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Today

+ Circuits, P/poly
* Adleman’s theorem: BPP C P/poly

* The Karp-Lipton theorems, and consequences



Circuits

“ Informally, collections
of logical gates
connected by wires

FYy0 Y

* Must be acyclic

+ Wires can be shared

* Fan-in arbitrary here

(e.g., 1=fan-in 0 and, 0=fan-in 0 or)

+ Remember: CIRCUIT-

VALUE is P-complete
(for logspace reductions)
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+ Wires can be shared

Circuits

“ Informally, collections + We now consider circuits

of logical gates C with input wires
connected by wires

|
&5 + Clx] = value input wires (x)

+ Must be acyclic of C when fed --------------------- e e
input bits x |

* Fan-in arbitrary here

(e.g., 1=fan-in 0 and, 0=fan-in 0 or)

output wire



Circuits, formally: net-lists

We require wire numbers to be sorted
“ We encode circuits as (implies acyclicity)

(sortedness checkable in logspace, acyclicity is NL-complete)

words (net-lists), e.g.:

wire numbers in

binary

wire 3 = = wire 0

wire4 =1V 2 . .
input wires (x)

etc.

8 1s output




Reminder: CIRCUI'T-VALUE is P-complete

+ Encode p(n)-time TM ‘M on

input x by a circuit

* constant gates 1/0 encode
initial state go, input x, and
blanks

* each inner cell depends on a
constant #cells on row
above

= circuit piece of cst size
(replicated p(n)? times)

* finally, a small circuit to
check acceptance. e

position

p(n)
g &:ﬁ output=1 iff M(x) accepts
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Plenty of technical details...

Each row encodes a config, Reminder: CIRCUIT-VALUE is P-complete

of a one-tape TM ‘M + Encode p(rpime T™ Mon | [TTE——— o

input x by a circuit

# constant gates 1/0 encode

il L) blnary initial state go, input x, and
blanks

+ each inner cell depends on a

the maChine P al'kS the constant #cells on row

above

head at pOSition O before = circuit piece of cst size

(replicated p(n)? times)

accepting / rejeCting ¢ finally, a small circuit to

check acceptance. s

pln)
L ﬁ output=1 iff M(x) accepts
e

# Build the circuit in logspace:
2 nested loops from 0 to p(n),
with 2 counters

... and continues working
(doing nothing) forever (at
least until time p(n))
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An important remark ¢,

We can precompile a
circuit C,, with n free
Input wires

— without knowing x,

— just its length n,
— still in logspace

such that for every x
of that size n,

M(x) accepts < Cyx]=1

Reminder: CIRCUIT-V

+ Encode p(n)-time TM M on

input x by a circuit

# constant gates 1/0 encode

initial state go, input x, and
blanks

+ each inner cell depends on a

constant #cells on row
above

= circuit piece of cst size
(replicated p(n)? times)

# finally, a small circuit to

check acceptance. s

UE is P-complete

position

........... pln)

i

output=1 iff M(x) accepts




Uniform P/poly

* Alanguage L is in

uniform P/poly iff

for every n,

one can build a circuit C,

— in space O(log n)

— such that for every
input x of size = n,
rel < C.lx]=1l

« Prop. P C uniform P/poly.

T —

Reminder: CIRCUIT-V

+ Encode p(n)-time TM M on
input x by a circuit

# constant gates 1/0 encode
initial state go, input x, and
blanks

+ each inner cell depends on a
constant #cells on row
above
= circuit piece of cst size
(replicated p(n)? times)

# finally, a small circuit to
check acceptance.

Cn

UE is P-complete

position

time

........... pln)

p(n) '
i

output=1 iff M(x) accepts

—ﬂ

(This is what we have just proved!)



P = Unmiform P/poly

* Alanguage L is in
uniform P/poly iff

for every n,

one can build a circuit C,

— in space O(log n)

— such that for every
input x of size = n,
rel < C.lx]=1l

* Prop. P C uniform P/poly.

+ In fact:

Prop. P = uniform P/poly.

+ Proof.

Let L € uniform P/poly.
On input x (size n),
compute C, in space k log n,
hence in time O(#k).
Then evaluate Cy[x]
in polytime.
Flence Fe P



(Non-uniform) P/poly

“ Alanguage L is in
aniferm P/poly iff

for everv n.

We no longer require to be able to compute C,!

one thereis | 4 circuit C,
— inspace-O/Of size p(n), for some fixed polynomial p
— such that for every
input x of size =, * Familiarly, we say that L
sl = e = has polynomial circuits



P/poly

* Defn. A language L is in P/poly iff

there is a family (C)nen of circuits:

— of size p(n) (for some fixed polynomial p)
— such that for every input x (letting n be its size)

x € L < Cylx]=1.

« It was initially hoped that we could prove that some NP-

complete

That woul

anguages do not have polynomial circuits.

d immediately imply P=NP, since P C P/poly.



P/poly is pretty weird

Defn. A language L is in P/poly iff

D Prop. P / P Oly Cont ainS some there is a family (Cy)xen of circuits:
) — of size p(n) (for some fixed polynomial p)
unde Cldable langua geS . — such that for every input x (letting 7 be its si:
¥ EL <= G,lx]=1.
Let L be undecidable (e.g., HALT). convert from binary
t
Then L” = {words 1 | e

ai...ax € L, n = a1+2ax+...+21g;, 2k}
is undecidable, too; and C, is...

If bin(n) & L If bin(n) € L
e |(n input bits)

O and
(ignores its input, size O(1)) (size n log n: check !the net-list!)




Weird, too: advice strings

* Imagine you wish to decide whether x is in L.

# ... and you have a « cheat sheet » w, depending only on

n=size(x).

Corpus ID: 115398060

How can this help? Turing machines that take advice

R. Karp, R. J. Lipton - Published 1982 - Computer Science

+ If w, allowed to have size 27,
then this helps a lot (why?)

« What if w, is only allowed

to have polynomial size?

https://upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Karp mg 7725-b.cr2.jpg/520px-Karp mg 7725-b.cr2.jpg

https://cyber.gatech.edu/sites/default/files/styles/faculty bio pic/public/dick-lipton_ 1l.jpg?itok=EkU43aPB



Advice strings and P/poly (1/2)

Defn. A language L is in P/poly iff
there is a family (Cy)xen of circuits:
— of size p(n) (for some fixed polynomial p)

oo Prop. L &P /poly lff there iS a — such :Chét sz egea[;}]rzirll?utx(lettmgnbe its si:
polytime TM M and a family e
(Wp )nen Of so-called Proof.

advice strings: + If L € P/poly, then let
— of polysize p(n) wy, be a net-list for C,

—s.t. V x (size n)

x € L < M(x,wy) accepts.  * If L has advice strings
w,, then...

(see next slide)



Advice strings and P/ poly (2/2)

posmon

time

Note: same
construction as
betore "except:

now C, includes

the constant bits
of w,

(still not x.)



Adleman’s Theorem



Adleman’s Theorem

+ Theorem (Prop. 1.20). BPP C P/poly.

+ Interestingly, we will be able to show
the existence of the circuits C,, (or the advice strings)

but we won’t be able to compute them (efficiently).

DOI: 10.1109/SFCS.1978.37 - Corpus ID: 15176763

Two theorems on random polynomial time

L. Adleman - Published 1978 - Computer Science -
19th Annual Symposium on Foundations of Computer Science (sfcs 1978)

The use of randomness in computation was first studied in abstraction by Gill [4]. In recent
years its use in both practical and theoretical areas has become apparent. Strassen and
Solovay [10]; Miller [7]; and Rabin [8] have used it to transform primality testing into a (for
many purposes) tractible problem. We can see in retrospect that it was implicit in algorithms
by Ber1ekamp [2], Lehmer [6], and Cippola [3] (1903!). Where the traditional method of
polynomial reduction has been... CONTINUE READING

https://upload.wikimedia.org/wikipedia/commons/thumb/a/af/Len-mankin-pic.jpg/440px-Len-mankin-pic.jpg



The proof of Adleman’s Theorem (1/2)

A language L is in BPP if and only if
+ Let L be in BPP. there is a polynomial-time TM ‘M

such that for every input x (of size n):

* Among the tapes r (of size p(n)), Pr, (M(x,r) errs) < &.
is there one such that

for every x of size n, " error ¢ =

. 1/240
‘M(x,r) always gives &

+ Pr/(3 x of size n, M(x,r) errs)
= P (M rretrs)
< 2n—=(n)

the correct answer?

* Let us use the probabilistic
method...

# ... <1if we had the good
taste to pick g(n)=n+1, say.



The proof of Adleman’s Theorem (2/2)

+ Let L be in BPP.
For each size n, there is a tape r, (of size p(n)) such that

for every x of size n, M(x,7:) g1ves the correct answer,

1.e.:
— if x € L then M(x,r,) accepts

— if x & L then M(x,r,,) rejects.

“ ... Just use r, as advice string]!

(
time [
v outpl,lt:l iff M(X;In) accepts




T'he Karp-Lipton Theorems, and

consequences

Corpus ID: 115398060

Turing machines that take advice

R. Karp, R. J. Lipton - Published 1982 - Computer Science

(Yes, them again!)

https://upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Karp mg 7725-b.cr2.jpg/520px-Karp mg 7725-b.cr2.jpg

https://cyber.gatech.edu/sites/default/files/styles/faculty bio pic/public/dick-lipton_ 1l.jpg?itok=EkU43aPB



coC

“ Recall that [Tri=c0) Pi= for every k>1.

(coC is the class of complements of languages of C.)

+ Fact. co is monotonic: if CCC’, then coC<ccoC’.

* (Already argued last time, as part of the Sipser-Gacs-
Lautemann theorem.)



coC

+ Claim. For any class C, the following are equivalent:
1. C=coC
2.CC coC
3.coCC C.

» 2= 3:let L in coC.

+» 3 =2 and therefore 3 = 1: similar. 1 = 2: obvious.

[ts complement is in C, hence in coC by 2.

Therefore L is also in C.




Does PH collapse?

* We say that PH collapses at level 2 iff ) po=I1p,.
By the previous claim, equivalent to I'lp, C ) ps.

* Prop. If Y p,=I1p; then
Y Po=[1P,=) P3=I1P3=) P4=...=PH (whence the name.)

« Proof sketch. Let 3-C be the class of the languages
et Er ol pelyrsize (L L e €.

¢ Y P3=3-I1P,=3-Y P,=3-3F-coNP=3-coNP=) p,, then

HPBICOZPP,:COZPZZHPQZsz, etc.



T'he first Karp-Lipton theorem

* Theorem (Prop. 1.21). If NP C P/poly, then the polynomial
hierarchy collapses at level 2: TTp, C ) po.

* Let me give you a wrong argument first.  (We will repair it later.)

« Let L €TIr, be {x | Yy of size p(n), (x,y) E L'}, L’ € NP.

« " has polynomial circuits C,, so
o [ = {x | Vy of size p(n), Csize(x,y)[(x,y)]zl} Where is the bug?

= {x | Apoly size C, Yy of size p(n), C[(x,y)]=1}
Er

We can permute quantifiers,
because Csize(x,y)=Cu+p(n)+3 does not depend on y.



T'he first Karp-Lipton theorem

* Theorem (Prop. 1.21). If NP C P/poly, then the polynomial
hierarchy collapses at level 2: TTp, C ) p,.

* Let me give you a wrong argument first.  (We will repair it later.)

« Let L €TIr, be {x | Yy of size p(n), (x,y) E L'}, L’ € NP.

« " has polynomial circuits C,, so

« L ={x | Yy of size p(n), Csizetxy[(x,y)]=1}
Hint: this is X*, not L
= {x | Apoly size C, Yy of size p(n), C[(x,y)]=1} ~ (Gusttake the constant

circuit 1 for C here)
€ ) Po.

We can permute quantifiers,
because Csize(x,y)=Cu+p(n)+3 does not depend on y.



T'he bug

= {x [V of size pln), Cicteply)]=1}
= {x | dpoly size C, Yy of size p(n), C[(x,y)]=1}:

here we trust some divine (all-powerful) being Merlin

to give us the magical circuit Csize(r,y) for C...

.. but what prevents it from cheating? %
We must check that the circuit C it gives us d

https://www.ecranlarge.com/uploads/image/001/011/merlin-l-enchanteur-photo-merlin-disney-1011190.jpg



A thought experiment

Imagine you want to solve SAT.
You are given a clause set S,
and you ask Merlin: « is S satisfiable? »

Merlin answers: « yes »

What can you conclude?

Of course, nothing.

https://www.ecranlarge.com/uploads/image/001/011/merlin-l-enchanteur-photo-merlin-disney-1011190.jpg



A thought experiment

Imagine you want to solve SAT.
You are given a clause set S,
and you ask Merlin: « is S satisfiable?
give me a satisfying assignment @»

Merlin answers: «3res» Q

You check o = S, accept if this is true, reject otherwise.

If S satisfiable, then Merlin can make you accept.
Otherwise, you will necessarily reject.

https://www.ecranlarge.com/uploads/image/001/011/merlin-l-enchanteur-photo-merlin-disney-1011190.jpg



Seli-reducibility

* Now Merlin complains he can only decide whether S is
satisfiable (using circuits C,), not find a satisfying o

* You retort that SAT is self-reducible:
Given an oracle O deciding satisfiability,

one can compute Q such that o = S (if any).

S[A1:=1] sat? (using O) S51[A2:=1] sat? (using O) S»[Az:=1] sat? (using O)
w/ N) W/ \ % y etc.
set A1:=1 set A1:=0 set Ar:=1 set Az:=0 set As:=1 set Asz:=0

S1:=S[A1:=1] S1:=S[A1:=0] S$2:=51[A2:=1] S2:=51[A2:=0] S3:=55]A3:=1] S3:=55|A3:=0]
Call this the « self-reducibility machine »



Seli-reducibility

» Instead of an oracle O, Merlin will use circuits C,; on
clause sets S, S1, Sy, ..., of various sizes .
* m is bounded by n=size(S)

(e.g., S[A:=1] is obtained by removing clauses in which +A appears,
and removing —A in the remaining clauses)

S[A/lz—l] sat? glg O) S[}z—l] sat? @g O) 52/ 1] sat? glg O)
set A1:=1 set A1:=0 set Ar:=1 set Ax:= set As:= set Asz:=

S1:=S[A1:=1] S1:=S[A1:=0] S2:=51[Ax=1] Sz:=51[A2:=0] 53:=52[A3:=1] S3:=52[A3:=0]
Call this the « self-reducibility machine »



A circuit for self-reducibility

« Now given (net-lists for) Co, Cy, ..., C, as advice wo.. .,

* the self-reducibility machine is a poly
time TM £ taking (S, w) as input by e ey et jettse (e (e
— returning an environment Q vl im g (Eetee mofe
— satistying S, it S is satisfiable and Merlin is honest

(i.e., plays using the above advice wy..., for w)

= Note that, if size(C,)=0O(n*) (poly), then
size(wo...n)=0O(nk1) (poly again)



Karp-Lipton: the proof (1/3)

* Theorem (Prop. 1.21). If NP C P/poly, then the
polynomial hierarchy collapses at level 2: TTr, C ) ps.

¢ Let L € IIr, be {x | Vy of size p(n), (x,y) EL’}, L’ € NP.

+ We reduce to SAT

(this will allow us to use self-reducibility!):
* there is a polytime function f / (x,y) EL" < f(x,y) € SAT
+ Hence L = {x | Yy of size p(n), flx,y) € SAT}



Karp-Lipton: the proof (2/3)

* Theorem (Prop. 1.21). If NP C P/poly, then the
polynomial hierarchy collapses at level 2: TTr, C ) ps.

* L ={x | Vy of size p(n), flx,y) € SAT} (from last slide)

a clause set S

* Now use self-reducibility:

L = {x | Yy of size p(n), h(f(x,y),wo.. size(fixy)) E Ax,y)}

the « self-reducibility machine » size of advice polynomial in n=size(x)



Karp-Lipton: the proof (3/3)

* Theorem (Prop. 1.21). If NP C P/poly, then the
polynomial hierarchy collapses at level 2: ITr, C Y po.

* L = {x | Vy of size p(n), h(fix,y),wo..size(fix,y))) E flX,y)} (astslide)

* I claim that L = {x | 3w, Yy of size p(n), h(f(x,y),w) = flx,y)}

(huh? that was the bug, right? No, we now check that i(...) E f(x,y)!)

in ZPz

+ If x € L, then take w=wy.. size(fixy)): YV, h(flx,y),w)

= If x & L, Ay, flx,y) is unsatisfiable...
hence whichever w we take, h(f(x,y),w)

= flx,y) vV

7 flx,y) v




T'he second Karp-Lipton theorem

* Theorem (Prop. 1.22). If NP C P/poly, then PH C P/poly.
* By previous result, it suffices to show Yr, C P/poly.
¢ Let L ={x | y of size p(n), (x,y) € L’} where L’ € coNP

* The complement of L” has poly size advice strings,
hence L’ also has poly size advice strings w;

» L={x | y of size p(n), M((x,y), Wsize(xy)) accepts}
for some poly time TM M.



T'he second Karp-Lipton theorem

* Theorem (Prop. 1.22). If NP C P/poly, then PH C P/poly.

« L ={x | Jy of size p(n), M((x,y), Wsize(ry)) accepts}

for some poly time TM M (from last slide)

« Let L” = {(x,w) | Jy of size p(size(x)), M((x,y), w) accepts}

This is in NP, hence has polynomial circuits C,, too!

» So L = {x | Cappropriate Size[(x/ wsize(x,y))]:]'}

size of x + cst + size of Wsize(xy)- - -
polynomial in n=size(x)



T'he second Karp-Lipton theorem

* Theorem (Prop. 1.22). If NP C P/poly, then PH C P/poly.

® SO = {x I Cappropriate Size[(x, wSiZe(x,y))]:].} (from last slide)

size of x + cst + size of Wsize(ry). - -
polynomial in n=size(x)

* Hence L is decided by the circuits

Cappropriate size[( _ wsize(x,y))]

(all sizes depending only on n=size(x), not on x itself)
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BPP cannot be too large

+ Corollary. If BPP contains NP, then:
— PH collapses at level 2 (unlikely)
— and is included in P/poly.

* Proof.
The first Karp-Lipton theorem

Adleman’ S The orci Theorem (Prop. 1.21). If NP C P/poly, then the polynomial

hierarchy collapses at level 2: I'Tp, C Y.

Theorem (Prop. 1.20). BPP C P/poly.

l
The second Karp-Lipton theorem

‘,:

Theorem (Prop. 1.22). If NP C P/poly, then PH C P/poly.

R — ————————



