Jean Goubault-Larrecq

Randomized complexity classes

Today:
approximation
problems, PCP

Today

- * Approximation problems
- * The class PCP
- * MAX3SAT is not ε-approximable iff NP=PCP
- * The Arora-Safra theorem: **NP=PCP** (no proof...)

Approximation problems

Approximation

- * Attempt to attack NP-complete problems, by relaxing requirements. E.g., 3SAT is NP-complete. Instead, given $\varepsilon \in]0,1[$, let MAX3SAT be:
- * **INPUT**: a finite set *S* of 3-clauses **OUTPUT**: an environment ϱ that satisfies $(1-\varepsilon)\operatorname{opt}(S)$ where $\operatorname{opt}(S) \stackrel{\text{def}}{=} \max_{\varrho \text{ env.}} (\# \text{ clauses of } S \text{ s.t. } \varrho \vDash S)$
- * For which values of ε is that in **P**?

Maximization problems

- * For each input x, [e.g., a set of 3-clauses] a finite set F(x) of so-called **feasible solutions** [e.g., all assignments ϱ on the vars of S}]
- * For each $y \in F(x)$, a **value** c(y) [e.g., #clauses satisfied by ϱ]
- * Goal: estimate opt(x) $\stackrel{\text{def}}{=}$ max $_{y \in F(x)} c(y)$
- * ε -approximable iff can find $y \in F(x) / c(y) \ge (1-\varepsilon) \operatorname{opt}(x)$ in polynomial time
- **Defn.** The approximation threshold = $\inf_{\epsilon\text{-approximable}} \epsilon$

Minimization problems

- For each input x,
 a finite set F(x) of so-called
 feasible solutions
- * For each $y \in F(x)$, a **cost** c(y)
- * Goal: estimate opt(x) $\stackrel{\text{def}}{=}$ min $_{y \in F(x)} c(y)$
- * ε -approximable iff can find $y \in F(x) / c(y) \le 1/(1-\varepsilon)$.opt(x) in polynomial time
- * **Defn.** The approximation threshold = $\inf_{\epsilon\text{-approximable}} \epsilon$

Optimization problems

- Optimization = maximization or minimization
- * ε -approximable iff can find $y \in F(x)$ / $|c(y)-opt(x)|/max(c(y),opt(x)) \le \varepsilon$ in polynomial time (ugly formula, but generalizes the previous formulae)
- * **Defn.** The approximation threshold = $\inf_{\epsilon-approximable} \epsilon$
- * Let us see, through a few examples, that this can be pretty much any number in [0,1].

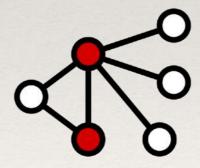
NODE COVER

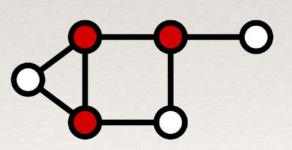
NODE COVER

* INPUT: an undirected graph G = (V, E)FEASIBLE SOL.: node covers, i.e., subsets $C \subseteq V$ such that every edge u - v meets C(u or v or both are in C)

COST: card(C)

By Miym - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6017739





NODE COVER

The associated decision problem:
INPUT: G, a budget k
QUESTION: does G have a node cover C with card(C) ≤ k?

INPUT: an undirected graph $G \cong (V, E)$ FEASIBLE SOL.: node covers, i.e., subsets $C \subseteq V$ such that every edge u - v meets C(u or v or both are in C)

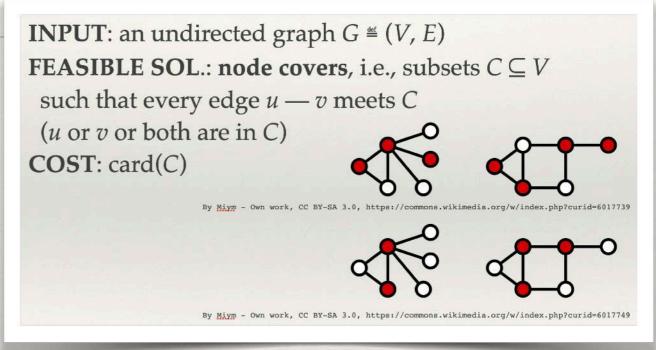
COST: card(C)

By Miym - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6017749

- * is NP-complete.
- * What is the approximation threshold of **NODE COVER**?
- * Hint: the best known approximation algorithm is also one of the dumbest... and no, picking a vertex to be put in the cover, removing all incident edges, and going on is not dumb enough

NODE COVER is ½-approximable

* Algorithm: (init: $C:=\emptyset$); pick an edge u - v, add both u and v to C, then remove u and v and v and all incident edges, and



and all incident edges, and proceed until no edge left.

- * Let *M* be the set of edges picked by the algorithm. *M* is a **matching**: a vertex-disjoint collection of edges
- * card(C)=2.card(M)

NODE COVER is ½-approximable

- * Given a node cover C', every edge of M meets C' at a **distinct** vertex
- * So card(M) \leq card(C')

- Algorithm: (init: C:=Ø); pick an edge u - v, add **both** u and v to C, then remove u and vand all incident edges, and proceed until no edge left.
- **INPUT**: an undirected graph G = (V, E)**FEASIBLE SOL**.: **node covers**, i.e., subsets $C \subseteq V$ such that every edge u - v meets C (u or v or both are in C)COST: card(C)
- * Let *M* be the set of edges picked by the algorithm. M is a matching: a vertex-disjoint collection of edges
- * card(C)=2.card(M)
- Since card(C) = 2.card(M), $card(C) \le 2.card(C')$
- Hence NODE COVER is ½-approximable. (½ is in fact the best we can do, unless P=NP)
- * ε -approximable iff can find $y \in F(x) / c(y) \ge (1-\varepsilon) \operatorname{opt}(x)$ in polynomial time
 - **Defn.** The approximation threshold = $\inf_{\epsilon\text{-approximable}} \epsilon$

The traveling salesman problem (TSP)

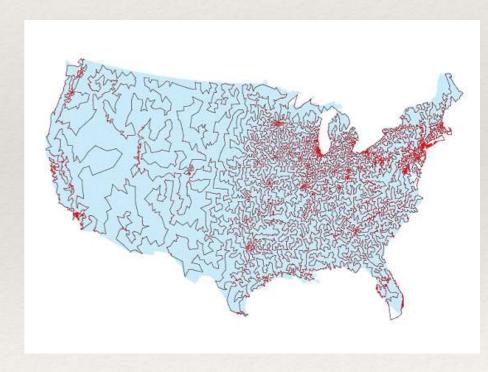
TSP

* INPUT: a matrix $D \stackrel{\text{def}}{=} (d_{ij})_{1 \le i,j \le n}$ of 'distances' between cities (only constraint: $d_{ii} = 0$)

FEASIBLE SOL.: **tours**, i.e., permutations π of $\{1,...,n\}$

COST: $d_{\pi(1)\pi(2)} + d_{\pi(2)\pi(3)} + \dots + d_{\pi(n-1)\pi(n)} + d_{\pi(n)\pi(1)}$

- Decision problem (is cost ≤ some given budget?) is
 NP-complete
- * ϵ -approximable for **no** $\epsilon \in]0,1[$ unless **P=NP**. Hence approximation threshold is 1 (worst possible!)



13,509 U.S. cities with populations of more than 500 people connected optimally

http://www.crpc.rice.edu/CRPC/newsletters/sum98/news_tsp.html

TSP is not approximable

- * We use the fact that **HAMILTONIAN CYCLE**: INPUT: an undirected graph G = (V, E) QUESTION: \exists cycle in G going once through each vertex? is **NP**-complete
- * We build a poly time reduction from **HAMILTONIAN CYCLE** to (the decision form) of **TSP**,
- * showing that if **TSP** is ε-approximable, then **HAMILTONIAN CYCLE** is in **P**, hence **P=NP**.

TSP is not approximable

* Given $G[N = \operatorname{card}(V)]$ and $M > 1/(1-\varepsilon).N$, let $d_{ij} = 1$ if edge i - j,

HAMILTONIAN CYCLE:

INPUT: an undirected graph $G \stackrel{\text{\tiny def}}{=} (V, E)$

QUESTION: **J**cycle in *G* going once through each vertex?

is NP-complete

M if no edge. Defines an instance *D* of **TSP**.

- * Tour π : cost = N if Hamiltonian cycle, $\geq M$ otherwise
- * Assume an ε-approximation (poly time) algorithm A for TSP
- * If G has a Hamiltonian cycle, opt(D) = N A(D) will find a tour of cost $\leq 1/(1-\epsilon)$.opt(D) < M, hence a Hamiltonian cycle, in poly time
- * Hence **HAMILTONIAN CYCLE** is in **P**, so **P=NP**.

- * INPUT: prices v_i and weights w_i , $1 \le i \le n$, a max weight W (all are natural numbers)
 - **FEASIBLE SOL**.: a subset $S \subseteq \{1,...,n\} / \Sigma_{i \in S} w_i \leq W$ **COST**: $\Sigma_{i \in S} v_i$
- Decision problem (is cost ≤ some given budget?) is
 NP-complete
- * ε -approximable for **every** $\varepsilon \in]0,1[$. Approximation threshold is 0 (best possible!)

INPUT: prices v_i and weights w_i , $1 \le i \le n$, a max weight W

FEASIBLE SOL.: a subset $S \subseteq \{1,...,n\} / \Sigma_{i \in S} w_i \leq W$

- * A well-known **dynamic**cost: Σ_{i∈S Vi}

 programming algorithm for KNAPSACK:
- * Let $V \stackrel{\text{\tiny def}}{=} \Sigma_{i=1}^n v_i$, and, for all $1 \le j \le n$ and $0 \le v \le V$: $W(j,v) = \min \{ \Sigma_{i \in S} w_i \mid S \subseteq \{1,...,j\}, \Sigma_{i \in S} v_i = v \}$
- * Then $W(j,v) = \min(W(j-1,v), W(j-1,v-v_j)+w_i)$ if $v \ge v_j$ W(j-1,v) otherwisecan be computed in time O(nV)exponential in size(V)=O(log V) if numbers in binary
- * Finally, find largest v such that $W(n,v) \leq W$.

Do all computations on values (i.e., v, v_i) by only keeping the
 k most significant bits
 of each number and rounding down

- **INPUT**: prices v_i and weights w_i , $1 \le i \le n$, a max weight W **FEASIBLE SOL**.: a subset $S \subseteq \{1,...,n\} / \Sigma_{i \in S} w_i \le W$ **COST**: $\Sigma_{i \in S} v_i$
- * A well-known **dynamic**programming algorithm for KNAPSACK:
- Let $V \stackrel{\text{\tiny def}}{=} \Sigma_{i=1}^n v_i$, and, for all $1 \le j \le n$ and $0 \le v \le V$: $W(j,v) = \min \{ \Sigma_{i \in S} w_i \mid S \subseteq \{1,...,j\}, \Sigma_{i \in S} v_i = v \}$
- * Then $W(j,v) = \min(W(j-1,v), W(j-1,v-v_j)+w_i)$ if $v \ge v_j$ W(j-1,v) otherwisecan be computed in time O(nV)
- Finally, find largest v such that $W(n,v) \le W$.
- * I.e., represent v_i by the k-bit number $\lfloor v_i/2^{k0-k} \rfloor$ [k0 = #bits in nV]
- * replace all values v by k-bit approximations v' ($v \approx 2^{k0-k} v'$)
- * replace computation of $v-v_i$ by $v'-\lfloor v_i/2^{k0-k}\rfloor$

- * We choose $k \stackrel{\text{def}}{=} \left[\text{size}(nV) \log_2(\epsilon V/n) \right]$ $= \log_2(n^2/\epsilon) + O(1)$
- * There are now at most $2^k = O(n^2/\epsilon)$ different values * Finally, find larges instead of O(V), hence times goes down to $O(n \ 2^k) = O(n^3/\epsilon)$
- * And final value is between (1–ε)opt and opt (see lecture notes for details, Prop. 2.7).

INPUT: prices v_i and weights w_i , $1 \le i \le n$, a max weight W **FEASIBLE SOL**.: a subset $S \subseteq \{1,...,n\} / \Sigma_{i \in S} w_i \le W$ **COST**: $\Sigma_{i \in S} v_i$

- * A well-known **dynamic**programming algorithm for KNAPSACK:
- Let $V \stackrel{\text{\tiny def}}{=} \Sigma_{i=1}^n v_i$, and, for all $1 \le j \le n$ and $0 \le v \le V$: $W(j,v) = \min \{ \Sigma_{i \in S} w_i \mid S \subseteq \{1,...,j\}, \Sigma_{i \in S} v_i = v \}$
- * Then $W(j,v) = \min(W(j-1,v), W(j-1,v-v_j)+w_i)$ if $v \ge v_j$ W(j-1,v) otherwise can be computed in time O(nV)
- Finally, find largest v such that $W(n,v) \leq W$.

MAX3SAT

MAXSAT

- * INPUT: a finite list *S* of clauses

 FEASIBLE SOL.: an environment *Q*VALUE: # clauses satisfied by *Q*
- Decision problem (is value ≥ some given goal?)
 is NP-complete
- * ε -approximable for **which** $\varepsilon \in]0,1[?$ Let me give you the best known (and silliest) algorithm...

Johnson's algorithm

* Rough idea: while there is a variable *A* left, decide to set *A* to 1 (true) or 0 (false) depending on which of

E(#clauses of S[A:=1] satisfied by ϱ) and

E(#clauses of S[A:=0] satisfied by ϱ) is larger, where ϱ is drawn at random.

- * S[A:=1]: remove clauses where A occurs positively, remove $\neg A$ from remaining clauses
- * S[A:=0]: remove clauses where $\neg A$ occurs (i.e., A occurs negatively), remove A from remaining clauses

Johnson's algorithm

- * In reality: we compare $E(\#\text{clauses of }S[A:=1] \text{ not satisfied by } \varrho)$ and $E(\#\text{clauses of }S[A:=0] \text{ not satisfied by } \varrho)$
- * If the first one is smaller, set A to 1, S := S[A := 1]
- * Otherwise, set A to 0, S := S[A := 0]

Computing E(#clauses of S not satisfied by Q)

- * Let $S \stackrel{\text{def}}{=} [C_1, ..., C_m]$, each C_j being a clause or T $E(S) \stackrel{\text{def}}{=} E(\# j / C_j \text{ not satisfied by } \varrho, \varrho \text{ uniformly random})$
- * $E(S) = \sum_{j=1}^{m} E([C_j]) = \sum_{j=1}^{m} \Pr_{Q}(\text{not } Q \models C_j)$ [linearity of expectation]
- * If C_j is a tautology $A \vee \neg A \vee ...$ (or \top), $\Pr_{\mathbb{Q}}(\text{not } \mathbb{Q} \models C) = 0$ else $\Pr_{\mathbb{Q}}(\text{not } \mathbb{Q} \models C) = 1/2^{|C|}$, e.g., $\Pr_{\mathbb{Q}}(\text{not } \mathbb{Q} \models A \vee \neg B \vee \neg C) = 1/8$

The key observation

- * Claim. $E(S) = \frac{1}{2}(E(S[A:=1]) + E(S[A:=0]))$
- * *Proof.* By linearity of expectation, enough to check it for a single clause C_i
- * If C_i tautology, $0 = \frac{1}{2}(0+0)$, otherwise...
- * If $C_j = A \lor rest$, $E(C_j) = 1/2^{|C_j|} = \frac{1}{2} \frac{1}{2^{|rest|}}$, $E(C_j[A:=1]) = E(\top) = 0$ $E(C_j[A:=0]) = E(rest) = \frac{1}{2^{|rest|}}$
- * Similarly if $C_j = \neg A \lor rest$
- * If neither *A* nor $\neg A$ occurs in C_j , $C_j[A:=1] = C_j[A:=0] = C_j$. \Box

Decreasing expectations

- * Claim. $E(S) = \frac{1}{2}(E(S[A:=1]) + E(S[A:=0]))$
- * List all the variables as $A_0, ..., A_n$. Set $S_0 \stackrel{\text{def}}{=} S (= [C_1, ..., C_m])$

$$E(S_0[A_1:=1]) \le E(S_0[A_1:=0])? \qquad E(S_1[A_2:=1]) \le E(S_1[A_2:=0])? \qquad E(S_2[A_3:=1]) \le E(S_2[A_3:=0])?$$

$$\text{yes} \qquad \text{no} \qquad \text{yes} \qquad \text{no} \qquad \text{etc.}$$

$$\text{set } A_1:=1 \qquad \text{set } A_1:=0 \qquad \text{set } A_2:=1 \qquad \text{set } A_2:=0 \qquad \text{set } A_3:=1 \qquad \text{set } A_3:=0$$

$$S_1:=S[A_1:=1] \qquad S_1:=S[A_1:=0] \qquad S_2:=S_1[A_2:=1] \qquad S_2:=S_1[A_2:=0] \qquad S_3:=S_2[A_3:=1] \qquad S_3:=S_2[A_3:=0]$$

- * By the claim, $E(S_{i+1}) \le E(S_i)$. So $E(S_n) \le E(S)$.
- * Let ϱ be the final environment The only clauses in S_n are \top (if $\varrho \models C_j$), or the empty clause \bot
- * Note: $E(S_n) = \# \text{empty clauses in } S_n$. So ϱ satisfies $m - E(S_n) \ge m - E(S)$ clauses in S.

MAXSAT is approximable

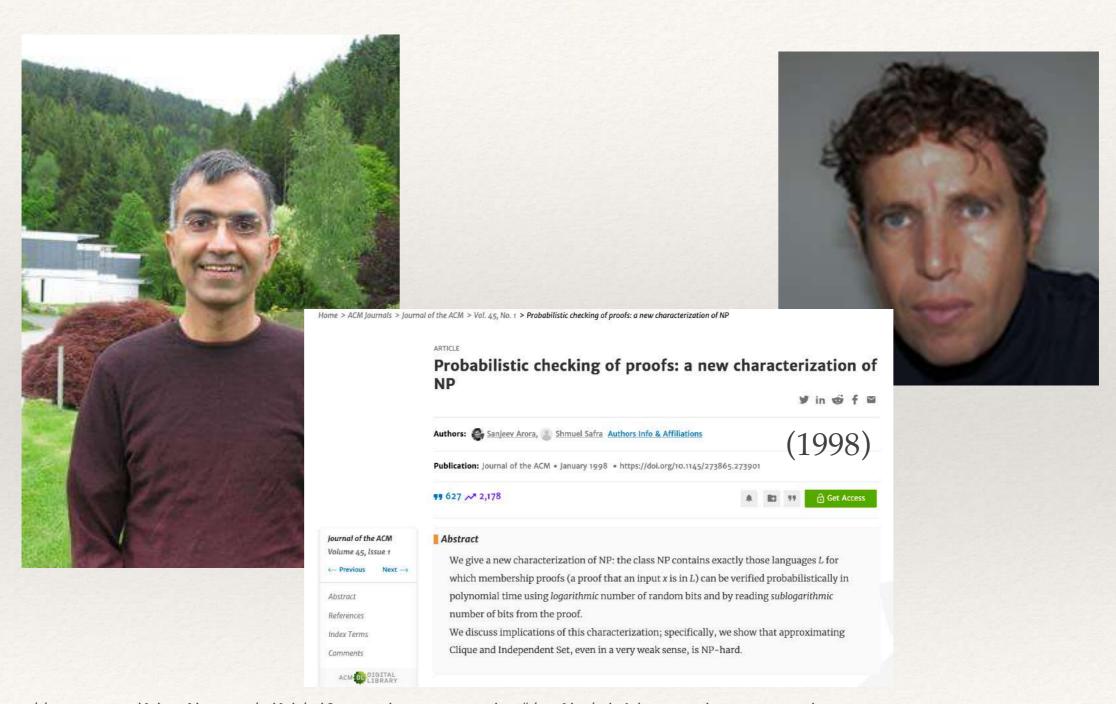
- * Q satisfies $m-E(S_n) \ge m-E(S)$ clauses in $S = [C_1, ..., C_m]$
- * If each non-tautological C_j has $\ge k$ literals, $\Pr_{\mathbb{Q}}(\text{not }\mathbb{Q} \models C_j) \le 1/2^k$ (=0 if tautological), so $E(S) = \sum_{j=1}^m \Pr_{\mathbb{Q}}(\text{not }\mathbb{Q} \models C_j) \le m/2^k$
- * Therefore ϱ satisfies $\geq m (1-1/2^k) \geq \operatorname{opt}(S) (1-1/2^k)$ clauses in S:
- **Thm. MAXSAT** restricted to S / each non-tautological C_j has $\ge k$ literals, is $1/2^k$ -approximable.

MAXSAT is approximable

- * Thm. MAXSAT restricted to S / each non-tautological C_j has $\ge k$ literals, is $1/2^k$ -approximable.
- * One can always prepare *S* by eliminating unit clauses, so $k \ge 2$: **MAXSAT** is 1/4-approximable.
- * If every clause in *S* has **at least** 3 literals, then 1/8-approximable.
- * Hence MAX=3SAT (all clauses have exactly 3 literals) is 1/8-approximable. It turns out that this is optimal.

PCP

Sanjeev Arora, Shmuel Safra



https://commons.wikimedia.org/wiki/File:Sanjeev_Arora.jpg#/media/Fichier:Sanjeev_Arora.jpg

Reminder: randomized TMs

* Two read-only tapes
* As many work tapes
as you need
(but only a constant number!)

With the usual proviso:

head can only move right on random tape *r*

PCP machines

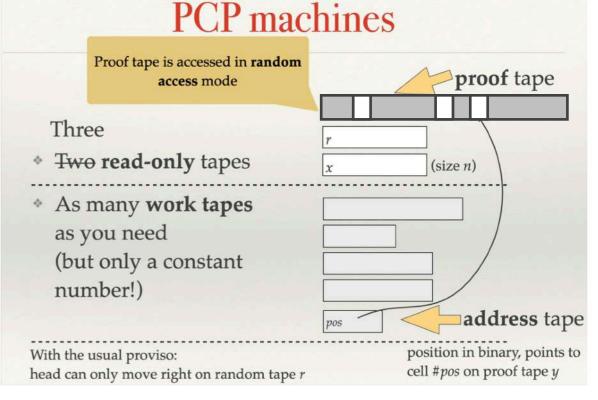
proof tape Proof tape is accessed in random access mode y Three * Two read-only tapes (size n) * As many work tapes as you need (but only a constant number!) address tape pos

With the usual proviso: head can only move right on random tape *r*

position in binary, points to cell #pos on proof tape y

Running a PCP machine

- On input x, Merlin fills in proof tape y but keeps it masked (= cryptographic commitment)
- 2. Arthur, only knowing |y| (and x), computes k=Q(n) **positions** p_1, \ldots, p_k on the proof tape in binary, in polynomial time, using R(n) random bits
- 3. Merlin **reveals** $y[p_1], ..., y[p_k]$
- 4. Arthur computes $f(y[p_1], ..., y[p_k]) \in \{accept, reject\} \text{ in time } T(n) < 0$

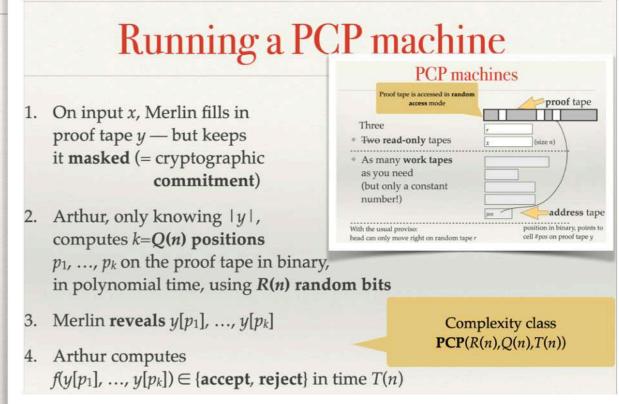


where f may also depend on x, and on the random bits of step 2

Acceptance conditions

- * If $x \in L$, then Merlin can provide a proof tape y such that Arthur will **always** accept
- * If $x \notin L$, then whichever proof tape Merlin provides,

 Arthur will reject with probability $\geq \frac{1}{2}$
- * The languages L that can be decided this way form the complexity class PCP(R(n),Q(n),T(n))



The Arora-Safra theorem

* **Theorem.** NP = PCP(O(log n), O(1), O(1))

NP=PCP, for short

- * I.e., one can decide every language in **NP** by running a PCP machine that:
 - asks Q(n)=O(1) questions (positions)
 - computed using only $R(n)=O(\log n)$ random bits,

in poly time

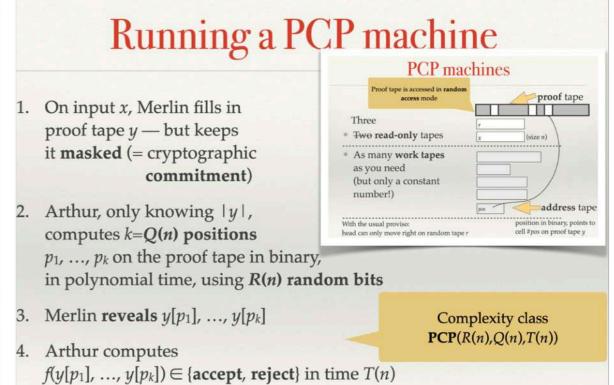
- and finally decides in T(n)=**O(1) time**.
- * Proof would require a whole term!

NP=PCP and the hardness of approximation

- * What I will explain is that NP=PCP is equivalent to the ε -inapproximability of MAX3SAT for some ε >0
- * Arora-Safra prove NP=PCP
- * ... and there is a simplified (still extremely complex) proof by Irit Dinur

The easy direction: PCP ⊆ NP

- Derandomize naively:
 for every string of R(n)
 random bits, simulate
 Arthur's computation
- * If more than ½ of the simulations accept, then accept, else reject
- * Works in time $2^{R(n)}\log R(n)$ poly(n)+T(n)
- * So $PCP(R(n) \triangleq O(\log n), Q(n) \triangleq whatever, T(n) \triangleq poly(n)) \subseteq NP$



PCP and the hardness of approximating SAT

MAX3SAT(E)

- * ... is the following promise problem:
 - **INPUT**: a finite set *S* of *m* propositional 3-clauses
 - **PROMISE**: *S* satisfiable / opt(*S*) < $(1-\varepsilon)m$
 - **QUESTION**: which is true? [opt(S) = max #sat. clauses]
- * We will see that:
 - if **3SAT** is ϵ -approximable then **MAX3SAT**(ϵ) is polytime decidable
 - ($\exists \ \epsilon > 0$, MAX3SAT(ϵ) is NP-hard) iff NP=PCP
- * That was known before Arora-Safra. With Arora-Safra: $\exists \ \epsilon > 0$, **3SAT** is not ϵ -approximable, unless P = NP

Note: **NP-**complete would not make sense for promise problems

If 3SAT ε-approximable then MAX3SAT(ε) polytime

- * Given a (polytime) ε -approximation algorithm A for 3SAT:
- * For every instance S of MAX3SAT(ε), $Q \stackrel{\text{def}}{=} A(S)$ satisfies $\geq (1-\varepsilon).opt(S)$ clauses of S
- * If S satisfiable, opt(S)=m, so o satisfies $\geq (1-\varepsilon)m$ clauses
- Otherwise, ϱ satisfies $< (1-\varepsilon)m$ clauses by the promise
- * Hence comparing #clauses satisfied by $Q \triangleq A(S)$ with $(1-\varepsilon)m$ yields a polytime algorithm deciding MAX3SAT(ϵ). \Box

$MAX3SAT(\varepsilon)$

INPUT: a finite set *S* of *m* propositional 3-cla PROMISE: *S* satisfiable / opt(*S*) < $(1-\varepsilon)m$

QUESTION: which is true?

(∃ε>0, MAX3SAT(ε) NP-hard) iff NP=PCP: the left to right direction

- * We already know $PCP \subseteq NP$. Conversely, let *L* be any language in NP.
- * \exists polytime reduction from L to \blacksquare **MAX3SAT**(ϵ), since \blacksquare **MAX3SAT**(ϵ) **NP**-hard by assumption
- PCP is closed under polytime reductions (important!)
- So it suffices to exhibit a
 PCP machine deciding
 MAX3SAT(ε)

Running a PCP machine **PCP** machines proof tape 1. On input x, Merlin fills in proof tape *y* — but keeps · Two read-only tapes it masked (= cryptographic As many work tapes as you need commitment) (but only a constant number!) 2. Arthur, only knowing |y|, With the usual proviso computes k=Q(n) positions $p_1, ..., p_k$ on the proof tape in binary, in polynomial time, using R(n) random bits 3. Merlin **reveals** $y[p_1], ..., y[p_k]$ Complexity class PCP(R(n),Q(n),T(n))4. Arthur computes $f(y[p_1], ..., y[p_k]) \in \{accept, reject\} \text{ in time } T(n)$

INPUT: a finite set *S* of *m* propositional 3-cla

PROMISE: *S* satisfiable / opt(*S*) < $(1-\varepsilon)m$

QUESTION: which is true?

 $MAX3SAT(\varepsilon)$

- * A PCP machine deciding MAX3SAT(ε). Let $S = [C_1, ..., C_m]$
- 1. Merlin fills in y with ϱ
- 2. Arthur chooses C_j at random, (say $+A_{32} \lor -A_{71} \lor -A_{239}$) and gives the corresponding 3 positions (here: 32, 71, 239)
- 3. Merlin reveals the corresponding truth values
- 4. Arthur evaluates C_j using a precompiled circuit, of constant size... in time O(1) (here,) accepts if true, rejects if false

$MAX3SAT(\epsilon)$

INPUT: a finite set *S* of *m* propositional 3-cla PROMISE: *S* satisfiable / opt(*S*) < $(1-\varepsilon)m$

QUESTION: which is true?

Oops... and precompiles a circuit that evaluates C_j , to be used in step 4

Running a PCP machine

- On input x, Merlin fills in proof tape y but keeps it masked (= cryptographic commitment)
- 2. Arthur, only knowing |y|, computes k=Q(n) **positions** $p_1, ..., p_k$ on the proof tape in binary, in polynomial time, using R(n) random bits
- 3. Merlin reveals $y[p_1], ..., y[p_k]$

4. Arthur computes $f(y[p_1], ..., y[p_k]) \in \{accept, reject\}$ in time T(n)

Proof tape is accessed in random access mode

Three

Two read-only tapes

As many work tapes
as you need
(but only a constant number!)

With the usual proviso:
head can only move right on random tape r

proof tape

Complexity class PCP(R(n),Q(n),T(n))

- * Uses R(n)=O(log n) random bits: just one number j ($1 \le j \le m$) at random
- * Q(n)=O(1) (indeed, =3) T(n)=O(1)
- * If *S* satisfiable, then Merlin can produce a satisfying assignment, so Arthur will accept
- * If opt(S) < $(1-\varepsilon)m$, then whatever ϱ is given, $\Pr_j(\varrho \models C_j) < (1-\varepsilon)$ Shoot! We needed ½ here...

Note: j is random here, not ϱ as in Johnson's algorithm

$MAX3SAT(\epsilon)$

INPUT: a finite set S of m propositional 3-cla PROMISE: S satisfiable / opt(S) < (1– ε)m QUESTION: which is true?

- A PCP machine deciding
 MAX3SAT(ε). Let S[™][C₁,...,C_m]
- 1. Merlin fills in y with ϱ
- 2. Arthur chooses C_j at random, $(\text{say} + A_{32} \lor -A_{71} \lor -A_{239})$ and gives the corresponding 3 positions (here: 32, 71, 239)
- 3. Merlin reveals the corresponding truth values
- 4. Arthur decides using a precompiled circuit, of constant size... in time O(1) (here,

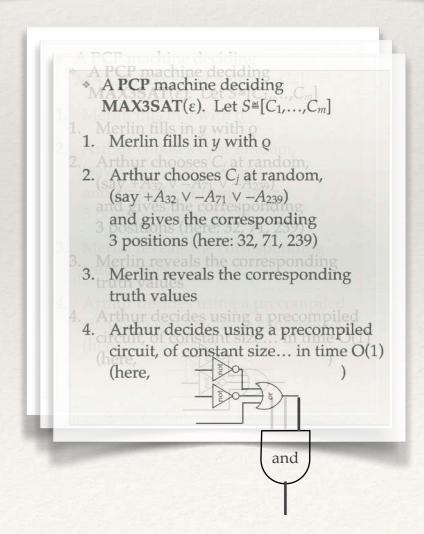
* We solve the problem using **parallel repetition** (*k* times)

 $k \triangleq \lceil -\log 2 / \log (1 - \varepsilon) \rceil$

- * Uses R(n)=O(log n) random bits: just k numbers j (1 $\leq j \leq m$) at random
- * Q(n)=O(1) (indeed, 3k) T(n)=O(1)
- * If *S* satisfiable, then Merlin can produce a satisfying assignment, so Arthur will accept
- * If opt(S) < $(1-\varepsilon)m$, then whatever ϱ is given, $\Pr_{j_1,...,j_k}(\varrho \models C_{j_1} \text{ and } ... \text{ and } \varrho \models C_{j_k}) \le (1-\varepsilon)^k \le \frac{1}{2}$

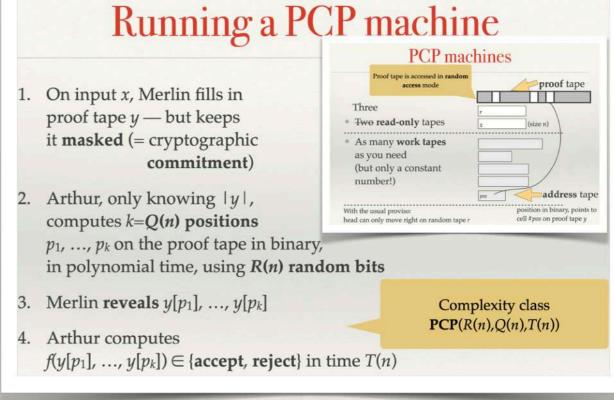
$MAX3SAT(\epsilon)$

INPUT: a finite set S of m propositional 3-cla PROMISE: S satisfiable / opt(S) < (1– ε)m QUESTION: which is true?



(∃ε>0, MAX3SAT(ε) NP-hard) iff NP=PCP: the right to left direction

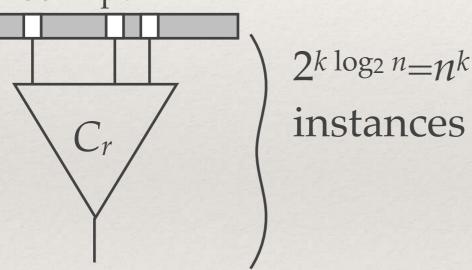
- * Assume **NP=PCP**. Then there is a **PCP**($R(n) \triangleq k \log n$,O(1),O(1))
 - machine M deciding SAT
- * We look for a polytime reduction from **SAT** to **MAX3SAT**(ε), for some ε >0
- * Let us look at M(x)'s possible runs, for each R(n)-bit word r drawn at random in step 2

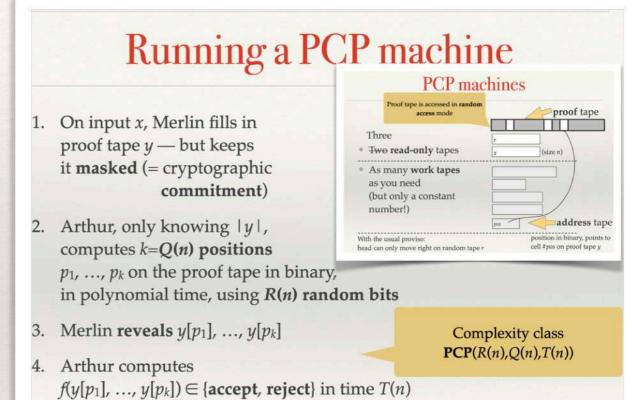


* (Note that the assumption that T(n)=O(1) in step 4 is superfluous: f only has a constant #inputs, and can always be encoded by a constant-size circuit, evaluated in time O(1)...)

* For each $k \log_2 n$ -bit random string r, Arthur computes O(1)

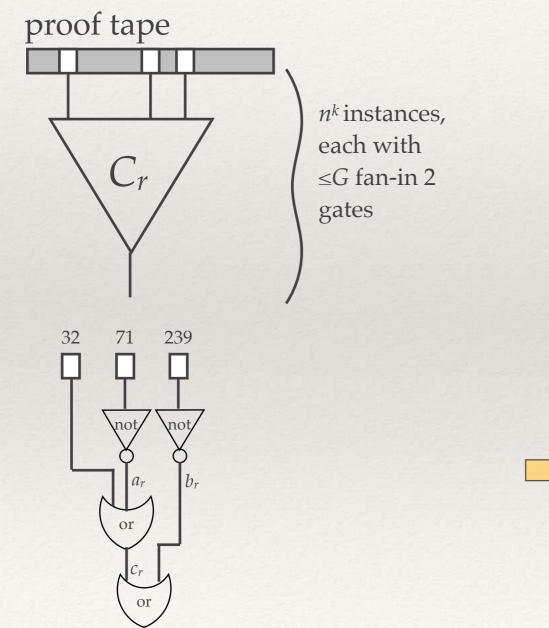
positions, and a constant-size circuit C_r (say, $\leq G$ fan-in 2 gates) proof tape



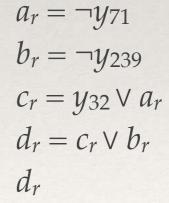


- * If input S satisfiable, then Merlin can provide y / output wire of C_r is true, for every r
- * Otherwise, whatever $y_1 \ge \frac{1}{2}n^k$ output wires false

* We now encode those circuits as a **3SAT** formula, e.g.:

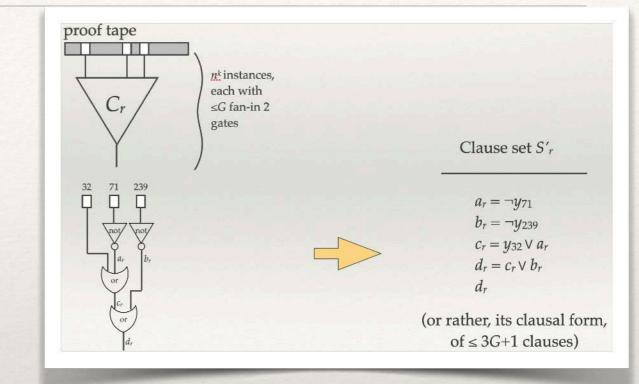


Clause set S'r



(or rather, its clausal form, of $\leq 3G+1$ clauses)

- * If S satisfiable, then Merlin can provide $y \mid \forall r$, output(C_r) true, so $S' \triangleq \Lambda_r S_r$ is satisfiable
- * Otherwise, whatever y, there is a set I of $\geq \frac{1}{2}n^k$ values of r / $\forall r \in I$, output(C_r) false



- * hence $\forall \varrho$ (giving truth values to each y_i and to every auxiliary var.), at least one clause in each S'_r , $r \in I$, must be unsatisfied by ϱ
- * so opt(S') \leq # clauses in $S' \frac{1}{2}n^k$, and # clauses in $S' \leq (3G+1)n^k$, so opt(S')/# clauses in $S' \leq 1 (\frac{1}{2}n^k)/((3G+1)n^k) = 1 1/(6G+2)$
- * Therefore *S'* is an instance of **MAX3SAT**(ε), with $\varepsilon \triangleq 1/(6G+2)$

proof tape

nk instances, each with <G fan-in 2

Clause set S'r

 $a_r = \neg y_{71}$ $b_r = \neg y_{239}$ $c_r = y_{32} \lor a_r$

 $d_r = c_r \vee b_r$

(or rather, its clausal form,

of $\leq 3G+1$ clauses)

- * Summary: If S satisfiable, then $S' \triangleq \Lambda_r S_r$ is satisfiable Else, opt $(S') \leq (1-\epsilon)$.#clauses in S'where $\epsilon \triangleq 1/(6G+2)$
- * Additionally, each C_r can be computed in polynomial time (simulating Arthur's computation), and computing S'_r from C_r also takes polynomial time
- * Hence we have found a polytime reduction from SAT to MAX3SAT(ε) (assuming NP=PCP). \square

Irit Dinur

Par נובאמת - Travail personnel, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=72395593

* Simplified proof...

I will only give a rough sketch

Home > ACM Journals > Journal of the ACM > Vol. 54, No. 3 > The PCP theorem by gap amplification

ARTICLE

The PCP theorem by gap amplification

In the PCP theorem by gap amplification

In the Irit Dinur Authors Info & Affiliations

Publication: Journal of the ACM • June 2007 • https://doi.org/10.1145/1236457.1236459

The PCP Theorem by Gap Amplification

Irit Dinur*

September 26, 2005

Abstract

We describe a new proof of the PCP theorem that is based on a combinatorial amplification lemma. The *unsat value* of a set of constraints $\mathcal{C} = \{c_1, \dots, c_n\}$, denoted UNSAT(\mathcal{C}), is the smallest fraction of unsatisfied constraints, ranging over all possible assignments for the underlying variables.

We prove a new combinatorial amplification lemma that doubles the unsat-value of a constraintsystem, with only a linear blowup in the size of the system. Iterative application of this lemma yields a proof for the PCP theorem.

The amplification lemma relies on a new notion of "graph powering" that can be applied to systems of constraints. This powering amplifies the unsat-value of a constraint system provided that the underlying graph structure is an expander.

We also apply the amplification lemma to construct PCPs and locally-testable codes whose length is linear up to a *polylog* factor, and whose correctness can be probabilistically verified by making a *constant* number of queries. Namely, we prove $SAT \in PCP_{\frac{1}{2},1}[\log_2(n \cdot \operatorname{poly}\log n), O(1)]$. This answers an open question of Ben-Sasson et al. (STOC '04).

 Uses expander graphs, « powering » on random walks, Hadamard codes, etc.

Constraint graph satisfiability

- * Instead of MAX3SAT(ε), Dinur uses:
- * **Defn.** A **constraint graph** is an undirected graph (V, E) plus a set of constraints $c(e) \subseteq \Sigma \times \Sigma$, one for each edge e ... where Σ is a finite set of values, or **colors**, that each vertex may assume under a **color assignment**
- * Question: is there a color assignment satisfying all the edge constraints?
- * NP-complete, generalizes 3-COLORABILITY

The gap

- * The **gap** of an unsatisfiable contraint graph is min (#unsatisfied edge constraints) / m [$m \neq \text{#edges}$]
- * We start with an unsatisfiable constraint graph G
- * ... of gap $\geq 1/m$
- * and we modify it so as to increase its gap until we reach a **constant** non-zero number
- * Applied to a **satisfiable** constraint graph, the modifications will preserve satisfiability.

Graph expanders

- A graph expander is a family of undirected graphs with « good connectivity »
- * **Defn.** The **edge expansion** h(G) of a graph G is min (#edges between S and its complement/#S) over subsets S of < n/2 vertex of G [n = # vertices]
- * A graph expander is a family of graphs G_n , $n \in \mathbb{N}$,
 - each regular of constant degree d_0
 - with *n* vertices each
 - such that $h(G_n) \ge h_0$, a positive constant

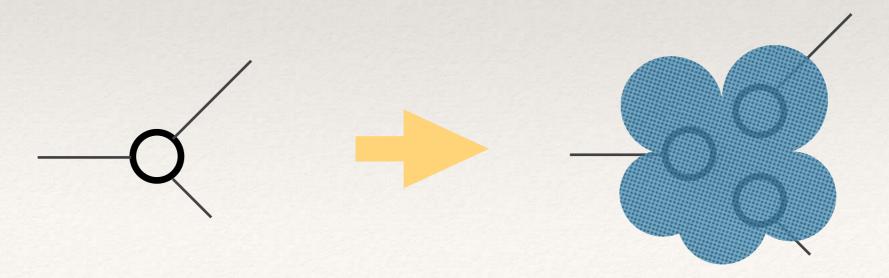
This exists, and G_n can even be produced in polynomial time (in n)

Graph expanders

- A graph expander is a family of undirected graphs with « good connectivity »
- * A random walk on a graph expander is rapidly mixing, namely: just doing a few steps gets you exponentially close to the stationary distribution

1. Sparsification

- * First step: make *G* sparse enough (so as to allow step 2 to apply; the important step is step 3) precisely: make it regular and of small enough degree *d*
- * Gap decreases by a constant factor only
- * Replace every vertex (degree, say, *k*) by a **graph expander** of degree *d*–1 with *k* vertices

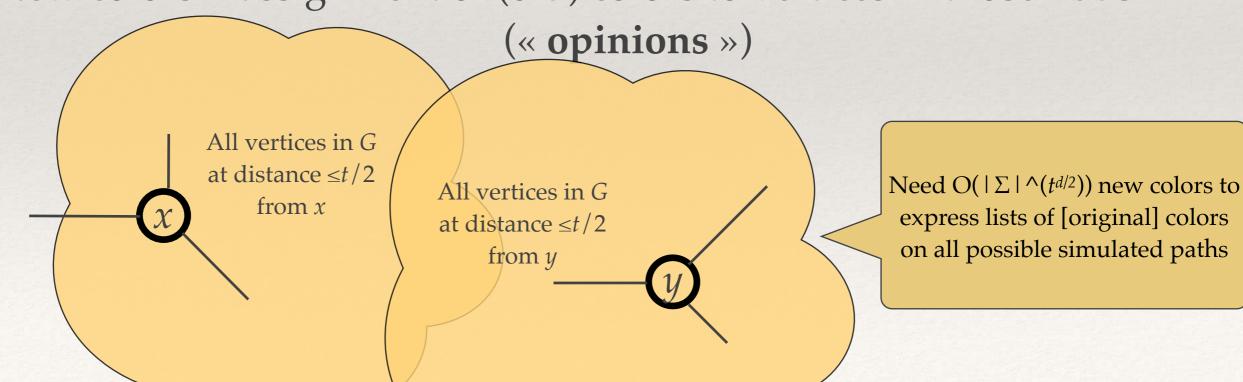


2. Expanderize

- * First step: make *G* an expander (so as to allow step 3 to apply)
- * By taking the union with a good expander
- * Gap (also) decreases by a constant factor (only)

3. Amplify the gap

- * This is the difficult step.
- * Fix a constant *t*>0, and build a new constraint graph *G^t* whose single edges simulate **paths** of *t* edges in *G* (there are as many edges between *x* and *y* in *G^t* as paths in *G*)
- * Encode distance $\leq t/2$ neighborhoods around each vertex New colors = assignment of (old) colors to vertices in those nbds



3. Amplify the gap

- * Problem: close vertices in *G* may be assigned incompatible opinions (**consistency** problem)
- * Correctness proof: given a color assignment on G^t , build back a color assignment on G:

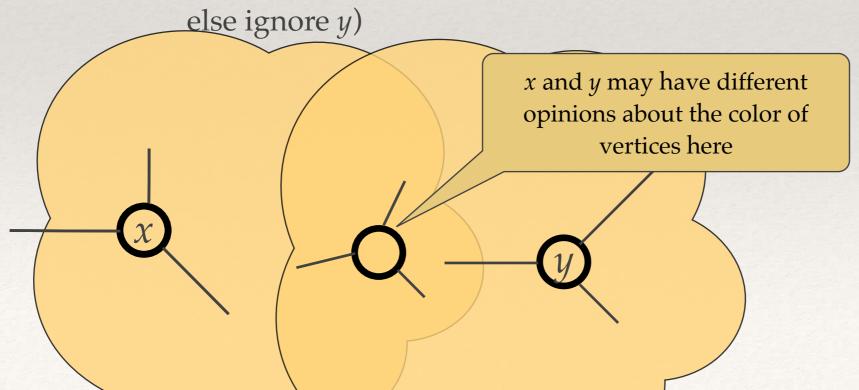
color of x (in G) $\stackrel{\text{def}}{=}$ most likely result as given by:

(do **random walk** in G starting from *x*;

stops at y with probability 1;

if *y* is in neighborhood of *x*

then return opinion of *y* on what the color of *x* should be



3. Amplify the gap

- * The analysis is a bit complex, but:
- **Gap** is (finally) amplified, by roughly \sqrt{t} while gap≤1/t
- * ... although we need $O(|\Sigma|^{(t^{d/2})})$ new colors to solve consistency (express lists of [original] colors on all possible simulated paths)

4. Alphabet reduce

- * Reduce back the alphabet of colors constant size (26, i.e. 64)
- * By encoding constraints through assignment testers assignments are encoded by Hadamard error-correcting codes [correct many errors, but exponentially large which is not a problem here because this will be the exponential of a constant...]
- Decreases back gap by some constant factor
- * ... and repeat steps 1—4 until gap becomes larger than a constant (requires $O(\log m)$ iterations)

Dinur's algorithm summarized

Step	Main Ideas	Effects	Proof Techniques
Degree Reduce	Split every vertex in to many vertices, and introduce an Expander cloud with equality constraints among the split vertices.	Size \uparrow a $O(d)$ factor, Gap decreases by a constant factor, Alphabet remains same	Basic expansion prop- erty of expanders
Expanderize		Size \(\gamma\) a factor of 2 to 3, Gap decreases by a constant factor, Alphabet remains same	Existence of constant degree expanders and Property that Expander + Graph gives an expander.
Gap- Amplification	Each vertex's value is its nopinion, on the values of vertices at a distance < t, Add edges corresponding to consistency on random walks	Size \uparrow by a large constant factor ,Gap increases by $O(t)$, Alphabet size becomes $ \Sigma ^{O(d^t)}$	Properties of random walks on the graph
Alphabet- Reduce	Encode the assignment with error correcting codes, Build a circuit that checks if assignment satisfies and is a valid codeword, Use an assignment tester for the circuit	Size ↑ a constant factor, Gap decreases by a constant factor, Alphabet size reduced to 2 ⁶	Hadamard codes, Linearity Testing, Fourier Analysis

Table 1: Proof of PCP

and...

That's it, folks!

* I hope you enjoyed the material of the course!