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Today

❖ Circuits, P/poly

❖ Adleman’s theorem: BPP ⊆ P/poly

❖ The Karp-Lipton theorems, and consequences



Circuits
❖ Informally, collections 

of logical gates 
connected by wires

❖ Must be acyclic

❖ Wires can be shared

❖ Fan-in arbitrary here 
(e.g., 1=fan-in 0 and, 0=fan-in 0 or)

orand
not

nand nor

1 10

❖ Remember: CIRCUIT-
VALUE is P-complete 
(for logspace reductions)

output wire
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❖ We now consider circuits 
C with input wires

input wires (x)

output wire

❖ C[x] = value 
of C when fed 
input bits x



Circuits, formally: net-lists
❖ We encode circuits as 

words (net-lists), e.g.:

1 10input wires (x)

output wire

0 1 2

3 4 5

6 7

8

3 ¬ 0  
4 ∨ 1 2  
5 ¬ 2  
6 ∧ 1 3  
7 ⊼ 4 5  
8 ∨ 6 7  
→8

¬ ¬
∨

∨

∧ ⊼

wire 3 = ¬ wire 0

wire 4 = 1 ∨ 2

etc.

8 is output

wire numbers in 
binary

We require wire numbers to be sorted 
(implies acyclicity) 

(sortedness checkable in logspace, acyclicity is NL-complete)



Reminder: CIRCUIT-VALUE is P-complete

❖ Encode p(n)-time TM  M on 
input x by a circuit

❖ constant gates 1/0 encode 
initial state q0, input x, and 
blanks

❖ each inner cell depends on a 
constant #cells on row 
above 
⇒ circuit piece of cst size 
(replicated p(n)2 times)

❖ finally, a small circuit to 
check acceptance.

0 1 2 . . . . n . . . . . .
0 q0 _ _ _ _ _ _ _ _ _ _
1

.

.

.

.

.

.

.

p(n)

p(n)

time

x

position

output=1 iff M(x) accepts



Plenty of technical details…
❖ Each row encodes a config. 

of a one-tape TM M

❖ … in binary

❖ the machine parks the 
head at position 0 before 
accepting/rejecting

❖ … and continues working 
(doing nothing) forever (at 
least until time p(n))

❖ Build the circuit in logspace: 
2 nested loops from 0 to p(n), 
with 2 counters



An important remark
❖ We can precompile a 

circuit Cn with n free 
input wires 
— without knowing x, 
— just its length n, 
— still in logspace

❖ such that for every x 
of that size n, 
M(x) accepts ⇔ Cn[x]=1

Cn



Uniform P/poly
❖ A language L is in 

uniform P/poly iff 
for every n, 
one can build a circuit Cn 
— in space O(log n) 
— such that for every 
     input x of size = n, 
     x ∈ L ⇔ Cn[x]=1

❖ Prop. P ⊆ uniform P/poly.     (This is what we have just proved!)

Cn



P = Uniform P/poly
❖ A language L is in 

uniform P/poly iff 
for every n, 
one can build a circuit Cn 
— in space O(log n) 
— such that for every 
     input x of size = n, 
     x ∈ L ⇔ Cn[x]=1

❖ Prop. P ⊆ uniform P/poly.

❖ In fact: 
Prop. P = uniform P/poly.

❖ Proof. 
Let L ∈ uniform P/poly. 
On input x (size n), 
compute Cn  in space k log n, 
               hence in time O(nk). 
Then evaluate Cn[x] 
                      in polytime. 
Hence L ∈ P.



(Non-uniform) P/poly
❖ A language L is in 

uniform P/poly iff 
for every n, 
one can build a circuit Cn 
— in space O(log n) 
— such that for every 
     input x of size = n, 
     x ∈ L ⇔ Cn[x]=1

there is    
of size p(n), for some fixed polynomial p

We no longer require to be able to compute Cn!

❖ Familiarly, we say that L 
has polynomial circuits



P/poly
❖ Defn. A language L is in P/poly iff 

           there is a family (Cn)n∈ℕ of circuits: 
           — of size p(n) (for some fixed polynomial p) 
           — such that for every input x (letting n be its size) 
                         x ∈ L ⇔ Cn[x]=1.

❖ It was initially hoped that we could prove that some NP-
complete languages do not have polynomial circuits. 
That would immediately imply P≠NP, since P ⊆ P/poly.



P/poly is pretty weird
❖ Prop. P/poly contains some 

         undecidable languages.

❖ Proof. 
Let L be undecidable (e.g., HALT). 
Then L’ = {words 1n | 
                   a1…ak ∈ L, n = a1+2a2+…+2k–1ak+2k} 
          is undecidable, too; and Cn is…

If bin(n) ∉ L If bin(n) ∈ L 

0
(ignores its input, size O(1))

and

… (n input bits)

(size n log n: check  the net-list!)

convert from binary 
to unary



Weird, too: advice strings
❖ Imagine you wish to decide whether x is in L.

❖ … and you have a « cheat sheet » wn depending only on 
n=size(x). 
How can this help?

❖ If wn allowed to have size 2n, 
then this helps a lot (why?)

❖ What if wn is only allowed 
to have polynomial size?

https://upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Karp_mg_7725-b.cr2.jpg/520px-Karp_mg_7725-b.cr2.jpg

https://cyber.gatech.edu/sites/default/files/styles/faculty_bio_pic/public/dick-lipton_1.jpg?itok=EkU43aPB



Advice strings and P/poly (1/2)

❖ Prop. L ∈ P/poly iff there is a 
polytime TM M and a family 
(wn)n∈ℕ of so-called 
    advice strings: 
    — of polysize p(n) 
    — s.t. ∀ x (size n) 
         x ∈ L ⇔ M(x,wn) accepts.

Proof.

❖ If L ∈ P/poly, then let 
wn be a net-list for Cn

❖ If L has advice strings 
wn, then… 
        (see next slide)



Advice strings and P/poly (2/2)
Cn0 1 2 . n . . . . . . . . .

0 q0 _ _ _ _ _ _ _ _ _ _
1

.

.

.

.

.

.

.

p(n)

p(n)

time

x

position

output=1 iff M(x,wn) accepts

wn

❖ Note: same 
construction as 
before, except…
now Cn includes 
the constant bits 
of wn 
(still not x.)



Adleman’s Theorem



Adleman’s Theorem
❖ Theorem (Prop. 1.20). BPP ⊆ P/poly.

❖ Interestingly, we will be able to show 
the existence of the circuits Cn, (or the advice strings) 
but we won’t be able to compute them (efficiently).

https://upload.wikimedia.org/wikipedia/commons/thumb/a/af/Len-mankin-pic.jpg/440px-Len-mankin-pic.jpg



❖ Let L be in BPP.

❖ Among the tapes r (of size p(n)), 
is there one such that 
           for every x of size n, 
           M(x,r) always gives 
           the correct answer?

❖ Let us use the probabilistic 
method…

The proof of Adleman’s Theorem (1/2)

  Prr (M(x,r) errs) ≤   ε.

error ε = 
1/2q(n)

❖ Prr(∃ x of size n, M(x,r) errs) 
≤ Σx Prr(M(x,r) errs) 
≤ 2n–q(n)

❖ … < 1 if we had the good 
taste to pick q(n)=n+1, say.



The proof of Adleman’s Theorem (2/2)

❖ Let L be in BPP. 
For each size n, there is a tape rn (of size p(n)) such that 
for every x of size n, M(x,rn) gives the correct answer, 
i.e.: 
— if x ∈ L then M(x,rn) accepts 
— if x ∉ L then M(x,rn) rejects.

❖ … Just use rn as advice string!  ☐



The Karp-Lipton Theorems, and 
consequences

https://upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Karp_mg_7725-b.cr2.jpg/520px-Karp_mg_7725-b.cr2.jpg

https://cyber.gatech.edu/sites/default/files/styles/faculty_bio_pic/public/dick-lipton_1.jpg?itok=EkU43aPB

(Yes, them again!)



coC

❖ Recall that Πpk=co∑pk= for every k≥1. 
(coC is the class of complements of languages of C.)

❖ Fact.  co is monotonic: if C⊆C’, then coC⊆coC’.

❖ (Already argued last time, as part of the Sipser-Gács-
Lautemann theorem.)



coC

❖ Claim. For any class C, the following are equivalent: 
1. C = coC 
2. C ⊆ coC 
3. coC ⊆ C.

❖ 2 ⇒ 3: let L in coC. 
            Its complement is in C, hence in coC  by 2. 
            Therefore L is also in C.

❖ 3 ⇒ 2, and therefore 3 ⇒ 1: similar.  1 ⇒ 2: obvious.  ☐



Does PH collapse?
❖ We say that PH collapses at level 2 iff ∑p2=Πp2. 

By the previous claim, equivalent to Πp2 ⊆ ∑p2.

❖ Prop. If ∑p2=Πp2 then 
          ∑p2=Πp2=∑p3=Πp3=∑p4=…=PH (whence the name.)

❖ Proof sketch.  Let ∃·C be the class of the languages 
                      {x | ∃y of poly size, (x,y) ∈ L’}, L’ ∈ C.

❖ ∑p3=∃·Πp2=∃·∑p2=∃·∃·coNP=∃·coNP=∑p2, then 
Πp3=co∑p3=co∑p2=Πp2=∑p2, etc.  ☐



The first Karp-Lipton theorem
❖ Theorem (Prop. 1.21).  If NP ⊆ P/poly, then the polynomial 

hierarchy collapses at level 2: Πp2 ⊆ ∑p2.

❖ Let me give you a wrong argument first.     (We will repair it later.)

❖ Let L ∈ Πp2 be {x |∀y of size p(n), (x,y) ∈ L’}, L’ ∈ NP.

❖ L’ has polynomial circuits Cn, so

❖ L = {x |∀y of size p(n), Csize(x,y)[(x,y)]=1}

❖    = {x | ∃poly size C, ∀y of size p(n), C[(x,y)]=1} 
   ∈ ∑p2.

We can permute quantifiers, 
because  Csize(x,y)=Cn+p(n)+3 does not depend on y.

Where is the bug?



The first Karp-Lipton theorem
❖ Theorem (Prop. 1.21).  If NP ⊆ P/poly, then the polynomial 

hierarchy collapses at level 2: Πp2 ⊆ ∑p2.

❖ Let me give you a wrong argument first.     (We will repair it later.)

❖ Let L ∈ Πp2 be {x |∀y of size p(n), (x,y) ∈ L’}, L’ ∈ NP.

❖ L’ has polynomial circuits Cn, so

❖ L = {x |∀y of size p(n), Csize(x,y)[(x,y)]=1}

❖    = {x | ∃poly size C, ∀y of size p(n), C[(x,y)]=1} 
   ∈ ∑p2.

We can permute quantifiers, 
because  Csize(x,y)=Cn+p(n)+3 does not depend on y.

Hint: this is Σ*, not L 
(just take the constant 
circuit 1 for C here)



The bug
❖ L = {x |∀y of size p(n), Csize(x,y)[(x,y)]=1} 

   ≠ {x | ∃poly size C, ∀y of size p(n), C[(x,y)]=1}: 
here we trust some divine (all-powerful) being Merlin 
to give us the magical circuit Csize(x,y) for C…

❖ … but what prevents it from cheating? 
We must check that the circuit C it gives us does the job.

https://www.ecranlarge.com/uploads/image/001/011/merlin-l-enchanteur-photo-merlin-disney-1011190.jpg



A thought experiment
❖ Imagine you want to solve SAT. 

You are given a clause set S, 
and you ask Merlin: « is S satisfiable? »

❖ Merlin answers: « yes »

❖ What can you conclude?

❖ Of course, nothing.

https://www.ecranlarge.com/uploads/image/001/011/merlin-l-enchanteur-photo-merlin-disney-1011190.jpg



A thought experiment
❖ Imagine you want to solve SAT. 

You are given a clause set S, 
and you ask Merlin: « is S satisfiable? 
               give me a satisfying assignment ρ»

❖ Merlin answers: « yes » ρ

❖ You check ρ ⊨ S, accept if this is true, reject otherwise.

❖ If S satisfiable, then Merlin can make you accept. 
Otherwise, you will necessarily reject.

https://www.ecranlarge.com/uploads/image/001/011/merlin-l-enchanteur-photo-merlin-disney-1011190.jpg



Self-reducibility
❖ Now Merlin complains he can only decide whether S is 

satisfiable (using circuits Cn), not find a satisfying ρ

❖ You retort that SAT is self-reducible: 
Given an oracle O deciding satisfiability, 
one can compute ρ such that ρ ⊨ S (if any).

Call this the « self-reducibility machine »

S[A1:=1] sat? (using O)

set A1:=1
S1:=S[A1:=1]

set A1:=0
S1:=S[A1:=0]

yes no

S1[A2:=1] sat? (using O)

set A2:=1
S2:=S1[A2:=1]

set A2:=0
S2:=S1[A2:=0]

yes no

S2[A3:=1] sat? (using O)

set A3:=1
S3:=S2[A3:=1]

set A3:=0
S3:=S2[A3:=0]

etc.yes no



Self-reducibility
❖ Instead of an oracle O, Merlin will use circuits Cm on 

clause sets S, S1, S2, …, of various sizes m.

❖ m is bounded by n=size(S) 
(e.g., S[A:=1] is obtained by removing clauses in which +A appears, 
                                          and removing –A in the remaining clauses)

S[A1:=1] sat? (using O)

set A1:=1
S1:=S[A1:=1]

set A1:=0
S1:=S[A1:=0]

S1[A2:=1] sat? (using O)

set A2:=1
S2:=S1[A2:=1]

set A2:=0
S2:=S1[A2:=0]

S2[A3:=1] sat? (using O)

set A3:=1
S3:=S2[A3:=1]

set A3:=0
S3:=S2[A3:=0]

etc.

Call this the « self-reducibility machine »



A circuit for self-reducibility
❖ Now given (net-lists for) C0, C1, …, Cn as advice w0…n

❖ the self-reducibility machine is a poly 
time TM h taking (S, w) as input 
— returning an environment ρ 
— satisfying S, if S is satisfiable and Merlin is honest 
     (i.e., plays using the above advice w0…n for w)

❖ Note that, if size(Cn)=O(nk) (poly), then 
                      size(w0…n)=O(nk+1) (poly again)

by the way, not quite the trick 
used in the lecture notes



Karp-Lipton: the proof (1/3)
❖ Theorem (Prop. 1.21).  If NP ⊆ P/poly, then the 

polynomial hierarchy collapses at level 2: Πp2 ⊆ ∑p2.

❖ Let L ∈ Πp2 be {x |∀y of size p(n), (x,y) ∈ L’}, L’ ∈ NP.

❖ We reduce to SAT 
(this will allow us to use self-reducibility!):

❖ there is a polytime function f / (x,y) ∈ L’ ⇔ f (x,y) ∈ SAT

❖ Hence L = {x |∀y of size p(n), f(x,y) ∈ SAT}



Karp-Lipton: the proof (2/3)
❖ Theorem (Prop. 1.21).  If NP ⊆ P/poly, then the 

polynomial hierarchy collapses at level 2: Πp2 ⊆ ∑p2.

❖ L = {x |∀y of size p(n), f(x,y) ∈ SAT}                 (from last slide)

❖ Now use self-reducibility: 
L = {x |∀y of size p(n), h(f(x,y),w0…size(f(x,y))) ⊨ f(x,y)}

the « self-reducibility machine » size of advice polynomial in n=size(x)

a clause set S



in ∑p2

Karp-Lipton: the proof (3/3)
❖ Theorem (Prop. 1.21).  If NP ⊆ P/poly, then the 

polynomial hierarchy collapses at level 2: Πp2 ⊆ ∑p2.

❖ L = {x|∀y of size p(n), h(f(x,y),w0…size(f(x,y))) ⊨ f(x,y)}   (last slide)

❖ I claim that L = {x|∃w, ∀y of size p(n), h(f(x,y),w) ⊨ f(x,y)} 
                            (huh? that was the bug, right?  No, we now check that h(…) ⊨ f(x,y)!)

❖ If x ∈ L, then take w=w0…size(f(x,y)): ∀y, h(f(x,y),w) ⊨ f(x,y) ✔

❖ If x ∉ L, ∃y, f(x,y) is unsatisfiable… 
              hence whichever w we take, h(f(x,y),w) ⊨ f(x,y) ✔



The second Karp-Lipton theorem
❖ Theorem (Prop. 1.22).  If NP ⊆ P/poly, then PH ⊆ P/poly.

❖ By previous result, it suffices to show ∑p2 ⊆ P/poly.

❖ Let L = {x | ∃y of size p(n), (x,y) ∈ L’} where L’ ∈ coNP

❖ The complement of L’ has poly size advice strings, 
                        hence L’ also has poly size advice strings wn

❖ L = {x | ∃y of size p(n), M((x,y), wsize(x,y)) accepts} 
       for some poly time TM M.



The second Karp-Lipton theorem
❖ Theorem (Prop. 1.22).  If NP ⊆ P/poly, then PH ⊆ P/poly.

❖ L = {x | ∃y of size p(n), M((x,y), wsize(x,y)) accepts} 
       for some poly time TM M                            (from last slide)

❖ Let L’’ = {(x,w) | ∃y of size p(size(x)), M((x,y), w) accepts} 
This is in NP, hence has polynomial circuits Cn, too!

❖ So L = {x | Cappropriate size[(x, wsize(x,y))]=1}

❖

size of x + cst + size of wsize(x,y)…
polynomial in n=size(x)



The second Karp-Lipton theorem
❖ Theorem (Prop. 1.22).  If NP ⊆ P/poly, then PH ⊆ P/poly.

❖ So L = {x | Cappropriate size[(x, wsize(x,y))]=1}           (from last slide)

❖ Hence L is decided by the circuits 
                   Cappropriate size[(_, wsize(x,y))]                                 ☐ 
                                                          (all sizes depending only on n=size(x), not on x itself)

size of x + cst + size of wsize(x,y)…
polynomial in n=size(x)



Conclusion



BPP cannot be too large
❖ Corollary.  If BPP contains NP, then: 

— PH collapses at level 2 (unlikely) 
— and is included in P/poly.

❖ Proof.


