
Jean Goubault-Larrecq

Randomized
complexity classes

Today: BPP (part 2)
 and P/poly

Tous droits réservés, Jean Goubault-Larrecq, professeur, ENS Paris-Saclay, Université Paris-Saclay
Cours « Complexité avancée » (M1), 2020-, 1er semestre
Ce document est protégé par le droit d’auteur. Toute représentation ou reproduction intégrale ou
partielle faite sans le consentement de l’auteur est illicite.

Today

❖ Circuits, P/poly

❖ Adleman’s theorem: BPP ⊆ P/poly

❖ The Karp-Lipton theorems, and consequences

Circuits
❖ Informally, collections

of logical gates
connected by wires

❖ Must be acyclic

❖ Wires can be shared

❖ Fan-in arbitrary here
(e.g., 1=fan-in 0 and, 0=fan-in 0 or)

orand
not

nand nor

1 10

❖ Remember: CIRCUIT-
VALUE is P-complete
(for logspace reductions)

output wire

Circuits
❖ Informally, collections

of logical gates
connected by wires

❖ Must be acyclic

❖ Wires can be shared

❖ Fan-in arbitrary here
(e.g., 1=fan-in 0 and, 0=fan-in 0 or)

orand
not

nand nor

1 10

❖ We now consider circuits
C with input wires

input wires (x)

output wire

❖ C[x] = value
of C when fed
input bits x

Circuits, formally: net-lists
❖ We encode circuits as

words (net-lists), e.g.:

1 10input wires (x)

output wire

0 1 2

3 4 5

6 7

8

3 ¬ 0  
4 ∨ 1 2  
5 ¬ 2  
6 ∧ 1 3  
7 ⊼ 4 5  
8 ∨ 6 7  
→8

¬ ¬
∨

∨

∧ ⊼

wire 3 = ¬ wire 0

wire 4 = 1 ∨ 2

etc.

8 is output

wire numbers in
binary

We require wire numbers to be sorted
(implies acyclicity)

(sortedness checkable in logspace, acyclicity is NL-complete)

Reminder: CIRCUIT-VALUE is P-complete

❖ Encode p(n)-time TM M on
input x by a circuit

❖ constant gates 1/0 encode
initial state q0, input x, and
blanks

❖ each inner cell depends on a
constant #cells on row
above
⇒ circuit piece of cst size
(replicated p(n)2 times)

❖ finally, a small circuit to
check acceptance.

0 1 2 n
0 q0 _ _ _ _ _ _ _ _ _ _
1

.

.

.

.

.

.

.

p(n)

p(n)

time

x

position

output=1 iff M(x) accepts

Plenty of technical details…
❖ Each row encodes a config.

of a one-tape TM M

❖ … in binary

❖ the machine parks the
head at position 0 before
accepting/rejecting

❖ … and continues working
(doing nothing) forever (at
least until time p(n))

❖ Build the circuit in logspace:
2 nested loops from 0 to p(n),
with 2 counters

An important remark
❖ We can precompile a

circuit Cn with n free
input wires
— without knowing x,
— just its length n,
— still in logspace

❖ such that for every x
of that size n,
M(x) accepts ⇔ Cn[x]=1

Cn

Uniform P/poly
❖ A language L is in

uniform P/poly iff
for every n,
one can build a circuit Cn
— in space O(log n)
— such that for every
 input x of size = n,
 x ∈ L ⇔ Cn[x]=1

❖ Prop. P ⊆ uniform P/poly. (This is what we have just proved!)

Cn

P = Uniform P/poly
❖ A language L is in

uniform P/poly iff
for every n,
one can build a circuit Cn
— in space O(log n)
— such that for every
 input x of size = n,
 x ∈ L ⇔ Cn[x]=1

❖ Prop. P ⊆ uniform P/poly.

❖ In fact:
Prop. P = uniform P/poly.

❖ Proof.
Let L ∈ uniform P/poly.
On input x (size n),
compute Cn in space k log n,
 hence in time O(nk).
Then evaluate Cn[x]
 in polytime.
Hence L ∈ P.

(Non-uniform) P/poly
❖ A language L is in

uniform P/poly iff
for every n,
one can build a circuit Cn
— in space O(log n)
— such that for every
 input x of size = n,
 x ∈ L ⇔ Cn[x]=1

there is
of size p(n), for some fixed polynomial p

We no longer require to be able to compute Cn!

❖ Familiarly, we say that L
has polynomial circuits

P/poly
❖ Defn. A language L is in P/poly iff

 there is a family (Cn)n∈ℕ of circuits:
 — of size p(n) (for some fixed polynomial p)
 — such that for every input x (letting n be its size)
 x ∈ L ⇔ Cn[x]=1.

❖ It was initially hoped that we could prove that some NP-
complete languages do not have polynomial circuits.
That would immediately imply P≠NP, since P ⊆ P/poly.

P/poly is pretty weird
❖ Prop. P/poly contains some

 undecidable languages.

❖ Proof.
Let L be undecidable (e.g., HALT).
Then L’ = {words 1n |
 a1…ak ∈ L, n = a1+2a2+…+2k–1ak+2k}
 is undecidable, too; and Cn is…

If bin(n) ∉ L If bin(n) ∈ L

0
(ignores its input, size O(1))

and

… (n input bits)

(size n log n: check the net-list!)

convert from binary
to unary

Weird, too: advice strings
❖ Imagine you wish to decide whether x is in L.

❖ … and you have a « cheat sheet » wn depending only on
n=size(x).
How can this help?

❖ If wn allowed to have size 2n,
then this helps a lot (why?)

❖ What if wn is only allowed
to have polynomial size?

https://upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Karp_mg_7725-b.cr2.jpg/520px-Karp_mg_7725-b.cr2.jpg

https://cyber.gatech.edu/sites/default/files/styles/faculty_bio_pic/public/dick-lipton_1.jpg?itok=EkU43aPB

Advice strings and P/poly (1/2)

❖ Prop. L ∈ P/poly iff there is a
polytime TM M and a family
(wn)n∈ℕ of so-called
 advice strings:
 — of polysize p(n)
 — s.t. ∀ x (size n)
 x ∈ L ⇔ M(x,wn) accepts.

Proof.

❖ If L ∈ P/poly, then let
wn be a net-list for Cn

❖ If L has advice strings
wn, then…
 (see next slide)

Advice strings and P/poly (2/2)
Cn0 1 2 . n

0 q0 _ _ _ _ _ _ _ _ _ _
1

.

.

.

.

.

.

.

p(n)

p(n)

time

x

position

output=1 iff M(x,wn) accepts

wn

❖ Note: same
construction as
before, except…
now Cn includes
the constant bits
of wn
(still not x.)

Adleman’s Theorem

Adleman’s Theorem
❖ Theorem (Prop. 1.20). BPP ⊆ P/poly.

❖ Interestingly, we will be able to show
the existence of the circuits Cn, (or the advice strings)
but we won’t be able to compute them (efficiently).

https://upload.wikimedia.org/wikipedia/commons/thumb/a/af/Len-mankin-pic.jpg/440px-Len-mankin-pic.jpg

❖ Let L be in BPP.

❖ Among the tapes r (of size p(n)),
is there one such that
 for every x of size n,
 M(x,r) always gives
 the correct answer?

❖ Let us use the probabilistic
method…

The proof of Adleman’s Theorem (1/2)

 Prr (M(x,r) errs) ≤ ε.

error ε =
1/2q(n)

❖ Prr(∃ x of size n, M(x,r) errs)
≤ Σx Prr(M(x,r) errs)
≤ 2n–q(n)

❖ … < 1 if we had the good
taste to pick q(n)=n+1, say.

The proof of Adleman’s Theorem (2/2)

❖ Let L be in BPP.
For each size n, there is a tape rn (of size p(n)) such that
for every x of size n, M(x,rn) gives the correct answer,
i.e.:
— if x ∈ L then M(x,rn) accepts
— if x ∉ L then M(x,rn) rejects.

❖ … Just use rn as advice string! ☐

The Karp-Lipton Theorems, and
consequences

https://upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Karp_mg_7725-b.cr2.jpg/520px-Karp_mg_7725-b.cr2.jpg

https://cyber.gatech.edu/sites/default/files/styles/faculty_bio_pic/public/dick-lipton_1.jpg?itok=EkU43aPB

(Yes, them again!)

coC

❖ Recall that Πpk=co∑pk= for every k≥1.
(coC is the class of complements of languages of C.)

❖ Fact. co is monotonic: if C⊆C’, then coC⊆coC’.

❖ (Already argued last time, as part of the Sipser-Gács-
Lautemann theorem.)

coC

❖ Claim. For any class C, the following are equivalent:
1. C = coC
2. C ⊆ coC
3. coC ⊆ C.

❖ 2 ⇒ 3: let L in coC.
 Its complement is in C, hence in coC by 2.
 Therefore L is also in C.

❖ 3 ⇒ 2, and therefore 3 ⇒ 1: similar. 1 ⇒ 2: obvious. ☐

Does PH collapse?
❖ We say that PH collapses at level 2 iff ∑p2=Πp2.

By the previous claim, equivalent to Πp2 ⊆ ∑p2.

❖ Prop. If ∑p2=Πp2 then
 ∑p2=Πp2=∑p3=Πp3=∑p4=…=PH (whence the name.)

❖ Proof sketch. Let ∃·C be the class of the languages
 {x | ∃y of poly size, (x,y) ∈ L’}, L’ ∈ C.

❖ ∑p3=∃·Πp2=∃·∑p2=∃·∃·coNP=∃·coNP=∑p2, then
Πp3=co∑p3=co∑p2=Πp2=∑p2, etc. ☐

The first Karp-Lipton theorem
❖ Theorem (Prop. 1.21). If NP ⊆ P/poly, then the polynomial

hierarchy collapses at level 2: Πp2 ⊆ ∑p2.

❖ Let me give you a wrong argument first. (We will repair it later.)

❖ Let L ∈ Πp2 be {x |∀y of size p(n), (x,y) ∈ L’}, L’ ∈ NP.

❖ L’ has polynomial circuits Cn, so

❖ L = {x |∀y of size p(n), Csize(x,y)[(x,y)]=1}

❖ = {x | ∃poly size C, ∀y of size p(n), C[(x,y)]=1}
 ∈ ∑p2.

We can permute quantifiers,
because Csize(x,y)=Cn+p(n)+3 does not depend on y.

Where is the bug?

The first Karp-Lipton theorem
❖ Theorem (Prop. 1.21). If NP ⊆ P/poly, then the polynomial

hierarchy collapses at level 2: Πp2 ⊆ ∑p2.

❖ Let me give you a wrong argument first. (We will repair it later.)

❖ Let L ∈ Πp2 be {x |∀y of size p(n), (x,y) ∈ L’}, L’ ∈ NP.

❖ L’ has polynomial circuits Cn, so

❖ L = {x |∀y of size p(n), Csize(x,y)[(x,y)]=1}

❖ = {x | ∃poly size C, ∀y of size p(n), C[(x,y)]=1}
 ∈ ∑p2.

We can permute quantifiers,
because Csize(x,y)=Cn+p(n)+3 does not depend on y.

Hint: this is Σ*, not L
(just take the constant
circuit 1 for C here)

The bug
❖ L = {x |∀y of size p(n), Csize(x,y)[(x,y)]=1}

 ≠ {x | ∃poly size C, ∀y of size p(n), C[(x,y)]=1}:
here we trust some divine (all-powerful) being Merlin
to give us the magical circuit Csize(x,y) for C…

❖ … but what prevents it from cheating?
We must check that the circuit C it gives us does the job.

https://www.ecranlarge.com/uploads/image/001/011/merlin-l-enchanteur-photo-merlin-disney-1011190.jpg

A thought experiment
❖ Imagine you want to solve SAT.

You are given a clause set S,
and you ask Merlin: « is S satisfiable? »

❖ Merlin answers: « yes »

❖ What can you conclude?

❖ Of course, nothing.

https://www.ecranlarge.com/uploads/image/001/011/merlin-l-enchanteur-photo-merlin-disney-1011190.jpg

A thought experiment
❖ Imagine you want to solve SAT.

You are given a clause set S,
and you ask Merlin: « is S satisfiable?
 give me a satisfying assignment ρ»

❖ Merlin answers: « yes » ρ

❖ You check ρ ⊨ S, accept if this is true, reject otherwise.

❖ If S satisfiable, then Merlin can make you accept.
Otherwise, you will necessarily reject.

https://www.ecranlarge.com/uploads/image/001/011/merlin-l-enchanteur-photo-merlin-disney-1011190.jpg

Self-reducibility
❖ Now Merlin complains he can only decide whether S is

satisfiable (using circuits Cn), not find a satisfying ρ

❖ You retort that SAT is self-reducible:
Given an oracle O deciding satisfiability,
one can compute ρ such that ρ ⊨ S (if any).

Call this the « self-reducibility machine »

S[A1:=1] sat? (using O)

set A1:=1
S1:=S[A1:=1]

set A1:=0
S1:=S[A1:=0]

yes no

S1[A2:=1] sat? (using O)

set A2:=1
S2:=S1[A2:=1]

set A2:=0
S2:=S1[A2:=0]

yes no

S2[A3:=1] sat? (using O)

set A3:=1
S3:=S2[A3:=1]

set A3:=0
S3:=S2[A3:=0]

etc.yes no

Self-reducibility
❖ Instead of an oracle O, Merlin will use circuits Cm on

clause sets S, S1, S2, …, of various sizes m.

❖ m is bounded by n=size(S)
(e.g., S[A:=1] is obtained by removing clauses in which +A appears,
 and removing –A in the remaining clauses)

S[A1:=1] sat? (using O)

set A1:=1
S1:=S[A1:=1]

set A1:=0
S1:=S[A1:=0]

S1[A2:=1] sat? (using O)

set A2:=1
S2:=S1[A2:=1]

set A2:=0
S2:=S1[A2:=0]

S2[A3:=1] sat? (using O)

set A3:=1
S3:=S2[A3:=1]

set A3:=0
S3:=S2[A3:=0]

etc.

Call this the « self-reducibility machine »

A circuit for self-reducibility
❖ Now given (net-lists for) C0, C1, …, Cn as advice w0…n

❖ the self-reducibility machine is a poly
time TM h taking (S, w) as input
— returning an environment ρ
— satisfying S, if S is satisfiable and Merlin is honest
 (i.e., plays using the above advice w0…n for w)

❖ Note that, if size(Cn)=O(nk) (poly), then
 size(w0…n)=O(nk+1) (poly again)

by the way, not quite the trick
used in the lecture notes

Karp-Lipton: the proof (1/3)
❖ Theorem (Prop. 1.21). If NP ⊆ P/poly, then the

polynomial hierarchy collapses at level 2: Πp2 ⊆ ∑p2.

❖ Let L ∈ Πp2 be {x |∀y of size p(n), (x,y) ∈ L’}, L’ ∈ NP.

❖ We reduce to SAT
(this will allow us to use self-reducibility!):

❖ there is a polytime function f / (x,y) ∈ L’ ⇔ f (x,y) ∈ SAT

❖ Hence L = {x |∀y of size p(n), f(x,y) ∈ SAT}

Karp-Lipton: the proof (2/3)
❖ Theorem (Prop. 1.21). If NP ⊆ P/poly, then the

polynomial hierarchy collapses at level 2: Πp2 ⊆ ∑p2.

❖ L = {x |∀y of size p(n), f(x,y) ∈ SAT} (from last slide)

❖ Now use self-reducibility:
L = {x |∀y of size p(n), h(f(x,y),w0…size(f(x,y))) ⊨ f(x,y)}

the « self-reducibility machine » size of advice polynomial in n=size(x)

a clause set S

in ∑p2

Karp-Lipton: the proof (3/3)
❖ Theorem (Prop. 1.21). If NP ⊆ P/poly, then the

polynomial hierarchy collapses at level 2: Πp2 ⊆ ∑p2.

❖ L = {x|∀y of size p(n), h(f(x,y),w0…size(f(x,y))) ⊨ f(x,y)} (last slide)

❖ I claim that L = {x|∃w, ∀y of size p(n), h(f(x,y),w) ⊨ f(x,y)}
 (huh? that was the bug, right? No, we now check that h(…) ⊨ f(x,y)!)

❖ If x ∈ L, then take w=w0…size(f(x,y)): ∀y, h(f(x,y),w) ⊨ f(x,y) ✔

❖ If x ∉ L, ∃y, f(x,y) is unsatisfiable…
 hence whichever w we take, h(f(x,y),w) ⊨ f(x,y) ✔

The second Karp-Lipton theorem
❖ Theorem (Prop. 1.22). If NP ⊆ P/poly, then PH ⊆ P/poly.

❖ By previous result, it suffices to show ∑p2 ⊆ P/poly.

❖ Let L = {x | ∃y of size p(n), (x,y) ∈ L’} where L’ ∈ coNP

❖ The complement of L’ has poly size advice strings,
 hence L’ also has poly size advice strings wn

❖ L = {x | ∃y of size p(n), M((x,y), wsize(x,y)) accepts}
 for some poly time TM M.

The second Karp-Lipton theorem
❖ Theorem (Prop. 1.22). If NP ⊆ P/poly, then PH ⊆ P/poly.

❖ L = {x | ∃y of size p(n), M((x,y), wsize(x,y)) accepts}
 for some poly time TM M (from last slide)

❖ Let L’’ = {(x,w) | ∃y of size p(size(x)), M((x,y), w) accepts}
This is in NP, hence has polynomial circuits Cn, too!

❖ So L = {x | Cappropriate size[(x, wsize(x,y))]=1}

❖

size of x + cst + size of wsize(x,y)…
polynomial in n=size(x)

The second Karp-Lipton theorem
❖ Theorem (Prop. 1.22). If NP ⊆ P/poly, then PH ⊆ P/poly.

❖ So L = {x | Cappropriate size[(x, wsize(x,y))]=1} (from last slide)

❖ Hence L is decided by the circuits
 Cappropriate size[(_, wsize(x,y))] ☐
 (all sizes depending only on n=size(x), not on x itself)

size of x + cst + size of wsize(x,y)…
polynomial in n=size(x)

Conclusion

BPP cannot be too large
❖ Corollary. If BPP contains NP, then:

— PH collapses at level 2 (unlikely)
— and is included in P/poly.

❖ Proof.

