R ⊕ t⌜m/n⌝ cover {0,1}m.

❖ Prt(R ⊕ t0, …, R ⊕ t⌜m/n⌝ does not cover {0,1}m)

❖ ≤ ∑r Prt(r ∉ R ⊕ t0 and … and r ∉ R ⊕ t⌜m/n⌝) (from last slide)

❖ = ∑r Πi=0⌜m/n⌝ Prt (r ∉ R ⊕ ti)

❖ = ∑r Πi=0⌜m/n⌝ Prt (r ⊕ ti ∉ R)

(independence)

(r∈R⊕t iff r⊖t∈R… but ⊕=⊖ mod 2)

The huge case (3/3)
❖ Assume card R ≥ (1–1/2n)2p(n) (« R is huge »)

❖ Claim. ∃ t0, …, t⌜m/n⌝ (m=p(n)) such that 
 R ⊕ t0, …, R ⊕ t⌜m/n⌝ cover {0,1}m.

❖ Prt(R ⊕ t0, …, R ⊕ t⌜m/n⌝ does not cover {0,1}m)

❖ ≤ ∑r Πi=0⌜m/n⌝ Prt (r ⊕ ti ∉ R) (from last slide)

❖ = ∑r Πi=0⌜m/n⌝ Prt (t ∉ R)

❖ ≤ 2m (1/2n)⌜m/n⌝+1 ≤ 1/2n < 1 (at least if n≠0). Done! ☐

(ti ↦ t≝r ⊕ ti bijection,
preserves cardinalities)

The tiny case
❖ Assume card R ≤ (1/2n)2p(n) (« R is tiny »)

❖ Claim. ∀ t0, …, t⌜m/n⌝ (m=p(n)), 
 R ⊕ t0, …, R ⊕ t⌜m/n⌝ does not cover {0,1}m.

❖ card (∪i=0⌜m/n⌝ R ⊕ ti) ≤ (⌜m/n⌝+1) (1/2n)2p(n) 
 = O(poly(n)/2n) 2p(n)

❖ strictly smaller than card {0,1}m=2p(n) 
 … if n large enough (say n≥n0). ☐

if n≥n0

Testing huge vs. tiny
❖ R ⊕ t0, …, R ⊕ t⌜m/n⌝ covers {0,1}m iff: 

 ∀r, r ∈ R ⊕ t0 or … or r ∈ R ⊕ t⌜m/n⌝

❖ iff: ∀r, r ⊕ t0 ∈ R or … or r ⊕ t⌜m/n⌝ ∈ R

❖ (Now remember that R = {r ∈ {0,1}p(n) |M(x,r) accepts}.) 
iff: ∀r, M(x,r ⊕ t0) or … or M(x,r ⊕ t⌜m/n⌝) accepts.

❖ If x ∈ L, ∃ t0, …, t⌜m/n⌝, 
 ∀r, M(x,r ⊕ t0) or … or M(x,r ⊕ t⌜m/n⌝) accepts.

❖ If x ∉ L, such t0, …, t⌜m/n⌝ do not exist (for n≥n0).

The algorithm
❖ Hence, for every x of size n≥n0, 

 x ∈ L iff ∃ t0, …, t⌜m/n⌝, 
 ∀r, M(x,r ⊕ t0) or … or M(x,r ⊕ t⌜m/n⌝) accepts.

❖ For n<n0, tabulate the answers.

❖ Hence L is in ∑p2.

❖ Since L is arbitrary in BPP, BPP ⊆ ∑p2. ☐

polytime (note ⌜m/n⌝=⌜p(n)/n⌝=poly(n))

No, coC is not the complement of C.
It is the class of complements of languages in C.

The Sipser-Gács-Lautemann theorem
❖ Theorem (Sipser-Gács-Lautemann, Prop. 1.24.) 

BPP ⊆ ∑p2 ∩ Πp2.

❖ End of proof. 
We have shown BPP ⊆ ∑p2.

❖ Now BPP = coBPP ⊆ co∑p2=Πp2. ☐

Useful Lemma. Given two classes C1, C2, 
 if C1⊆C2 then coC1⊆coC2. 
(Let L ∈ coC1. The complement of L is in C1 hence in C2.)

Next time…

P/poly

❖ We will introduce a strange complexity class 
defined by families of circuits: 
 P/poly

❖ Studying it, we will eventually show that 
BPP probably does not contain NP 
… otherwise PH would collapse at level 2!

