Jean Goubault-Larrecq

Randomized Today:

approximation

CO11 l@Xl ClﬂSS@S roblems, PCP
P

Tous droits réservés, Jean Goubault-Larrecq, professeur, ENS Paris-Saclay, Université Paris-Saclay
Cours « Complexité avancée » (M1), 2020-, ler semestre

Ce document est protégé par le droit d’auteur. Toute représentation ou reproduction intégrale ou
partielle faite sans le consentement de 1’auteur est illicite.

Today

“ Approximation problems

* The class PCP

* MAXS3SAT is not e-approximable ift NP=PCP

* The Arora-Safra theorem: NP=PCP (no proof...)

Approximation problems

Approximation

“ Attempt to attack NP-complete problems, by relaxing

requirements. E.g., 3SAT is NP-complete. Instead,
given € € |0,1[, let MAX3SAT be:

+ INPUT: a finite set S of 3-clauses

OUTPUT: an environment o that satisfies (1- €)opt(S)
where opt(S)2maxg env. (#clauses of S s.t. o = S)

+ For which values of ¢ is that in P?

Maximization problems

+ For each input x, le.g., a set of 3-clauses]
a finite set F(x) of so-called
feasible solutions le.g., all assignments o on the vars of S}]

+ For each y € F(x),
a value c(y) le.g., #clauses satisfied by o]

* Goal: estimate opt(x) & maxy e r) c(y)

* g-approximable iff can find y € F(x) / c(y) = (1-¢€)opt(x) in
polynomial time

* Defn. The approximation threshold = inf..approximable €

Minimization problems

+ For each input x,
a finite set F(x) of so-called
feasible solutions

+ For each y € F(x),
a cost c(y)

+ Goal: estimate opt(x) £ miny e r) c(y)

« g-approximable iff can find y € F(x) / c(y) < 1/(1-¢).opt(x) in
polynomial time

* Defn. The approximation threshold = infe approximable €

Optimization problems

“ Optimization = maximization or minimization

* g-approximable iff can find y € F(x) /
| c(y)—opt(x) | /max(c(y),opt(x)) < €

n polynomial time (ugly formula, but generalizes the previous formulae)
* Defn. The approximation threshold = inf:.approximable €

* Let us see, through a few examples, that this can be
pretty much any number in [0,1].

NODE COVER

NODE COVER

« INPUT: an undirected graph G £ (V, E)
FEASIBLE SOL.: node covers, i.e., subsets CC V

such that every edge u — v meets C
(1 or v or both are in C)

By Miym - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6017739

S 471

By Miym - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6017749

4

NODE COVER

INPUT: an undirected graph G £ (V, E)
FEASIBLE SOL.: node covers, i.e., subsets CC V
such that every edge u — v meets C

The aSSOCiated (u or v or both are in C)

decision problem: AL _ 'ﬁ @_.
INPUT: G, a budget k

QUESTION: does G have Oﬁ @

a node cover C with card(C) < k'nneee— —

is NP-complete.
What is the approximation threshold of NODE COVER?

Hint: the best known approximation algorithm is also one of
the dumbest... and no, picking a vertex to be put in the cover,
removing all incident edges, and going on is not dumb enough

NODE COVER 1s 1/2 approximable

INPUT: an undirected graph G £ (V, E)
FEASIBLE SOL.: node covers, i.e., subsets CC V
such that every edge u — v meets C

@ Algorlthm (init: C=@) (u or v or both are in C)

J
, o e T
pick an edge u — v,

add both u and v to C, oﬁ @—o

then remove u and v

T ——————

and all incident edges, and proceed until no edge lett.

« Let M be the set of edges picked by the algorithm.
M is a matching: a vertex-disjoint collection of edges

& Card(C):Z.Card(M)

NODE COVER 1s 1/2 approxnnable

INPUT: an undirect dg th (v E)
¢ Algorithm: (init: C:=J); (wo e thy r:g c_ omeesC
o G > d C J piCk an edge U—10, COST o & @_.
- lven a node cover L, add both u and v to C, I8 1
d f C ’ then remove u and v e e g e ARl s ol Ak T
ever y € g €O M meets and all incident edges, and proceed until no edge left.
at a dlStlnCt Vel‘teX * Let M be the set of edges picked by the algorithm.

M is a matching: a vertex-disjoint collection of edges

¢ card(C)=2.card(M)

+ So card(M) < card(C’)

¢ Since card(C) = 2.card(M), card(C) < 2. card(C")

+ g-approximable iff can find y € F(x) / c(y) = (1-¢)opt(x) in

+ Hence NODE COVER polynomial time

* Defn. The approximation threshold = infe.approximable €

is Y2-approximable. B
(¥4 is in fact the best we can do, unless P=NP)

T

T'he traveling salesman problem
(TSP)

7/
%°

4

L X 4

L)

L X 4

ISP

INPUT: a matrix D£(d;j)iij<n of ‘distances’ between cities

(only constraint: d;;=0)
FEASIBLE SOL.: tours, i.e., permutations 7 of {1,...,1}
COSTE . 0 daa . Ol Ot

Decision problem (is cost < o

: : NS Y S
some given budget?) is ‘;;’“”/%g/;}z\{{ wn, A
NP-complete N SFE e

e-approximable for no ¢ € |0,1] B e
unless P=NP. Hence approximation
thr e ShOId iS 1 (Wor S t p O SS ible !) 13,509 U.S. cities with populations of more than 500 people connected optimally

http://www.crpc.rice.edu/CRPC/newsletters/sum98/news tsp.html

ISP 1s not approximable

+ We use the fact that HAMILTONIAN CYCLE:

INPUT: an undirected graph G £ (V, E)

QUESTION: dcycle in G going once through each vertex?
is NP-complete

* We build a poly time reduction from HAMILTONIAN
CYCLE to (the decision form) of TSP,

* showing that if TSP is e-approximable, then
HAMILTONIAN CYCLE is in P, hence P=NP.

ISP 1s not approximable

i HAMILTONIAN CYCLE:
[N=card(V)] INPUT: an undirected graph G £ (V, E)
el / (1—8) N QUESTION: Acycle in G going once through each vertex?

is NP-complete

letd; 2£1ifedgei —j,

“;_

M if no edge. Defines an mstance D of TSP.
Tour 1t: cost = N if Hamiltonian cycle, > M otherwise
* Assume an g-approximation (poly time) algorithm A for TSP

* If G has a Hamiltonian cycle, opt(D) = N
A(D) will find a tour of cost < 1/(1-¢).opt(D) < M,
hence a Hamiltonian cycle, in poly time

+ Hence HAMILTONIAN CYCLE is in P, so P=NP.

KNAPSACK

KNAPSACK

« INPUT: prices v; and weights w;, 1<i<n, a max weight W

(all are natural numbers)

FEASIBLE SOL.: asubset SC{1,....n} / Yieswi< W
COST. Zz c S 0

* Decision problem (is cost < some given budget?) is
NP-complete

* g-approximable for every ¢ €]0,1[.
Approximation threshold is 0 (best possible!)

KNAPSACK

~ INPUT: prices v; and weights w;, 1<i<n, a max weight W
FEASIBLE SOL.: asubset SC{1,...,n} / ieswi<W

“ A well-known dynamic COST: Zics v

programming algorithm for KNAPSACK:

“ Let V £ Xi1" v;, and, for all 1<j<n and O<ov<V:
Win=minli—cw: . S:CL . gl D szl

* Then W(j,v) = min(W(j-1,v), W(j-1,v—v;)+w;) if v=v;
W(j-1,v) otherwise
. . exponential in size(V)=O(log V)
can be computed in time O(nV) I —— ¢ -

« Finally, find largest v such that W(n,v)<W.

KNAPSACK

INPUT: prices v; and weights w;, 1<i<n, a max weight W

FEASIBLE SOL.: a subset SC{1,...,n} / Zieswi<W
: « Awell-known dynamic 7"
Do all Computatlons on programming algorithm for RNAPSACK:
values (le H(Op '01') by Only # Let V£ X" v, and, for all 1<j<n and O<ov<V:

W(j,v) =min {Zieswi | SC{1,...,j}, Zies vi=v}

keeping the
p g : i : + Then W(j,v) = min(W(j-1,v), W(j-1,v—v;)+w;) if v=0;
k most Slgnlflcant bltS W(j-1,v) otherwise

Of e aCh numb er an d can be computed in time O(nV)

s Finally, find largest v such that W(n,v)<W.
rounding down

Le., represent v; by the k-bit number | v;/ 2k0-*| [k0 = #bits in nV]
replace all values v by k-bit approximations v’ (v = 2k0-k 1”)

replace computation of v—v; by v'—|v;/2K0-*|

KNAPSACK

INPUT: prices v; and weights w;, 1<i<n, a max weight W

FEASIBLE SOL.: asubset SC{1,...,n} / Tieswi<W
+ Awell-known dynamic "
+ We choose programming algorithm for RNAPSACK:
k def [Size(n V)_l() gz(g V / n)-l = LetV £ X" v, and, for all 1<j<n and O<o<V:

W(j,v) =min {Zieswi | SC{1,...,j}, Zies vi=v}

=logy (n2/€)+O(1)

Then W(j,v) = min(W(j—1,v), W(j—-1,v—vj)+w;) if v=v;
W(j-1,v) otherwise
S There are now at most can be computed in time O(nV)

Dk :O(nZ / 8) different values * Finally, find largest v such that W(n,v)<W.

instead of O(V),
hence times goes down to O(n 2k) = O(n3/ ¢)

L)

* And final value is between (1-¢)opt and opt
(see lecture notes for details, Prop. 2.7).

MAXSSAT

MAXSAT

+ INPUT: a finite list S of clauses

FEASIBLE SOL.: an environment Q
VALUE: #clauses satisfied by ©

Decision problem (is value > some given goal?)
is NP-complete

« g-approximable for which ¢ € |0,1[?
Let me give you the best known (and silliest)
algorithm...

Johnson’s algorithm

* Rough idea: while there is a variable A left, decide to set A to 1
(true) or 0 (false) depending on which of

E(#clauses of S[A:=1] satisfied by) and

E(#clauses of S[A:=0] satisfied by o) is larger,
where @ is drawn at random.

* S[A:=1]: remove clauses where A occurs positively,
remove —A from remaining clauses

* S[A:=0]: remove clauses where - A occurs

(i.e., A occurs negatively),
remove A from remaining clauses

Johnson’s algorithm

E(#clauses of S
E(#clauses of S

* In reality: we compare

A1

A=0]

not satisfied |

by 0)

not satisfied |

+ Otherwise, set Ato 0, S := S[A:=0]

by 0)

+ If the first one is smaller, set Ato 1, S := S[A:=1]

and

Computing E(#clauses of S not satisfied by Q)

* Let S #[Cy, ..., Cul, each Cjbeing a clause or T
E(S) £ E(#j /C; not satisfied by @, 0 uniformly random)

+ B(S) = o™ E([C]]) = Zjo1™ Pro(not o = C;))

[linearity of expectation]

+ If C;is a tautology A v -A Vv ... (or T), Pro(not o= C) =0
else Pro(not o = C) =1/2/¢l,

e.g., Pro(noto AV -Bv-C)=1/8

T'he key observation

* Claim. E(S) = %A(E(S[A:=1])+E(5[A:=0]))

* Proof. By linearity of expectation, enough to check it for a single
clause C;

« If C; tautology, 0 = %4(0+0), otherwise...

» I E—A Vrest BE(G) = 11261 =35 /D brestl
E(GA:=1]) = E(T) =0
E(C;[A:=0]) = E(rest) = 1/2rest]

+ Similarly if C;=—A V rest
+ If neither A nor —=A occurs in C, ClA:=1] = C[A:=0]=C;. O

Decreasing expectations

¢ Claim. E(S) = %(E(S[A:=1])+E(S[A:=0]))

» List all the variables as Ao, ..., As. Set So £ S (=][Cy, ..., Cu])

E(So[A1:=1])<E(So[A1:=0])? E(S1[A2:=1])<E(S1[A2:=0])? E(S2[A3:=1])<E(S2[A3:=0])?

W/ y} ye/ y W/ y e

set A1:=1 set A1:=0 set Ax:=1 set Ax:=0 set Az:=1 set Az:=0
S1:=5[A1:=1] S1:=5|A1:=0] S2:=S1[A2:=1] S2:=51[A2:=0] S3:=S)[A3:=1] S53:=55|A3:=0]

* By the claim, E(Si+1) < E(S:). So E(S.) < E(S).

» Let o be the final environment
The only clauses in S, are T (if ¢ = Cj), or the empty clause L

- Note: E(S,) = #empty clauses in S,.
So o satisfies m—E(S,) > m—E(S) clauses in S.

MAXSAT 1s approximable

« o satisfies m—E(S,) = m—E(S) clauses in S = [C;, ..., Cu]

« If each non-tautological C; has >k literals,

Pro(not o = C;) < 1/2k (=0 if tautological), so
E(S) = Zi-1™ Pro(not o = C;) < m [2k

* Therefore @ satisfies > m (1- 1/2k) > opt(S) (1- 1/2k) clauses in S:

« Thm. MAXSAT restrictedto S /

each non-tautological C; has >k literals, is 1/2k-approximable.

MAXSAT 1s approximable

“ Thm. MAXSAT restricted to S /

each non-tautological C; has >k literals, is 1/2k-approximable.

“ One can always prepare S by eliminating unit clauses, so k=2:

MAXSAT is 1/4-approximable.

= If every clause in S has at least 3 literals, then

1/8-approximable.

* Hence MAX=3SAT (all clauses have exactly 3 literals) is

1/8-approximable. It turns out that this is optimal.

Sanjeev Arora, Shmuel Safra

Home > ACM Journals > Journal of the ACM > Vol. 45, No. 1 > Probabilistic checking of proofs: a new characterization of NP

ARTICLE

Probabilistic checking of proofs: a new characterization of
NP
¥inag f

Authors: e Sanjeev Arora, Shmuel Safra Authors Info & Affiliations (1 998)

Publication: journal of the ACM « January 1998 e https://doi.org/10.1145/273865.273901

Journal of the ACM Il Abstract

Volume 45, Issue 1
We give a new characterization of NP: the class NP contains exactly those languages L for

ST S which membership proofs (a proof that an input x is in L) can be verified probabilistically in
Abstract polynomial time using logarithmic number of random bits and by reading sublogarithmic
References number of bits from the proof.

index Terms We discuss implications of this characterization; specifically, we show that approximating
Cominenis Clique and Independent Set, even in a very weak sense, is NP-hard.

;rrq@

https://commons.wikimedia.org/wiki/File:Sanjeev_Arora.jpg#/media/Fichier:Sanjeev_Arora.jpg

https://simons.berkeley.edu/sites/default/files/styles/profile main/public/dscn0007.jpg?itok=irtfi766

Reminder: randomized TMs

* Two read-only tapes X (size n)

* As many work tapes
as you need
(but only a constant
number!)

With the usual proviso:
head can only move right on random tape r

PCP machines

Proof tape is accessed in random access mode /\? P]_“O()f tape

Three
* JTwe read-only tapes

* As many work tapes
as you need

(but only a constant
number!)

With the usual proviso: position in binary, points to
head can only move right on random tape r cell #pos on proof tape y

Running a PGP machine
| PCP machines

Proof tape is accessed in random

access mode / A pl‘OOf tape

On input x, Merlin fills in

Three
prOOf tape y T bUt keeps + Tweoe read-only tapes
it masked (= cryptographic + Asmany worktapes []
. as you need
Commltment) (but only a constant
number!)
Arthur, only knowing Iyl (and x), | . Tl a0
With the usual proviso: position in binary, points to

Computes k:Q (n) Positions head can only move right on random tape r cell #pos on proof tape y
p1, ..., px on the proof tape in binary,

in polynomial time, using R(n) random bits

Merlin reveals y[p1], ..., y[pi]

Arthur computes)
. : : where f may also depend on x, and
f(]/[Pl], P y[pk]) = {accept, re]eCt} In fime T(Tl) ir? the r}a,ndso(zn EI;; of ;)tegz

/7
%

\/
%

Acceptance conditions

Running a PCP machine

PCP machines

1. Oninput x, Merlin fills in -)Mmmhm —
i proof tape y — but keeps el iy g ; ey
I f %6 E L, then Merlln can it masked (= cryptographic ::nan: woilym:es """"" —
commitment) ?Ijzto;ngidconstant [
° number!)
prOV]_de a pr OOf tape y Su Ch that 2. Arthur' Only knOWing | y | 4 P e e s 7,“,,6“.':5:.(?%
computes k=Q(n) positions el o o Simeeiiwestl
2 p1, ..., px on the proof tape in binary, — '
Ar thur Wlll always accept 11}1 polyrl'(tornial time, using R(n) random bits
3. Merlin reveals y[p1], ..., y[pi] Complexity class
If x & L, then whichever 4. Arthu computes rE

fylp1l, ..., ylpx]) € {accept, reject} in time T(n)

proof tape Merlin provides, — ——
Arthur will reject with probability > 72

The languages L that can be decided this way form the
complexity class PCP(R(n),Q(n),T(n))

The Arora-Safra theorem

NP=PCP,

* Theorem. NP = PCP(O(log n), O(1), O(l))<l for short

* Le., one can decide every language in NP

by running a PCP machine that:

— asks Q(n)=0(1) questions (positions)

— computed using only R(n)=0(log n) random bits,
in poly time

— and finally decides
in T(n)=0(1) time.

Sanjeev Arora, Shmuel Safra

* Proof would require a whole term!

NP=PCP and the hardness of approximation

* What I will explain is that NP=PCP is equivalent to the
e-inapproximability of MAX3SAT for some >0

“ Arora-Safra prove NP=PCP

... and there is a simplified (still extremely complex)
proof by Irit Dinur

R/
0‘0

The easy direction: PCP € NP

Running a PCP machine

PCP machines

L °
Derandomize naively: 1. Oninput , Merin il e
proof tape y — but keeps ‘ Lv,,:’md.omy TR
1 it masked (= cryptographic ¢+ Asmanyworktapes [| |
for every string of R(n) coyplographi
number!)
< : 2. Arthur, only knowing |y, S — e
random bltS 7 SlmUIate oRiE ek i) positions EEEELTURR
p1, ..., pron the proof tape in binary,
, °
Arthur S Comput atlon in polynomial time, using R(n) random bits
3. Merlin reveals y[p1], ..., y[pi] Complexity class
4. Arthur computes el
If more than 1/2_ Of the fylp1l, ..., ylpx]) € {accept, reject} in time T(n)

simulations accept, then accept, else reject
Works in time 2Rlog R(n) poly(n)+T(n)
So PCP(R(n)20O(log 1), Q(n)2whatever, T(n)£poly(n)) € NP

PCP and the hardness of
approximating SA'T

MAX3SAT(¢)

* ... 1s the following promise problem:
INPUT: a finite set S of m propositional 3-clauses
PROMISE: S satisfiable / opt(S) < (1-¢)m

QUESTION: which is true? [opt(S) = max #sat. clauses]

+ We will see that:

— if 3SAT is e-approximable then MAX3SAT(¢e)
is polytime decidable
— (3 e>0, MAX3SAT(¢) is NP-hard) iff NP=PCP

* That was known before Arora-Safra.
With Arora-Safra: 3 e>0, 3SAT is not e-approximable, unless P=NP

Note: NP-complete
would not
make sense

for promise problems

J

If 3SAT e-approximable then MAX3SAT(g) polytime

* Given a (polytime) e-approximation
algorithm A for 3SAT: MAX3SAT(e)

INPUT: a finite set S of m propositional 3-cle
PROMISE: S satisfiable / opt(S) < (1-¢)m

* For every instance S of MAX3SAT (&), QuUESTION: which s true?
02A(S) satisfies > (1—¢).opt(S) clauses of S

= If S satisfiable, opt(S)=m, so o satisfies > (1-¢)m clauses
« Otherwise, g satisfies < (1-¢)m clauses by the promise

* Hence comparing #clauses satisfied by o2A(S) with (1-¢)m
yields a polytime algorithm deciding MAX3SAT(e).

(4 >0, MAX3SAT(¢) NP-hard)
it NP=PCP:
the left to right direction

If4e>0, MAX3SAT(e) NP-hard then NP=PCP

* We already know PCP € NP. Conversely, MAX3SAT()

INPUT: a finite set S of m propositional 3-cla
PROMISE: S satisfiable / opt(S) < (1-¢)m
QUESTION: which is true?

“ Jpolytime reduction from L to C— —_

MAX3SAT(e), since MAX3SAT(e) NP-hard by assumption

let L be any language in NP.

+ PCP is closed under

polytime reductions Running a PGP ma}gb“'}f?“
(important!) 1. Oninput x, Merlin fills in) el S
proof tape y — but keeps : z:mad.on.y tpes
! : el it masked (= cryptographic B T —
+ So it suffices to exhibit a commitment) Gty
; S 2. Arthur, only knowing lyl, e e
PCP machme dec1d1ng computes k=Q(n) positions e

p1, ..., px on the proof tape in binary,i

M AX3 S AT(8) in polynomial time, using R(n) random bits

3. Merlin reveals y[p1], ..., ylpi] Complexity class

PCP(R(1),Q(n),T
4. Arthur computes (R(n),Q(n),T(n))

fylp1l, ..., ylpx]) € {accept, reject} in time T(n)

S — —————

If4e>0, MAX3SAT(e) NP-hard then NP=PCP

A PCP machine deciding MAX3SAT(e)
MAX3SAT(€). Let Sg[C1 oo ,Cm] INPUT: a finite set S of m propositional 3-cla
PROMISE: S satisfiable / opt(S) < (1-¢)m
1. Merlin fills in Y with 0 QUESTION: which is true?
— ——
2. Arthur chooses Cf at random, Oops... and precompiles a circuit
(say +Az V-An V —A239) that evaluates C;, to be used in step 4
and gives the corresponding
3 positions (here: 32, 71, 239) Running a PCP machine
PCP machines
3. Merlin reveals the corresponding i . = &
proof tape y — but keeps L — P
truth Values it masked (= cryptographic + Asmanyworktapes [] |
commitment) ?ljuyto:n;\)idconstant
4. Arthur evaluates C; using a precompiled | 2. arthus, only knowing 11, T == o
. . . - ; tes k=Q(n) positi W sl e A i Rt omprickapey
circuit, of constant size... in time O(1) o e on the proof tape i binary ™™= —
(here] ®) in polynomial time, using R(n) random bits
J
X 3. Merlin reveals y[p1], ..., ylp Complexity cl
_ —\) accepts if true, i PCPR(, QT
j/ 4. Arthur computes
rejects if false fylp1l, ..., ylpi]) € {accept, reject} in time T'(n)

HP:, —‘;

If4e>0, MAX3SAT(¢) NP-hard then NP=PCP

Uses R(1)=0O(log 1) random bits: MAX3SAT(e)
16t b . 1 . t d INPUT: a finite set S of m propositional 3-cla
just one number j (S]ﬁm) dt ranaom PROMISE: § satisfiable / opt(S) < (1-&)m

QUESTION: which is true?

Q(n)=0(1) (indeed, =3)
T(n):O (1) + A PCP machine deciding

MAX3SAT(e). Let S=[Cy,...,Cul

. . . 1. Merlin fills in y with o
If S satisfiable, then Merlin can produce T A

(say +As2 V —A71 V —Azs)

a satisfying assignment, so Arthur will accept aaswes the comesponding

3 positions (here: 32, 71, 239)

3. Merlin reveals the corresponding
truth values

If opt(S) < (1-¢)m, then whatever g is given,

4. Arthur decides using a precompiled

PI']' (Q = C]) < (1_8) <l(8hoot! We needed ¥ here... C(ll::rlel-':lt . e mﬁm‘; .
A\ —po
() | —

Note: j is random here,
not Q as in Johnson’s algorithm

If4e>0, MAX3SAT(e) NP-hard then NP=PCP

/7
%?

o

*

7/
%*

/7
%*

We solve the problem using MAX3SAT(e)

parallel repetition (k times) ;T{I;Ii;fisaEfil;itet§e; SbolfTPI?&(;sitigna; 3-cla
k £ [-log 2/log (1-¢)] : S satisfiable / opt(S) < (1-¢)m

: QUESTION: which is true?
Uses R(n)=0O(log n) random bits:

just k numbers j (1<j<m) at random
Q(n)=0(1) (indeed, 3k) " MAGSATE) Lot SCs Co
T(n):O(l) 1. Merlin fills in y with

2. Arthur chooses C; at random,
(say +Asz2 V —A71 V —Az3)

p . . and gives the correspondin
If S satisfiable, then Merlin can produce 3 postions (here: 32, 71, 239)
a satisfying assignment, so Arthur will accept > trife MEyenla fhe comesponcing

4. Arthur decides using a precompiled
circuit, of constant size... in time O(1)

If opt(S) < (1-¢)m, then whatever g is given, Gee, Do)
Pryi,.. iloECihand ... and g = Ci) < (1-¢)k <% T =

and

(de>0, MAX3SAT(¢) NP-hard)
it NP=PCP:
the right to left direction

[f NP=PCP then 3 >0, MAX3SAT(g) NP-hard

R/
0‘0

Assume NP=PCP. Then there is a PCP(R(n)2k log 1,0(1),0(1))

machine M deciding SAT Running a PCP machine

PCP machines

We look for a polytime reduction | - Oninputs Merlin il in B =
Pt bipey—but keeps < Bworeadonlyapes e |
from SAT to MAX3SAT(¢), e el

f 0 2. Arthur, only knowing lyl, e S
Oor some 8> computes k=Q(n) positions Vil e A i W coll #poson prock tapey
p1, ..., pk on the proof tape in binary,
in polynomial time, using R(n) random bits

Let us look at M(x)’ S pOSSible I'UIS, 3. Merlinreveals ylpil, ..., ylpd Complexity class
PCP(R(n),Q(n),T(n))
. 4. Arthur computes
for eaCh R(]fl)—blt Word f & fylp1l, ..., ylpx]) € {accept, reject} in time T(n)

. T — E——
drawn at random in step 2

(Note that the assumption that T(12)=0(1) in step 4 is superfluous:
fonly has a constant #inputs, and can always be encoded by a constant-size circuit, evaluated in time O(1)...)

[f NP=PCP then 3 >0, MAX3SAT(g) NP-hard

* For each k log> n-bit random string r, Arthur computes O(1)

ositions, and a constant-size . .
b ; Running a PCP machine

CerUIt Cr (Say SG fan'ln 2. gateS) PCP machines
proof tape 1. Oninput x, Merlin fills in e =g -
proof tape y — but keeps %::md_on,y Gipes
it masked (= cryptographic + Asmany work tapes [|
2k 10 gz n nk Commitment) ?slfto;n?)idconstant
P number!)
2. Arthur, only knowing |y, S T .

computes k=Q(n) positions

- head can ol Tove Hight on random tape T cell #pos on proof tape
C " Ins tances p1, ..., pron the proof tape in binary,” —

in polynomial time, using R(n) random bits

3. Merlin reveals y[p1], ..., y[pi] Complexity class

PCP(R(n),Q(n),T
4. Arthur computes (R(n),Q(n), T(n)

fylp1l, ..., ylpx]) € {accept, reject} in time T(n)

« If input S satisfiable, then Merlin™ T —

can provide y / output wire of C, is true, for every r

7/

* QOtherwise, whatever y, > Vank output wires false

[f NP=PCP then 3 >0, MAX3SAT(g) NP-hard

+ We now encode those circuits as a 3SAT formula, e.g.:

proof tape
nkinstances,
each with
Cr <G fan-in 2
gates
Clause set 5
82, b0 39

Ar = 7Y71

by = —Y239
::> Cr=Y32V ar

d=C i

dy

(or rather, its clausal form,
of < 3G+1 clauses)

[f NP=PCP then 3 >0, MAX3SAT(g) NP-hard

proof tape

+ If S satisfiable, then Merlin
can provide y /Vr, output(C,) true,

so S” £ A, S, is satisfiable

Clause set S’;

ar = Y71

br = —230
o . Cr=YxnVar
+ QOtherwise, whatever y, there is o=
a set I of = Vank values of r / d orathe s s o,
Vr € I, output(C,) false L — ——

+ hence Vo (giving truth values to each y; and to every auxiliary var.),
at least one clause in each S’ r € I, must be unsatisfied by ©

» so opt(S’) < #clauses in S” — Y2nk, and #clauses in S” < (3G+1)nk,
so opt(S’)/ #clauses in S” < 1-(Yank) / ((3G+1)nk) = 1-1/(6G+2)

* Therefore S’ is an instance of MAX3SAT(¢), with € £ 1/(6G+2)

[f NP=PCP then 3 >0, MAX3SAT(g) NP-hard

* Summary: If S satisfiable,

then S” £ A, S, is satisfiable
Else, opt(S’) < (1—¢).#clauses in S’
where ¢ £ 1/(6G+2)

Clause set S’;

Y7
b Y239
:> Cr =yanar
dr =0V by
dr

(or rather, its clausal form,
of < 3G+1 clauses)

* Additionally, each C; can be i
computed in polynomial time (snnulatmg Arthur’s
computation),
and computing S’ from C, also takes polynomial time

* Hence we have found a polytime reduction
from SAT to MAX3SAT(¢) (assuming NP=PCP). O

Irit Dinur

Home > ACM Journals > Journal of the ACM > Vol. 54, No. 3 > The PCP theorem by gap amplification

Par nnxa11 — Travail personnel,
CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=72395593

« Simplified proof...
[will only give a rough
sketch

(2007)

Yind f =

ARTICLE

The PCP theorem by gap amplification

Author: Irit Dinur Authors Info & Affiliations

Publication: lournal of the ACM « lune 2007 e https://doi.ore/10.1145/1236457.1236459

The PCP Theorem by Gap Amplification
Irit Dinur*
September 26, 2005

Abstract

We describe a new proof of the PCP theorem that is based on a combinatorial amplification
lemma. The unsat value of a set of constraints C = {¢1, ..., ¢, }, denoted UNSAT(C), is the smallest
fraction of unsatisfied constraints, ranging over all possible assignments for the underlying variables.

We prove a new combinatorial amplification lemma that doubles the unsat-value of a constraint-
system, with only a linear blowup in the size of the system. Iterative application of this lemma yields
a proof for the PCP theorem.

The amplification lemma relies on a new notion of “graph powering” that can be applied to
systems of constraints. This powering amplifies the unsat-value of a constraint system provided that
the underlying graph structure is an expander.

We also apply the amplification lemma to construct PCPs and locally-testable codes whose length
is linear up to a polylog factor, and whose correctness can be probabilistically verified by making a
constant number of queries. Namely, we prove SAT € PCP, , [log,(n - poly logn), O(1)]. This
answers an open question of Ben-Sasson et al. (STOC *04).

+ Uses expander graphs, « powering » on random

walks, Hadamard codes, etc.

Constraint graph satishiability

+ Instead of MAX3SAT(¢), Dinur uses:

* Defn. A constraint graph is an undirected graph (V, E)
plus a set of constraints c(e) © LxX, one for each edge e

... where X is a finite set of values, or colors,
that each vertex may assume under a color assignment

* Question: is there a color assignment satisfying all the
edge constraints?

“ NP-complete, generalizes 3-COLORABILITY

The gap

« The gap of an unsatisfiable contraint graph is
min (#unsatisfied edge constraints) / m |m £ #edges]

« We start with an unsatisfiable constraint graph G
* ...ofgap=1/m

* and we modity it so as to increase its gap
until we reach a constant non-zero number

« Applied to a satisfiable constraint graph,
the modifications will preserve satisfiability.

Graph expanders

A graph expander is a family of undirected graphs
with « good connectivity »

Defn. The edge expansion /i(G) of a graph G is
min (#edges between S and its complement/ #5)
over subsets S of <n/2 vertex of G [n€#vertices]

A graph expander is a family of graphs G, n €N,
— each regular of constant degree do

— with n vertices each v

— such that|i(G,)=ho, a positive constant LT el G o
even be produced in

polynomial time (in n)

Graph expanders

* A graph expander is a family of undirected graphs
with « good connectivity »

* A random walk on a graph expander is rapidly mixing,
namely: just doing a few steps gets you exponentially
close to the stationary distribution

1. Sparsification

“ First step: make G sparse enough

(so as to allow step 2 to apply; the important step is step 3)
precisely: make it regular and of small enough degree d

“ (Gap decreases by a constant factor only

« Replace every vertex (degree, say, k) by
a graph expander of degree d—1 with k vertices

r: e

2. Expanderize

“ First step: make G an expander
(so as to allow step 3 to apply)

* By taking the union with a good expander

* Gap (also) decreases by a constant factor (only)

2. Amplify the gap

« This is the difficult step.

* Fix a constant >0, and build a new constraint graph G!
whose single edges simulate paths of edges in G

(there are as many edges between x and y in G as paths in G)

L)

* Encode distance < t/2 neighborhoods around each vertex
New colors = assignment of (old) colors to vertices in those nbds
(« opinions »)

All vertices in G)

at distance <t/2
from x

Need O(| X | A(#+4/2)) new colors to
express lists of [original] colors
on all possible simulated paths

All vertices in G
at distance <t/2
from y

2. Amplily the gap

* Problem: close vertices in G may be assigned incompatible opinions (consistency problem)

» Correctness proof: given a color assignment on G,
build back a color assignment on G:
color of x (in G) £ most likely result as given by:
(do random walk in G starting from x;
stops at y with probability 1;
if y is in neighborhood of x
then return opinion of ¥ on what the color of x should be
Ise ignore y)

x and y may have different

opinions about the color of
vertices here

S

3. Amplify the gap

+ The analysis is a bit complex, but:

» Gap is (finally) amplified, by roughly \/; while gap<1/t

... although we need O(| X | A(#4/2)) new colors to solve consistency

(express lists of [original] colors on all possible simulated paths)

4. Alphabet reduce

Reduce back the alphabet of colors constant size (2¢, i.e. 64)

By encoding constraints through assignment testers
assignments are encoded by Hadamard error-correcting codes

[correct many errors, but exponentially large —
which is not a problem here because this will be the exponential of a constant...]

Decreases back gap by some constant factor

... and repeat steps 1—4 until gap becomes larger than a constant
(requires O(log m) iterations)

Dinur’s algorithm summarized

Step

Main Ideas

Effects

Proof Techniques

Degree Re-
duce

Split every vertex in to many
vertices,and introduce an Ex-
pander cloud with equality
constraints among the split
vertices.

Size T a O(d) factor, Gap de-
creases by a constant factor,
Alphabet remains same

Basic expansion prop-
erty of expanders

Expanderize

Superimpose a constant de-
gree expander with trivial
constraints, on to the con-
straint graph G

Size T a factor of 2 to 3, Gap
decreases by a constant fac-
tor, Alphabet remains same

Existence of constant
degree expanders and
Property that Expander
+ Graph gives an ex-
pander.

Gap-
Amplificatior

Each vertex’s value is its
1 opinion,on the values of ver-
tices at a distance < t,Add
edges corresponding to con-
sistency on random walks

Size T by a large con-
stant factor ,Gap increases by

O(t), Alphabet size becomes
| 2|0

Properties of random
walks on the graph

Alphabet-
Reduce

Encode the assignment with
error correcting codes, Build
a circuit that checks if assign-
ment satisfies and is a valid
codeword, Use an assignment
tester for the circuit

Size T a constant factor, Gap
decreases by a constant fac-
tor,Alphabet size reduced to
26

Hadamard codes, Lin-
earity Testing, Fourier
Analysis

Table 1: Proof of PCP

https://courses.cs.washington.edu/courses/cse533/05au/

That’s 1t, folks!

* T hope you enjoyed the material of the course!

