Jean Goubault-Larrecq

Randomized complexity classes

Today: approximation problems, PCP

Tous droits réservés, Jean Goubault-Larrecq, professeur, ENS Paris-Saclay, Université Paris-Saclay Cours « Complexité avancée » (M1), 2020-, 1er semestre Ce document est protégé par le droit d'auteur. Toute représentation ou reproduction intégrale ou partielle faite sans le consentement de l'auteur est illicite.

Today

- Approximation problems
- The class PCP
- * MAX3SAT is not ε-approximable iff NP=PCP
- * The Arora-Safra theorem: **NP**=**PCP** (no proof...)

Approximation problems

Approximation

- * Attempt to attack NP-complete problems, by relaxing requirements. E.g., **3SAT** is NP-complete. Instead, given $\epsilon \in [0,1[$, let MAX3SAT be:
- * **INPUT**: a finite set *S* of 3-clauses **OUTPUT**: an environment ϱ that satisfies $(1 - \varepsilon)$ opt(*S*) where opt(*S*) \cong max_{ϱ env.} (# clauses of *S* s.t. $\varrho \models S$)
- * For which values of ε is that in **P**?

For each input *x*, [e.g., a set of 3-clauses]
a finite set *F*(*x*) of so-called
feasible solutions [e.g., all assignments *Q* on the vars of *S*}]

- For each input *x*, [e.g., a set of 3-clauses]
 a finite set *F*(*x*) of so-called
 feasible solutions [e.g., all assignments *Q* on the vars of *S*}]
- * For each $y \in F(x)$, a **value** c(y)

[e.g., #clauses satisfied by Q]

- For each input *x*, [e.g., a set of 3-clauses]
 a finite set *F*(*x*) of so-called
 feasible solutions [e.g., all assignments *Q* on the vars of *S*}]
- ∗ For each $y \in F(x)$,
 a value c(y) [e.g., #clauses satisfied by ϱ]
- * Goal: estimate opt(x) $\triangleq \max_{y \in F(x)} c(y)$

- For each input *x*, [e.g., a set of 3-clauses]
 a finite set *F*(*x*) of so-called
 feasible solutions [e.g., all assignments *Q* on the vars of *S*}]
- ∗ For each $y \in F(x)$,
 a value c(y) [e.g., #clauses satisfied by ϱ]
- * Goal: estimate opt(x) $\triangleq \max_{y \in F(x)} c(y)$
- * ε-approximable iff can find y ∈ F(x) / c(y) ≥ (1-ε)opt(x) in polynomial time

- For each input *x*, [e.g., a set of 3-clauses]
 a finite set *F*(*x*) of so-called
 feasible solutions [e.g., all assignments *Q* on the vars of *S*}]
- ∗ For each $y \in F(x)$,
 a value c(y) [e.g., #clauses satisfied by ϱ]
- * Goal: estimate opt(x) \triangleq max_{$y \in F(x)$} c(y)
- * ε-approximable iff can find y ∈ F(x) / c(y) ≥ (1-ε)opt(x) in polynomial time
- * **Defn.** The **approximation threshold** = \inf_{ϵ -approximable ϵ

- For each input *x*,
 a finite set *F*(*x*) of so-called
 feasible solutions
- * For each $y \in F(x)$, a **cost** c(y)
- * Goal: estimate $opt(x) \triangleq \min_{y \in F(x)} c(y)$
- * ε-approximable iff can find y ∈ F(x) / c(y) ≤ 1/(1-ε).opt(x) in polynomial time
- * **Defn.** The **approximation threshold** = $\inf_{\epsilon-approximable} \epsilon$

Optimization problems

- Optimization = maximization or minimization
- ★ ε-approximable iff can find y ∈ F(x) / | c(y)-opt(x) | / max(c(y),opt(x)) ≤ ε in polynomial time (ugly formula, but generalizes the previous formulae)
- **Defn.** The approximation threshold = \inf_{ε -approximable ε
- * Let us see, through a few examples, that this can be pretty much any number in [0,1].

* INPUT: an undirected graph $G \cong (V, E)$ **FEASIBLE SOL.: node covers**, i.e., subsets $C \subseteq V$ such that every edge u - v meets C(u or v or both are in C) **COST**: card(C)

By Miym - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6017739

By Miym - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6017749

The associated
decision problem:
INPUT: G, a budget k
QUESTION: does G have
a node cover C with card(C) ≤ k?

* is **NP**-complete.

The associated
 decision problem:
 INPUT: G, a budget k
 QUESTION: does G have
 a node cover C with card(C) ≤ k?

Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=60

- * is **NP**-complete.
- * What is the approximation threshold of **NODE COVER**?

The associated
 decision problem:
 INPUT: G, a budget k
 QUESTION: does G have
 a node cover C with card(C) ≤ k?

- * is **NP**-complete.
- * What is the approximation threshold of **NODE COVER**?
- Hint: the best known approximation algorithm is also one of the dumbest... and no, picking a vertex to be put in the cover, removing all incident edges, and going on is not dumb enough

NODE COVER is 1/2-approximable

Algorithm: (init: C:=Ø);
pick an edge u — v,
add both u and v to C,
then remove u and v

and all incident edges, and proceed until no edge left.

- Let *M* be the set of edges picked by the algorithm.
 M is a matching: a vertex-disjoint collection of edges
- * card(C)=2.card(M)

NODE COVER is ¹/2-approximable

- Given a node cover C',
 every edge of M meets C'
 at a distinct vertex
- * So card(M) \leq card(C')

Algorithm: (init: C:=Ø);
 pick an edge u — v,
 add both u and v to C,
 then remove u and v

and all incident edges, and proceed until no edge left.

- Let *M* be the set of edges picked by the algorithm.
 M is a **matching**: a vertex-disjoint collection of edges
- * card(C)=2.card(M)
- * Since card(C) = 2.card(M), card(C) \leq 2. card(C')

NODE COVER is ¹/2-approximable

- * Given a node cover C', every edge of M meets C' at a **distinct** vertex
- * So card(M) \leq card(C')

 Algorithm: (init: C:=Ø); pick an edge u - v, add **both** *u* and *v* to *C*, then remove u and v

and all incident edges, and proceed until no edge left.

- * Let *M* be the set of edges picked by the algorithm. *M* is a **matching**: a vertex-disjoint collection of edges
- * card(C)=2.card(M)
- Since card(C) = 2.card(M), card(C) \leq 2. card(C')
- Hence NODE COVER ** polynomial time is ¹/₂-approximable. ($\frac{1}{2}$ is in fact the best we can do, unless **P**=**NP**)
- * *ε*-approximable iff can find $y \in F(x) / c(y) \ge (1-\varepsilon)opt(x)$ in
 - * **Defn.** The approximation threshold = \inf_{ε -approximable ε

The traveling salesman problem (TSP)

TSP

* INPUT: a matrix D[±](d_{ij})_{1≤i,j≤n} of 'distances' between cities (only constraint: d_{ii}=0)
 FEASIBLE SOL.: tours, i.e., permutations π of {1,...,n}
 COST: d_π(1)_π(2)+d_π(2)_π(3)+...+d_π(n-1)_π(n)+d_π(n)_π(1)

13,509 U.S. cities with populations of more than 500 people connected optimally http://www.crpc.rice.edu/CRPC/newsletters/sum98/news_tsp.html

TSP

- * INPUT: a matrix D[±](d_{ij})_{1≤i,j≤n} of 'distances' between cities (only constraint: d_{ii}=0)
 FEASIBLE SOL.: tours, i.e., permutations π of {1,...,n}
 COST: d_π(1)_π(2)+d_π(2)_π(3)+...+d_π(n-1)_π(n)+d_π(n)_π(1)
- Decision problem (is cost ≤ some given budget?) is
 NP-complete

13,509 U.S. cities with populations of more than 500 people connected optimally http://www.crpc.rice.edu/CRPC/newsletters/sum98/news_tsp.html

TSP

- * INPUT: a matrix D[±](d_{ij})_{1≤i,j≤n} of 'distances' between cities (only constraint: d_{ii}=0)
 FEASIBLE SOL.: tours, i.e., permutations π of {1,...,n}
 COST: d_{π(1)π(2)}+d_{π(2)π(3)}+...+d_{π(n-1)π(n)}+d_{π(n)π(1)}
- Decision problem (is cost ≤ some given budget?) is
 NP-complete
- * ε -approximable for **no** $\varepsilon \in]0,1[$ unless **P=NP**. Hence approximation threshold is 1 (worst possible!) _{13,13}

13,509 U.S. cities with populations of more than 500 people connected optimally http://www.crpc.rice.edu/CRPC/newsletters/sum98/news_tsp.html

 * We use the fact that HAMILTONIAN CYCLE: INPUT: an undirected graph G ≅ (V, E)
 QUESTION: ∃cycle in G going once through each vertex? is NP-complete

- * We use the fact that HAMILTONIAN CYCLE: INPUT: an undirected graph G ≅ (V, E)
 QUESTION: ∃cycle in G going once through each vertex? is NP-complete
- We build a poly time reduction from HAMILTONIAN
 CYCLE to (the decision form) of TSP,

- We use the fact that HAMILTONIAN CYCLE:
 INPUT: an undirected graph G ≅ (V, E)
 QUESTION: ∃cycle in G going once through each vertex?
 is NP-complete
- We build a poly time reduction from HAMILTONIAN
 CYCLE to (the decision form) of TSP,
- * showing that if TSP is ε-approximable, then
 HAMILTONIAN CYCLE is in P, hence P=NP.

* Given $G[N \equiv card(V)]$ and $M > 1/(1-\varepsilon).N$, let $d_{ij} \equiv 1$ if edge i - j, M if no edge. Defines an instance D of TSP. HAMILTONIAN CYCLE: INPUT: an undirected graph $G \equiv (V, E)$ QUESTION: $\exists cycle in G$ going once through each vertex?

* Given $G[N \equiv card(V)]$ and $M > 1/(1-\varepsilon).N$, let $d_{ij} \equiv 1$ if edge i - j, M if no edge. Defines an instance D of TSP.

HAMILTONIAN CYCLE: INPUT: an undirected graph $G \cong (V, E)$ QUESTION: \exists cycle in G going once through each vertex? is NP-complete

* Tour π : cost = *N* if Hamiltonian cycle, $\geq M$ otherwise

- * Given G [N = card(V)] and $M > 1/(1-\varepsilon).N$, let $d_{ij} = 1$ if edge i - j, M if no edge. Defines an instance D of TSP. HAMILTONIAN CYCLE: INPUT: an undirected graph G = (V, E)QUESTION: $\exists cycle in G$ going once through each vertex? is NP-complete
- * Tour π : cost = *N* if Hamiltonian cycle, $\ge M$ otherwise
- * Assume an ε-approximation (poly time) algorithm A for TSP

- * Given G [N = card(V)] and $M > 1/(1-\varepsilon).N$, let $d_{ij} = 1$ if edge i - j, M if no edge. Defines an instance D of TSP. HAMILTONIAN CYCLE: INPUT: an undirected graph G = (V, E)QUESTION: $\exists cycle in G$ going once through each vertex?
- * Tour π : cost = *N* if Hamiltonian cycle, $\ge M$ otherwise
- * Assume an ε-approximation (poly time) algorithm A for TSP
- * If *G* has a Hamiltonian cycle, opt(D) = NA(*D*) will find a tour of $cost \le 1/(1-\varepsilon).opt(D) < M$, hence a Hamiltonian cycle, in poly time

* Given G[N = card(V)] and $M > 1/(1-\varepsilon).N$, let $d_{ij} = 1$ if edge i - j, M if no edge. Defines an instance D of TSP.

HAMILTONIAN CYCLE: INPUT: an undirected graph $G \cong (V, E)$ QUESTION: \exists cycle in G going once through each vertex? is NP-complete

* Tour π : cost = *N* if Hamiltonian cycle, $\geq M$ otherwise

- * Assume an ε-approximation (poly time) algorithm A for TSP
- * If *G* has a Hamiltonian cycle, opt(D) = NA(*D*) will find a tour of $cost \le 1/(1-\varepsilon).opt(D) < M$, hence a Hamiltonian cycle, in poly time
- * Hence **HAMILTONIAN CYCLE** is in **P**, so **P**=**NP**.

* INPUT: prices v_i and weights w_i, 1≤i≤n, a max weight W (all are natural numbers)
FEASIBLE SOL.: a subset S ⊆ {1,...,n} / Σ_{i∈S} w_i ≤ W
COST: Σ_{i∈S} v_i

- * INPUT: prices v_i and weights w_i, 1≤i≤n, a max weight W (all are natural numbers)
 FEASIBLE SOL.: a subset S ⊆ {1,...,n} / Σ_{i∈S} w_i ≤ W
 COST: Σ_{i∈S} v_i
- Decision problem (is cost ≤ some given budget?) is
 NP-complete

- * INPUT: prices v_i and weights w_i, 1≤i≤n, a max weight W (all are natural numbers)
 FEASIBLE SOL.: a subset S ⊆ {1,...,n} / Σ_{i∈S} w_i ≤ W
 COST: Σ_{i∈S} v_i
- Decision problem (is cost ≤ some given budget?) is
 NP-complete
- * ε -approximable for **every** $\varepsilon \in]0,1[$. Approximation threshold is 0 (best possible!)

INPUT: prices v_i and weights w_i , $1 \le i \le n$, a max weight W

- * A well-known dynamic **FEASIBLE SOL**.: a subset $S \subseteq \{1,...,n\} / \Sigma_{i \in S} w_{i} \le W$ **COST**: $\Sigma_{i \in S} v_{i}$
- * Let $V \stackrel{\text{\tiny def}}{=} \sum_{i=1}^{n} v_i$, and, for all $1 \le j \le n$ and $0 \le v \le V$: $W(j,v) = \min \{ \sum_{i \in S} w_i \mid S \subseteq \{1,\ldots,j\}, \sum_{i \in S} v_i = v \}$
INPUT: prices v_i and weights w_i , $1 \le i \le n$, a max weight W

- * A well-known dynamic **FEASIBLE SOL**.: a subset $S \subseteq \{1,...,n\} / \Sigma_{i \in S} w_{i} \le W$ **COST**: $\Sigma_{i \in S} v_{i}$
- * Let $V \stackrel{\text{\tiny def}}{=} \sum_{i=1}^{n} v_i$, and, for all $1 \le j \le n$ and $0 \le v \le V$: $W(j,v) = \min \{ \sum_{i \in S} w_i \mid S \subseteq \{1,\ldots,j\}, \sum_{i \in S} v_i = v \}$
- * Then $W(j,v) = \min(W(j-1,v), W(j-1,v-v_j)+w_i)$ if $v \ge v_j$ W(j-1,v) otherwise can be computed in time O(nV)

INPUT: prices v_i and weights w_i , $1 \le i \le n$, a max weight W

- * A well-known dynamic **FEASIBLE SOL**.: a subset $S \subseteq \{1,...,n\} / \Sigma_{i \in S} w_{i} \le W$ **COST**: $\Sigma_{i \in S} v_{i}$
- * Let $V \stackrel{\text{\tiny def}}{=} \sum_{i=1}^{n} v_i$, and, for all $1 \le j \le n$ and $0 \le v \le V$: $W(j,v) = \min \{ \sum_{i \in S} w_i \mid S \subseteq \{1,\ldots,j\}, \sum_{i \in S} v_i = v \}$
- * Then $W(j,v) = \min(W(j-1,v), W(j-1,v-v_j)+w_i)$ if $v \ge v_j$ W(j-1,v) otherwise can be computed in time O(nV)
- * Finally, find largest v such that $W(n,v) \le W$.

- **FEASIBLE SOL**.: a subset $S \subseteq \{1, ..., n\} / \Sigma_{i \in S} w_i \le W$ * A well-known **dynamic COST**: $\Sigma_{i \in S} v_i$ programming algorithm for KNAPSACK:
- * Let $V \stackrel{\text{\tiny def}}{=} \sum_{i=1}^{n} v_i$, and, for all $1 \le j \le n$ and $0 \le v \le V$: $W(j,v) = \min \{ \Sigma_{i \in S} w_i \mid S \subseteq \{1, \dots, j\}, \Sigma_{i \in S} v_i = v \}$
- * Then $W(j,v) = \min(W(j-1,v), W(j-1,v-v_j)+w_i)$ if $v \ge v_j$ W(j-1,v) otherwise can be computed in time O(nV)
 - **exponential** in size(*V*)=O(log *V*) if numbers in binary

INPUT: prices v_i and weights w_i , $1 \le i \le n$, a max weight W

* Finally, find largest v such that $W(n,v) \le W$.

INPUT: prices v_i and weights w_i , $1 \le i \le n$, a max weight W**FEASIBLE SOL.**: a subset $S \subseteq \{1, ..., n\} / \Sigma_{i \in S} w_i \le W$ **COST:** $\Sigma_{i \in S} v_i$

- A well-known dynamic
 programming algorithm for KNAPSACK:
- * Let $V \cong \sum_{i=1}^{n} v_i$, and, for all $1 \le j \le n$ and $0 \le v \le V$: $W(j,v) = \min \{\sum_{i \in S} w_i \mid S \subseteq \{1,...,j\}, \sum_{i \in S} v_i = v\}$
- * Then $W(j,v) = \min(W(j-1,v), W(j-1,v-v_j)+w_i)$ if $v \ge v_j$ W(j-1,v) otherwise can be computed in time O(nV)
- * Finally, find largest *v* such that $W(n,v) \le W$.

- Do all computations on values (i.e., v, v_i) by only keeping the k most significant bits of each number and rounding down
- * Let $V \stackrel{\text{\tiny def}}{=} \sum_{i=1^n} v_i$, and, for all $1 \le j \le n$ and $0 \le v \le V$: $W(j,v) = \min \{ \sum_{i \in S} w_i \mid S \subseteq \{1,...,j\}, \sum_{i \in S} v_i = v \}$

INPUT: prices v_i and weights w_i , $1 \le i \le n$, a max weight W**FEASIBLE SOL**.: a subset $S \subseteq \{1, ..., n\} / \Sigma_{i \in S} w_i \le W$

- * Then $W(j,v) = \min(W(j-1,v), W(j-1,v-v_j)+w_i)$ if $v \ge v_j$ W(j-1,v) otherwise can be computed in time O(nV)
- * Finally, find largest v such that $W(n,v) \le W$.

- Do all computations on values (i.e., v, v_i) by only keeping the k most significant bits of each number and rounding down
- * A well-known **dynamic programming** algorithm for KNAPSACK:
- * Let $V \cong \sum_{i=1^n} v_i$, and, for all $1 \le j \le n$ and $0 \le v \le V$: $W(j,v) = \min \{\sum_{i \in S} w_i \mid S \subseteq \{1,...,j\}, \sum_{i \in S} v_i = v\}$

INPUT: prices v_i and weights w_i , $1 \le i \le n$, a max weight W**FEASIBLE SOL**.: a subset $S \subseteq \{1, ..., n\} / \Sigma_i \le S w_i \le W$

- * Then $W(j,v) = \min(W(j-1,v), W(j-1,v-v_j)+w_i)$ if $v \ge v_j$ W(j-1,v) otherwise can be computed in time O(nV)
- * Finally, find largest v such that $W(n,v) \leq W$.
- * I.e., represent v_i by the k-bit number $\lfloor v_i/2^{k_0-k} \rfloor$ [$k_0 = \#$ bits in nV]

- Do all computations on values (i.e., v, v_i) by only keeping the k most significant bits of each number and rounding down
- * A well-known **dynamic programming** algorithm for KNAPSACK:
- * Let $V \cong \sum_{i=1^n} v_i$, and, for all $1 \le j \le n$ and $0 \le v \le V$: $W(j,v) = \min \{\sum_{i \in S} w_i \mid S \subseteq \{1,...,j\}, \sum_{i \in S} v_i = v\}$

INPUT: prices v_i and weights w_i , $1 \le i \le n$, a max weight W**FEASIBLE SOL**.: a subset $S \subseteq \{1, ..., n\} / \Sigma_i \le S w_i \le W$

- * Then $W(j,v) = \min(W(j-1,v), W(j-1,v-v_j)+w_i)$ if $v \ge v_j$ W(j-1,v) otherwise can be computed in time O(nV)
- * Finally, find largest *v* such that $W(n,v) \leq W$.
- * I.e., represent v_i by the k-bit number $\lfloor v_i/2^{k_0-k} \rfloor$ [$k_0 = \#$ bits in nV]
- * replace all values v by k-bit approximations v' ($v \approx 2^{k_0-k} v'$)

- Do all computations on values (i.e., v, v_i) by only keeping the k most significant bits of each number and rounding down
- * A well-known **dynamic programming** algorithm for KNAPSACK:
- * Let $V \cong \sum_{i=1^n} v_i$, and, for all $1 \le j \le n$ and $0 \le v \le V$: $W(j,v) = \min \{\sum_{i \in S} w_i \mid S \subseteq \{1,...,j\}, \sum_{i \in S} v_i = v\}$

INPUT: prices v_i and weights w_i , $1 \le i \le n$, a max weight W**FEASIBLE SOL**.: a subset $S \subseteq \{1, ..., n\} / \Sigma_i \le S w_i \le W$

- * Then $W(j,v) = \min(W(j-1,v), W(j-1,v-v_j)+w_i)$ if $v \ge v_j$ W(j-1,v) otherwise can be computed in time O(nV)
- * Finally, find largest v such that $W(n,v) \leq W$.
- * I.e., represent v_i by the k-bit number $\lfloor v_i/2^{k_0-k} \rfloor$ [$k_0 = \#$ bits in nV]
- * replace all values v by k-bit approximations v' ($v \approx 2^{k_0-k} v'$)
- * replace computation of $v v_i$ by $v' \lfloor v_i / 2^{k_0 k} \rfloor$

INPUT: prices v_i and weights w_i , $1 \le i \le n$, a max weight W**FEASIBLE SOL.**: a subset $S \subseteq \{1, ..., n\} / \Sigma_{i \in S} w_i \le W$ **COST:** $\Sigma_{i \in S} v_i$

- A well-known dynamic
 programming algorithm for KNAPSACK:
- * Let $V \cong \sum_{i=1}^{n} v_i$, and, for all $1 \le j \le n$ and $0 \le v \le V$: $W(j,v) = \min \{\sum_{i \in S} w_i \mid S \subseteq \{1,...,j\}, \sum_{i \in S} v_i = v\}$
- * Then $W(j,v) = \min(W(j-1,v), W(j-1,v-v_j)+w_i)$ if $v \ge v_j$ W(j-1,v) otherwise can be computed in time O(nV)
- * Finally, find largest *v* such that $W(n,v) \le W$.

* We choose $k \triangleq [\operatorname{size}(nV) - \log_2(\varepsilon V/n)]$ $= \log_2(n^2/\varepsilon) + O(1)$ **INPUT:** prices v_i and weights w_i , $1 \le i \le n$, a max weight W **FEASIBLE SOL.**: a subset $S \subseteq \{1,...,n\} / \Sigma_{i \in S} w_i \le W$ **COST:** $\Sigma_{i \in S} v_i$

- A well-known dynamic
 programming algorithm for KNAPSACK:
- * Let $V \cong \sum_{i=1}^{n} v_i$, and, for all $1 \le j \le n$ and $0 \le v \le V$: $W(j,v) = \min \{\sum_{i \in S} w_i \mid S \subseteq \{1,...,j\}, \sum_{i \in S} v_i = v\}$
- * Then $W(j,v) = \min(W(j-1,v), W(j-1,v-v_j)+w_i)$ if $v \ge v_j$ W(j-1,v) otherwise can be computed in time O(nV)
- * Finally, find largest v such that $W(n,v) \le W$.

•**

•

- * We choose $k \triangleq [\operatorname{size}(nV) - \log_2(\varepsilon V/n)]$ $= \log_2(n^2/\varepsilon) + O(1)$
- There are now at most $2^{k} = O(n^{2}/\epsilon)$ different values
 instead of O(V),
 hence times goes down to $O(n 2^{k}) = O(n^{3}/\epsilon)$

A well-known **dynamic programming** algorithm for KNAPSACK:

INPUT: prices v_i and weights w_i , $1 \le i \le n$, a max weight W

- Let $V \cong \sum_{i=1}^{n} v_i$, and, for all $1 \le j \le n$ and $0 \le v \le V$: $W(j,v) = \min \{\sum_{i \in S} w_i \mid S \subseteq \{1,...,j\}, \sum_{i \in S} v_i = v\}$
- * Then $W(j,v) = \min(W(j-1,v), W(j-1,v-v_j)+w_i)$ if $v \ge v_j$ W(j-1,v) otherwise can be computed in time O(nV)
 - Finally, find largest v such that $W(n,v) \leq W$.

- * We choose $k \triangleq [\operatorname{size}(nV) - \log_2(\varepsilon V/n)]$ $= \log_2(n^2/\varepsilon) + O(1)$
- There are now at most $2^{k} = O(n^{2}/\epsilon)$ different values
 Finally, find larges
 instead of O(V),
 hence times goes down to $O(n 2^{k}) = O(n^{3}/\epsilon)$
- * And final value is between $(1-\varepsilon)$ opt and opt (see lecture notes for details, Prop. 2.7).

INPUT: prices v_i and weights w_i , $1 \le i \le n$, a max weight W**FEASIBLE SOL.**: a subset $S \subseteq \{1, ..., n\} / \Sigma_{i \in S} w_i \le W$ **COST:** $\Sigma_{i \in S} v_i$

- * A well-known **dynamic programming** algorithm for KNAPSACK:
- * Let $V \cong \sum_{i=1}^{n} v_i$, and, for all $1 \le j \le n$ and $0 \le v \le V$: $W(j,v) = \min \{\sum_{i \in S} w_i \mid S \subseteq \{1,...,j\}, \sum_{i \in S} v_i = v\}$
- * Then $W(j,v) = \min(W(j-1,v), W(j-1,v-v_j)+w_i)$ if $v \ge v_j$ W(j-1,v) otherwise can be computed in time O(nV)
 - Finally, find largest v such that $W(n,v) \leq W$.

MAX3SAT

MAXSAT

- INPUT: a finite list S of clauses
 FEASIBLE SOL.: an environment Q
 VALUE: # clauses satisfied by Q
- Decision problem (is value ≥ some given goal?)
 is NP-complete
- * ε-approximable for which ε ∈]0,1[?
 Let me give you the best known (and silliest) algorithm...

Rough idea: while there is a variable A left, decide to set A to 1 (true) or 0 (false) depending on which of E(# clauses of S[A:=1] satisfied by Q) and E(# clauses of S[A:=0] satisfied by Q) is larger, where Q is drawn at random.

- Rough idea: while there is a variable A left, decide to set A to 1 (true) or 0 (false) depending on which of E(# clauses of S[A:=1] satisfied by Q) and E(# clauses of S[A:=0] satisfied by Q) is larger, where Q is drawn at random.
- *S*[*A*:=1]: remove clauses where *A* occurs positively, remove ¬*A* from remaining clauses

- Rough idea: while there is a variable A left, decide to set A to 1 (true) or 0 (false) depending on which of E(#clauses of S[A:=1] satisfied by Q) and E(#clauses of S[A:=0] satisfied by Q) is larger, where Q is drawn at random.
- ** S*[*A*:=1]: remove clauses where *A* occurs positively, remove ¬*A* from remaining clauses
- *S*[*A*:=0]: remove clauses where ¬*A* occurs (i.e., A occurs negatively), remove *A* from remaining clauses

- * In reality: we compare
 E(#clauses of S[A:=1] not satisfied by ρ) and
 E(#clauses of S[A:=0] not satisfied by ρ)
- * If the first one is smaller, set A to 1, S := S[A:=1]
- * Otherwise, set *A* to 0, *S* := *S*[*A*:=0]

Computing E(#clauses of *S* not satisfied by *Q*)

* Let $S \triangleq [C_1, ..., C_m]$, each C_j being a clause or \top E(S) $\triangleq E(\# j / C_j \text{ not satisfied by } \varrho, \varrho \text{ uniformly random})$

Computing E(#clauses of *S* not satisfied by *Q*)

* Let *S* \triangleq [*C*₁, ..., *C*_{*m*}], each *C*_{*j*} being a clause or ⊤ E(*S*) \triangleq E(#*j* / *C*_{*j*} not satisfied by *Q*, *Q* uniformly random)

*
$$E(S) = \sum_{j=1}^{m} E([C_j]) = \sum_{j=1}^{m} \Pr_{Q}(\text{not } Q \models C_j)$$

[linearity of expectation]

Computing E(#clauses of *S* not satisfied by *Q*)

* Let *S* \triangleq [*C*₁, ..., *C*_{*m*}], each *C*_{*j*} being a clause or ⊤ E(*S*) \triangleq E(#*j* / *C*_{*j*} not satisfied by *Q*, *Q* uniformly random)

*
$$E(S) = \sum_{j=1}^{m} E([C_j]) = \sum_{j=1}^{m} \Pr_Q(\text{not } Q \models C_j)$$

[linearity of expectation]

* If C_j is a tautology $A \lor \neg A \lor \dots$ (or \top), $\Pr_{\varrho}(\operatorname{not} \varrho \models C) = 0$ else $\Pr_{\varrho}(\operatorname{not} \varrho \models C) = 1/2^{|C|}$, e.g., $\Pr_{\varrho}(\operatorname{not} \varrho \models A \lor \neg B \lor \neg C) = 1/8$

* Claim. $E(S) = \frac{1}{2}(E(S[A:=1])+E(S[A:=0]))$

- * Claim. $E(S) = \frac{1}{2}(E(S[A:=1])+E(S[A:=0]))$
- * *Proof.* By linearity of expectation, enough to check it for a single clause *C_j*

- * Claim. $E(S) = \frac{1}{2}(E(S[A:=1])+E(S[A:=0]))$
- * *Proof.* By linearity of expectation, enough to check it for a single clause *C_j*
- * If C_j tautology, $0 = \frac{1}{2}(0+0)$, otherwise...

- * Claim. $E(S) = \frac{1}{2}(E(S[A:=1])+E(S[A:=0]))$
- *Proof.* By linearity of expectation, enough to check it for a single clause C_j
- * If C_j tautology, $0 = \frac{1}{2}(0+0)$, otherwise...

* If
$$C_j = A \lor rest$$
, $E(C_j) = 1/2^{|C_j|} = \frac{1}{2} \frac{1}{2^{|rest|}}$,
 $E(C_j[A:=1]) = E(\top) = 0$
 $E(C_j[A:=0]) = E(rest) = \frac{1}{2^{|rest|}}$

- * Claim. $E(S) = \frac{1}{2}(E(S[A:=1])+E(S[A:=0]))$
- * *Proof.* By linearity of expectation, enough to check it for a single clause *C_j*
- * If C_j tautology, $0 = \frac{1}{2}(0+0)$, otherwise...

* If
$$C_j = A \lor rest$$
, $E(C_j) = 1/2^{|C_j|} = \frac{1}{2} \frac{1}{2^{|rest|}}$,
 $E(C_j[A:=1]) = E(\top) = 0$
 $E(C_j[A:=0]) = E(rest) = \frac{1}{2^{|rest|}}$

* Similarly if $C_j = \neg A \lor rest$

- * Claim. $E(S) = \frac{1}{2}(E(S[A:=1])+E(S[A:=0]))$
- *Proof.* By linearity of expectation, enough to check it for a single clause C_j
- * If C_j tautology, $0 = \frac{1}{2}(0+0)$, otherwise...

* If
$$C_j = A \lor rest$$
, $E(C_j) = 1/2^{|C_j|} = \frac{1}{2} \frac{1}{2^{|rest|}}$,
 $E(C_j[A:=1]) = E(\top) = 0$
 $E(C_j[A:=0]) = E(rest) = \frac{1}{2^{|rest|}}$

- * Similarly if $C_j = \neg A \lor rest$
- * If neither A nor $\neg A$ occurs in C_j , $C_j[A:=1] = C_j[A:=0] = C_j$. \Box

* Claim. $E(S) = \frac{1}{2}(E(S[A:=1])+E(S[A:=0]))$

- * Claim. $E(S) = \frac{1}{2}(E(S[A:=1])+E(S[A:=0]))$
- * List all the variables as $A_0, ..., A_n$. Set $S_0 \stackrel{\text{\tiny def}}{=} S (= [C_1, ..., C_m])$

* Claim. $E(S) = \frac{1}{2}(E(S[A:=1])+E(S[A:=0]))$

* Claim. $E(S) = \frac{1}{2}(E(S[A:=1]) + E(S[A:=0]))$

* Claim. $E(S) = \frac{1}{2}(E(S[A:=1])+E(S[A:=0]))$

* Claim. $E(S) = \frac{1}{2}(E(S[A:=1]) + E(S[A:=0]))$

* Claim. $E(S) = \frac{1}{2}(E(S[A:=1])+E(S[A:=0]))$

* List all the variables as $A_0, ..., A_n$. Set $S_0 \stackrel{\text{\tiny def}}{=} S (= [C_1, ..., C_m])$

* Let ϱ be the final environment The only clauses in S_n are \top (if $\varrho \models C_j$), or the empty clause \bot

* Claim. $E(S) = \frac{1}{2}(E(S[A:=1])+E(S[A:=0]))$

- * Let ϱ be the final environment The only clauses in S_n are \top (if $\varrho \models C_j$), or the empty clause \bot
- * Note: $E(S_n) = #$ empty clauses in S_n . So Q satisfies $m - E(S_n) \ge m - E(S)$ clauses in S.

MAXSAT is approximable

* ϱ satisfies $m - E(S_n) \ge m - E(S)$ clauses in $S = [C_1, ..., C_m]$
- * ϱ satisfies $m E(S_n) \ge m E(S)$ clauses in $S = [C_1, ..., C_m]$
- * If each non-tautological C_j has $\ge k$ literals, $\Pr_{\varrho}(\operatorname{not} \varrho \models C_j) \le 1/2^k$ (=0 if tautological), so $\operatorname{E}(S) = \sum_{j=1}^m \Pr_{\varrho}(\operatorname{not} \varrho \models C_j) \le m/2^k$

- * ϱ satisfies $m E(S_n) \ge m E(S)$ clauses in $S = [C_1, ..., C_m]$
- * If each non-tautological C_j has $\ge k$ literals, $\Pr_{\varrho}(\operatorname{not} \varrho \models C_j) \le 1/2^k$ (=0 if tautological), so $\operatorname{E}(S) = \sum_{j=1}^m \Pr_{\varrho}(\operatorname{not} \varrho \models C_j) \le m/2^k$
- * Therefore ϱ satisfies $\ge m (1-1/2^k) \ge opt(S) (1-1/2^k)$ clauses in *S*:

- * ϱ satisfies $m E(S_n) \ge m E(S)$ clauses in $S = [C_1, ..., C_m]$
- * If each non-tautological C_j has $\ge k$ literals, $\Pr_{\varrho}(\operatorname{not} \varrho \models C_j) \le 1/2^k$ (=0 if tautological), so $\operatorname{E}(S) = \sum_{j=1}^m \Pr_{\varrho}(\operatorname{not} \varrho \models C_j) \le m/2^k$
- * Therefore ϱ satisfies $\ge m (1-1/2^k) \ge opt(S) (1-1/2^k)$ clauses in *S*:
- ★ Thm. MAXSAT restricted to S / each non-tautological C_j has $\geq k$ literals, is $1/2^k$ -approximable.

- ★ Thm. MAXSAT restricted to S / each non-tautological C_j has ≥k literals, is $1/2^k$ -approximable.
- One can always prepare S by eliminating unit clauses, so k≥2:
 MAXSAT is 1/4-approximable.
- If every clause in *S* has at least 3 literals, then 1/8-approximable.
- Hence MAX=3SAT (all clauses have exactly 3 literals) is
 1/8-approximable. It turns out that this is optimal.

Sanjeev Arora, Shmuel Safra

https://commons.wikimedia.org/wiki/File:Sanjeev_Arora.jpg#/media/Fichier:Sanjeev_Arora.jpg

https://simons.berkeley.edu/sites/default/files/styles/profile_main/public/dscn0007.jpg?itok=irtfi766

Reminder: randomized TMs

r

 $\boldsymbol{\chi}$

- * Two read-only tapes
- As many work tapes as you need (but only a constant number!)

(size *n*)

With the usual proviso: head can only move right on random tape *r*

PCP machines

Three

- * Two read-only tapes
- As many work tapes as you need (but only a constant number!)

With the usual proviso: head can only move right on random tape *r*

PCP machines

With the usual proviso: head can only move right on random tape *r*

PCP machines

With the usual proviso: head can only move right on random tape *r*

position in binary, points to cell *#pos* on proof tape *y*

 On input *x*, Merlin fills in proof tape *y* — but keeps it masked (= cryptographic commitment)

- On input *x*, Merlin fills in proof tape *y* — but keeps it masked (= cryptographic commitment)
- 2. Arthur, only knowing |y| (and x), computes k=Q(n) positions p_1, \ldots, p_k on the proof tape in binary, in polynomial time, using R(n) random bits

- On input *x*, Merlin fills in proof tape *y* — but keeps it masked (= cryptographic commitment)
- 2. Arthur, only knowing |y| (and x), computes k=Q(n) positions p_1, \ldots, p_k on the proof tape in binary, in polynomial time, using R(n) random bits
- 3. Merlin **reveals** $y[p_1], ..., y[p_k]$

- On input *x*, Merlin fills in proof tape *y* — but keeps it masked (= cryptographic commitment)
- 2. Arthur, only knowing |y| (and x), computes k=Q(n) positions p_1, \ldots, p_k on the proof tape in binary, in polynomial time, using R(n) random bits
- 3. Merlin **reveals** $y[p_1], ..., y[p_k]$
- 4. Arthur computes $f(y[p_1], ..., y[p_k]) \in \{\text{accept, reject}\} \text{ in time } T(n)$

- On input *x*, Merlin fills in proof tape *y* — but keeps it masked (= cryptographic commitment)
- 2. Arthur, only knowing |y| (and x), computes k=Q(n) positions p_1, \ldots, p_k on the proof tape in binary, in polynomial time, using R(n) random bits
- 3. Merlin **reveals** $y[p_1], ..., y[p_k]$
- 4. Arthur computes $f(y[p_1], ..., y[p_k]) \in \{\text{accept, reject}\} \text{ in time } T(n) <$

where *f* may also depend on *x*, and on the random bits of step 2

Acceptance conditions

- * If $x \in L$, then Merlin can provide a proof tape y such that Arthur will **always** accept
- * If $x \notin L$, then whichever proof tape Merlin provides, Arthur will reject with probability $\geq \frac{1}{2}$

* The languages *L* that can be decided this way form the complexity class **PCP**(*R*(*n*),*Q*(*n*),*T*(*n*))

The Arora-Safra theorem

- * **Theorem.** NP = PCP($O(\log n), O(1), O(1)$)
- * I.e., one can decide every language in **NP** by running a PCP machine that:
 - asks Q(n)=O(1) questions (positions)
 - computed using only R(n)=O(log n) random bits, in poly time
 Sanjeev Arora, Shmuel Safra
 - and finally decides in T(n)=O(1) time.
- * Proof would require a whole term!

The Arora-Safra theorem

* **Theorem.** NP = PCP($O(\log n), O(1), O(1)$)

NP=PCP, for short

- * I.e., one can decide every language in **NP** by running a PCP machine that:
 - asks Q(n)=O(1) questions (positions)
 - computed using only R(n)=O(log n) random bits, in poly time
 Sanjeev Arora, Shmuel Safra
 - and finally decides in T(n)=O(1) time.
- * Proof would require a whole term!

NP=PCP and the hardness of approximation

- What I will explain is that NP=PCP is equivalent to the ε-inapproximability of MAX3SAT for some ε>0
- * Arora-Safra prove NP=PCP
- ... and there is a simplified (still extremely complex)
 proof by Irit Dinur

The easy direction: $PCP \subseteq NP$

- Derandomize naively:
 for every string of R(n)
 random bits, simulate
 Arthur's computation
- * If more than $\frac{1}{2}$ of the simulations accept, then accept, else reject

Running a PCP machine

- On input *x*, Merlin fills in proof tape *y* — but keeps it masked (= cryptographic commitment)
- 2. Arthur, only knowing |y|, computes k=Q(n) positions $p_1, ..., p_k$ on the proof tape in binary, in polynomial time, using R(n) random bits
- 3. Merlin **reveals** $y[p_1], \ldots, y[p_k]$
- 4. Arthur computes $f(y[p_1], ..., y[p_k]) \in \{ accept, reject \} \text{ in time } T(n) \}$

Complexity class **PCP**(R(n),Q(n),T(n))

The easy direction: $PCP \subseteq NP$

- * **Derandomize** naively: for every string of R(n)random bits, simulate Arthur's computation
- * If more than $\frac{1}{2}$ of the simulations accept, then accept, else reject
- * Works in time $2^{R(n)}\log R(n) \operatorname{poly}(n) + T(n)$

Running a PCP machine

- 1. On input *x*, Merlin fills in proof tape y — but keeps it **masked** (= cryptographic commitment)
- 2. Arthur, only knowing |y|, computes k=Q(n) positions p_1, \ldots, p_k on the proof tape in binary, in polynomial time, using *R*(*n*) random bits
- 3. Merlin **reveals** $y[p_1], ..., y[p_k]$
- 4. Arthur computes $f(y[p_1], ..., y[p_k]) \in \{ \text{accept, reject} \} \text{ in time } T(n) \}$

Complexity class $\mathbf{PCP}(R(n),Q(n),T(n))$

The easy direction: $PCP \subseteq NP$

- Derandomize naively:
 for every string of R(n)
 random bits, simulate
 Arthur's computation
- * If more than $\frac{1}{2}$ of the simulations accept, then accept, else reject
- * Works in time $2^{R(n)}\log R(n) \operatorname{poly}(n) + T(n)$
- * So $PCP(R(n) \triangleq O(\log n), Q(n) \triangleq whatever, T(n) \equiv poly(n)) \subseteq NP$

Running a PCP machine **PCP** machines Proof tape is accessed in ra proof tape 1. On input *x*, Merlin fills in Three proof tape y — but keeps Two read-only tapes it masked (= cryptographic As many work tapes as you need commitment) (but only a constant number!) 2. Arthur, only knowing |y|, address tape With the usual procomputes k=Q(n) positions cell #pos on proof tape y head can only move right on random tape p_1, \ldots, p_k on the proof tape in binary, in polynomial time, using *R*(*n*) random bits

Complexity class **PCP**(R(n),Q(n),T(n))

- 3. Merlin **reveals** $y[p_1], ..., y[p_k]$
- 4. Arthur computes $f(y[p_1], ..., y[p_k]) \in \{ accept, reject \} \text{ in time } T(n) \}$

PCP and the hardness of approximating SAT

* ... is the following promise problem:
 INPUT: a finite set *S* of *m* propositional 3-clauses
 PROMISE: *S* satisfiable / opt(*S*) < (1-ε)*m* QUESTION: which is true? [opt(*S*) = max #sat. clauses]

- * ... is the following promise problem:
 INPUT: a finite set *S* of *m* propositional 3-clauses
 PROMISE: *S* satisfiable / opt(*S*) < (1-ε)*m* QUESTION: which is true? [opt(*S*) = max #sat. clauses]
- * We will see that:
 - if **3SAT** is ε -approximable then **MAX3SAT**(ε)
 - is polytime decidable
 - ($\exists \epsilon > 0$, MAX3SAT(ϵ) is NP-hard) iff NP=PCP

- * ... is the following promise problem:
 INPUT: a finite set *S* of *m* propositional 3-clauses
 PROMISE: *S* satisfiable / opt(*S*) < (1-ε)*m* QUESTION: which is true? [opt(*S*) = max #sat. clauses]
- * We will see that:
 - if **3SAT** is ε-approximable then **MAX3SAT**(ε) is polytime decidable
 - ($\exists \epsilon > 0$, MAX3SAT(ϵ) is NP-hard) iff NP=PCP
- * That was known before Arora-Safra.
 With Arora-Safra: ∃ ε>0, 3SAT is not ε-approximable, unless P=NP

- * ... is the following promise problem:
 INPUT: a finite set *S* of *m* propositional 3-clauses
 PROMISE: *S* satisfiable / opt(*S*) < (1-ε)*m* QUESTION: which is true? [opt(*S*) = max #sat. clauses]
- * We will see that:
 - if **3SAT** is ε-approximable then **MAX3SAT**(ε) is polytime decidable
 - ($\exists \epsilon > 0$, MAX3SAT(ϵ) is NP-hard) iff NP=PCP
- * That was known before Arora-Safra.
 With Arora-Safra: ∃ ε>0, 3SAT is not ε-approximable, unless P=NP

Note: **NP**-complete would not make sense for promise problems

Given a (polytime) ε-approximation algorithm A for **3SAT**:

* Given a (polytime) ε-approximation algorithm A for **3SAT**:

$MAX3SAT(\epsilon)$

INPUT: a finite set *S* of *m* propositional 3-cla PROMISE: *S* satisfiable / $opt(S) < (1-\varepsilon)m$ QUESTION: which is true?

* For every instance *S* of MAX3SAT(ε), QUESTION: which is true? Q^{\u2264}A(*S*) satisfies $\ge (1-\varepsilon).opt(S)$ clauses of *S*

* Given a (polytime) ε-approximation algorithm A for **3SAT**:

$MAX3SAT(\epsilon)$

INPUT: a finite set *S* of *m* propositional 3-cla PROMISE: *S* satisfiable / $opt(S) < (1-\varepsilon)m$ QUESTION: which is true?

- * For every instance *S* of MAX3SAT(ε), QUESTION: which is true? $Q^{\text{def}}A(S)$ satisfies $\ge (1-\varepsilon).opt(S)$ clauses of *S*
- * If *S* satisfiable, opt(S)=m, so ϱ satisfies $\geq (1-\varepsilon)m$ clauses

If $3SAT \epsilon$ -approximable then $MAX3SAT(\epsilon)$ polytime

* Given a (polytime) ε-approximation algorithm A for **3SAT**:

$MAX3SAT(\epsilon)$

INPUT: a finite set *S* of *m* propositional 3-cla PROMISE: *S* satisfiable / $opt(S) < (1-\varepsilon)m$ QUESTION: which is true?

- * For every instance *S* of MAX3SAT(ε), QUESTION: which is true? $Q^{\text{def}}A(S)$ satisfies $\ge (1-\varepsilon).opt(S)$ clauses of *S*
- * If *S* satisfiable, opt(S)=m, so ϱ satisfies $\geq (1-\varepsilon)m$ clauses
- * Otherwise, ϱ satisfies < $(1-\varepsilon)m$ clauses by the promise

* Given a (polytime) ε-approximation algorithm A for **3SAT**:

$MAX3SAT(\epsilon)$

INPUT: a finite set *S* of *m* propositional 3-cla PROMISE: *S* satisfiable / $opt(S) < (1-\varepsilon)m$ QUESTION: which is true?

- * For every instance *S* of MAX3SAT(ε), QUESTION: which is true Q^{def}A(*S*) satisfies \ge (1- ε).opt(*S*) clauses of *S*
- * If *S* satisfiable, opt(S)=m, so ϱ satisfies $\geq (1-\varepsilon)m$ clauses
- * Otherwise, ϱ satisfies < $(1-\varepsilon)m$ clauses by the promise
- * Hence comparing #clauses satisfied by $Q \cong A(S)$ with $(1-\varepsilon)m$ yields a polytime algorithm deciding **MAX3SAT**(ε). \Box

(∃ε>0, MAX3SAT(ε) NP-hard) iff NP=PCP: the left to right direction

If $\exists \epsilon > 0$, MAX3SAT(ϵ) NP-hard then NP=PCP

* We already know $PCP \subseteq NP$. Conversely, let *L* be any language in NP.

If $\exists \epsilon > 0$, MAX3SAT(ϵ) NP-hard then NP=PCP

* We already know $PCP \subseteq NP$. Conversely, let *L* be any language in **NP**.

$\mathbf{MAX3SAT}(\varepsilon)$

INPUT: a finite set *S* of *m* propositional 3-cla PROMISE: *S* satisfiable / $opt(S) < (1-\varepsilon)m$ QUESTION: which is true?

* ∃polytime reduction from *L* to
 MAX3SAT(ε), since MAX3SAT(ε) NP-hard by assumption
* We already know $PCP \subseteq NP$. Conversely, let *L* be any language in **NP**.

$\mathbf{MAX3SAT}(\varepsilon)$

- * ∃polytime reduction from *L* to
 MAX3SAT(ε), since MAX3SAT(ε) NP-hard by assumption
- PCP is closed under polytime reductions (important!)

* We already know $PCP \subseteq NP$. Conversely, let *L* be any language in **NP**.

$\mathbf{MAX3SAT}(\varepsilon)$

- * ∃polytime reduction from *L* to
 MAX3SAT(ε), since MAX3SAT(ε) NP-hard by assumption
- PCP is closed under polytime reductions (important!)
- So it suffices to exhibit a
 PCP machine deciding
 MAX3SAT(ε)

* A PCP machine deciding MAX3SAT(ε). Let $S \cong [C_1, ..., C_m]$

$MAX3SAT(\epsilon)$

INPUT: a finite set *S* of *m* propositional 3-cla PROMISE: *S* satisfiable / opt(*S*) < $(1-\varepsilon)m$ QUESTION: which is true?

Running a PCP machine **PCP** machines Proof tape is accessed in rando proof tape access mode 1. On input *x*, Merlin fills in Three proof tape y — but keeps · Two read-only tapes it **masked** (= cryptographic As many work tapes as you need commitment) (but only a constant number!) 2. Arthur, only knowing |y|, address tape With the usual proviso: n binary, points to computes *k*=*Q*(*n*) **positions** head can only move right on random tape r cell #pos on proof tape y p_1, \ldots, p_k on the proof tape in binary, in polynomial time, using *R*(*n*) random bits 3. Merlin **reveals** $y[p_1], \ldots, y[p_k]$ Complexity class $\mathbf{PCP}(R(n),Q(n),T(n))$ 4. Arthur computes $f(y[p_1], ..., y[p_k]) \in \{ \text{accept, reject} \} \text{ in time } T(n) \}$

- * A PCP machine deciding MAX3SAT(ε). Let $S \cong [C_1, ..., C_m]$
- 1. Merlin fills in y with ϱ

$\textbf{MAX3SAT}(\epsilon)$

- * A PCP machine deciding **MAX3SAT**(ε). Let $S \triangleq [C_1, \dots, C_m]$
- Merlin fills in *y* with *Q* 1.
- 2. Arthur chooses C_i at random, $(say + A_{32} \lor -A_{71} \lor -A_{239})$ and gives the corresponding 3 positions (here: 32, 71, 239)

MAX3SAT(ε)

INPUT: a finite set *S* of *m* propositional 3-cla PROMISE: *S* satisfiable / opt(*S*) < $(1-\varepsilon)m$ QUESTION: which is true?

Running a PCP machine **PCP** machines Proof tape is accessed in rand proof tape пп Three

· Two read-only tapes

 As many work tapes as you need

(but only a constant number!)

head can only move right on random tape

With the usual proviso:

- 1. On input *x*, Merlin fills in proof tape y — but keeps it **masked** (= cryptographic commitment)
- 2. Arthur, only knowing |y|, computes k=Q(n) positions p_1, \ldots, p_k on the proof tape in binary, in polynomial time, using R(n) random bits
- 3. Merlin **reveals** $y[p_1], \ldots, y[p_k]$
- 4. Arthur computes $f(y[p_1], ..., y[p_k]) \in \{\text{accept, reject}\} \text{ in time } T(n)$

Complexity class $\mathbf{PCP}(R(n),Q(n),T(n))$

address tape

cell #pos on proof tape 1

- * A PCP machine deciding MAX3SAT(ε). Let $S \cong [C_1, ..., C_m]$
- 1. Merlin fills in y with ϱ
- 2. Arthur chooses C_j at random, (say $+A_{32} \lor -A_{71} \lor -A_{239}$) and gives the corresponding 3 positions (here: 32, 71, 239)
- 3. Merlin reveals the corresponding truth values

$\textbf{MAX3SAT}(\epsilon)$

INPUT: a finite set *S* of *m* propositional 3-cla PROMISE: *S* satisfiable / $opt(S) < (1-\varepsilon)m$ QUESTION: which is true?

Running a PCP machine **PCP** machines Proof tape is accessed in rand proof tape 1. On input *x*, Merlin fills in шп Three proof tape y — but keeps · Two read-only tapes it **masked** (= cryptographic As many work tapes as you need commitment) (but only a constant number!) 2. Arthur, only knowing |y|, address tape With the usual proviso head can only move right on random tape cell #pos on proof tape 1

2. Arthur, only knowing |y|, computes k=Q(n) positions $p_1, ..., p_k$ on the proof tape in binary, in polynomial time, using R(n) random bits

3. Merlin **reveals** $y[p_1], ..., y[p_k]$

4. Arthur computes $f(y[p_1], ..., y[p_k]) \in \{ accept, reject \} \text{ in time } T(n) \}$

Complexity class **PCP**(R(n),Q(n),T(n))

- * A PCP machine deciding MAX3SAT(ε). Let $S \cong [C_1, ..., C_m]$
- 1. Merlin fills in y with ϱ
- 2. Arthur chooses C_j at random, (say $+A_{32} \lor -A_{71} \lor -A_{239}$) and gives the corresponding 3 positions (here: 32, 71, 239)
- 3. Merlin reveals the corresponding truth values
- 4. Arthur evaluates C_j using a precompiled circuit, of constant size... in time O(1) (here,

- accepts if true, rejects if false

$\mathbf{MAX3SAT}(\varepsilon)$

INPUT: a finite set *S* of *m* propositional 3-cla PROMISE: *S* satisfiable / $opt(S) < (1-\varepsilon)m$ QUESTION: which is true?

Running a PCP machine **PCP** machines proof tape 1. On input *x*, Merlin fills in Three proof tape y — but keeps · Two read-only tapes it **masked** (= cryptographic As many work tapes as you need commitment) (but only a constant number!) 2. Arthur, only knowing |y|, address tape With the usual proviso computes k=Q(n) positions cell #pos on proof tape 1 head can only move right on random tape p_1, \ldots, p_k on the proof tape in binary,

3. Merlin **reveals** $y[p_1], ..., y[p_k]$

4. Arthur computes $f(y[p_1], ..., y[p_k]) \in \{ accept, reject \} \text{ in time } T(n) \}$

in polynomial time, using *R*(*n*) random bits

Complexity class **PCP**(R(n),Q(n),T(n))

- * A PCP machine deciding MAX3SAT(ε). Let $S \cong [C_1, ..., C_m]$
- 1. Merlin fills in y with ϱ
- 2. Arthur chooses C_j at random, $(say + A_{32} \lor -A_{71} \lor -A_{239})$ and gives the corresponding \checkmark 3 positions (here: 32, 71, 239)
- 3. Merlin reveals the corresponding truth values
- 4. Arthur evaluates C_j using a precompiled circuit, of constant size... in time O(1) (here,

rejects if false

$MAX3SAT(\epsilon)$

INPUT: a finite set *S* of *m* propositional 3-cla PROMISE: *S* satisfiable / $opt(S) < (1-\varepsilon)m$ QUESTION: which is true?

Oops... and precompiles a circuit that evaluates C_j , to be used in step 4

Running a PCP machine

- On input *x*, Merlin fills in proof tape *y* — but keeps it masked (= cryptographic commitment)
- 2. Arthur, only knowing |y|, computes k=Q(n) positions $p_1, ..., p_k$ on the proof tape in binary, in polynomial time, using R(n) random bits
- 3. Merlin **reveals** $y[p_1], ..., y[p_k]$
- 4. Arthur computes $f(y[p_1], ..., y[p_k]) \in \{ accept, reject \} \text{ in time } T(n) \}$

Complexity class

 $\mathbf{PCP}(R(n),Q(n),T(n))$

- * Uses R(n)=O(log n) random bits: just one number j (1≤j≤m) at random
- *Q*(*n*)=O(1) (indeed, =3)
 T(*n*)=O(1)

$MAX3SAT(\varepsilon)$

- A PCP machine deciding
 MAX3SAT(ε). Let S≝[C₁,...,C_m]
- 1. Merlin fills in y with ϱ
- 2. Arthur chooses C_j at random, (say $+A_{32} \lor -A_{71} \lor -A_{239}$) and gives the corresponding 3 positions (here: 32, 71, 239)
- 3. Merlin reveals the corresponding truth values
- 4. Arthur decides using a precompiled circuit, of constant size... in time O(1) (here,

- * Uses $R(n)=O(\log n)$ random bits: just one number j ($1 \le j \le m$) at random
- *Q*(*n*)=O(1) (indeed, =3)
 T(*n*)=O(1)
- If S satisfiable, then Merlin can produce a satisfying assignment, so Arthur will accept

$MAX3SAT(\varepsilon)$

- A PCP machine deciding
 MAX3SAT(ε). Let S≝[C₁,...,C_m]
- 1. Merlin fills in y with ϱ
- 2. Arthur chooses C_j at random, (say $+A_{32} \lor -A_{71} \lor -A_{239}$) and gives the corresponding 3 positions (here: 32, 71, 239)
- 3. Merlin reveals the corresponding truth values
- 4. Arthur decides using a precompiled circuit, of constant size... in time O(1) (here,

- * Uses $R(n)=O(\log n)$ random bits: just one number j ($1 \le j \le m$) at random
- *Q*(*n*)=O(1) (indeed, =3)
 T(*n*)=O(1)
- If S satisfiable, then Merlin can produce a satisfying assignment, so Arthur will accept
- * If opt(*S*) < $(1-\varepsilon)m$, then whatever ϱ is given, Pr_{*j*}($\varrho \models C_j$) < $(1-\varepsilon)$

$MAX3SAT(\epsilon)$

- A PCP machine deciding
 MAX3SAT(ε). Let S≝[C₁,...,C_m]
- 1. Merlin fills in y with ϱ
- 2. Arthur chooses C_j at random, (say $+A_{32} \lor -A_{71} \lor -A_{239}$) and gives the corresponding 3 positions (here: 32, 71, 239)
- 3. Merlin reveals the corresponding truth values
- Arthur decides using a precompiled circuit, of constant size... in time O(1) (here,

- * Uses $R(n)=O(\log n)$ random bits: just one number j ($1 \le j \le m$) at random
- * Q(n)=O(1) (indeed, =3) T(n)=O(1)
- If S satisfiable, then Merlin can produce a satisfying assignment, so Arthur will accept
- * If opt(*S*) < $(1-\varepsilon)m$, then whatever ϱ is given, Pr_{*j*}($\varrho \models C_j$) < $(1-\varepsilon)$

Note: *j* is random here, not q as in Johnson's algorithm

$MAX3SAT(\epsilon)$

- A PCP machine deciding
 MAX3SAT(ε). Let S≝[C₁,...,C_m]
- 1. Merlin fills in y with ϱ
- 2. Arthur chooses C_j at random, (say $+A_{32} \lor -A_{71} \lor -A_{239}$) and gives the corresponding 3 positions (here: 32, 71, 239)
- 3. Merlin reveals the corresponding truth values
- 4. Arthur decides using a precompiled circuit, of constant size... in time O(1) (here,

- * Uses $R(n)=O(\log n)$ random bits: just one number j ($1 \le j \le m$) at random
- *Q*(*n*)=O(1) (indeed, =3)
 T(*n*)=O(1)
- If S satisfiable, then Merlin can produce a satisfying assignment, so Arthur will accept
- * If $opt(S) < (1-\varepsilon)m$, then whatever ϱ is given, $Pr_j(\varrho \models C_j) < (1-\varepsilon)$ Shoot! We needed $\frac{1}{2}$ here...

Note: *j* is random here, not <code>Q</code> as in Johnson's algorithm

$MAX3SAT(\varepsilon)$

- A PCP machine deciding
 MAX3SAT(ε). Let S≝[C₁,...,C_m]
- 1. Merlin fills in y with ϱ
- 2. Arthur chooses C_j at random, (say $+A_{32} \lor -A_{71} \lor -A_{239}$) and gives the corresponding 3 positions (here: 32, 71, 239)
- 3. Merlin reveals the corresponding truth values
- 4. Arthur decides using a precompiled circuit, of constant size... in time O(1) (here,

We solve the problem using parallel repetition (*k* times)

$\textbf{MAX3SAT}(\epsilon)$

- We solve the problem using parallel repetition (*k* times)
- Uses *R*(*n*)=O(log *n*) random bits:
 just *k* numbers *j* (1≤*j*≤*m*) at random

$\mathbf{MAX3SAT}(\varepsilon)$

- We solve the problem using parallel repetition (*k* times)
- Uses *R*(*n*)=O(log *n*) random bits:
 just *k* numbers *j* (1≤*j*≤*m*) at random
- * Q(n)=O(1) (indeed, $\frac{3k}{3k}$) T(n)=O(1)

$\mathbf{MAX3SAT}(\varepsilon)$

- We solve the problem using parallel repetition (*k* times)
- Uses *R*(*n*)=O(log *n*) random bits:
 just *k* numbers *j* (1≤*j*≤*m*) at random
- * Q(n)=O(1) (indeed, $\frac{3k}{3k}$) T(n)=O(1)
- * If *S* satisfiable, then Merlin can produce a satisfying assignment, so Arthur will accept

$\mathbf{MAX3SAT}(\varepsilon)$

- We solve the problem using parallel repetition (*k* times)
- Uses *R*(*n*)=O(log *n*) random bits:
 just *k* numbers *j* (1≤*j*≤*m*) at random
- * Q(n)=O(1) (indeed, $\frac{3k}{3k}$) T(n)=O(1)
- * If *S* satisfiable, then Merlin can produce a satisfying assignment, so Arthur will accept
- * If opt(*S*) < $(1-\varepsilon)m$, then whatever ϱ is given, Pr_{*j*1,...,*jk*}($\varrho \models C_{j_1}$ and ... and $\varrho \models C_{j_k}$) $\leq (1-\varepsilon)^k$

$\mathbf{MAX3SAT}(\varepsilon)$

- * We solve the problem using **parallel repetition** (*k* times) $k \cong [-\log 2/\log (1-\epsilon)]$
- * Uses $R(n)=O(\log n)$ random bits: just k numbers $j(1 \le j \le m)$ at random
- * Q(n)=O(1) (indeed, $\frac{3k}{3k}$) T(n)=O(1)
- * If *S* satisfiable, then Merlin can produce a satisfying assignment, so Arthur will accept
- * If opt(*S*) < $(1-\varepsilon)m$, then whatever ϱ is given, Pr_{*j*1,...,*jk*}($\varrho \models C_{j1}$ and ... and $\varrho \models C_{jk}$) $\leq (1-\varepsilon)^k \leq \frac{1}{2}$

$\mathbf{MAX3SAT}(\varepsilon)$

(∃ ε>0, MAX3SAT(ε) NP-hard) iff NP=PCP: the right to left direction

* Assume NP=PCP. Then there is a $PCP(R(n) \leq k \log n, O(1), O(1))$ machine \mathcal{M} deciding SAT Running a PCP machine

- * Assume NP=PCP. Then there is a $PCP(R(n) \cong k \log n, O(1), O(1))$ machine \mathcal{M} deciding SAT
- We look for a polytime reduction from SAT to MAX3SAT(ε), for some ε>0

- * Assume NP=PCP. Then there is a $PCP(R(n) \leq k \log n, O(1), O(1))$ machine \mathcal{M} deciding SAT
- We look for a polytime reduction from SAT to MAX3SAT(ε), for some ε>0
- Let us look at M(x)'s possible runs,
 for each R(n)-bit word r
 drawn at random in step 2

Running a PCP machine **PCP** machines proof tape 1. On input *x*, Merlin fills in Three proof tape y — but keeps Two read-only tapes it **masked** (= cryptographic As many work tapes as you need commitment) (but only a constant number!) 2. Arthur, only knowing |y|, address tape With the usual prov computes *k*=Q(*n*) positions cell #pos on proof tape u head can only move right on random tar p_1, \ldots, p_k on the proof tape in binary, in polynomial time, using *R*(*n*) random bits 3. Merlin **reveals** $y[p_1], \ldots, y[p_k]$ Complexity class $\mathbf{PCP}(R(n),Q(n),T(n))$ 4. Arthur computes $f(y[p_1], ..., y[p_k]) \in \{ accept, reject \} \text{ in time } T(n) \}$

- * Assume NP=PCP. Then there is a $PCP(R(n) \cong k \log n, O(1), O(1))$ machine \mathcal{M} deciding SAT
- We look for a polytime reduction from SAT to MAX3SAT(ε), for some ε>0
- Let us look at M(x)'s possible runs,
 for each R(n)-bit word r
 drawn at random in step 2

(Note that the assumption that T(n)=O(1) in step 4 is superfluous:
 f only has a constant #inputs, and can always be encoded by a constant-size circuit, evaluated in time O(1)...)

* For each $k \log_2 n$ -bit random string r, Arthur computes O(1) positions, and a constant-size circuit C_r (say, $\leq G$ fan-in 2 gates) (i) Creating a PCP machine previous of the string of the s

 $2^{k \log_2 n} = n^k$ instances

* For each $k \log_2 n$ -bit random string r, Arthur computes O(1) positions, and a constant-size circuit C_r (say, $\leq G$ fan-in 2 gates) (1) Prevention of the interval of

 $2^{k \log_2 n} = n^k$ instances

If input S satisfiable, then Merlin
 can provide y / output wire of C_r is true, for every r

* For each $k \log_2 n$ -bit random string r, Arthur computes O(1) positions, and a constant-size circuit C_r (say, $\leq G$ fan-in 2 gates) (1) On investor Markin fills in

 $2^{k \log_2 n} = n^k$ instances

- If input S satisfiable, then Merlin
 can provide y / output wire of C_r is true, for every r
- * Otherwise, whatever $y_{k} \ge \frac{1}{2}n^{k}$ output wires false

 We now encode those circuits as a **3SAT** formula, e.g.: proof tape

n^k instances, each with ≤*G* fan-in 2 gates

* We now encode those circuits as a **3SAT** formula, e.g.:

n^k instances, each with ≤G fan-in 2 gates

* We now encode those circuits as a **3SAT** formula, e.g.:

 n^k instances, each with $\leq G$ fan-in 2 gates

* We now encode those circuits as a **3SAT** formula, e.g.:

 n^k instances, each with $\leq G$ fan-in 2 gates

Clause set S'_r

$$a_r = \neg y_{71}$$
$$b_r = \neg y_{239}$$
$$c_r = y_{32} \lor a_r$$
$$d_r = c_r \lor b_r$$
$$d_r$$

(or rather, its clausal form, of $\leq 3G+1$ clauses)

* If *S* satisfiable, then Merlin can provide $y / \forall r$, output(C_r) true, so $S' \cong \Lambda_r S_r$ is satisfiable

- * If *S* satisfiable, then Merlin can provide $y / \forall r$, output(C_r) true, so $S' \cong \Lambda_r S_r$ is satisfiable
- * Otherwise, whatever *y*, there is a set *I* of $\ge \frac{1}{2}n^k$ values of *r* / $\forall r \in I$, output(C_r) false

- * If *S* satisfiable, then Merlin can provide $y / \forall r$, output(C_r) true, so $S' \triangleq \Lambda_r S_r$ is satisfiable
- * Otherwise, whatever *y*, there is a set *I* of $\ge \frac{1}{2}n^k$ values of *r* / $\forall r \in I$, output(C_r) false

★ hence ∀ǫ (giving truth values to each y_i and to every auxiliary var.), at least one clause in each S'_r , $r \in I$, must be unsatisfied by ǫ

- * If *S* satisfiable, then Merlin can provide $y / \forall r$, output(C_r) true, so $S' \triangleq \Lambda_r S_r$ is satisfiable
- * Otherwise, whatever *y*, there is a set *I* of $\ge \frac{1}{2}n^k$ values of *r* / $\forall r \in I$, output(C_r) false

- hence ∀ǫ (giving truth values to each y_i and to every auxiliary var.), at least one clause in each S'_r, r ∈ I, must be unsatisfied by ǫ
- * so opt(S') \leq # clauses in S' ½n^k, and # clauses in S' \leq (3G+1)n^k, so opt(S') / # clauses in S' \leq 1–(½n^k) / ((3G+1)n^k) = 1–1/(6G+2)

- * If *S* satisfiable, then Merlin can provide $y / \forall r$, output(C_r) true, so $S' \cong \Lambda_r S_r$ is satisfiable
- * Otherwise, whatever *y*, there is a set *I* of $\ge \frac{1}{2}n^k$ values of *r* / $\forall r \in I$, output(C_r) false

- hence ∀ǫ (giving truth values to each y_i and to every auxiliary var.), at least one clause in each S'_r, r ∈ I, must be unsatisfied by ǫ
- * so opt(S') \leq # clauses in S' ½n^k, and # clauses in S' \leq (3G+1)n^k, so opt(S') / # clauses in S' \leq 1-(½n^k) / ((3G+1)n^k) = 1-1/(6G+2)
- * Therefore S' is an instance of MAX3SAT(ε), with $\varepsilon \leq 1/(6G+2)$
If NP=PCP then $\exists \epsilon > 0$, MAX3SAT(ϵ) NP-hard

* Summary: If *S* satisfiable, then $S' \triangleq \Lambda_r S_r$ is satisfiable Else, $opt(S') \le (1-\varepsilon)$.# clauses in *S'* where $\varepsilon \triangleq 1/(6G+2)$

If NP=PCP then $\exists \epsilon > 0$, MAX3SAT(ϵ) NP-hard

* Summary: If *S* satisfiable, then $S' \cong \Lambda_r S_r$ is satisfiable Else, $opt(S') \le (1-\varepsilon)$.#clauses in *S'* where $\varepsilon \cong 1/(6G+2)$

Additionally, each C_r can be computed in polynomial time (simulating Arthur's computation), and computing S'_r from C_r also takes polynomial time

If NP=PCP then $\exists \epsilon > 0$, MAX3SAT(ϵ) NP-hard

 Summary: If S satisfiable, then S' ≝ Λ_r S_r is satisfiable
 Else, opt(S') ≤ (1−ε).# clauses in S' where ε ≝ 1/(6G+2)

- Additionally, each C_r can be computed in polynomial time (simulating Arthur's computation), and computing S'_r from C_r also takes polynomial time
- * Hence we have found a polytime reduction
 from SAT to MAX3SAT(ε) (assuming NP=PCP). □

Irit Dinur

Par נובאמת – Travail personnel, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=72395593

 Simplified proof...
 I will only give a rough sketch Home > ACM Journals > Journal of the ACM > Vol. 54, No. 3 > The PCP theorem by gap amplification

ARTICLE The PCP theorem by gap amplification

¥ in o∳f ≌

Author: 🔠 Irit Dinur Authors Info & Affiliations

Publication: Journal of the ACM + June 2007 + https://doi.org/10.1145/1236457.1236459

The PCP Theorem by Gap Amplification

Irit Dinur*

September 26, 2005

Abstract

We describe a new proof of the PCP theorem that is based on a combinatorial amplification lemma. The *unsat value* of a set of constraints $C = \{c_1, \ldots, c_n\}$, denoted UNSAT(C), is the smallest fraction of unsatisfied constraints, ranging over all possible assignments for the underlying variables.

We prove a new combinatorial amplification lemma that doubles the unsat-value of a constraintsystem, with only a linear blowup in the size of the system. Iterative application of this lemma yields a proof for the PCP theorem.

The amplification lemma relies on a new notion of "graph powering" that can be applied to systems of constraints. This powering amplifies the unsat-value of a constraint system provided that the underlying graph structure is an expander.

We also apply the amplification lemma to construct PCPs and locally-testable codes whose length is linear up to a *polylog* factor, and whose correctness can be probabilistically verified by making a *constant* number of queries. Namely, we prove $SAT \in PCP_{\frac{1}{2},1}[\log_2(n \cdot \text{poly}\log n), O(1)]$. This answers an open question of Ben-Sasson et al. (STOC '04).

 Uses expander graphs, « powering » on random walks, Hadamard codes, etc.

Constraint graph satisfiability

- * Instead of MAX3SAT(ε), Dinur uses:
- * **Defn.** A **constraint graph** is an undirected graph (V, E) plus a set of constraints $c(e) \subseteq \Sigma \times \Sigma$, one for each edge e... where Σ is a finite set of values, or **colors**, that each vertex may assume under a **color assignment**

Constraint graph satisfiability

- * Instead of MAX3SAT(ε), Dinur uses:
- * **Defn.** A **constraint graph** is an undirected graph (V, E) plus a set of constraints $c(e) \subseteq \Sigma \times \Sigma$, one for each edge e... where Σ is a finite set of values, or **colors**, that each vertex may assume under a **color assignment**
- * Question: is there a color assignment satisfying all the edge constraints?

Constraint graph satisfiability

- * Instead of MAX3SAT(ε), Dinur uses:
- * **Defn.** A **constraint graph** is an undirected graph (V, E) plus a set of constraints $c(e) \subseteq \Sigma \times \Sigma$, one for each edge e... where Σ is a finite set of values, or **colors**, that each vertex may assume under a **color assignment**
- * Question: is there a color assignment satisfying all the edge constraints?
- * NP-complete, generalizes 3-COLORABILITY

- * The **gap** of an unsatisfiable contraint graph is min (#unsatisfied edge constraints) / m [m =#edges]
- * We start with an unsatisfiable constraint graph *G*

- * The **gap** of an unsatisfiable contraint graph is min (#unsatisfied edge constraints) / m [$m \cong$ #edges]
- * We start with an unsatisfiable constraint graph *G*
- * ... of gap $\geq 1/m$

- * The **gap** of an unsatisfiable contraint graph is min (#unsatisfied edge constraints) / m [$m \cong$ #edges]
- * We start with an unsatisfiable constraint graph *G*
- * ... of gap $\geq 1/m$
- and we modify it so as to increase its gap until we reach a constant non-zero number

- * The **gap** of an unsatisfiable contraint graph is min (#unsatisfied edge constraints) / m [$m \cong$ #edges]
- * We start with an unsatisfiable constraint graph *G*
- * ... of gap $\geq 1/m$
- and we modify it so as to increase its gap until we reach a constant non-zero number
- * Applied to a **satisfiable** constraint graph, the modifications will preserve satisfiability.

 A graph expander is a family of undirected graphs with « good connectivity »

 Defn. The edge expansion h(G) of a graph G is min (#edges between S and its complement/#S) over subsets S of <n/2 vertex of G [n≝#vertices]

 A graph expander is a family of undirected graphs with « good connectivity »

 Defn. The edge expansion h(G) of a graph G is min (#edges between S and its complement/#S) over subsets S of <n/2 vertex of G [n≝#vertices]

A graph expander is a family of graphs G_n, n ∈ N,
 — each regular of constant degree d₀
 — with n vertices each

— such that $h(G_n) \ge h_0$, a positive constant

 A graph expander is a family of undirected graphs with « good connectivity »

 Defn. The edge expansion h(G) of a graph G is min (#edges between S and its complement/#S) over subsets S of <n/2 vertex of G [n≝#vertices]

A graph expander is a family of graphs G_n, n ∈ N,
— each regular of constant degree d₀
— with n vertices each

— such that $h(G_n) \ge h_0$, a positive constant

This exists, and *G_n* can even be produced in polynomial time (in *n*)

- A graph expander is a family of undirected graphs with « good connectivity »
- A random walk on a graph expander is rapidly mixing, namely: just doing a few steps gets you exponentially close to the stationary distribution

1. Sparsification

* First step: make *G* **sparse enough**

(so as to allow step 2 to apply; the important step is step 3) precisely: make it regular and of small enough degree *d*

1. Sparsification

- First step: make G sparse enough

 (so as to allow step 2 to apply; the important step is step 3)

 precisely: make it regular and of small enough degree d
- * Gap decreases by a **constant** factor only

1. Sparsification

- First step: make G sparse enough
 (so as to allow step 2 to apply; the important step is step 3)

 precisely: make it regular and of small enough degree d
- * Gap decreases by a **constant** factor only
- Replace every vertex (degree, say, k) by
 a graph expander of degree *d*-1 with k vertices

2. Expanderize

* First step: make *G* an expander

(so as to allow step 3 to apply)

2. Expanderize

- First step: make G an expander (so as to allow step 3 to apply)
- * By taking the union with a good expander

2. Expanderize

- First step: make G an expander (so as to allow step 3 to apply)
- * By taking the union with a good expander
- * Gap (also) decreases by a constant factor (only)

- * This is the difficult step.
- Fix a constant t>0, and build a new constraint graph G^t
 whose single edges simulate paths of t edges in G
 (there are as many edges between x and y in G^t as paths in G)
- * Encode distance $\leq t/2$ neighborhoods around each vertex New colors = assignment of (old) colors to vertices in those nbds

(« opinions ») All vertices in Gat distance $\leq t/2$ from xAll vertices in Gat distance $\leq t/2$ from y y yNeed $O(|\Sigma|^{(td/2)})$ new colors to express lists of [original] colors on all possible simulated paths

* Problem: close vertices in *G* may be assigned incompatible opinions (**consistency** problem)

* Problem: close vertices in *G* may be assigned incompatible opinions (consistency problem)

- * The analysis is a bit complex, but:
- ★ **Gap** is (finally) amplified, by roughly \sqrt{t} while gap ≤ 1/*t*

- * The analysis is a bit complex, but:
- **Gap** is (finally) amplified, by roughly \sqrt{t} while gap $\leq 1/t$

- * The analysis is a bit complex, but:
- **Gap** is (finally) amplified, by roughly \sqrt{t} while gap $\leq 1/t$
- * ... although we need $O(|\Sigma|^{(t^{d/2})})$ new colors to solve consistency (express lists of [original] colors on all possible simulated paths)

4. Alphabet reduce

- * Reduce back the alphabet of colors **constant size** (2⁶, i.e. 64)
- By encoding constraints through assignment testers
 assignments are encoded by Hadamard error-correcting codes
 [correct many errors, but exponentially large —
 which is not a problem here because this will be the exponential of a constant...]

4. Alphabet reduce

- * Reduce back the alphabet of colors **constant size** (2⁶, i.e. 64)
- By encoding constraints through assignment testers
 assignments are encoded by Hadamard error-correcting codes
 [correct many errors, but exponentially large —
 which is not a problem here because this will be the exponential of a constant...]
- Decreases back gap by some constant factor

4. Alphabet reduce

- * Reduce back the alphabet of colors **constant size** (2⁶, i.e. 64)
- By encoding constraints through assignment testers
 assignments are encoded by Hadamard error-correcting codes
 [correct many errors, but exponentially large —
 which is not a problem here because this will be the exponential of a constant...]
- * Decreases back gap by some constant factor
- ... and repeat steps 1—4 until gap becomes larger than a constant (requires O(log *m*) iterations)

Dinur's algorithm summarized

Step	Main Ideas	Effects	Proof Techniques
Degree Re-	Split every vertex in to many	Size \uparrow a $O(d)$ factor, Gap de-	Basic expansion prop-
duce	vertices, and introduce an Ex-	creases by a constant factor,	erty of expanders
	pander cloud with equality	Alphabet remains same	
	constraints among the split		
	vertices.		
Expanderize	Superimpose a constant de-	Size \uparrow a factor of 2 to 3, Gap	Existence of constant
	gree expander with trivial	decreases by a constant fac-	degree expanders and
	constraints, on to the con-	tor, Alphabet remains same	Property that Expander
	straint graph G		+ Graph gives an ex-
4			pander.
Gap-	Each vertex's value is its	Size ↑ by a large con-	Properties of random
Amplification	n opinion, on the values of ver-	stant factor, Gap increases by	walks on the graph
	tices at a distance $< t$,Add	O(t), Alphabet size becomes	
	edges corresponding to con-	$ \Sigma ^{O(d^t)}$	
	sistency on random walks		
Alphabet-	Encode the assignment with	Size ↑ a constant factor, Gap	Hadamard codes, Lin-
Reduce	error correcting codes, Build	decreases by a constant fac-	earity Testing, Fourier
	a circuit that checks if assign-	tor, Alphabet size reduced to	Analysis
	ment satisfies and is a valid	2^{6}	
	codeword, Use an assignment		
	tester for the circuit		

Table 1: Proof of PCP

That's it, folks!

* I hope you enjoyed the material of the course!