Jean Goubault-Larrecq

# Randomized complexity classes

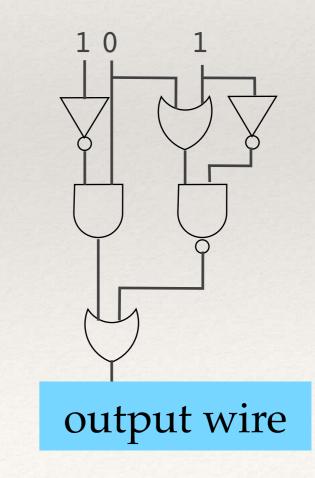
Today: **BPP** (part 2) and **P/poly** 

Tous droits réservés, Jean Goubault-Larrecq, professeur, ENS Paris-Saclay, Université Paris-Saclay Cours « Complexité avancée » (M1), 2020-, 1er semestre Ce document est protégé par le droit d'auteur. Toute représentation ou reproduction intégrale ou partielle faite sans le consentement de l'auteur est illicite.

# Today

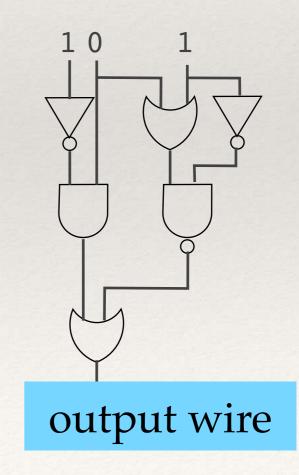
- Circuits, P/poly
- \* Adleman's theorem: **BPP**  $\subseteq$  **P**/**poly**
- \* The Karp-Lipton theorems, and consequences

- Informally, collections of logical gates connected by wires
   Image: Orginal gates of logical gates o
- \* Must be acyclic
- Wires can be shared
- Fan-in arbitrary here
   (e.g., 1=fan-in 0 and, 0=fan-in 0 or)



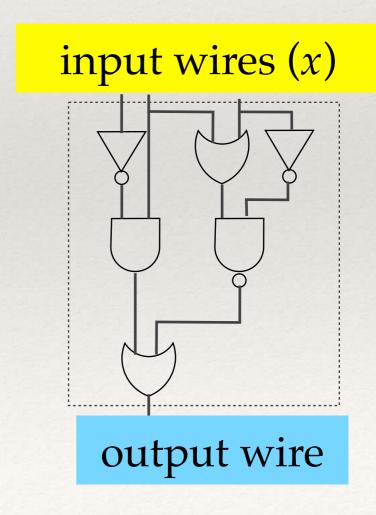
- Informally, collections of logical gates connected by wires
   Image: Orginal gates of logical gates o
- \* Must be acyclic
- Wires can be shared
- Fan-in arbitrary here
   (e.g., 1=fan-in 0 and, 0=fan-in 0 or)

Remember: CIRCUIT VALUE is P-complete
 (for logspace reductions)



- Informally, collections
   of logical gates
   connected by wires
   Image: Connected by wires
- \* Must be acyclic
- Wires can be shared
- Fan-in arbitrary here
   (e.g., 1=fan-in 0 and, 0=fan-in 0 or)

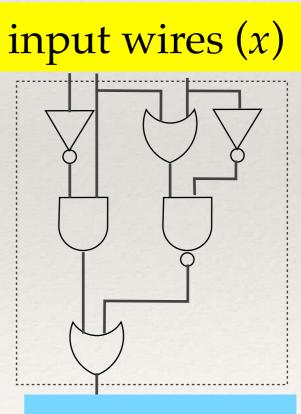
We now consider circuits
 *C* with input wires



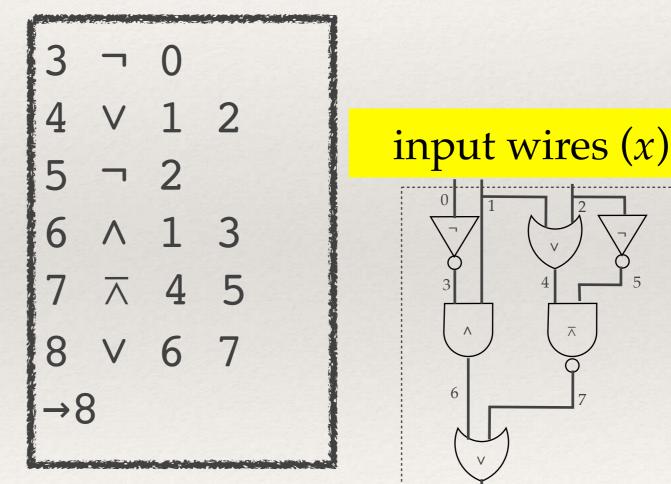
- \* Must be acyclic
- Wires can be shared
- Fan-in arbitrary here
   (e.g., 1=fan-in 0 and, 0=fan-in 0 or)

We now consider circuits
 *C* with input wires

C[x] = value
 of C when fed
 input bits x



We encode circuits as
 words (net-lists), e.g.:



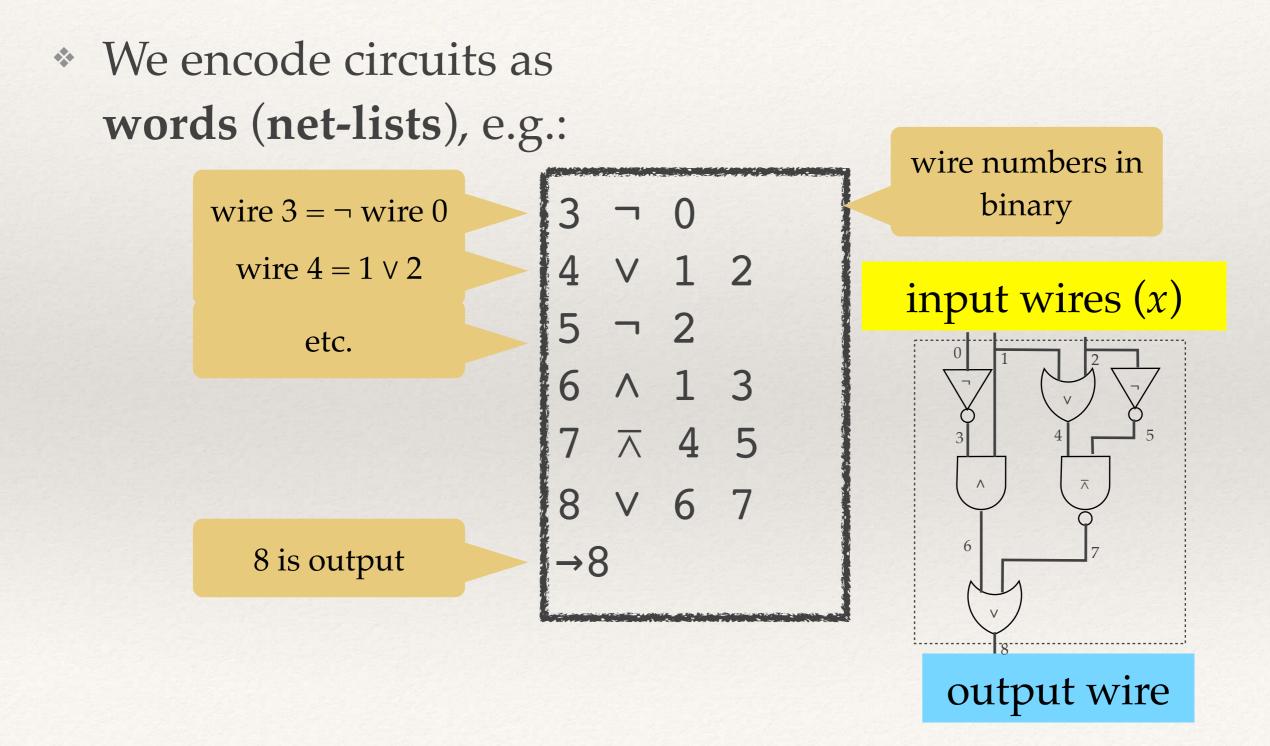
\* We encode circuits as words (net-lists), e.g.:  $3 \neg 0$   $4 \lor 1 2$   $5 \neg 2$   $6 \land 1 3$   $7 \land 4 5$   $8 \lor 6 7$ wire  $3 = \neg$  wire 0 input wires (*x*) →8

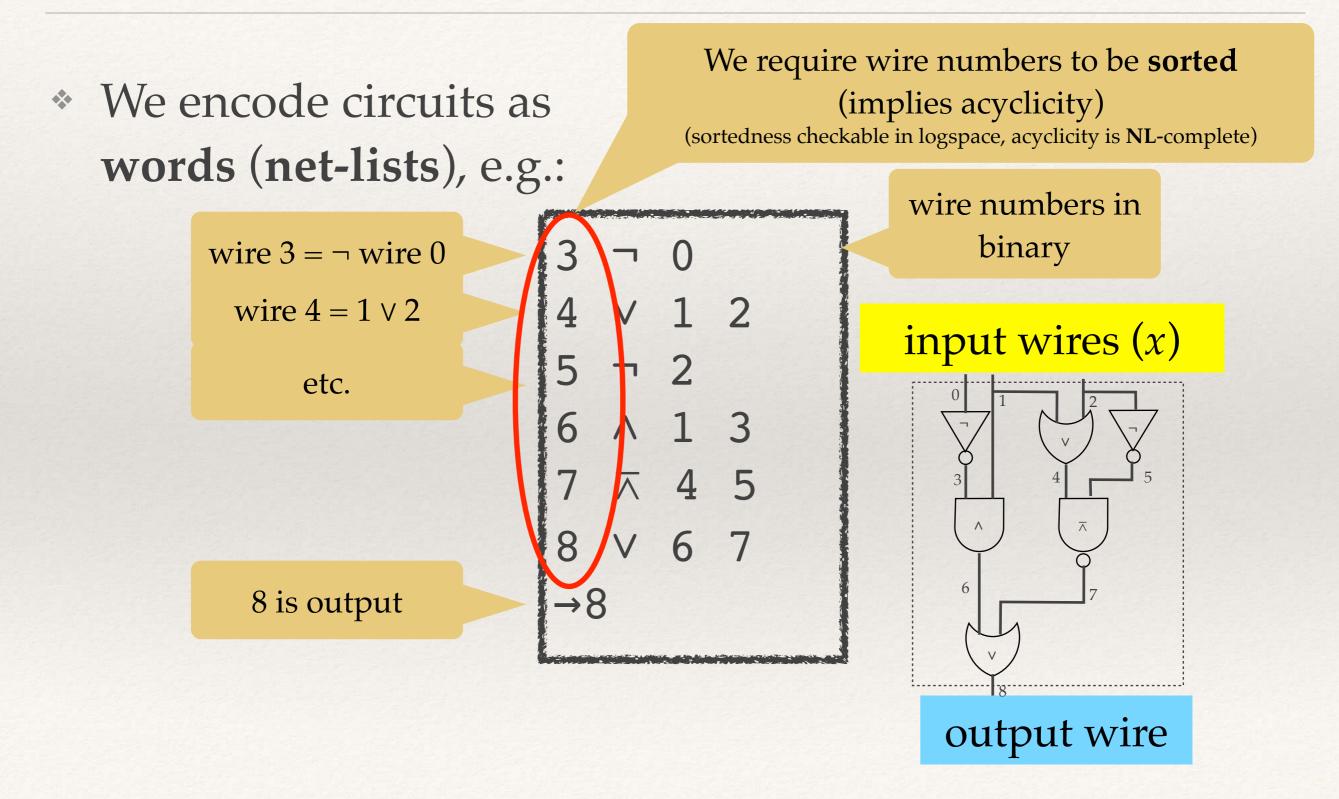
\* We encode circuits as words (net-lists), e.g.: wire  $3 = \neg$  wire 0 3 7 0  $4 \vee 1 2$   $5 \neg 2$   $6 \wedge 1 3$   $7 \overline{\times} 4 5$   $8 \vee 6 7$ wire  $4 = 1 \lor 2$ input wires (*x*) →8

\* We encode circuits as words (net-lists), e.g.: wire  $3 = \neg$  wire 0 3 7 0 4 V 1 2 wire  $4 = 1 \lor 2$ input wires (*x*) 5 ¬ 2 6 ∧ 1 3 7 ⊼ 4 5 etc. 8 V 6 7 →8

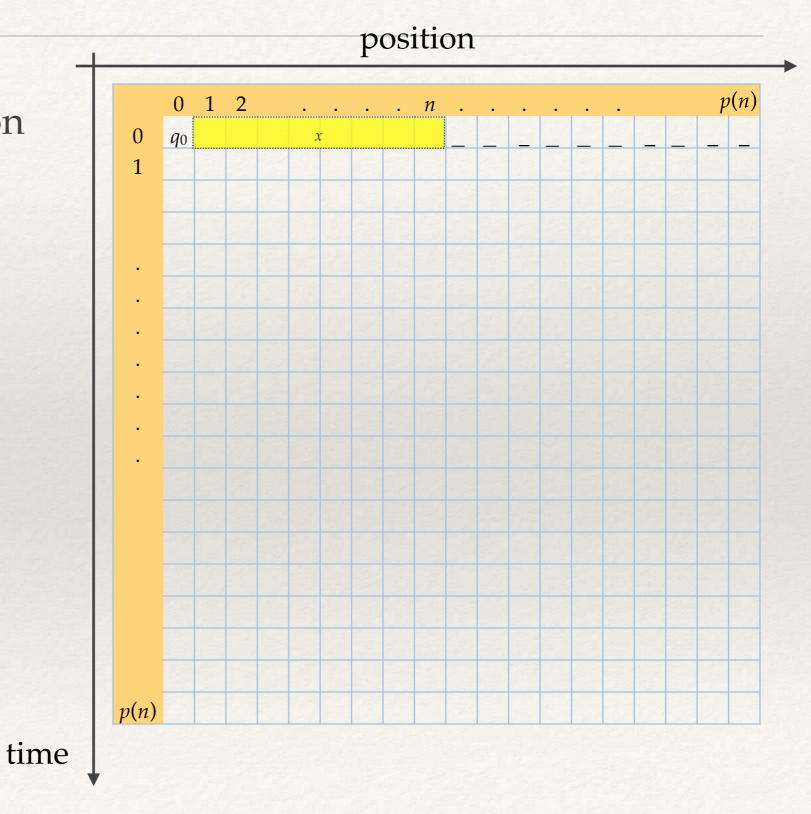
\* We encode circuits as words (net-lists), e.g.: 3 7 0 wire  $3 = \neg$  wire 0 4 V 1 2 wire  $4 = 1 \lor 2$ input wires (*x*) 5 7 2 etc.  $\begin{array}{c} 6 \land 1 & 3 \\ 7 \overline{\phantom{a}} & 4 & 5 \end{array}$ 8 V 6 7 →8 8 is output

t wire



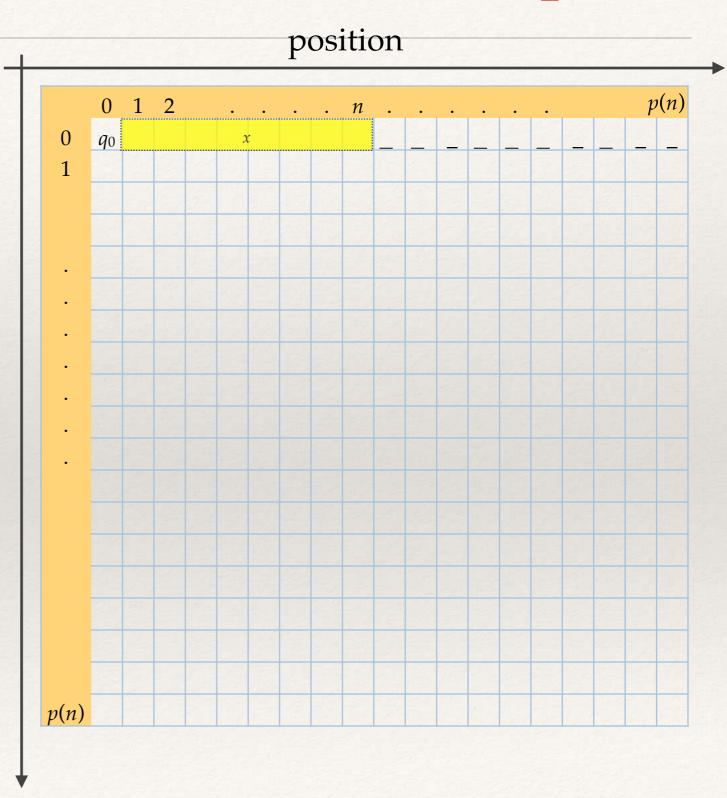


Encode p(n)-time TM M on
 input x by a circuit

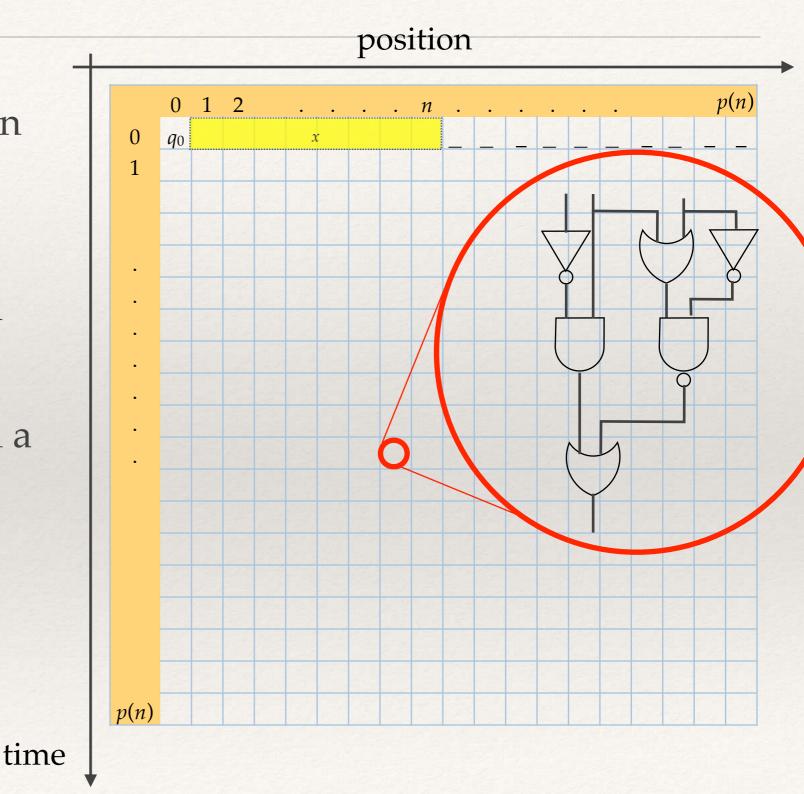


time

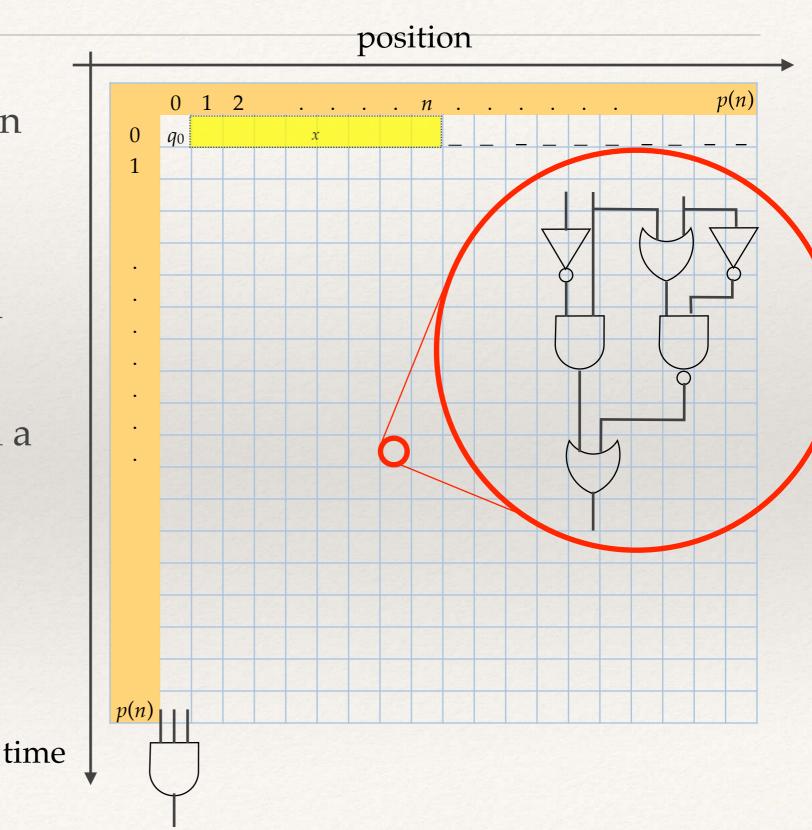
- Encode p(n)-time TM M on
   input x by a circuit
- constant gates 1/0 encode
   initial state q<sub>0</sub>, input x, and
   blanks



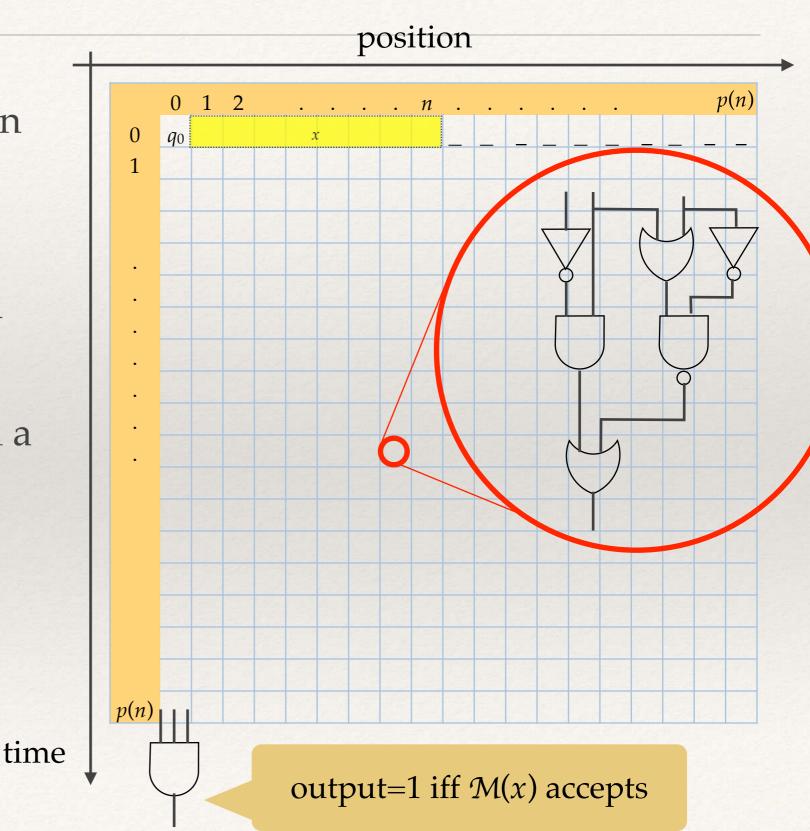
- Encode *p*(*n*)-time TM *M* on
   input *x* by a circuit
- constant gates 1/0 encode
   initial state q<sub>0</sub>, input x, and
   blanks
- each inner cell depends on a constant # cells on row above
  - $\Rightarrow circuit piece of cst size$ (replicated  $p(n)^2$  times)



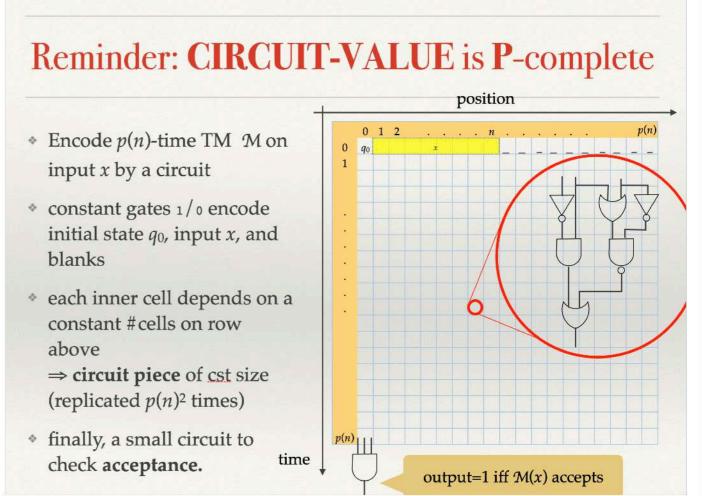
- Encode *p*(*n*)-time TM *M* on
   input *x* by a circuit
- constant gates 1/0 encode
   initial state q<sub>0</sub>, input x, and
   blanks
- \* each inner cell depends on a constant # cells on row above
   ⇒ circuit piece of cst size
  - (replicated  $p(n)^2$  times)
- finally, a small circuit to check acceptance.



- Encode *p*(*n*)-time TM *M* on
   input *x* by a circuit
- constant gates 1/0 encode
   initial state q<sub>0</sub>, input x, and
   blanks
- \* each inner cell depends on a constant # cells on row above
  ⇒ circuit piece of cst size
  - (replicated  $p(n)^2$  times)
- finally, a small circuit to check acceptance.

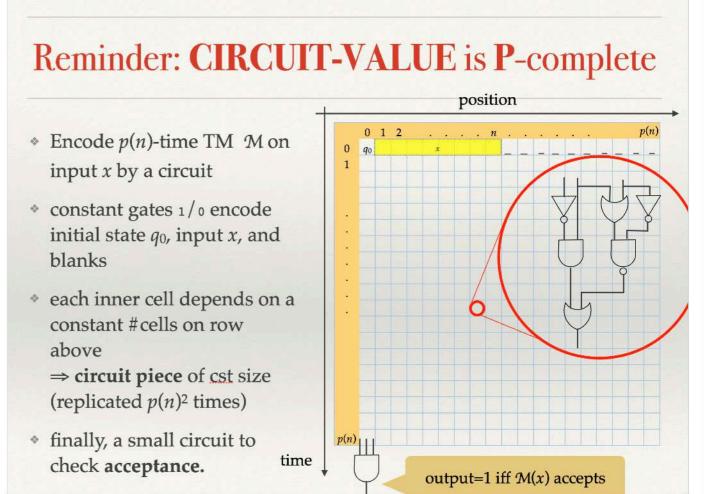


Each row encodes a config.
 of a one-tape TM M

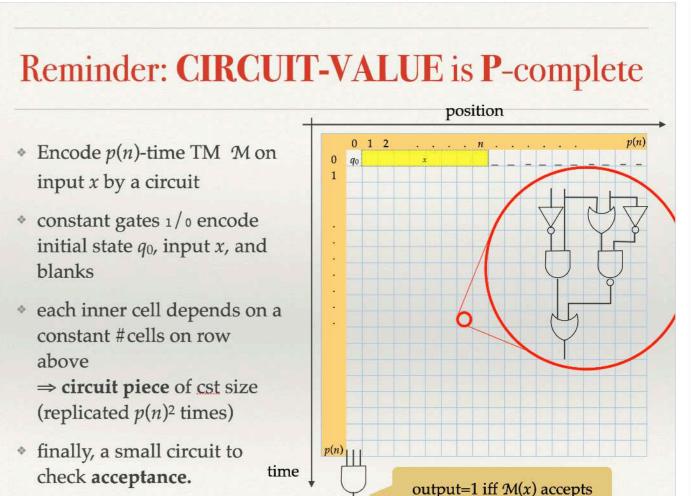


Each row encodes a config.
 of a one-tape TM M

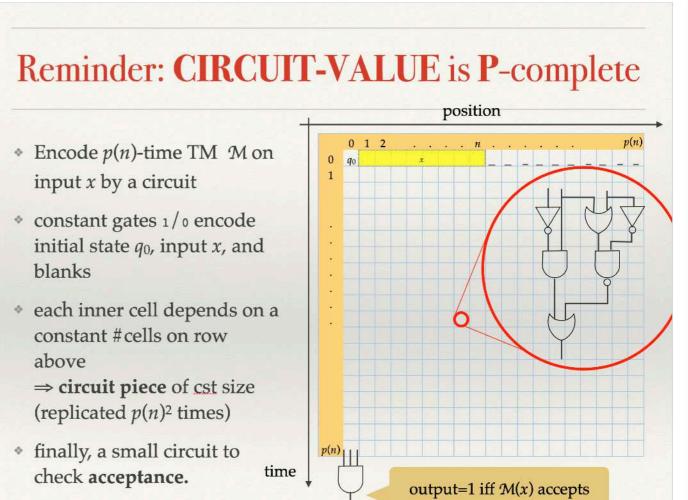
\* ... in **binary** 



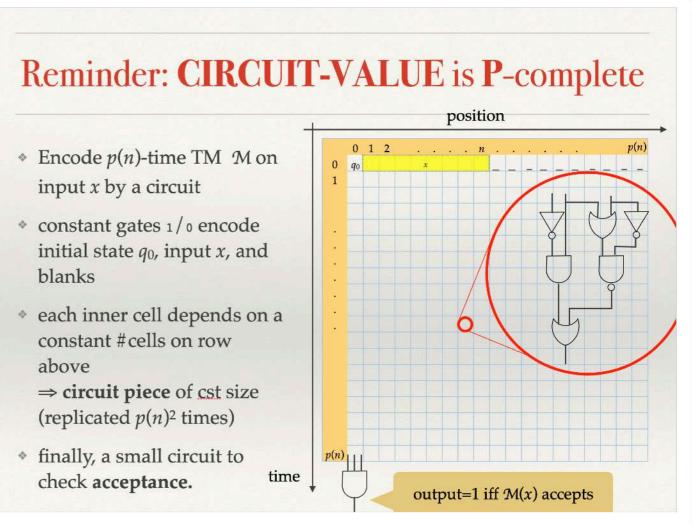
- Each row encodes a config.
   of a one-tape TM M
- \* ... in **binary**
- the machine parks the head at position 0 before accepting/rejecting



- Each row encodes a config.
   of a one-tape TM M
- \* ... in **binary**
- the machine parks the head at position 0 before accepting/rejecting
- ... and continues working
  (doing **nothing**) forever (at least until time *p*(*n*))



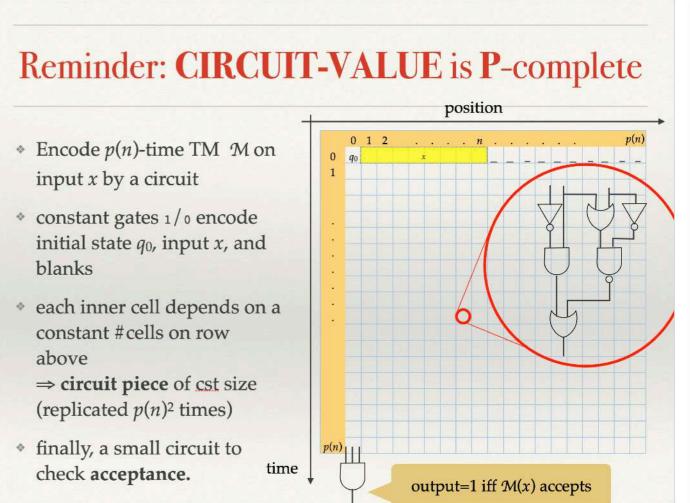
- Each row encodes a config.
   of a one-tape TM M
- \* ... in **binary**
- the machine parks the head at position 0 before accepting/rejecting
- and continues working
  (doing **nothing**) forever (at least until time *p*(*n*))



Build the circuit in logspace:
2 nested loops from 0 to p(n),
with 2 counters

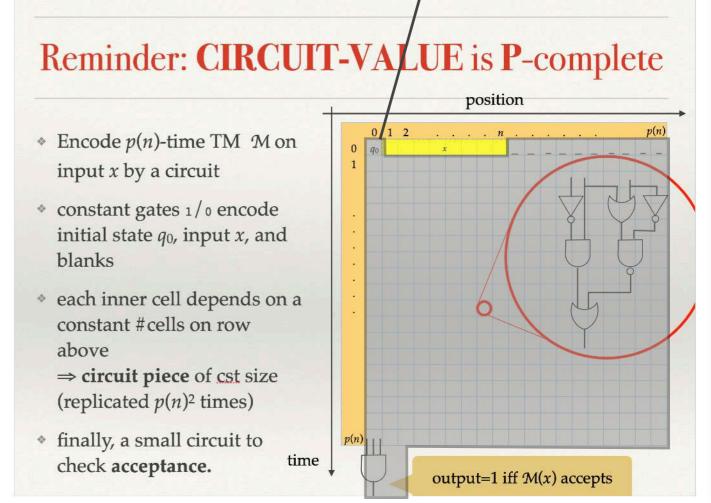
### An important remark

- We can precompile a circuit C<sub>n</sub> with n free input wires
  - without knowing x,
  - just its length *n*,
  - still in logspace



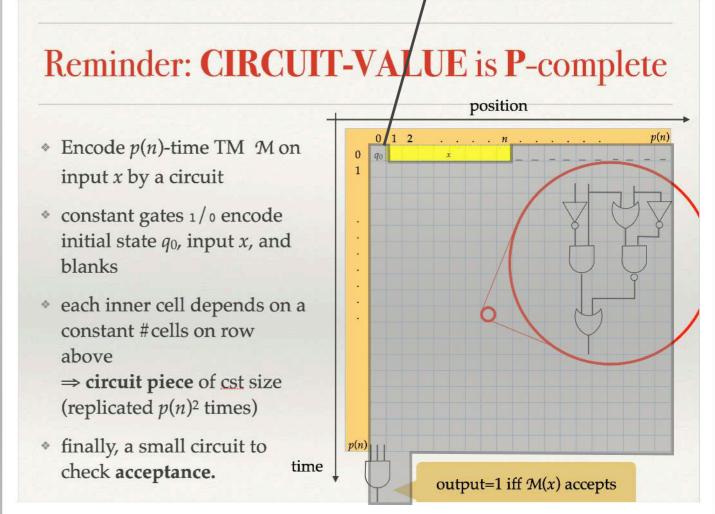
### An important remark $C_n$

- We can precompile a circuit C<sub>n</sub> with n free
   input wires
  - without knowing x,
  - just its length *n*,
  - still in logspace



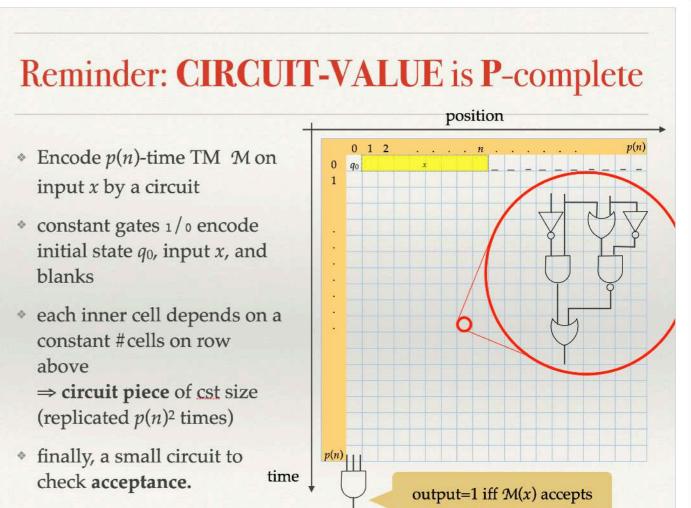
### An important remark $C_n$

- We can precompile a circuit C<sub>n</sub> with n free input wires
   without knowing x,
   just its length n,
  - still in logspace
- \* such that for every xof that size n,  $\mathcal{M}(x)$  accepts  $\Leftrightarrow C_n[x]=1$



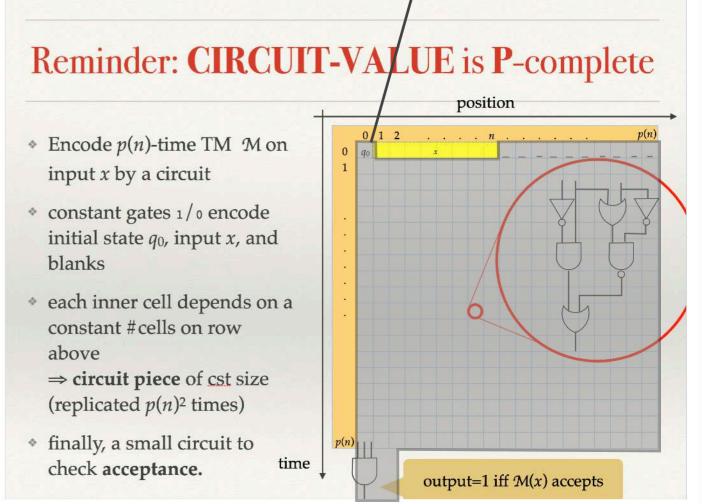
# **Uniform P/poly**

- \* A language L is in uniform P/poly iff for every *n*, one can build a circuit  $C_n$ — in space  $O(\log n)$ — such that for every
  - input *x* of size = n,  $x \in L \Leftrightarrow C_n[x] = 1$



# Uniform P/poly

- A language L is in uniform P/poly iff for every n, one can build a circuit C<sub>n</sub>
   in space O(log n)
   such that for every
  - input x of size = n,  $x \in L \Leftrightarrow C_n[x]=1$

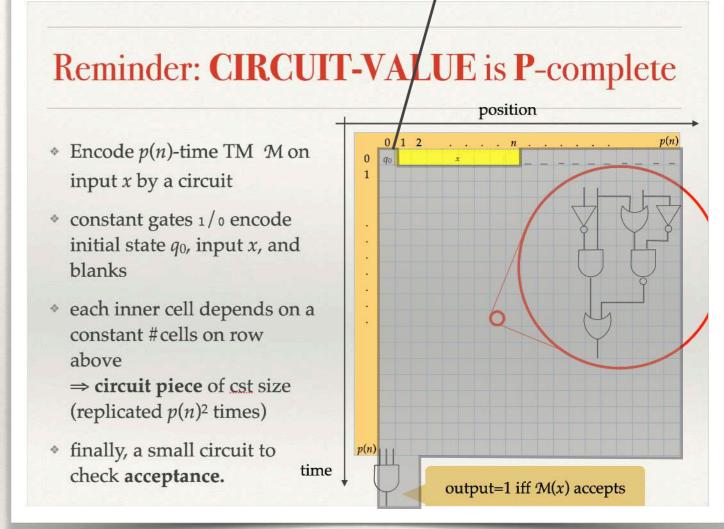


 $C_n$ 

# Uniform P/poly

- A language L is in uniform P/poly iff for every n, one can build a circuit Cn
  — in space O(log n)
  — such that for every
  - input *x* of size = *n*,  $x \in L \Leftrightarrow C_n[x]=1$

\* **Prop.**  $P \subseteq$  **uniform** P/poly.



 $C_n$ 

#### (This is what we have just proved!)

# **P** = Uniform **P**/poly

\* A language *L* is in **uniform P/poly** iff for every *n*, one can build a circuit  $C_n$ — in space  $O(\log n)$ — such that for every input *x* of size = *n*,  $x \in L \Leftrightarrow C_n[x]=1$ 

\* **Prop.**  $P \subseteq$  **uniform** P/poly.

- In fact:
  Prop. P = uniform P/poly.
- \* Proof. Let  $L \in$  uniform P/poly. On input x (size n), compute  $C_n$  in space  $k \log n$ , hence in time  $O(n^k)$ . Then evaluate  $C_n[x]$ in polytime. Hence  $L \in \mathbf{P}$ .

## (Non-uniform) P/poly

\* A language *L* is in **uniform** P/poly iff for every *n*, one there is a circuit  $C_n$ — in space O(of size p(n)), for some fixed polynomial *p* — such that for every input *x* of size = *n*,  $x \in L \Leftrightarrow C_n[x]=1$ 

# (Non-uniform) P/poly

\* A language *L* is in **uniform** P/poly iff for every *n*, one there is -a circuit  $C_n$ — in space O(of size p(n), for some fixed polynomial *p* — such that for every input *x* of size = *n*,  $x \in L \Leftrightarrow C_n[x]=1$ 

# (Non-uniform) P/poly

\* A language *L* is in **uniform** P/poly iff for every *n*, one there is -a circuit  $C_n$ — in space O(Of size p(n), for some fixed polynomial p— such that for every input *x* of size = *n*,  $x \in L \Leftrightarrow C_n[x]=1$ We no longer require to be able to **compute**  $C_n!$ We no longer require to be able to **compute**  $C_n!$ We no longer require to be able to **compute**  $C_n!$ 

# P/poly

\* **Defn.** A language *L* is in **P/poly** iff there is a family  $(C_n)_{n \in \mathbb{N}}$  of circuits: — of size p(n) (for some fixed polynomial p) — such that for every input *x* (letting *n* be its size)  $x \in L \Leftrightarrow C_n[x]=1$ .

# P/poly

\* **Defn.** A language *L* is in **P/poly** iff there is a family  $(C_n)_{n \in \mathbb{N}}$  of circuits: — of size p(n) (for some fixed polynomial p) — such that for every input *x* (letting *n* be its size)  $x \in L \Leftrightarrow C_n[x]=1.$ 

\* It was initially hoped that we could prove that some NPcomplete languages do **not** have polynomial circuits. That would immediately imply  $P \neq NP$ , since  $P \subseteq P/poly$ .

# P/poly is pretty weird

 Prop. P/poly contains some undecidable languages. **Defn.** A language *L* is in **P/poly** iff there is a family  $(C_n)_{n \in \mathbb{N}}$  of circuits: — of size p(n) (for some fixed polynomial p) — such that for every input *x* (letting *n* be its sin  $x \in L \Leftrightarrow C_n[x]=1$ .

# P/poly is pretty weird

 Prop. P/poly contains some undecidable languages. **Defn.** A language *L* is in **P/poly** iff there is a family  $(C_n)_{n \in \mathbb{N}}$  of circuits: — of size p(n) (for some fixed polynomial p) — such that for every input *x* (letting *n* be its since  $x \in L \Leftrightarrow C_n[x]=1$ .

\* Proof.
Let *L* be undecidable (e.g., HALT).
Then  $L' = \{ \text{words } 1^n \mid a_1 \dots a_k \in L, n = a_1 + 2a_2 + \dots + 2^{k-1}a_{k+2}k \}$ is undecidable, too; and *C<sub>n</sub>* is...
If bin(*n*) ∉ *L*If bin(*n*) ∈ *L* 

# P/poly is pretty weird

 Prop. P/poly contains some undecidable languages. **Defn.** A language *L* is in **P/poly** iff there is a family  $(C_n)_{n \in \mathbb{N}}$  of circuits: — of size p(n) (for some fixed polynomial p) — such that for every input *x* (letting *n* be its since  $x \in L \Leftrightarrow C_n[x]=1$ .

\* *Proof.* Let *L* be undecidable (e.g., HALT). Then  $L' = \{ words \ 1^n \ |$ 

convert from binary to unary

```
a_1...a_k \in L, n = a_1 + 2a_2 + ... + 2^{k-1}a_{k+2} + 2^k
```

is undecidable, too; and *C*<sub>n</sub> is...

If  $bin(n) \notin L$ 

If  $bin(n) \in L$ 

0 (ignores its input, size O(1))

# P/poly is pretty weird

 Prop. P/poly contains some undecidable languages. **Defn.** A language *L* is in **P/poly** iff there is a family  $(C_n)_{n \in \mathbb{N}}$  of circuits: — of size p(n) (for some fixed polynomial p) — such that for every input *x* (letting *n* be its since  $x \in L \Leftrightarrow C_n[x]=1$ .

\* *Proof.* Let *L* be undecidable (e.g., HALT). Then  $L' = \{ words \ 1^n \ |$ 

convert from binary to unary

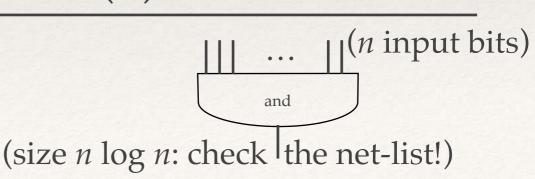
 $a_1...a_k \in L, n = a_1 + 2a_2 + ... + 2^{k-1}a_{k+2} + 2^k$ 

is undecidable, too; and *C<sub>n</sub>* is...

If  $bin(n) \notin L$ 

If  $bin(n) \in L$ 

0 (ignores its input, size O(1))



# Weird, too: advice strings

- Imagine you wish to decide whether *x* is in *L*.
- ... and you have a « cheat sheet » *w<sub>n</sub>* depending only on n = size(x). Corpus ID: 115398060 How can this help?

#### **Turing machines that take advice**

R. Karp, R. J. Lipton · Published 1982 · Computer Science



https://upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Karp\_mg\_7725-b.cr2.jpg/520px-Karp\_mg\_7725-b.cr2.jpg

https://cyber.gatech.edu/sites/default/files/styles/faculty bio pic/public/dick-lipton 1.jpg?itok=EkU43aPB

# Weird, too: advice strings

- Imagine you wish to decide whether *x* is in *L*.
- ... and you have a « cheat sheet » *w<sub>n</sub>* depending only on n = size(x). Corpus ID: 115398060 How can this help?
- \* If  $w_n$  allowed to have size  $2^n$ , then this helps **a lot** (why?)

#### **Turing machines that take advice**

R. Karp, R. J. Lipton · Published 1982 · Computer Science



https://upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Karp\_mg\_7725-b.cr2.jpg/520px-Karp\_mg\_7725-b.cr2.jpg

# Weird, too: advice strings

- Imagine you wish to decide whether *x* is in *L*.
- \* ... and you have a « cheat sheet »  $w_n$  depending only on n = size(x). Corpus ID: 115398060 How can this help?
- \* If  $w_n$  allowed to have size  $2^n$ , then this helps **a lot** (why?)
- \* What if  $w_n$  is only allowed to have **polynomial size**?

#### **Turing machines that take advice**

R. Karp, R. J. Lipton · Published 1982 · Computer Science



https://upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Karp\_mg\_7725-b.cr2.jpg/520px-Karp\_mg\_7725-b.cr2.jpg

# Advice strings and P/poly (1/2)

\* **Prop.**  $L \in \mathbf{P}/\mathbf{poly}$  iff there is a polytime TM  $\mathcal{M}$  and a family  $(w_n)_{n \in \mathbb{N}}$  of so-called **advice strings:** — of polysize p(n)— s.t.  $\forall x$  (size n)  $x \in L \Leftrightarrow \mathcal{M}(x, w_n)$  accepts. **Defn.** A language *L* is in **P/poly** iff there is a family  $(C_n)_{n \in \mathbb{N}}$  of circuits: — of size p(n) (for some fixed polynomial p) — such that for every input *x* (letting *n* be its size  $x \in L \Leftrightarrow C_n[x]=1$ .

Proof.

# Advice strings and P/poly (1/2)

**\* Prop.** *L* ∈ **P/poly** iff there is a polytime TM *M* and a family  $(w_n)_{n \in \mathbb{N}}$  of so-called **advice strings**:
— of polysize *p*(*n*)
— s.t. ∀ *x* (size *n*) *x* ∈ *L* ⇔  $\mathcal{M}(x, w_n)$  accepts.

**Defn.** A language *L* is in **P/poly** iff there is a family  $(C_n)_{n \in \mathbb{N}}$  of circuits: — of size p(n) (for some fixed polynomial p) — such that for every input *x* (letting *n* be its size  $x \in L \Leftrightarrow C_n[x]=1$ .

Proof.

\* If  $L \in \mathbf{P}/\mathbf{poly}$ , then let  $w_n$  be a net-list for  $C_n$ 

# Advice strings and P/poly (1/2)

**\* Prop.** *L* ∈ **P/poly** iff there is a polytime TM *M* and a family  $(w_n)_{n \in \mathbb{N}}$  of so-called **advice strings:**— of polysize *p*(*n*)
— s.t. ∀ *x* (size *n*) *x* ∈ *L* ⇔ *M*(*x*,*w<sub>n</sub>*) accepts.

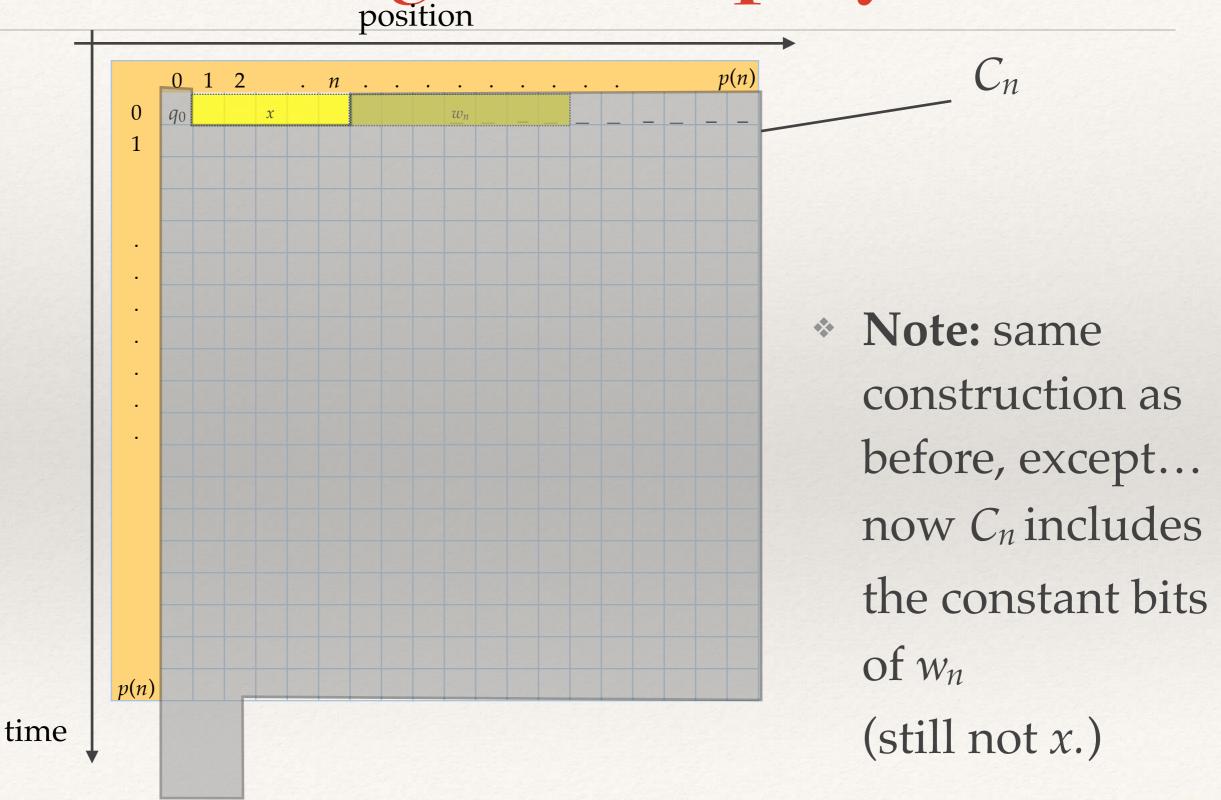
**Defn.** A language *L* is in **P/poly** iff there is a family  $(C_n)_{n \in \mathbb{N}}$  of circuits: — of size p(n) (for some fixed polynomial p) — such that for every input *x* (letting *n* be its size  $x \in L \Leftrightarrow C_n[x]=1$ .

#### Proof.

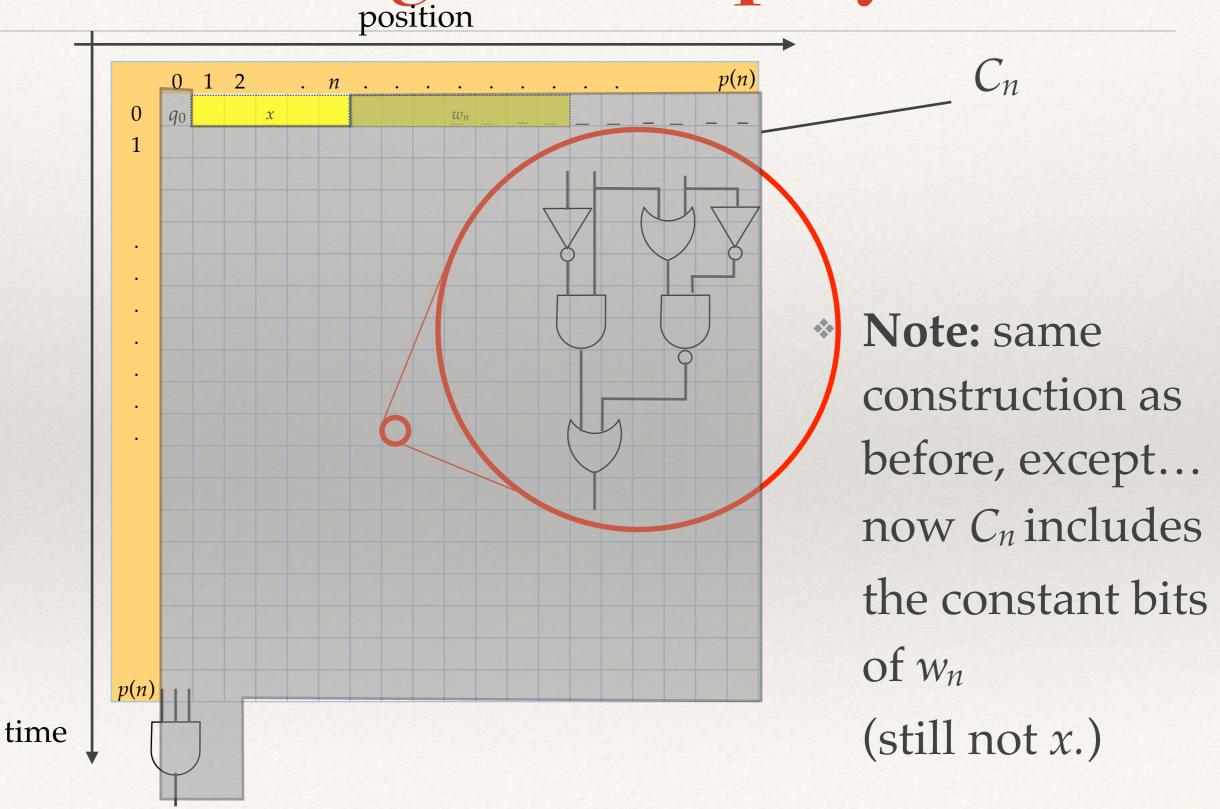
- \* If  $L \in \mathbf{P}/\mathbf{poly}$ , then let  $w_n$  be a net-list for  $C_n$
- If L has advice strings
   w<sub>n</sub>, then...

(see next slide)

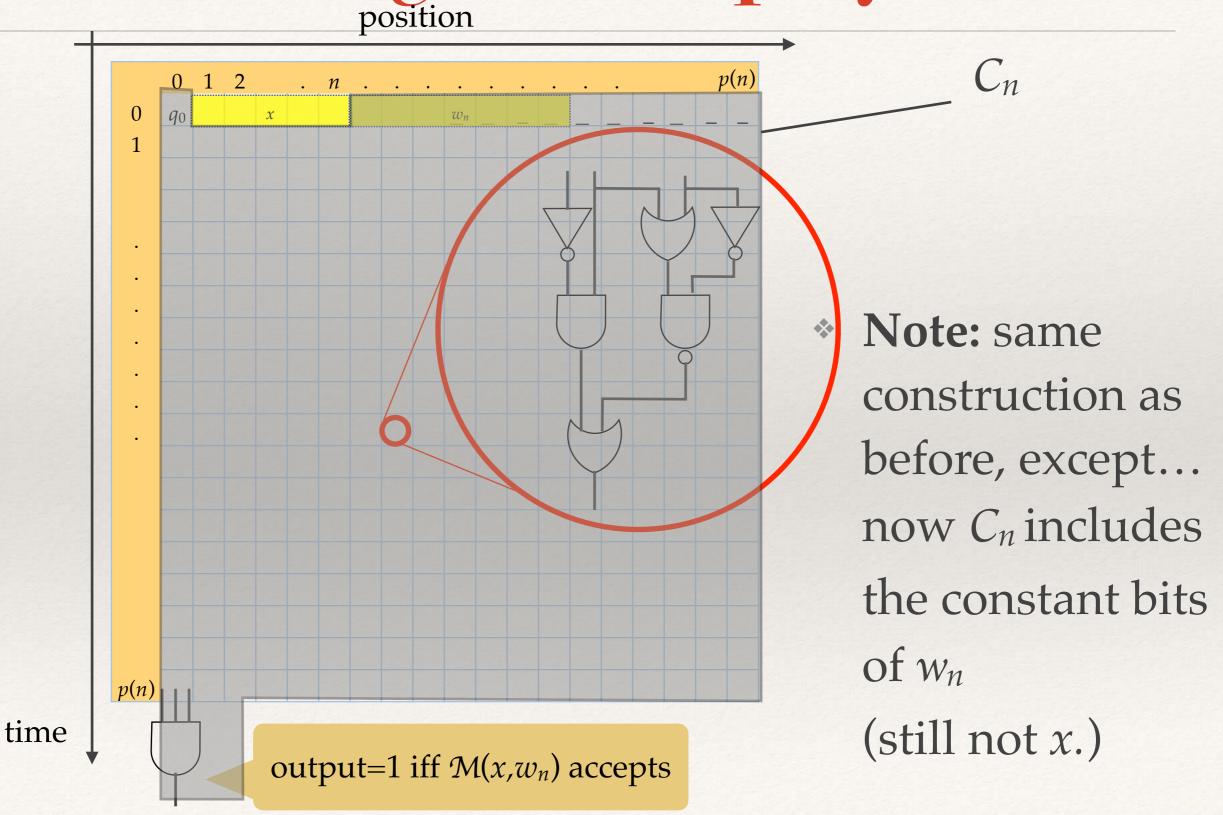
# Advice strings and P/poly (2/2)



# Advice strings and P/poly (2/2)



# Advice strings and P/poly (2/2)



### Adleman's Theorem

### Adleman's Theorem

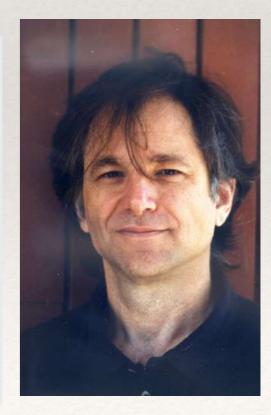
#### **Theorem (Prop. 1.20).** BPP $\subseteq$ P/poly.

#### DOI: 10.1109/SFCS.1978.37 · Corpus ID: 15176763

#### Two theorems on random polynomial time

L. Adleman · Published 1978 · Computer Science · 19th Annual Symposium on Foundations of Computer Science (sfcs 1978)

The use of randomness in computation was first studied in abstraction by Gill [4]. In recent years its use in both practical and theoretical areas has become apparent. Strassen and Solovay [10]; Miller [7]; and Rabin [8] have used it to transform primality testing into a (for many purposes) tractible problem. We can see in retrospect that it was implicit in algorithms by Ber1ekamp [2], Lehmer [6], and Cippola [3] (1903!). Where the traditional method of polynomial reduction has been... CONTINUE READING



https://upload.wikimedia.org/wikipedia/commons/thumb/a/af/Len-mankin-pic.jpg/440px-Len-mankin-pic.jpg

### Adleman's Theorem

#### \* Theorem (Prop. 1.20). BPP $\subseteq$ P/poly.

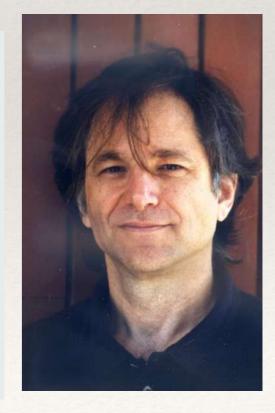
Interestingly, we will be able to show
the existence of the circuits *C<sub>n</sub>*, (or the advice strings)
but we won't be able to compute them (efficiently).

DOI: 10.1109/SFCS.1978.37 · Corpus ID: 15176763

#### Two theorems on random polynomial time

L. Adleman • Published 1978 • Computer Science • 19th Annual Symposium on Foundations of Computer Science (sfcs 1978)

The use of randomness in computation was first studied in abstraction by Gill [4]. In recent years its use in both practical and theoretical areas has become apparent. Strassen and Solovay [10]; Miller [7]; and Rabin [8] have used it to transform primality testing into a (for many purposes) tractible problem. We can see in retrospect that it was implicit in algorithms by Ber1ekamp [2], Lehmer [6], and Cippola [3] (1903!). Where the traditional method of polynomial reduction has been... CONTINUE READING



\* Let *L* be in **BPP**.

A language *L* is in **BPP** if and only if there is a **polynomial-time** TM  $\mathcal{M}$ such that for every input *x* (of size *n*):

 $\Pr_r(\mathcal{M}(x,r) \operatorname{errs}) \leq \varepsilon.$ 

error  $\varepsilon = 1/2^{q(n)}$ 

- \* Let *L* be in **BPP**.
- Among the tapes r (of size p(n)),
   is there one such that

for every *x* of size *n*,  $\mathcal{M}(x,r)$  always gives the correct answer? A language *L* is in **BPP** if and only if there is a **polynomial-time** TM  $\mathcal{M}$ such that for every input *x* (of size *n*):

 $\Pr_r(\mathcal{M}(x,r) \operatorname{errs}) \leq \varepsilon.$ 

error  $\varepsilon = 1/2^{q(n)}$ 

- \* Let *L* be in **BPP**.
- Among the tapes r (of size p(n)),
   is there one such that

for every *x* of size *n*,  $\mathcal{M}(x,r)$  always gives the correct answer?

 Let us use the probabilistic method... A language *L* is in **BPP** if and only if there is a **polynomial-time** TM  $\mathcal{M}$ such that for every input *x* (of size *n*):

 $\Pr_r(\mathcal{M}(x,r) \operatorname{errs}) \leq \varepsilon.$ 

error  $\varepsilon = 1/2^{q(n)}$ 

- \* Let *L* be in **BPP**.
- Among the tapes r (of size p(n)),
   is there one such that

for every *x* of size *n*,  $\mathcal{M}(x,r)$  always gives the correct answer?

Let us use the probabilistic method...

A language *L* is in **BPP** if and only if there is a **polynomial-time** TM  $\mathcal{M}$ such that for every input *x* (of size *n*):

 $\Pr_r(\mathcal{M}(x,r) \operatorname{errs}) \leq \varepsilon.$ 

error  $\varepsilon = 1/2^{q(n)}$ 

♦ Pr<sub>r</sub>(∃ x of size n, M(x,r) errs)
 ≤ Σ<sub>x</sub> Pr<sub>r</sub>(M(x,r) errs)
 ≤ 2<sup>n-q(n)</sup>

- \* Let *L* be in **BPP**.
- Among the tapes r (of size p(n)),
   is there one such that

for **every** x of size n,  $\mathcal{M}(x,r)$  **always** gives the correct answer?

Let us use the probabilistic method...

A language *L* is in **BPP** if and only if there is a **polynomial-time** TM  $\mathcal{M}$ such that for every input *x* (of size *n*):

 $\Pr_r(\mathcal{M}(x,r) \operatorname{errs}) \leq \varepsilon.$ 

error  $\varepsilon = 1/2^{q(n)}$ 

◇ Pr<sub>r</sub>(∃ x of size n, M(x,r) errs)
 ≤ Σ<sub>x</sub> Pr<sub>r</sub>(M(x,r) errs)
 ≤ 2<sup>n-q(n)</sup>

... < 1 if we had the good</li>
taste to pick q(n)=n+1, say.

\* Let *L* be in **BPP**.

For each size *n*, there is a tape  $r_n$  (of size p(n)) such that for **every** *x* of size *n*,  $\mathcal{M}(x,r_n)$  gives the correct answer, i.e.:

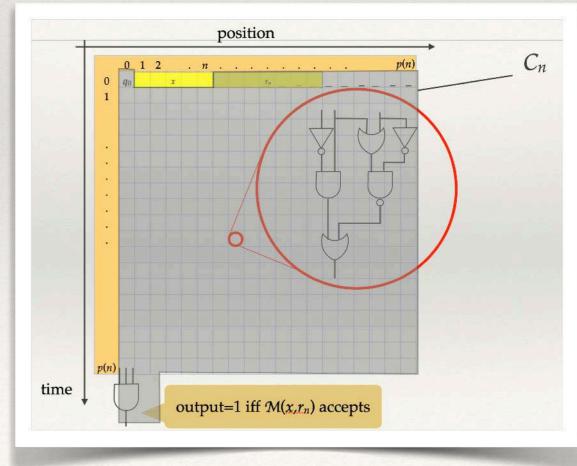
— if  $x \in L$  then  $\mathcal{M}(x,r_n)$  accepts

— if  $x \notin L$  then  $\mathcal{M}(x,r_n)$  rejects.

\* Let *L* be in **BPP**.

For each size *n*, there is a tape  $r_n$  (of size p(n)) such that for **every** *x* of size *n*,  $\mathcal{M}(x,r_n)$  gives the correct answer, i.e.:

- if  $x \in L$  then  $\mathcal{M}(x,r_n)$  accepts
- if *x* ∉ *L* then  $\mathcal{M}(x,r_n)$  rejects.
- \* ... Just use  $r_n$  as advice string!  $\Box$



# The Karp-Lipton Theorems, and consequences

Corpus ID: 115398060

#### **Turing machines that take advice**

R. Karp, R. J. Lipton · Published 1982 · Computer Science

https://upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Karp\_mg\_7725-b.cr2.jpg/520px-Karp\_mg\_7725-b.cr2.jpg

(Yes, them again!)

https://cyber.gatech.edu/sites/default/files/styles/faculty\_bio\_pic/public/dick-lipton\_1.jpg?itok=EkU43aPB

\* Recall that  $\Pi_{k}=co\sum_{k}p_{k}=for every k \ge 1$ . (co*C* is the class of complements of languages of *C*.)

- \* Recall that  $\Pi_{k}=co\sum_{k}p_{k}=for every k \ge 1$ . (co*C* is the class of complements of languages of *C*.)
- ◆ **Fact. co** is monotonic: if  $C \subseteq C'$ , then **co** $C \subseteq$  **co**C'.

- \* Recall that  $\Pi_{k}=co\sum_{k}p_{k}=for every k \ge 1$ . (co*C* is the class of complements of languages of *C*.)
- ◆ **Fact. co** is monotonic: if  $C \subseteq C'$ , then **co** $C \subseteq$  **co**C'.
- (Already argued last time, as part of the Sipser-Gács-Lautemann theorem.)

- Claim. For any class *C*, the following are equivalent:
  1.  $C = \mathbf{co}C$ 2.  $C \subseteq \mathbf{co}C$ 
  - 3.  $\mathbf{co} C \subseteq C$ .

- Claim. For any class *C*, the following are equivalent:
  1. *C* = co*C*2. *C* ⊆ co*C*3. co*C* ⊆ *C*.
- \*  $2 \Rightarrow 3$ : let *L* in **co***C*.

Its complement is in *C*, hence in **co***C* by 2. Therefore *L* is also in *C*.

- Claim. For any class *C*, the following are equivalent:
  1. *C* = co*C*2. *C* ⊆ co*C*3. co*C* ⊆ *C*.
- \*  $2 \Rightarrow 3$ : let *L* in **co***C*.

Its complement is in *C*, hence in **co***C* by 2. Therefore *L* is also in *C*.

\*  $3 \Rightarrow 2$ , and therefore  $3 \Rightarrow 1$ : similar.  $1 \Rightarrow 2$ : obvious.  $\Box$ 

# Does PH collapse?

- \* We say that **PH** <u>collapses at level 2</u> iff  $\sum_{p_2}=\prod_{p_2}$ . By the previous claim, equivalent to  $\prod_{p_2} \subseteq \sum_{p_2}$ .
- \* **Prop.** If  $\sum_{p_2} = \prod_{p_2} p_2$  then  $\sum_{p_2} = \prod_{p_2} p_2 = \sum_{p_3} = \prod_{p_3} p_3 = \sum_{p_4} p_4 = \dots = PH$  (whence the name.)

# Does PH collapse?

- \* We say that **PH** <u>collapses at level 2</u> iff  $\sum_{p_2}=\prod_{p_2}$ . By the previous claim, equivalent to  $\prod_{p_2} \subseteq \sum_{p_2}$ .
- \* **Prop.** If  $\sum_{p_2} = \prod_{p_2} p_2$  then  $\sum_{p_2} = \prod_{p_2} p_2 = \sum_{p_3} = \prod_{p_3} p_4 = \dots = PH$  (whence the name.)
- \* *Proof sketch*. Let  $\exists \cdot C$  be the class of the languages  $\{x \mid \exists y \text{ of poly size, } (x,y) \in L'\}, L' \in C.$

# Does PH collapse?

- \* We say that **PH** <u>collapses at level 2</u> iff  $\sum_{p_2}=\prod_{p_2}$ . By the previous claim, equivalent to  $\prod_{p_2} \subseteq \sum_{p_2}$ .
- \* **Prop.** If  $\sum_{p_2} = \prod_{p_2} p_2$  then  $\sum_{p_2} = \prod_{p_2} p_2 = \sum_{p_3} = \prod_{p_3} p_4 = \dots = PH$  (whence the name.)
- \* *Proof sketch*. Let  $\exists \cdot C$  be the class of the languages  $\{x \mid \exists y \text{ of poly size, } (x,y) \in L'\}, L' \in C.$
- \*  $\sum P_3 = \mathbf{J} \cdot \prod P_2 = \mathbf{J} \cdot \sum P_2 = \mathbf{J} \cdot \mathbf{J} \cdot \mathbf{coNP} = \mathbf{J} \cdot \mathbf{coNP} = \sum P_2$ , then  $\prod P_3 = \mathbf{co} \sum P_3 = \mathbf{co} \sum P_2 = \prod P_2 = \sum P_2$ , etc.  $\Box$

- ★ **Theorem (Prop. 1.21).** If **NP**  $\subseteq$  **P**/**poly**, then the polynomial hierarchy collapses at level 2:  $\Pi P_2 \subseteq \sum P_2$ .
- \* Let me give you a wrong argument first. (We will repair it later.)

- ★ **Theorem (Prop. 1.21).** If **NP**  $\subseteq$  **P**/**poly**, then the polynomial hierarchy collapses at level 2:  $\Pi P_2 \subseteq \sum P_2$ .
- \* Let me give you a wrong argument first. (We will repair it later.)
- \* Let  $L \in \prod_{p_2} be \{x \mid \forall y \text{ of size } p(n), (x,y) \in L'\}, L' \in \mathbb{NP}$ .

- **\* Theorem (Prop. 1.21).** If NP ⊆ P/poly, then the polynomial hierarchy collapses at level 2:  $\Pi P_2 \subseteq \sum P_2$ .
- \* Let me give you a wrong argument first. (We will repair it later.)
- \* Let  $L \in \prod_{p_2} be \{x \mid \forall y \text{ of size } p(n), (x,y) \in L'\}, L' \in \mathbb{NP}$ .
- \* L' has polynomial circuits C<sub>n</sub>, so

- **\* Theorem (Prop. 1.21).** If NP ⊆ P/poly, then the polynomial hierarchy collapses at level 2:  $\Pi P_2 \subseteq \sum P_2$ .
- \* Let me give you a wrong argument first. (We will repair it later.)
- \* Let  $L \in \prod_{p_2} be \{x \mid \forall y \text{ of size } p(n), (x,y) \in L'\}, L' \in \mathbb{NP}$ .
- \* L' has polynomial circuits C<sub>n</sub>, so
- \*  $L = \{x \mid \forall y \text{ of size } p(n), C_{\text{size}(x,y)}[(x,y)]=1\}$

- **Theorem (Prop. 1.21).** If NP ⊆ P/poly, then the polynomial hierarchy collapses at level 2:  $\Pi P_2 \subseteq \sum P_2$ .
- \* Let me give you a wrong argument first. (We will repair it later.)
- \* Let  $L \in \prod_{p_2} be \{x \mid \forall y \text{ of size } p(n), (x,y) \in L'\}, L' \in \mathbb{NP}$ .
- \* L' has polynomial circuits  $C_n$ , so
- \*  $L = \{x \mid \forall y \text{ of size } p(n), C_{\text{size}(x,y)}[(x,y)]=1\}$
- \* = { $x \mid \exists poly size C, \forall y of size p(n), C[(x,y)]=1$ }  $\in \sum_{p_2} P_2$ .

- **\* Theorem (Prop. 1.21).** If NP ⊆ P/poly, then the polynomial hierarchy collapses at level 2:  $\Pi P_2 \subseteq \sum P_2$ .
- \* Let me give you a wrong argument first. (We will repair it later.)
- \* Let  $L \in \prod_{p_2} be \{x \mid \forall y \text{ of size } p(n), (x,y) \in L'\}, L' \in \mathbb{NP}$ .
- \* L' has polynomial circuits C<sub>n</sub>, so
- \*  $L = \{x \mid \forall y \text{ of size } p(n), C_{\text{size}(x,y)}[(x,y)]=1\}$
- \* = { $x \mid \exists poly size C, \forall y of size p(n), C[(x,y)]=1$ }  $\in \sum_{p_2}$

We can permute quantifiers, because  $C_{\text{size}(x,y)}=C_{n+p(n)+3}$  does **not** depend on *y*.

- ★ Theorem (Prop. 1.21). If NP ⊆ P/poly, then the polynomial hierarchy collapses at level 2:  $\Pi P_2 \subseteq \sum P_2$ .
- \* Let me give you a wrong argument first. (We will repair it later.)
- \* Let  $L \in \prod_{p_2} be \{x \mid \forall y \text{ of size } p(n), (x,y) \in L'\}, L' \in \mathbb{NP}$ .
- \* L' has polynomial circuits  $C_n$ , so
- \*  $L = \{x \mid \forall y \text{ of size } p(n), C_{\text{size}(x,y)}[(x,y)]=1\}$

- Where is the bug?
- \* = { $x \mid \exists poly size C, \forall y of size p(n), C[(x,y)]=1$ }  $\in \Sigma^{p_2}$ .

We can permute quantifiers, because  $C_{\text{size}(x,y)} = C_{n+p(n)+3}$  does **not** depend on *y*.

- ★ Theorem (Prop. 1.21). If NP ⊆ P/poly, then the polynomial hierarchy collapses at level 2:  $\Pi P_2 \subseteq \sum P_2$ .
- \* Let me give you a wrong argument first. (We will repair it later.)
- \* Let  $L \in \prod_{p_2} be \{x \mid \forall y \text{ of size } p(n), (x,y) \in L'\}, L' \in \mathbb{NP}$ .
- \* L' has polynomial circuits C<sub>n</sub>, so
- \*  $L = \{x \mid \forall y \text{ of size } p(n), C_{\text{size}(x,y)}[(x,y)]=1\}$
- \* = { $x \mid \exists poly size C, \forall y of size p(n), C[(x,y)]=1$ }  $\in \Sigma^{p_2}$ .

We can permute quantifiers, because  $C_{\text{size}(x,y)}=C_{n+p(n)+3}$  does **not** depend on *y*. Hint: this is  $\Sigma^*$ , not *L* 

(just take the constant

circuit 1 for *C* here)

# The bug

*L* = {x | ∀y of size p(n), C<sub>size(x,y)</sub>[(x,y)]=1}
≠ {x | ∃poly size C, ∀y of size p(n), C[(x,y)]=1}:
here we trust some divine (all-powerful) being Merlin to give us the magical circuit C<sub>size(x,y)</sub> for C...



# The bug

- *L* = {x | ∀y of size p(n), C<sub>size(x,y)</sub>[(x,y)]=1}
  ≠ {x | ∃poly size C, ∀y of size p(n), C[(x,y)]=1}:
  here we trust some divine (all-powerful) being Merlin to give us the magical circuit C<sub>size(x,y)</sub> for C...
- \* ... but what prevents it from cheating?
  We must check that the circuit *C* it gives us does the job.

- Imagine you want to solve SAT.
   You are given a clause set S,
   and you ask Merlin: « is S satisfiable? »
- Merlin answers: « yes »
- \* What can you conclude?



- Imagine you want to solve SAT.
   You are given a clause set S,
   and you ask Merlin: « is S satisfiable? »
- Merlin answers: « yes »
- \* What can you conclude?
- \* Of course, nothing.



 Imagine you want to solve SAT.
 You are given a clause set S, and you ask Merlin: « is S satisfiable? give me a satisfying assignment Q»



- Imagine you want to solve SAT.
   You are given a clause set *S*, and you ask Merlin: « is *S* satisfiable?
   give me a satisfying assignment Q»
- Merlin answers: « yes » Q



- Imagine you want to solve SAT.
   You are given a clause set S, and you ask Merlin: « is S satisfiable? give me a satisfying assignment Q»
- Merlin answers: « yes » ǫ



\* You check  $\varrho \models S$ , accept if this is true, reject otherwise.

- Imagine you want to solve SAT.
   You are given a clause set S, and you ask Merlin: « is S satisfiable? give me a satisfying assignment q»
- Merlin answers: « yes » Q

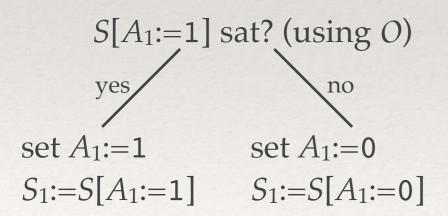


- \* You check  $\varrho \models S$ , accept if this is true, reject otherwise.
- If S satisfiable, then Merlin can make you accept.
   Otherwise, you will necessarily reject.

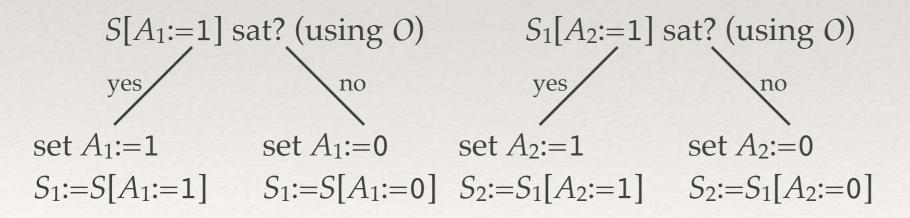
 Now Merlin complains he can only decide whether S is satisfiable (using circuits C<sub>n</sub>), not find a satisfying Q

- Now Merlin complains he can only decide whether S is satisfiable (using circuits C<sub>n</sub>), not find a satisfying Q
- \* You retort that **SAT** is **self-reducible**: Given an oracle *O* deciding satisfiability, one can compute  $\varrho$  such that  $\varrho \models S$  (if any).

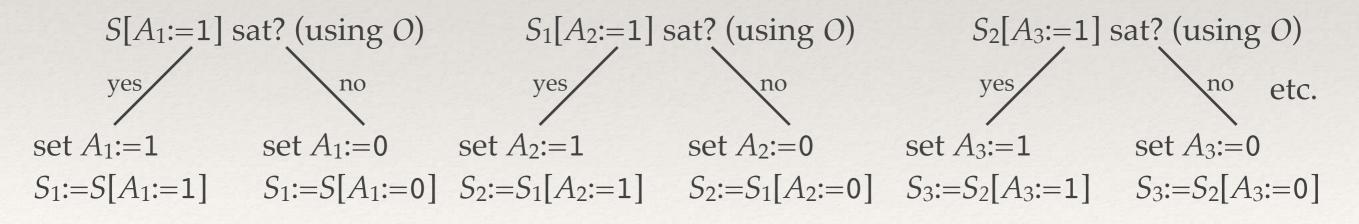
- Now Merlin complains he can only decide whether S is satisfiable (using circuits C<sub>n</sub>), not find a satisfying Q
- \* You retort that **SAT** is **self-reducible**: Given an oracle *O* deciding satisfiability, one can compute  $\varrho$  such that  $\varrho \models S$  (if any).



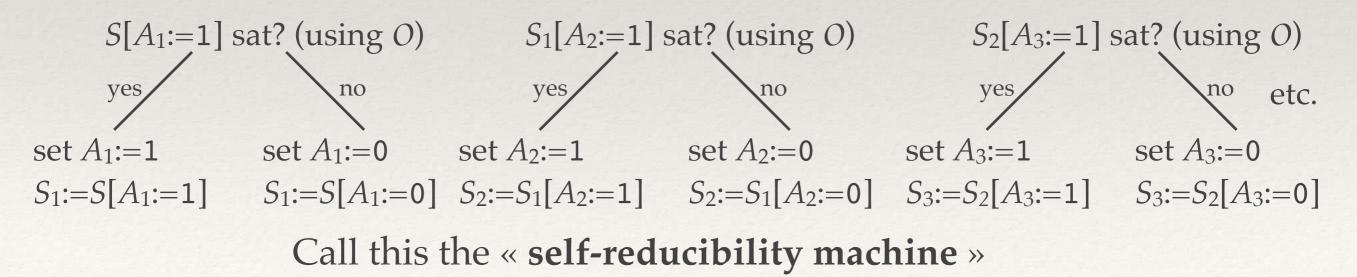
- Now Merlin complains he can only decide whether S is satisfiable (using circuits C<sub>n</sub>), not find a satisfying Q
- \* You retort that **SAT** is **self-reducible**: Given an oracle *O* deciding satisfiability, one can compute  $\varrho$  such that  $\varrho \models S$  (if any).



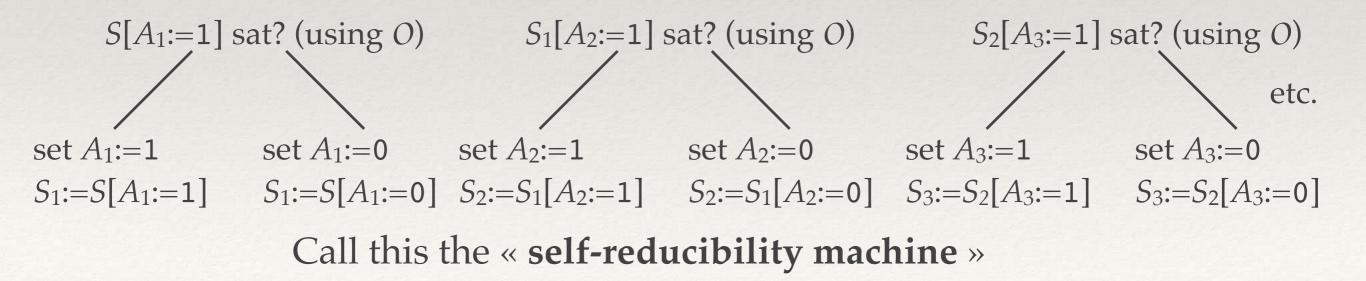
- Now Merlin complains he can only decide whether S is satisfiable (using circuits C<sub>n</sub>), not find a satisfying Q
- \* You retort that **SAT** is **self-reducible**: Given an oracle *O* deciding satisfiability, one can compute  $\varrho$  such that  $\varrho \models S$  (if any).



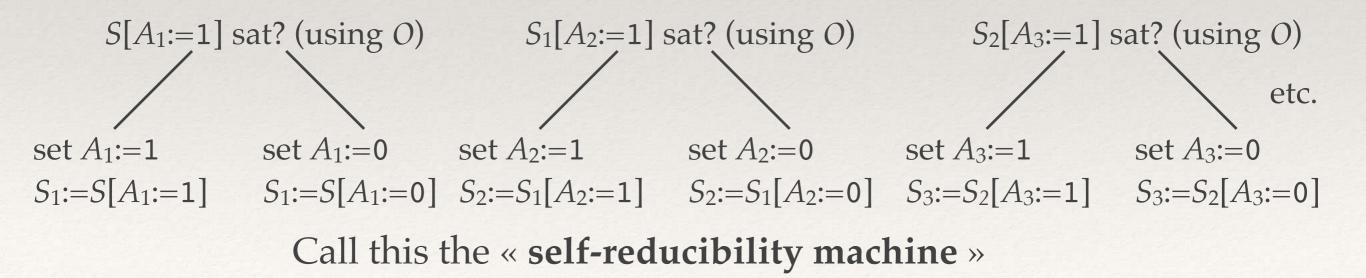
- Now Merlin complains he can only decide whether S is satisfiable (using circuits C<sub>n</sub>), not find a satisfying Q
- \* You retort that **SAT** is **self-reducible**: Given an oracle *O* deciding satisfiability, one can compute  $\varrho$  such that  $\varrho \models S$  (if any).



Instead of an oracle O, Merlin will use circuits C<sub>m</sub> on clause sets S, S<sub>1</sub>, S<sub>2</sub>, ..., of various sizes m.



- Instead of an oracle O, Merlin will use circuits C<sub>m</sub> on clause sets S, S<sub>1</sub>, S<sub>2</sub>, ..., of various sizes m.
- *m* is bounded by *n*=size(*S*)
   (e.g., *S*[*A*:=1] is obtained by removing clauses in which +*A* appears, and removing –*A* in the remaining clauses)



\* Now given (net-lists for)  $C_0, C_1, ..., C_n$  as advice  $w_{0...n}$ 

- \* Now given (net-lists for)  $C_0, C_1, ..., C_n$  as advice  $w_{0...n}$
- the self-reducibility machine is a poly time TM *h* taking (*S*, *w*) as input
  - returning an environment ǫ
  - satisfying *S*, if *S* is satisfiable and Merlin is **honest** 
    - (i.e., plays using the above advice  $w_{0...n}$  for w)

- \* Now given (net-lists for)  $C_0, C_1, ..., C_n$  as advice  $w_{0...n}$
- the self-reducibility machine is a poly time TM *h* taking (*S*, *w*) as input
  returning an environment Q
  satisfying *S*, if *S* is satisfiable and Merlin is honest
  - (i.e., plays using the above advice  $w_{0...n}$  for w)
- \* Note that, if size( $C_n$ )=O( $n^k$ ) (poly), then size( $w_{0...n}$ )=O( $n^{k+1}$ ) (poly again)

- \* Now given (net-lists for)  $C_0, C_1, ..., C_n$  as advice  $w_{0...n}$
- the self-reducibility machine is a poly time TM *h* taking (*S*, *w*) as input returning an environment Q
  satisfying *S*, if *S* is satisfiable and Merlin is honest
  - (i.e., plays using the above advice  $w_{0...n}$  for w)
- \* Note that, if size( $C_n$ )=O( $n^k$ ) (poly), then size( $w_{0...n}$ )=O( $n^{k+1}$ ) (poly again)

- \* **Theorem (Prop. 1.21).** If **NP**  $\subseteq$  **P**/**poly**, then the polynomial hierarchy collapses at level 2:  $\Pi P_2 \subseteq \sum P_2$ .
- \* Let  $L \in \Pi_{p_2}$  be  $\{x \mid \forall y \text{ of size } p(n), (x,y) \in L'\}, L' \in \mathbb{NP}$ .

- \* Theorem (Prop. 1.21). If NP  $\subseteq$  P/poly, then the polynomial hierarchy collapses at level 2:  $\Pi_{P_2} \subseteq \sum_{P_2}$ .
- \* Let  $L \in \Pi_{p_2}$  be  $\{x \mid \forall y \text{ of size } p(n), (x,y) \in L'\}, L' \in \mathbb{NP}$ .
- We reduce to SAT (this will allow us to use self-reducibility!):

- \* Theorem (Prop. 1.21). If NP  $\subseteq$  P/poly, then the polynomial hierarchy collapses at level 2:  $\Pi P_2 \subseteq \sum P_2$ .
- \* Let  $L \in \Pi_{p_2}$  be  $\{x \mid \forall y \text{ of size } p(n), (x,y) \in L'\}, L' \in \mathbb{NP}$ .
- We reduce to SAT (this will allow us to use self-reducibility!):
- \* there is a polytime function  $f / (x,y) \in L' \Leftrightarrow f(x,y) \in SAT$

- \* Theorem (Prop. 1.21). If NP  $\subseteq$  P/poly, then the polynomial hierarchy collapses at level 2:  $\Pi P_2 \subseteq \sum P_2$ .
- \* Let  $L \in \Pi_{p_2}$  be  $\{x \mid \forall y \text{ of size } p(n), (x,y) \in L'\}, L' \in \mathbb{NP}$ .
- We reduce to SAT (this will allow us to use self-reducibility!):
- \* there is a polytime function  $f / (x,y) \in L' \Leftrightarrow f(x,y) \in SAT$
- \* Hence  $L = \{x \mid \forall y \text{ of size } p(n), f(x,y) \in \mathbf{SAT}\}$

- \* **Theorem (Prop. 1.21).** If **NP**  $\subseteq$  **P**/**poly**, then the polynomial hierarchy collapses at level 2:  $\Pi^{p_2} \subseteq \sum^{p_2}$ .
- \*  $L = \{x \mid \forall y \text{ of size } p(n), f(x,y) \in \mathbf{SAT}\}$

(from last slide)

- \* Theorem (Prop. 1.21). If NP  $\subseteq$  P/poly, then the polynomial hierarchy collapses at level 2:  $\Pi_{P_2} \subseteq \sum_{P_2}$ .
- \*  $L = \{x \mid \forall y \text{ of size } p(n), f(x,y) \in \mathbf{SAT}\}$

(from last slide)

\* Now use self-reducibility:  $L = \{x \mid \forall y \text{ of size } p(n), h(f(x,y), w_{0...size(f(x,y))}) \vDash f(x,y)\}$ 

\* **Theorem (Prop. 1.21).** If **NP**  $\subseteq$  **P**/**poly**, then the polynomial hierarchy collapses at level 2:  $\Pi^{p_2} \subseteq \sum^{p_2}$ .

\* 
$$L = \{x \mid \forall y \text{ of size } p(n), f(x,y) \in \mathbf{SAT}\}$$

(from last slide)

\* Now use self-reducibility:  $L = \{x \mid \forall y \text{ of size } p(n), h(f(x,y), w_{0...size(f(x,y))}) \models f(x,y)\}$ 

- \* Theorem (Prop. 1.21). If NP  $\subseteq$  P/poly, then the polynomial hierarchy collapses at level 2:  $\Pi_{P_2} \subseteq \sum_{P_2}$ .
- \*  $L = \{x \mid \forall y \text{ of size } p(n), f(x,y) \in \mathbf{SAT}\}$

(from last slide)

a clause set S

\* Now use self-reducibility:  $L = \{x \mid \forall y \text{ of size } p(n), h(f(x,y), w_{0...size(f(x,y))}) \models f(x,y)\}$ 

the « self-reducibility machine »

- \* Theorem (Prop. 1.21). If NP  $\subseteq$  P/poly, then the polynomial hierarchy collapses at level 2:  $\Pi_{P_2} \subseteq \sum_{P_2}$ .
- \*  $L = \{x \mid \forall y \text{ of size } p(n), f(x,y) \in \mathbf{SAT}\}$

(from last slide)

a clause set S

\* Now use self-reducibility:  $L = \{x \mid \forall y \text{ of size } p(n), h(f(x,y), w_{0...size(f(x,y))}) \models f(x,y)\}$ 

the « self-reducibility machine »

size of advice polynomial in *n*=size(*x*)

- \* **Theorem (Prop. 1.21).** If **NP**  $\subseteq$  **P**/**poly**, then the polynomial hierarchy collapses at level 2:  $\Pi P_2 \subseteq \sum P_2$ .
- \*  $L = \{x \mid \forall y \text{ of size } p(n), h(f(x,y), w_{0...size}(f(x,y))) \models f(x,y)\}$  (last slide)

- \* Theorem (Prop. 1.21). If NP  $\subseteq$  P/poly, then the polynomial hierarchy collapses at level 2:  $\Pi P_2 \subseteq \sum P_2$ .
- \*  $L = \{x \mid \forall y \text{ of size } p(n), h(f(x,y),w_{0...size(f(x,y))}) \models f(x,y)\}$  (last slide)
- \* I claim that  $L = \{x \mid \exists w, \forall y \text{ of size } p(n), h(f(x,y),w) \vDash f(x,y)\}$ (huh? that was the bug, right? No, we now **check** that  $h(...) \vDash f(x,y)!$ )

\* **Theorem (Prop. 1.21).** If **NP**  $\subseteq$  **P**/**poly**, then the polynomial hierarchy collapses at level 2:  $\Pi P_2 \subseteq \sum P_2$ .

\*  $L = \{x \mid \forall y \text{ of size } p(n), h(f(x,y),w_{0...size(f(x,y))}) \models f(x,y)\}$  (last slide)

\* I claim that  $L = \{x \mid \exists w, \forall y \text{ of size } p(n), h(f(x,y),w) \vDash f(x,y)\}$ (huh? that was the bug, right? No, we now **check** that  $h(...) \vDash f(x,y)!$ )

\* If  $x \in L$ , then take  $w = w_{0...size(f(x,y))}$ :  $\forall y, h(f(x,y),w) \vDash f(x,y) \checkmark$ 

# Karp-Lipton: the proof (3/3)

\* Theorem (Prop. 1.21). If NP  $\subseteq$  P/poly, then the polynomial hierarchy collapses at level 2:  $\Pi P_2 \subseteq \sum P_2$ .

\*  $L = \{x \mid \forall y \text{ of size } p(n), h(f(x,y),w_{0...size(f(x,y))}) \models f(x,y)\}$  (last slide)

- \* I claim that  $L = \{x \mid \exists w, \forall y \text{ of size } p(n), h(f(x,y),w) \vDash f(x,y)\}$ (huh? that was the bug, right? No, we now **check** that  $h(...) \vDash f(x,y)!$ )
- \* If  $x \in L$ , then take  $w = w_{0...size(f(x,y))}$ :  $\forall y, h(f(x,y),w) \vDash f(x,y) \checkmark$
- \* If  $x \notin L$ ,  $\exists y, f(x,y)$  is **unsatisfiable**... hence whichever *w* we take,  $h(f(x,y),w) \not\models f(x,y)$ .

# Karp-Lipton: the proof (3/3)

\* **Theorem (Prop. 1.21).** If **NP**  $\subseteq$  **P**/**poly**, then the polynomial hierarchy collapses at level 2:  $\Pi P_2 \subseteq \sum P_2$ .

\*  $L = \{x \mid \forall y \text{ of size } p(n), h(f(x,y),w_{0...size(f(x,y))}) \models f(x,y)\}$  (last slide)

\* I claim that  $L = \{x \mid \exists w, \forall y \text{ of size } p(n), h(f(x,y),w) \vDash f(x,y)\}$ (huh? that was the bug, right? No, we now **check** that  $h(...) \vDash f(x,y)!$ )

\* If  $x \in L$ , then take  $w = w_{0...size(f(x,y))}$ :  $\forall y, h(f(x,y),w) \vDash f(x,y) \checkmark$ 

\* If  $x \notin L$ ,  $\exists y, f(x,y)$  is **unsatisfiable**... hence whichever *w* we take,  $h(f(x,y),w) \not\models f(x,y)$ 

\* Theorem (Prop. 1.22). If NP  $\subseteq$  P/poly, then PH  $\subseteq$  P/poly.

- \* Theorem (Prop. 1.22). If NP  $\subseteq$  P/poly, then PH  $\subseteq$  P/poly.
- \* By previous result, it suffices to show  $\sum_{p_2} \subseteq \mathbf{P}/\mathbf{poly}$ .

- \* Theorem (Prop. 1.22). If NP  $\subseteq$  P/poly, then PH  $\subseteq$  P/poly.
- \* By previous result, it suffices to show  $\sum_{p_2} \subseteq \mathbf{P}/\mathbf{poly}$ .
- \* Let  $L = \{x \mid \exists y \text{ of size } p(n), (x,y) \in L'\}$  where  $L' \in \mathbf{coNP}$

- \* Theorem (Prop. 1.22). If NP  $\subseteq$  P/poly, then PH  $\subseteq$  P/poly.
- \* By previous result, it suffices to show  $\sum_{p_2} \subseteq \mathbf{P}/\mathbf{poly}$ .
- \* Let  $L = \{x \mid \exists y \text{ of size } p(n), (x,y) \in L'\}$  where  $L' \in \mathbf{coNP}$
- The complement of L' has poly size advice strings, hence L' also has poly size advice strings wn

- \* Theorem (Prop. 1.22). If NP  $\subseteq$  P/poly, then PH  $\subseteq$  P/poly.
- \* By previous result, it suffices to show  $\sum_{p_2} \subseteq \mathbf{P}/\mathbf{poly}$ .
- \* Let  $L = \{x \mid \exists y \text{ of size } p(n), (x,y) \in L'\}$  where  $L' \in \mathbf{coNP}$
- The complement of L' has poly size advice strings, hence L' also has poly size advice strings wn
- \*  $L = \{x \mid \exists y \text{ of size } p(n), \mathcal{M}((x,y), w_{\text{size}(x,y)}) \text{ accepts} \}$ for some poly time TM  $\mathcal{M}$ .

\* Theorem (Prop. 1.22). If NP  $\subseteq$  P/poly, then PH  $\subseteq$  P/poly.

\*  $L = \{x \mid \exists y \text{ of size } p(n), \mathcal{M}((x,y), w_{\operatorname{size}(x,y)}) \text{ accepts} \}$ for some poly time TM  $\mathcal{M}$  (from last slide)

\* Theorem (Prop. 1.22). If NP  $\subseteq$  P/poly, then PH  $\subseteq$  P/poly.

- \*  $L = \{x \mid \exists y \text{ of size } p(n), \mathcal{M}((x,y), w_{\operatorname{size}(x,y)}) \text{ accepts} \}$ for some poly time TM  $\mathcal{M}$  (from last slide)
- \* Let  $L'' = \{(x,w) \mid \exists y \text{ of size } p(\text{size}(x)), \mathcal{M}((x,y), w) \text{ accepts}\}$ This is in **NP**, hence has polynomial circuits  $C_n$ , too!

\* Theorem (Prop. 1.22). If NP  $\subseteq$  P/poly, then PH  $\subseteq$  P/poly.

- \*  $L = \{x \mid \exists y \text{ of size } p(n), \mathcal{M}((x,y), w_{\text{size}(x,y)}) \text{ accepts} \}$ for some poly time TM  $\mathcal{M}$  (from last slide)
- \* Let  $L'' = \{(x,w) \mid \exists y \text{ of size } p(\text{size}(x)), \mathcal{M}((x,y), w) \text{ accepts}\}$ This is in **NP**, hence has polynomial circuits  $C_n$ , too!

\* So  $L = \{x \mid C_{\text{appropriate size}}[(x, w_{\text{size}(x,y)})]=1\}$ 

\* Theorem (Prop. 1.22). If NP  $\subseteq$  P/poly, then PH  $\subseteq$  P/poly.

- \*  $L = \{x \mid \exists y \text{ of size } p(n), \mathcal{M}((x,y), w_{\text{size}(x,y)}) \text{ accepts} \}$ for some poly time TM  $\mathcal{M}$  (from last slide)
- \* Let  $L'' = \{(x,w) \mid \exists y \text{ of size } p(\text{size}(x)), \mathcal{M}((x,y), w) \text{ accepts}\}$ This is in **NP**, hence has polynomial circuits  $C_n$ , too!

\* So  $L = \{x \mid C_{\text{appropriate size}}[(x, w_{\text{size}(x,y)})]=1\}$ 

size of  $x + \text{cst} + \text{size of } w_{\text{size}(x,y)}$ ... polynomial in n=size(x)

- \* Theorem (Prop. 1.22). If NP  $\subseteq$  P/poly, then PH  $\subseteq$  P/poly.
- \* So  $L = \{x \mid C_{\text{appropriate size}}[(x, w_{\text{size}(x,y)})]=1\}$  (from last slide)

#### \* Theorem (Prop. 1.22). If NP $\subseteq$ P/poly, then PH $\subseteq$ P/poly.

\* So  $L = \{x \mid C_{\text{appropriate size}}[(x, w_{\text{size}(x,y)})]=1\}$ 

(from last slide)

size of  $x + \text{cst} + \text{size of } w_{\text{size}(x,y)}$ ... polynomial in n=size(x)

#### \* Theorem (Prop. 1.22). If NP $\subseteq$ P/poly, then PH $\subseteq$ P/poly.

\* So  $L = \{x \mid C_{appropriate size}[(x, w_{size}(x,y))]=1\}$  (from last slide)

size of  $x + \text{cst} + \text{size of } w_{\text{size}(x,y)}$ ... polynomial in n=size(x)

\* Hence *L* is decided by the circuits  $C_{appropriate size}[(, w_{size(x,y)})]$  (all sizes depending only on *n*=size(*x*), not on *x* itself) Conclusion

### BPP cannot be too large

Corollary. If BPP contains NP, then:
— PH collapses at level 2 (unlikely)
— and is included in P/poly.

\* Proof.

#### Adleman's Theorem

Theorem (Prop. 1.20). BPP  $\subseteq$  P/poly.

#### The first Karp-Lipton theorem

**Theorem (Prop. 1.21).** If **NP**  $\subseteq$  **P**/**poly**, then the polynomial hierarchy collapses at level 2:  $\Pi P_2 \subseteq \sum P_2$ .

#### The second Karp-Lipton theorem

**Theorem (Prop. 1.22).** If NP  $\subseteq$  P/poly, then PH  $\subseteq$  P/poly.