
Jean Goubault-Larrecq

Randomized
complexity classes

Today:
approximation
problems, PCP

Tous droits réservés, Jean Goubault-Larrecq, professeur, ENS Paris-Saclay, Université Paris-Saclay
Cours « Complexité avancée » (M1), 2020-, 1er semestre
Ce document est protégé par le droit d’auteur. Toute représentation ou reproduction intégrale ou
partielle faite sans le consentement de l’auteur est illicite.

Today

❖ Approximation problems

❖ The class PCP

❖ MAX3SAT is not ε-approximable iff NP=PCP

❖ The Arora-Safra theorem: NP=PCP (no proof…)

Approximation problems

Approximation

❖ Attempt to attack NP-complete problems, by relaxing
requirements. E.g., 3SAT is NP-complete. Instead,
given ε ∈]0,1[, let MAX3SAT be:

❖ INPUT: a finite set S of 3-clauses
OUTPUT: an environment ρ that satisfies (1– ε)opt(S)
where opt(S)≝maxρ env. (#clauses of S s.t. ρ ⊨ S)

❖ For which values of ε is that in P?

Maximization problems
❖ For each input x, [e.g., a set of 3-clauses]

a finite set F(x) of so-called
feasible solutions [e.g., all assignments ρ on the vars of S}]

Maximization problems
❖ For each input x, [e.g., a set of 3-clauses]

a finite set F(x) of so-called
feasible solutions [e.g., all assignments ρ on the vars of S}]

❖ For each y ∈ F(x),
a value c(y) [e.g., #clauses satisfied by ρ]

Maximization problems
❖ For each input x, [e.g., a set of 3-clauses]

a finite set F(x) of so-called
feasible solutions [e.g., all assignments ρ on the vars of S}]

❖ For each y ∈ F(x),
a value c(y) [e.g., #clauses satisfied by ρ]

❖ Goal: estimate opt(x) ≝ maxy ∈ F(x) c(y)

Maximization problems
❖ For each input x, [e.g., a set of 3-clauses]

a finite set F(x) of so-called
feasible solutions [e.g., all assignments ρ on the vars of S}]

❖ For each y ∈ F(x),
a value c(y) [e.g., #clauses satisfied by ρ]

❖ Goal: estimate opt(x) ≝ maxy ∈ F(x) c(y)

❖ ε-approximable iff can find y ∈ F(x) / c(y) ≥ (1–ε)opt(x) in
polynomial time

Maximization problems
❖ For each input x, [e.g., a set of 3-clauses]

a finite set F(x) of so-called
feasible solutions [e.g., all assignments ρ on the vars of S}]

❖ For each y ∈ F(x),
a value c(y) [e.g., #clauses satisfied by ρ]

❖ Goal: estimate opt(x) ≝ maxy ∈ F(x) c(y)

❖ ε-approximable iff can find y ∈ F(x) / c(y) ≥ (1–ε)opt(x) in
polynomial time

❖ Defn. The approximation threshold = infε-approximable ε

Minimization problems
❖ For each input x,

a finite set F(x) of so-called
feasible solutions

❖ For each y ∈ F(x),
a cost c(y)

❖ Goal: estimate opt(x) ≝ miny ∈ F(x) c(y)

❖ ε-approximable iff can find y ∈ F(x) / c(y) ≤ 1/(1–ε).opt(x) in
polynomial time

❖ Defn. The approximation threshold = infε-approximable ε

Optimization problems

❖ Optimization = maximization or minimization

❖ ε-approximable iff can find y ∈ F(x) /
 |c(y)–opt(x)|/max(c(y),opt(x)) ≤ ε
in polynomial time (ugly formula, but generalizes the previous formulae)

❖ Defn. The approximation threshold = infε-approximable ε

❖ Let us see, through a few examples, that this can be
pretty much any number in [0,1].

NODE COVER

❖ INPUT: an undirected graph G ≝ (V, E)
FEASIBLE SOL.: node covers, i.e., subsets C ⊆ V
 such that every edge u — v meets C
 (u or v or both are in C)
COST: card(C)

NODE COVER

By Miym - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6017739

By Miym - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6017749

❖ The associated
decision problem:
INPUT: G, a budget k
QUESTION: does G have
a node cover C with card(C) ≤ k?

❖ is NP-complete.

NODE COVER

❖ The associated
decision problem:
INPUT: G, a budget k
QUESTION: does G have
a node cover C with card(C) ≤ k?

❖ is NP-complete.

❖ What is the approximation threshold of NODE COVER?

NODE COVER

❖ The associated
decision problem:
INPUT: G, a budget k
QUESTION: does G have
a node cover C with card(C) ≤ k?

❖ is NP-complete.

❖ What is the approximation threshold of NODE COVER?

❖ Hint: the best known approximation algorithm is also one of
the dumbest… and no, picking a vertex to be put in the cover,
removing all incident edges, and going on is not dumb enough

NODE COVER

❖ Algorithm: (init: C:=∅);
pick an edge u — v,
add both u and v to C,
then remove u and v
and all incident edges, and proceed until no edge left.

❖ Let M be the set of edges picked by the algorithm.
M is a matching: a vertex-disjoint collection of edges

❖ card(C)=2.card(M)

NODE COVER is ½-approximable

❖ Given a node cover C’,
every edge of M meets C’
at a distinct vertex

❖ So card(M) ≤ card(C’)

❖ Since card(C) = 2.card(M), card(C) ≤ 2. card(C’)

NODE COVER is ½-approximable

❖ Given a node cover C’,
every edge of M meets C’
at a distinct vertex

❖ So card(M) ≤ card(C’)

❖ Since card(C) = 2.card(M), card(C) ≤ 2. card(C’)

❖ Hence NODE COVER
is ½-approximable.
(½ is in fact the best we can do, unless P=NP)

NODE COVER is ½-approximable

The traveling salesman problem
(TSP)

❖ INPUT: a matrix D≝(dij)1≤i,j≤n of ‘distances’ between cities
 (only constraint: dii=0)

FEASIBLE SOL.: tours, i.e., permutations π of {1,…,n}
COST: dπ(1)π(2)+dπ(2)π(3)+…+dπ(n–1)π(n)+dπ(n)π(1)

TSP

http://www.crpc.rice.edu/CRPC/newsletters/sum98/news_tsp.html

13,509 U.S. cities with populations of more than 500 people connected optimally

❖ INPUT: a matrix D≝(dij)1≤i,j≤n of ‘distances’ between cities
 (only constraint: dii=0)

FEASIBLE SOL.: tours, i.e., permutations π of {1,…,n}
COST: dπ(1)π(2)+dπ(2)π(3)+…+dπ(n–1)π(n)+dπ(n)π(1)

❖ Decision problem (is cost ≤
some given budget?) is
NP-complete

TSP

http://www.crpc.rice.edu/CRPC/newsletters/sum98/news_tsp.html

13,509 U.S. cities with populations of more than 500 people connected optimally

❖ INPUT: a matrix D≝(dij)1≤i,j≤n of ‘distances’ between cities
 (only constraint: dii=0)

FEASIBLE SOL.: tours, i.e., permutations π of {1,…,n}
COST: dπ(1)π(2)+dπ(2)π(3)+…+dπ(n–1)π(n)+dπ(n)π(1)

❖ Decision problem (is cost ≤
some given budget?) is
NP-complete

❖ ε-approximable for no ε ∈]0,1[
unless P=NP. Hence approximation
threshold is 1 (worst possible!)

TSP

http://www.crpc.rice.edu/CRPC/newsletters/sum98/news_tsp.html

13,509 U.S. cities with populations of more than 500 people connected optimally

❖ We use the fact that HAMILTONIAN CYCLE:
INPUT: an undirected graph G ≝ (V, E)
QUESTION: ∃cycle in G going once through each vertex?
is NP-complete

TSP is not approximable

❖ We use the fact that HAMILTONIAN CYCLE:
INPUT: an undirected graph G ≝ (V, E)
QUESTION: ∃cycle in G going once through each vertex?
is NP-complete

❖ We build a poly time reduction from HAMILTONIAN
CYCLE to (the decision form) of TSP,

TSP is not approximable

❖ We use the fact that HAMILTONIAN CYCLE:
INPUT: an undirected graph G ≝ (V, E)
QUESTION: ∃cycle in G going once through each vertex?
is NP-complete

❖ We build a poly time reduction from HAMILTONIAN
CYCLE to (the decision form) of TSP,

❖ showing that if TSP is ε-approximable, then
HAMILTONIAN CYCLE is in P, hence P=NP.

TSP is not approximable

❖ Given G [N≝card(V)] and
M > 1/(1–ε).N,
let dij ≝ 1 if edge i — j,
 M if no edge. Defines an instance D of TSP.

TSP is not approximable
HAMILTONIAN CYCLE:
INPUT: an undirected graph G ≝ (V, E)
QUESTION: ∃cycle in G going once through each vertex?
is NP-complete

❖ Given G [N≝card(V)] and
M > 1/(1–ε).N,
let dij ≝ 1 if edge i — j,
 M if no edge. Defines an instance D of TSP.

❖ Tour π: cost = N if Hamiltonian cycle, ≥ M otherwise

TSP is not approximable
HAMILTONIAN CYCLE:
INPUT: an undirected graph G ≝ (V, E)
QUESTION: ∃cycle in G going once through each vertex?
is NP-complete

❖ Given G [N≝card(V)] and
M > 1/(1–ε).N,
let dij ≝ 1 if edge i — j,
 M if no edge. Defines an instance D of TSP.

❖ Tour π: cost = N if Hamiltonian cycle, ≥ M otherwise

❖ Assume an ε-approximation (poly time) algorithm A for TSP

TSP is not approximable
HAMILTONIAN CYCLE:
INPUT: an undirected graph G ≝ (V, E)
QUESTION: ∃cycle in G going once through each vertex?
is NP-complete

❖ Given G [N≝card(V)] and
M > 1/(1–ε).N,
let dij ≝ 1 if edge i — j,
 M if no edge. Defines an instance D of TSP.

❖ Tour π: cost = N if Hamiltonian cycle, ≥ M otherwise

❖ Assume an ε-approximation (poly time) algorithm A for TSP

❖ If G has a Hamiltonian cycle, opt(D) = N
A(D) will find a tour of cost ≤ 1/(1–ε).opt(D) < M,
 hence a Hamiltonian cycle, in poly time

TSP is not approximable
HAMILTONIAN CYCLE:
INPUT: an undirected graph G ≝ (V, E)
QUESTION: ∃cycle in G going once through each vertex?
is NP-complete

❖ Given G [N≝card(V)] and
M > 1/(1–ε).N,
let dij ≝ 1 if edge i — j,
 M if no edge. Defines an instance D of TSP.

❖ Tour π: cost = N if Hamiltonian cycle, ≥ M otherwise

❖ Assume an ε-approximation (poly time) algorithm A for TSP

❖ If G has a Hamiltonian cycle, opt(D) = N
A(D) will find a tour of cost ≤ 1/(1–ε).opt(D) < M,
 hence a Hamiltonian cycle, in poly time

❖ Hence HAMILTONIAN CYCLE is in P, so P=NP.

TSP is not approximable
HAMILTONIAN CYCLE:
INPUT: an undirected graph G ≝ (V, E)
QUESTION: ∃cycle in G going once through each vertex?
is NP-complete

KNAPSACK

❖ INPUT: prices vi and weights wi, 1≤i≤n, a max weight W
 (all are natural numbers)

FEASIBLE SOL.: a subset S ⊆ {1,…,n} / Σi ∈ S wi ≤ W
COST: Σi ∈ S vi

KNAPSACK

❖ INPUT: prices vi and weights wi, 1≤i≤n, a max weight W
 (all are natural numbers)

FEASIBLE SOL.: a subset S ⊆ {1,…,n} / Σi ∈ S wi ≤ W
COST: Σi ∈ S vi

❖ Decision problem (is cost ≤ some given budget?) is
NP-complete

KNAPSACK

❖ INPUT: prices vi and weights wi, 1≤i≤n, a max weight W
 (all are natural numbers)

FEASIBLE SOL.: a subset S ⊆ {1,…,n} / Σi ∈ S wi ≤ W
COST: Σi ∈ S vi

❖ Decision problem (is cost ≤ some given budget?) is
NP-complete

❖ ε-approximable for every ε ∈]0,1[.
Approximation threshold is 0 (best possible!)

KNAPSACK

❖ A well-known dynamic
programming algorithm for KNAPSACK:

❖ Let V ≝ Σi=1n vi, and, for all 1≤j≤n and 0≤v≤V:
 W(j,v) = min {Σi ∈ S wi | S ⊆ {1,…,j}, Σi ∈ S vi=v}

KNAPSACK
INPUT: prices vi and weights wi, 1≤i≤n, a max weight W
FEASIBLE SOL.: a subset S ⊆ {1,…,n} / Σi ∈ S wi ≤ W
COST: Σi ∈ S vi

❖ A well-known dynamic
programming algorithm for KNAPSACK:

❖ Let V ≝ Σi=1n vi, and, for all 1≤j≤n and 0≤v≤V:
 W(j,v) = min {Σi ∈ S wi | S ⊆ {1,…,j}, Σi ∈ S vi=v}

❖ Then W(j,v) = min(W(j–1,v), W(j–1,v–vj)+wi) if v≥vj
 W(j–1,v) otherwise
can be computed in time O(nV)

KNAPSACK
INPUT: prices vi and weights wi, 1≤i≤n, a max weight W
FEASIBLE SOL.: a subset S ⊆ {1,…,n} / Σi ∈ S wi ≤ W
COST: Σi ∈ S vi

❖ A well-known dynamic
programming algorithm for KNAPSACK:

❖ Let V ≝ Σi=1n vi, and, for all 1≤j≤n and 0≤v≤V:
 W(j,v) = min {Σi ∈ S wi | S ⊆ {1,…,j}, Σi ∈ S vi=v}

❖ Then W(j,v) = min(W(j–1,v), W(j–1,v–vj)+wi) if v≥vj
 W(j–1,v) otherwise
can be computed in time O(nV)

❖ Finally, find largest v such that W(n,v)≤W.

KNAPSACK
INPUT: prices vi and weights wi, 1≤i≤n, a max weight W
FEASIBLE SOL.: a subset S ⊆ {1,…,n} / Σi ∈ S wi ≤ W
COST: Σi ∈ S vi

❖ A well-known dynamic
programming algorithm for KNAPSACK:

❖ Let V ≝ Σi=1n vi, and, for all 1≤j≤n and 0≤v≤V:
 W(j,v) = min {Σi ∈ S wi | S ⊆ {1,…,j}, Σi ∈ S vi=v}

❖ Then W(j,v) = min(W(j–1,v), W(j–1,v–vj)+wi) if v≥vj
 W(j–1,v) otherwise
can be computed in time O(nV)

❖ Finally, find largest v such that W(n,v)≤W.

KNAPSACK
INPUT: prices vi and weights wi, 1≤i≤n, a max weight W
FEASIBLE SOL.: a subset S ⊆ {1,…,n} / Σi ∈ S wi ≤ W
COST: Σi ∈ S vi

exponential in size(V)=O(log V)
if numbers in binary

KNAPSACK
❖ A well-known dynamic

programming algorithm for KNAPSACK:

❖ Let V ≝ Σi=1n vi, and, for all 1≤j≤n and 0≤v≤V:
 W(j,v) = min {Σi ∈ S wi | S ⊆ {1,…,j}, Σi ∈ S vi=v}

❖ Then W(j,v) = min(W(j–1,v), W(j–1,v–vj)+wi) if v≥vj
 W(j–1,v) otherwise
can be computed in time O(nV)

❖ Finally, find largest v such that W(n,v)≤W.

INPUT: prices vi and weights wi, 1≤i≤n, a max weight W
FEASIBLE SOL.: a subset S ⊆ {1,…,n} / Σi ∈ S wi ≤ W
COST: Σi ∈ S vi

❖ Do all computations on
values (i.e., v, vi) by only
keeping the
 k most significant bits
of each number and
 rounding down

KNAPSACK
❖ A well-known dynamic

programming algorithm for KNAPSACK:

❖ Let V ≝ Σi=1n vi, and, for all 1≤j≤n and 0≤v≤V:
 W(j,v) = min {Σi ∈ S wi | S ⊆ {1,…,j}, Σi ∈ S vi=v}

❖ Then W(j,v) = min(W(j–1,v), W(j–1,v–vj)+wi) if v≥vj
 W(j–1,v) otherwise
can be computed in time O(nV)

❖ Finally, find largest v such that W(n,v)≤W.

INPUT: prices vi and weights wi, 1≤i≤n, a max weight W
FEASIBLE SOL.: a subset S ⊆ {1,…,n} / Σi ∈ S wi ≤ W
COST: Σi ∈ S vi

❖ Do all computations on
values (i.e., v, vi) by only
keeping the
 k most significant bits
of each number and
 rounding down

❖ I.e., represent vi by the k-bit number ⎣vi/2k0–k⎦ [k0 ≝ #bits in nV]

KNAPSACK
❖ A well-known dynamic

programming algorithm for KNAPSACK:

❖ Let V ≝ Σi=1n vi, and, for all 1≤j≤n and 0≤v≤V:
 W(j,v) = min {Σi ∈ S wi | S ⊆ {1,…,j}, Σi ∈ S vi=v}

❖ Then W(j,v) = min(W(j–1,v), W(j–1,v–vj)+wi) if v≥vj
 W(j–1,v) otherwise
can be computed in time O(nV)

❖ Finally, find largest v such that W(n,v)≤W.

INPUT: prices vi and weights wi, 1≤i≤n, a max weight W
FEASIBLE SOL.: a subset S ⊆ {1,…,n} / Σi ∈ S wi ≤ W
COST: Σi ∈ S vi

❖ Do all computations on
values (i.e., v, vi) by only
keeping the
 k most significant bits
of each number and
 rounding down

❖ I.e., represent vi by the k-bit number ⎣vi/2k0–k⎦ [k0 ≝ #bits in nV]

❖ replace all values v by k-bit approximations v’ (v ≈ 2k0–k v’)

KNAPSACK
❖ A well-known dynamic

programming algorithm for KNAPSACK:

❖ Let V ≝ Σi=1n vi, and, for all 1≤j≤n and 0≤v≤V:
 W(j,v) = min {Σi ∈ S wi | S ⊆ {1,…,j}, Σi ∈ S vi=v}

❖ Then W(j,v) = min(W(j–1,v), W(j–1,v–vj)+wi) if v≥vj
 W(j–1,v) otherwise
can be computed in time O(nV)

❖ Finally, find largest v such that W(n,v)≤W.

INPUT: prices vi and weights wi, 1≤i≤n, a max weight W
FEASIBLE SOL.: a subset S ⊆ {1,…,n} / Σi ∈ S wi ≤ W
COST: Σi ∈ S vi

❖ Do all computations on
values (i.e., v, vi) by only
keeping the
 k most significant bits
of each number and
 rounding down

❖ I.e., represent vi by the k-bit number ⎣vi/2k0–k⎦ [k0 ≝ #bits in nV]

❖ replace all values v by k-bit approximations v’ (v ≈ 2k0–k v’)

❖ replace computation of v–vi by v’–⎣vi/2k0–k⎦

KNAPSACK
❖ A well-known dynamic

programming algorithm for KNAPSACK:

❖ Let V ≝ Σi=1n vi, and, for all 1≤j≤n and 0≤v≤V:
 W(j,v) = min {Σi ∈ S wi | S ⊆ {1,…,j}, Σi ∈ S vi=v}

❖ Then W(j,v) = min(W(j–1,v), W(j–1,v–vj)+wi) if v≥vj
 W(j–1,v) otherwise
can be computed in time O(nV)

❖ Finally, find largest v such that W(n,v)≤W.

INPUT: prices vi and weights wi, 1≤i≤n, a max weight W
FEASIBLE SOL.: a subset S ⊆ {1,…,n} / Σi ∈ S wi ≤ W
COST: Σi ∈ S vi

KNAPSACK
❖ A well-known dynamic

programming algorithm for KNAPSACK:

❖ Let V ≝ Σi=1n vi, and, for all 1≤j≤n and 0≤v≤V:
 W(j,v) = min {Σi ∈ S wi | S ⊆ {1,…,j}, Σi ∈ S vi=v}

❖ Then W(j,v) = min(W(j–1,v), W(j–1,v–vj)+wi) if v≥vj
 W(j–1,v) otherwise
can be computed in time O(nV)

❖ Finally, find largest v such that W(n,v)≤W.

INPUT: prices vi and weights wi, 1≤i≤n, a max weight W
FEASIBLE SOL.: a subset S ⊆ {1,…,n} / Σi ∈ S wi ≤ W
COST: Σi ∈ S vi

❖ We choose
k ≝ ⎡size(nV)–log2(εV/n)⎤
 = log2 (n2/ε)+O(1)

KNAPSACK
❖ A well-known dynamic

programming algorithm for KNAPSACK:

❖ Let V ≝ Σi=1n vi, and, for all 1≤j≤n and 0≤v≤V:
 W(j,v) = min {Σi ∈ S wi | S ⊆ {1,…,j}, Σi ∈ S vi=v}

❖ Then W(j,v) = min(W(j–1,v), W(j–1,v–vj)+wi) if v≥vj
 W(j–1,v) otherwise
can be computed in time O(nV)

❖ Finally, find largest v such that W(n,v)≤W.

INPUT: prices vi and weights wi, 1≤i≤n, a max weight W
FEASIBLE SOL.: a subset S ⊆ {1,…,n} / Σi ∈ S wi ≤ W
COST: Σi ∈ S vi

❖ We choose
k ≝ ⎡size(nV)–log2(εV/n)⎤
 = log2 (n2/ε)+O(1)

❖ There are now at most
2k =O(n2/ε) different values
instead of O(V),
hence times goes down to O(n 2k) = O(n3/ε)

KNAPSACK
❖ A well-known dynamic

programming algorithm for KNAPSACK:

❖ Let V ≝ Σi=1n vi, and, for all 1≤j≤n and 0≤v≤V:
 W(j,v) = min {Σi ∈ S wi | S ⊆ {1,…,j}, Σi ∈ S vi=v}

❖ Then W(j,v) = min(W(j–1,v), W(j–1,v–vj)+wi) if v≥vj
 W(j–1,v) otherwise
can be computed in time O(nV)

❖ Finally, find largest v such that W(n,v)≤W.

INPUT: prices vi and weights wi, 1≤i≤n, a max weight W
FEASIBLE SOL.: a subset S ⊆ {1,…,n} / Σi ∈ S wi ≤ W
COST: Σi ∈ S vi

❖ We choose
k ≝ ⎡size(nV)–log2(εV/n)⎤
 = log2 (n2/ε)+O(1)

❖ There are now at most
2k =O(n2/ε) different values
instead of O(V),
hence times goes down to O(n 2k) = O(n3/ε)

❖ And final value is between (1–ε)opt and opt
 (see lecture notes for details, Prop. 2.7).

KNAPSACK
❖ A well-known dynamic

programming algorithm for KNAPSACK:

❖ Let V ≝ Σi=1n vi, and, for all 1≤j≤n and 0≤v≤V:
 W(j,v) = min {Σi ∈ S wi | S ⊆ {1,…,j}, Σi ∈ S vi=v}

❖ Then W(j,v) = min(W(j–1,v), W(j–1,v–vj)+wi) if v≥vj
 W(j–1,v) otherwise
can be computed in time O(nV)

❖ Finally, find largest v such that W(n,v)≤W.

INPUT: prices vi and weights wi, 1≤i≤n, a max weight W
FEASIBLE SOL.: a subset S ⊆ {1,…,n} / Σi ∈ S wi ≤ W
COST: Σi ∈ S vi

MAX3SAT

MAXSAT
❖ INPUT: a finite list S of clauses

FEASIBLE SOL.: an environment ρ
VALUE: #clauses satisfied by ρ

❖ Decision problem (is value ≥ some given goal?)
 is NP-complete

❖ ε-approximable for which ε ∈]0,1[?
Let me give you the best known (and silliest)
algorithm…

Johnson’s algorithm
❖ Rough idea: while there is a variable A left, decide to set A to 1

(true) or 0 (false) depending on which of
 E(#clauses of S[A:=1] satisfied by ρ) and
 E(#clauses of S[A:=0] satisfied by ρ) is larger,
where ρ is drawn at random.

Johnson’s algorithm
❖ Rough idea: while there is a variable A left, decide to set A to 1

(true) or 0 (false) depending on which of
 E(#clauses of S[A:=1] satisfied by ρ) and
 E(#clauses of S[A:=0] satisfied by ρ) is larger,
where ρ is drawn at random.

❖ S[A:=1]: remove clauses where A occurs positively,
 remove ¬A from remaining clauses

Johnson’s algorithm
❖ Rough idea: while there is a variable A left, decide to set A to 1

(true) or 0 (false) depending on which of
 E(#clauses of S[A:=1] satisfied by ρ) and
 E(#clauses of S[A:=0] satisfied by ρ) is larger,
where ρ is drawn at random.

❖ S[A:=1]: remove clauses where A occurs positively,
 remove ¬A from remaining clauses

❖ S[A:=0]: remove clauses where ¬A occurs
 (i.e., A occurs negatively),
 remove A from remaining clauses

Johnson’s algorithm
❖ In reality: we compare

 E(#clauses of S[A:=1] not satisfied by ρ) and
 E(#clauses of S[A:=0] not satisfied by ρ)

❖ If the first one is smaller, set A to 1, S := S[A:=1]

❖ Otherwise, set A to 0, S := S[A:=0]

Computing E(#clauses of S not satisfied by ρ)

❖ Let S ≝ [C1, …, Cm], each Cj being a clause or ⊤
E(S) ≝ E(#j /Cj not satisfied by ρ, ρ uniformly random)

Computing E(#clauses of S not satisfied by ρ)

❖ Let S ≝ [C1, …, Cm], each Cj being a clause or ⊤
E(S) ≝ E(#j /Cj not satisfied by ρ, ρ uniformly random)

❖ E(S) = Σj=1m E([Cj]) = Σj=1m Prρ(not ρ ⊨ Cj)
 [linearity of expectation]

Computing E(#clauses of S not satisfied by ρ)

❖ Let S ≝ [C1, …, Cm], each Cj being a clause or ⊤
E(S) ≝ E(#j /Cj not satisfied by ρ, ρ uniformly random)

❖ E(S) = Σj=1m E([Cj]) = Σj=1m Prρ(not ρ ⊨ Cj)
 [linearity of expectation]

❖ If Cj is a tautology A ⋁ ¬A ⋁ … (or ⊤), Prρ(not ρ ⊨ C) = 0
 else Prρ(not ρ ⊨ C) = 1/2|C|,
 e.g., Prρ(not ρ ⊨ A ⋁ ¬B ⋁ ¬C) = 1/8

❖ Claim. E(S) = ½(E(S[A:=1])+E(S[A:=0]))

The key observation

❖ Claim. E(S) = ½(E(S[A:=1])+E(S[A:=0]))

❖ Proof. By linearity of expectation, enough to check it for a single
clause Cj

The key observation

❖ Claim. E(S) = ½(E(S[A:=1])+E(S[A:=0]))

❖ Proof. By linearity of expectation, enough to check it for a single
clause Cj

❖ If Cj tautology, 0 = ½(0+0), otherwise…

The key observation

❖ Claim. E(S) = ½(E(S[A:=1])+E(S[A:=0]))

❖ Proof. By linearity of expectation, enough to check it for a single
clause Cj

❖ If Cj tautology, 0 = ½(0+0), otherwise…

❖ If Cj =A ⋁ rest, E(Cj) = 1/2|Cj | = ½ 1/2|rest|,
 E(Cj[A:=1]) = E(⊤) = 0
 E(Cj[A:=0]) = E(rest) = 1/2|rest|

The key observation

❖ Claim. E(S) = ½(E(S[A:=1])+E(S[A:=0]))

❖ Proof. By linearity of expectation, enough to check it for a single
clause Cj

❖ If Cj tautology, 0 = ½(0+0), otherwise…

❖ If Cj =A ⋁ rest, E(Cj) = 1/2|Cj | = ½ 1/2|rest|,
 E(Cj[A:=1]) = E(⊤) = 0
 E(Cj[A:=0]) = E(rest) = 1/2|rest|

❖ Similarly if Cj =¬A ⋁ rest

The key observation

❖ Claim. E(S) = ½(E(S[A:=1])+E(S[A:=0]))

❖ Proof. By linearity of expectation, enough to check it for a single
clause Cj

❖ If Cj tautology, 0 = ½(0+0), otherwise…

❖ If Cj =A ⋁ rest, E(Cj) = 1/2|Cj | = ½ 1/2|rest|,
 E(Cj[A:=1]) = E(⊤) = 0
 E(Cj[A:=0]) = E(rest) = 1/2|rest|

❖ Similarly if Cj =¬A ⋁ rest

❖ If neither A nor ¬A occurs in Cj, Cj[A:=1] = Cj[A:=0] = Cj. ☐

The key observation

❖ Claim. E(S) = ½(E(S[A:=1])+E(S[A:=0]))

Decreasing expectations

❖ Claim. E(S) = ½(E(S[A:=1])+E(S[A:=0]))
❖ List all the variables as A0, …, An. Set S0 ≝ S (= [C1, …, Cm])

Decreasing expectations

❖ Claim. E(S) = ½(E(S[A:=1])+E(S[A:=0]))
❖ List all the variables as A0, …, An. Set S0 ≝ S (= [C1, …, Cm])

Decreasing expectations

E(S0[A1:=1])≤E(S0[A1:=0])?

set A1:=1
S1:=S[A1:=1]

set A1:=0
S1:=S[A1:=0]

yes no

❖ Claim. E(S) = ½(E(S[A:=1])+E(S[A:=0]))
❖ List all the variables as A0, …, An. Set S0 ≝ S (= [C1, …, Cm])

Decreasing expectations

E(S0[A1:=1])≤E(S0[A1:=0])?

set A1:=1
S1:=S[A1:=1]

set A1:=0
S1:=S[A1:=0]

yes no

E(S1[A2:=1])≤E(S1[A2:=0])?

set A2:=1
S2:=S1[A2:=1]

set A2:=0
S2:=S1[A2:=0]

yes no

❖ Claim. E(S) = ½(E(S[A:=1])+E(S[A:=0]))
❖ List all the variables as A0, …, An. Set S0 ≝ S (= [C1, …, Cm])

Decreasing expectations

E(S0[A1:=1])≤E(S0[A1:=0])?

set A1:=1
S1:=S[A1:=1]

set A1:=0
S1:=S[A1:=0]

yes no

E(S1[A2:=1])≤E(S1[A2:=0])?

set A2:=1
S2:=S1[A2:=1]

set A2:=0
S2:=S1[A2:=0]

yes no

E(S2[A3:=1])≤E(S2[A3:=0])?

set A3:=1
S3:=S2[A3:=1]

set A3:=0
S3:=S2[A3:=0]

etc.yes no

❖ Claim. E(S) = ½(E(S[A:=1])+E(S[A:=0]))
❖ List all the variables as A0, …, An. Set S0 ≝ S (= [C1, …, Cm])

Decreasing expectations

E(S0[A1:=1])≤E(S0[A1:=0])?

set A1:=1
S1:=S[A1:=1]

set A1:=0
S1:=S[A1:=0]

yes no

E(S1[A2:=1])≤E(S1[A2:=0])?

set A2:=1
S2:=S1[A2:=1]

set A2:=0
S2:=S1[A2:=0]

yes no

E(S2[A3:=1])≤E(S2[A3:=0])?

set A3:=1
S3:=S2[A3:=1]

set A3:=0
S3:=S2[A3:=0]

etc.yes no

❖ By the claim, E(Si+1) ≤ E(Si). So E(Sn) ≤ E(S).

❖ Claim. E(S) = ½(E(S[A:=1])+E(S[A:=0]))
❖ List all the variables as A0, …, An. Set S0 ≝ S (= [C1, …, Cm])

Decreasing expectations

E(S0[A1:=1])≤E(S0[A1:=0])?

set A1:=1
S1:=S[A1:=1]

set A1:=0
S1:=S[A1:=0]

yes no

E(S1[A2:=1])≤E(S1[A2:=0])?

set A2:=1
S2:=S1[A2:=1]

set A2:=0
S2:=S1[A2:=0]

yes no

E(S2[A3:=1])≤E(S2[A3:=0])?

set A3:=1
S3:=S2[A3:=1]

set A3:=0
S3:=S2[A3:=0]

etc.yes no

❖ By the claim, E(Si+1) ≤ E(Si). So E(Sn) ≤ E(S).

❖ Let ρ be the final environment
The only clauses in Sn are ⊤ (if ρ ⊨ Cj), or the empty clause ⊥

❖ Claim. E(S) = ½(E(S[A:=1])+E(S[A:=0]))
❖ List all the variables as A0, …, An. Set S0 ≝ S (= [C1, …, Cm])

Decreasing expectations

E(S0[A1:=1])≤E(S0[A1:=0])?

set A1:=1
S1:=S[A1:=1]

set A1:=0
S1:=S[A1:=0]

yes no

E(S1[A2:=1])≤E(S1[A2:=0])?

set A2:=1
S2:=S1[A2:=1]

set A2:=0
S2:=S1[A2:=0]

yes no

E(S2[A3:=1])≤E(S2[A3:=0])?

set A3:=1
S3:=S2[A3:=1]

set A3:=0
S3:=S2[A3:=0]

etc.yes no

❖ By the claim, E(Si+1) ≤ E(Si). So E(Sn) ≤ E(S).

❖ Let ρ be the final environment
The only clauses in Sn are ⊤ (if ρ ⊨ Cj), or the empty clause ⊥

❖ Note: E(Sn) = #empty clauses in Sn.
So ρ satisfies m–E(Sn) ≥ m–E(S) clauses in S.

❖ ρ satisfies m–E(Sn) ≥ m–E(S) clauses in S = [C1, …, Cm]

MAXSAT is approximable

❖ ρ satisfies m–E(Sn) ≥ m–E(S) clauses in S = [C1, …, Cm]

❖ If each non-tautological Cj has ≥k literals,
Prρ(not ρ ⊨ Cj) ≤ 1/2k (=0 if tautological), so
E(S) = Σj=1m Prρ(not ρ ⊨ Cj) ≤ m/2k

MAXSAT is approximable

❖ ρ satisfies m–E(Sn) ≥ m–E(S) clauses in S = [C1, …, Cm]

❖ If each non-tautological Cj has ≥k literals,
Prρ(not ρ ⊨ Cj) ≤ 1/2k (=0 if tautological), so
E(S) = Σj=1m Prρ(not ρ ⊨ Cj) ≤ m/2k

❖ Therefore ρ satisfies ≥ m (1– 1/2k) ≥ opt(S) (1– 1/2k) clauses in S:

MAXSAT is approximable

❖ ρ satisfies m–E(Sn) ≥ m–E(S) clauses in S = [C1, …, Cm]

❖ If each non-tautological Cj has ≥k literals,
Prρ(not ρ ⊨ Cj) ≤ 1/2k (=0 if tautological), so
E(S) = Σj=1m Prρ(not ρ ⊨ Cj) ≤ m/2k

❖ Therefore ρ satisfies ≥ m (1– 1/2k) ≥ opt(S) (1– 1/2k) clauses in S:

❖ Thm. MAXSAT restricted to S /
 each non-tautological Cj has ≥k literals, is 1/2k-approximable.

MAXSAT is approximable

❖ Thm. MAXSAT restricted to S /
 each non-tautological Cj has ≥k literals, is 1/2k-approximable.

❖ One can always prepare S by eliminating unit clauses, so k≥2:
MAXSAT is 1/4-approximable.

❖ If every clause in S has at least 3 literals, then
1/8-approximable.

❖ Hence MAX=3SAT (all clauses have exactly 3 literals) is
1/8-approximable. It turns out that this is optimal.

MAXSAT is approximable

PCP

Sanjeev Arora, Shmuel Safra

https://commons.wikimedia.org/wiki/File:Sanjeev_Arora.jpg#/media/Fichier:Sanjeev_Arora.jpg

https://simons.berkeley.edu/sites/default/files/styles/profile_main/public/dscn0007.jpg?itok=irtfi766

(1998)

Reminder: randomized TMs

❖ Two read-only tapes

❖ As many work tapes
as you need
(but only a constant
number!)

x

r

(size n)

With the usual proviso:
head can only move right on random tape r

PCP machines

❖ Two read-only tapes

❖ As many work tapes
as you need
(but only a constant
number!)

x

r

(size n)

Three
y

proof tape

With the usual proviso:
head can only move right on random tape r

PCP machines

❖ Two read-only tapes

❖ As many work tapes
as you need
(but only a constant
number!)

x

r

(size n)

Three
y

proof tapeProof tape is accessed in random access mode

With the usual proviso:
head can only move right on random tape r

PCP machines

❖ Two read-only tapes

❖ As many work tapes
as you need
(but only a constant
number!)

x

r

(size n)

Three
y

proof tapeProof tape is accessed in random access mode

pos address tape
With the usual proviso:
head can only move right on random tape r

position in binary, points to
cell #pos on proof tape y

Running a PCP machine

Running a PCP machine
1. On input x, Merlin fills in

proof tape y — but keeps
it masked (= cryptographic
 commitment)

Running a PCP machine
1. On input x, Merlin fills in

proof tape y — but keeps
it masked (= cryptographic
 commitment)

2. Arthur, only knowing |y| (and x),
computes k=Q(n) positions
p1, …, pk on the proof tape in binary,
in polynomial time, using R(n) random bits

Running a PCP machine
1. On input x, Merlin fills in

proof tape y — but keeps
it masked (= cryptographic
 commitment)

2. Arthur, only knowing |y| (and x),
computes k=Q(n) positions
p1, …, pk on the proof tape in binary,
in polynomial time, using R(n) random bits

3. Merlin reveals y[p1], …, y[pk]

Running a PCP machine
1. On input x, Merlin fills in

proof tape y — but keeps
it masked (= cryptographic
 commitment)

2. Arthur, only knowing |y| (and x),
computes k=Q(n) positions
p1, …, pk on the proof tape in binary,
in polynomial time, using R(n) random bits

3. Merlin reveals y[p1], …, y[pk]

4. Arthur computes
f(y[p1], …, y[pk]) ∈ {accept, reject} in time T(n)

Running a PCP machine
1. On input x, Merlin fills in

proof tape y — but keeps
it masked (= cryptographic
 commitment)

2. Arthur, only knowing |y| (and x),
computes k=Q(n) positions
p1, …, pk on the proof tape in binary,
in polynomial time, using R(n) random bits

3. Merlin reveals y[p1], …, y[pk]

4. Arthur computes
f(y[p1], …, y[pk]) ∈ {accept, reject} in time T(n) where f may also depend on x, and

on the random bits of step 2

Acceptance conditions

❖ If x ∈ L, then Merlin can
provide a proof tape y such that
Arthur will always accept

❖ If x ∉ L, then whichever
proof tape Merlin provides,
Arthur will reject with probability ≥ ½

❖ The languages L that can be decided this way form the
complexity class PCP(R(n),Q(n),T(n))

The Arora-Safra theorem
❖ Theorem. NP = PCP(O(log n), O(1), O(1))

❖ I.e., one can decide every language in NP
by running a PCP machine that:
— asks Q(n)=O(1) questions (positions)
— computed using only R(n)=O(log n) random bits,
 in poly time
— and finally decides
 in T(n)=O(1) time.

❖ Proof would require a whole term!

The Arora-Safra theorem
❖ Theorem. NP = PCP(O(log n), O(1), O(1))

❖ I.e., one can decide every language in NP
by running a PCP machine that:
— asks Q(n)=O(1) questions (positions)
— computed using only R(n)=O(log n) random bits,
 in poly time
— and finally decides
 in T(n)=O(1) time.

❖ Proof would require a whole term!

NP=PCP,
for short

NP=PCP and the hardness of approximation

❖ What I will explain is that NP=PCP is equivalent to the
ε-inapproximability of MAX3SAT for some ε>0

❖ Arora-Safra prove NP=PCP

❖ … and there is a simplified (still extremely complex)
proof by Irit Dinur

The easy direction: PCP ⊆ NP
❖ Derandomize naively:

for every string of R(n)
random bits, simulate
Arthur’s computation

❖ If more than ½ of the
simulations accept, then accept, else reject

The easy direction: PCP ⊆ NP
❖ Derandomize naively:

for every string of R(n)
random bits, simulate
Arthur’s computation

❖ If more than ½ of the
simulations accept, then accept, else reject

❖ Works in time 2R(n)log R(n) poly(n)+T(n)

The easy direction: PCP ⊆ NP
❖ Derandomize naively:

for every string of R(n)
random bits, simulate
Arthur’s computation

❖ If more than ½ of the
simulations accept, then accept, else reject

❖ Works in time 2R(n)log R(n) poly(n)+T(n)

❖ So PCP(R(n)≝O(log n), Q(n)≝whatever, T(n)≝poly(n)) ⊆ NP

PCP and the hardness of
approximating SAT

MAX3SAT(ε)
❖ … is the following promise problem:

INPUT: a finite set S of m propositional 3-clauses
PROMISE: S satisfiable / opt(S) < (1–ε)m
QUESTION: which is true? [opt(S) = max #sat. clauses]

MAX3SAT(ε)
❖ … is the following promise problem:

INPUT: a finite set S of m propositional 3-clauses
PROMISE: S satisfiable / opt(S) < (1–ε)m
QUESTION: which is true? [opt(S) = max #sat. clauses]

❖ We will see that:
— if 3SAT is ε-approximable then MAX3SAT(ε)
 is polytime decidable
— (∃ ε>0, MAX3SAT(ε) is NP-hard) iff NP=PCP

MAX3SAT(ε)
❖ … is the following promise problem:

INPUT: a finite set S of m propositional 3-clauses
PROMISE: S satisfiable / opt(S) < (1–ε)m
QUESTION: which is true? [opt(S) = max #sat. clauses]

❖ We will see that:
— if 3SAT is ε-approximable then MAX3SAT(ε)
 is polytime decidable
— (∃ ε>0, MAX3SAT(ε) is NP-hard) iff NP=PCP

❖ That was known before Arora-Safra.
With Arora-Safra: ∃ ε>0, 3SAT is not ε-approximable, unless P=NP

MAX3SAT(ε)
❖ … is the following promise problem:

INPUT: a finite set S of m propositional 3-clauses
PROMISE: S satisfiable / opt(S) < (1–ε)m
QUESTION: which is true? [opt(S) = max #sat. clauses]

❖ We will see that:
— if 3SAT is ε-approximable then MAX3SAT(ε)
 is polytime decidable
— (∃ ε>0, MAX3SAT(ε) is NP-hard) iff NP=PCP

❖ That was known before Arora-Safra.
With Arora-Safra: ∃ ε>0, 3SAT is not ε-approximable, unless P=NP

Note: NP-complete
would not
make sense

for promise problems

If 3SAT ε-approximable then MAX3SAT(ε) polytime

❖ Given a (polytime) ε-approximation
algorithm A for 3SAT:

If 3SAT ε-approximable then MAX3SAT(ε) polytime

❖ Given a (polytime) ε-approximation
algorithm A for 3SAT:

❖ For every instance S of MAX3SAT(ε),
 ρ≝A(S) satisfies ≥ (1–ε).opt(S) clauses of S

INPUT: a finite set S of m propositional 3-clauses
PROMISE: S satisfiable / opt(S) < (1–ε)m
QUESTION: which is true?

MAX3SAT(ε)

If 3SAT ε-approximable then MAX3SAT(ε) polytime

❖ Given a (polytime) ε-approximation
algorithm A for 3SAT:

❖ For every instance S of MAX3SAT(ε),
 ρ≝A(S) satisfies ≥ (1–ε).opt(S) clauses of S

❖ If S satisfiable, opt(S)=m, so ρ satisfies ≥ (1–ε)m clauses

INPUT: a finite set S of m propositional 3-clauses
PROMISE: S satisfiable / opt(S) < (1–ε)m
QUESTION: which is true?

MAX3SAT(ε)

If 3SAT ε-approximable then MAX3SAT(ε) polytime

❖ Given a (polytime) ε-approximation
algorithm A for 3SAT:

❖ For every instance S of MAX3SAT(ε),
 ρ≝A(S) satisfies ≥ (1–ε).opt(S) clauses of S

❖ If S satisfiable, opt(S)=m, so ρ satisfies ≥ (1–ε)m clauses

❖ Otherwise, ρ satisfies < (1–ε)m clauses by the promise

INPUT: a finite set S of m propositional 3-clauses
PROMISE: S satisfiable / opt(S) < (1–ε)m
QUESTION: which is true?

MAX3SAT(ε)

If 3SAT ε-approximable then MAX3SAT(ε) polytime

❖ Given a (polytime) ε-approximation
algorithm A for 3SAT:

❖ For every instance S of MAX3SAT(ε),
 ρ≝A(S) satisfies ≥ (1–ε).opt(S) clauses of S

❖ If S satisfiable, opt(S)=m, so ρ satisfies ≥ (1–ε)m clauses

❖ Otherwise, ρ satisfies < (1–ε)m clauses by the promise

❖ Hence comparing #clauses satisfied by ρ≝A(S) with (1–ε)m
yields a polytime algorithm deciding MAX3SAT(ε). ☐

INPUT: a finite set S of m propositional 3-clauses
PROMISE: S satisfiable / opt(S) < (1–ε)m
QUESTION: which is true?

MAX3SAT(ε)

(∃ ε>0, MAX3SAT(ε) NP-hard)
iff NP=PCP:

the left to right direction

If ∃ ε>0, MAX3SAT(ε) NP-hard then NP=PCP

❖ We already know PCP ⊆ NP. Conversely,
let L be any language in NP.

If ∃ ε>0, MAX3SAT(ε) NP-hard then NP=PCP

❖ We already know PCP ⊆ NP. Conversely,
let L be any language in NP.

❖ ∃polytime reduction from L to
MAX3SAT(ε), since MAX3SAT(ε) NP-hard by assumption

INPUT: a finite set S of m propositional 3-clauses
PROMISE: S satisfiable / opt(S) < (1–ε)m
QUESTION: which is true?

MAX3SAT(ε)

If ∃ ε>0, MAX3SAT(ε) NP-hard then NP=PCP

❖ We already know PCP ⊆ NP. Conversely,
let L be any language in NP.

❖ ∃polytime reduction from L to
MAX3SAT(ε), since MAX3SAT(ε) NP-hard by assumption

❖ PCP is closed under
polytime reductions
(important!)

INPUT: a finite set S of m propositional 3-clauses
PROMISE: S satisfiable / opt(S) < (1–ε)m
QUESTION: which is true?

MAX3SAT(ε)

If ∃ ε>0, MAX3SAT(ε) NP-hard then NP=PCP

❖ We already know PCP ⊆ NP. Conversely,
let L be any language in NP.

❖ ∃polytime reduction from L to
MAX3SAT(ε), since MAX3SAT(ε) NP-hard by assumption

❖ PCP is closed under
polytime reductions
(important!)

❖ So it suffices to exhibit a
PCP machine deciding
MAX3SAT(ε)

INPUT: a finite set S of m propositional 3-clauses
PROMISE: S satisfiable / opt(S) < (1–ε)m
QUESTION: which is true?

MAX3SAT(ε)

If ∃ ε>0, MAX3SAT(ε) NP-hard then NP=PCP

❖ A PCP machine deciding
MAX3SAT(ε). Let S≝[C1,…,Cm] INPUT: a finite set S of m propositional 3-clauses

PROMISE: S satisfiable / opt(S) < (1–ε)m
QUESTION: which is true?

MAX3SAT(ε)

If ∃ ε>0, MAX3SAT(ε) NP-hard then NP=PCP

❖ A PCP machine deciding
MAX3SAT(ε). Let S≝[C1,…,Cm]

1. Merlin fills in y with ρ

INPUT: a finite set S of m propositional 3-clauses
PROMISE: S satisfiable / opt(S) < (1–ε)m
QUESTION: which is true?

MAX3SAT(ε)

If ∃ ε>0, MAX3SAT(ε) NP-hard then NP=PCP

❖ A PCP machine deciding
MAX3SAT(ε). Let S≝[C1,…,Cm]

1. Merlin fills in y with ρ

2. Arthur chooses Cj at random,
(say +A32 ⋁ –A71 ⋁ –A239)
and gives the corresponding
3 positions (here: 32, 71, 239)

INPUT: a finite set S of m propositional 3-clauses
PROMISE: S satisfiable / opt(S) < (1–ε)m
QUESTION: which is true?

MAX3SAT(ε)

If ∃ ε>0, MAX3SAT(ε) NP-hard then NP=PCP

❖ A PCP machine deciding
MAX3SAT(ε). Let S≝[C1,…,Cm]

1. Merlin fills in y with ρ

2. Arthur chooses Cj at random,
(say +A32 ⋁ –A71 ⋁ –A239)
and gives the corresponding
3 positions (here: 32, 71, 239)

3. Merlin reveals the corresponding
truth values

INPUT: a finite set S of m propositional 3-clauses
PROMISE: S satisfiable / opt(S) < (1–ε)m
QUESTION: which is true?

MAX3SAT(ε)

If ∃ ε>0, MAX3SAT(ε) NP-hard then NP=PCP

❖ A PCP machine deciding
MAX3SAT(ε). Let S≝[C1,…,Cm]

1. Merlin fills in y with ρ

2. Arthur chooses Cj at random,
(say +A32 ⋁ –A71 ⋁ –A239)
and gives the corresponding
3 positions (here: 32, 71, 239)

3. Merlin reveals the corresponding
truth values

4. Arthur evaluates Cj using a precompiled
circuit, of constant size… in time O(1)
(here,)

INPUT: a finite set S of m propositional 3-clauses
PROMISE: S satisfiable / opt(S) < (1–ε)m
QUESTION: which is true?

MAX3SAT(ε)

orno
t

no
t

accepts if true,
rejects if false

If ∃ ε>0, MAX3SAT(ε) NP-hard then NP=PCP

❖ A PCP machine deciding
MAX3SAT(ε). Let S≝[C1,…,Cm]

1. Merlin fills in y with ρ

2. Arthur chooses Cj at random,
(say +A32 ⋁ –A71 ⋁ –A239)
and gives the corresponding
3 positions (here: 32, 71, 239)

3. Merlin reveals the corresponding
truth values

4. Arthur evaluates Cj using a precompiled
circuit, of constant size… in time O(1)
(here,)

INPUT: a finite set S of m propositional 3-clauses
PROMISE: S satisfiable / opt(S) < (1–ε)m
QUESTION: which is true?

MAX3SAT(ε)

orno
t

no
t

 Oops… and precompiles a circuit
that evaluates Cj, to be used in step 4

accepts if true,
rejects if false

If ∃ ε>0, MAX3SAT(ε) NP-hard then NP=PCP

❖ Uses R(n)=O(log n) random bits:
just one number j (1≤j≤m) at random

❖ Q(n)=O(1) (indeed, =3)
T(n)=O(1)

INPUT: a finite set S of m propositional 3-clauses
PROMISE: S satisfiable / opt(S) < (1–ε)m
QUESTION: which is true?

MAX3SAT(ε)

If ∃ ε>0, MAX3SAT(ε) NP-hard then NP=PCP

❖ Uses R(n)=O(log n) random bits:
just one number j (1≤j≤m) at random

❖ Q(n)=O(1) (indeed, =3)
T(n)=O(1)

❖ If S satisfiable, then Merlin can produce
a satisfying assignment, so Arthur will accept

INPUT: a finite set S of m propositional 3-clauses
PROMISE: S satisfiable / opt(S) < (1–ε)m
QUESTION: which is true?

MAX3SAT(ε)

If ∃ ε>0, MAX3SAT(ε) NP-hard then NP=PCP

❖ Uses R(n)=O(log n) random bits:
just one number j (1≤j≤m) at random

❖ Q(n)=O(1) (indeed, =3)
T(n)=O(1)

❖ If S satisfiable, then Merlin can produce
a satisfying assignment, so Arthur will accept

❖ If opt(S) < (1–ε)m, then whatever ρ is given,
Prj(ρ ⊨ Cj) < (1–ε)

INPUT: a finite set S of m propositional 3-clauses
PROMISE: S satisfiable / opt(S) < (1–ε)m
QUESTION: which is true?

MAX3SAT(ε)

If ∃ ε>0, MAX3SAT(ε) NP-hard then NP=PCP

❖ Uses R(n)=O(log n) random bits:
just one number j (1≤j≤m) at random

❖ Q(n)=O(1) (indeed, =3)
T(n)=O(1)

❖ If S satisfiable, then Merlin can produce
a satisfying assignment, so Arthur will accept

❖ If opt(S) < (1–ε)m, then whatever ρ is given,
Prj(ρ ⊨ Cj) < (1–ε)

INPUT: a finite set S of m propositional 3-clauses
PROMISE: S satisfiable / opt(S) < (1–ε)m
QUESTION: which is true?

MAX3SAT(ε)

Note: j is random here,
not ρ as in Johnson’s algorithm

If ∃ ε>0, MAX3SAT(ε) NP-hard then NP=PCP

❖ Uses R(n)=O(log n) random bits:
just one number j (1≤j≤m) at random

❖ Q(n)=O(1) (indeed, =3)
T(n)=O(1)

❖ If S satisfiable, then Merlin can produce
a satisfying assignment, so Arthur will accept

❖ If opt(S) < (1–ε)m, then whatever ρ is given,
Prj(ρ ⊨ Cj) < (1–ε)

INPUT: a finite set S of m propositional 3-clauses
PROMISE: S satisfiable / opt(S) < (1–ε)m
QUESTION: which is true?

MAX3SAT(ε)

Shoot! We needed ½ here…

Note: j is random here,
not ρ as in Johnson’s algorithm

If ∃ ε>0, MAX3SAT(ε) NP-hard then NP=PCP

❖ We solve the problem using
parallel repetition (k times) INPUT: a finite set S of m propositional 3-clauses

PROMISE: S satisfiable / opt(S) < (1–ε)m
QUESTION: which is true?

MAX3SAT(ε)

and

If ∃ ε>0, MAX3SAT(ε) NP-hard then NP=PCP

❖ We solve the problem using
parallel repetition (k times)

❖ Uses R(n)=O(log n) random bits:
just one number j (1≤j≤m) at random

INPUT: a finite set S of m propositional 3-clauses
PROMISE: S satisfiable / opt(S) < (1–ε)m
QUESTION: which is true?

MAX3SAT(ε)

k numbers

and

If ∃ ε>0, MAX3SAT(ε) NP-hard then NP=PCP

❖ We solve the problem using
parallel repetition (k times)

❖ Uses R(n)=O(log n) random bits:
just one number j (1≤j≤m) at random

❖ Q(n)=O(1) (indeed, =3)
T(n)=O(1)

INPUT: a finite set S of m propositional 3-clauses
PROMISE: S satisfiable / opt(S) < (1–ε)m
QUESTION: which is true?

MAX3SAT(ε)

k numbers

3k

and

If ∃ ε>0, MAX3SAT(ε) NP-hard then NP=PCP

❖ We solve the problem using
parallel repetition (k times)

❖ Uses R(n)=O(log n) random bits:
just one number j (1≤j≤m) at random

❖ Q(n)=O(1) (indeed, =3)
T(n)=O(1)

❖ If S satisfiable, then Merlin can produce
a satisfying assignment, so Arthur will accept

INPUT: a finite set S of m propositional 3-clauses
PROMISE: S satisfiable / opt(S) < (1–ε)m
QUESTION: which is true?

MAX3SAT(ε)

k numbers

3k

and

If ∃ ε>0, MAX3SAT(ε) NP-hard then NP=PCP

❖ We solve the problem using
parallel repetition (k times)

❖ Uses R(n)=O(log n) random bits:
just one number j (1≤j≤m) at random

❖ Q(n)=O(1) (indeed, =3)
T(n)=O(1)

❖ If S satisfiable, then Merlin can produce
a satisfying assignment, so Arthur will accept

❖ If opt(S) < (1–ε)m, then whatever ρ is given,
Prj1,…,jk(ρ ⊨ Cj1 and … and ρ ⊨ Cjk) ≤ (1–ε)k

INPUT: a finite set S of m propositional 3-clauses
PROMISE: S satisfiable / opt(S) < (1–ε)m
QUESTION: which is true?

MAX3SAT(ε)

k numbers

3k

and

If ∃ ε>0, MAX3SAT(ε) NP-hard then NP=PCP

❖ We solve the problem using
parallel repetition (k times)

❖ Uses R(n)=O(log n) random bits:
just one number j (1≤j≤m) at random

❖ Q(n)=O(1) (indeed, =3)
T(n)=O(1)

❖ If S satisfiable, then Merlin can produce
a satisfying assignment, so Arthur will accept

❖ If opt(S) < (1–ε)m, then whatever ρ is given,
Prj1,…,jk(ρ ⊨ Cj1 and … and ρ ⊨ Cjk) ≤ (1–ε)k

INPUT: a finite set S of m propositional 3-clauses
PROMISE: S satisfiable / opt(S) < (1–ε)m
QUESTION: which is true?

MAX3SAT(ε)

k numbers

3k

k ≝ ⎡–log 2/log (1–ε)⎤

≤ ½
and

(∃ ε>0, MAX3SAT(ε) NP-hard)
iff NP=PCP:

the right to left direction

If NP=PCP then ∃ ε>0, MAX3SAT(ε) NP-hard

❖ Assume NP=PCP. Then there is a PCP(R(n)≝k log n,O(1),O(1))
machine M deciding SAT

If NP=PCP then ∃ ε>0, MAX3SAT(ε) NP-hard

❖ Assume NP=PCP. Then there is a PCP(R(n)≝k log n,O(1),O(1))
machine M deciding SAT

❖ We look for a polytime reduction
from SAT to MAX3SAT(ε),
for some ε>0

If NP=PCP then ∃ ε>0, MAX3SAT(ε) NP-hard

❖ Assume NP=PCP. Then there is a PCP(R(n)≝k log n,O(1),O(1))
machine M deciding SAT

❖ We look for a polytime reduction
from SAT to MAX3SAT(ε),
for some ε>0

❖ Let us look at M(x)’s possible runs,
for each R(n)-bit word r
drawn at random in step 2

If NP=PCP then ∃ ε>0, MAX3SAT(ε) NP-hard

❖ Assume NP=PCP. Then there is a PCP(R(n)≝k log n,O(1),O(1))
machine M deciding SAT

❖ We look for a polytime reduction
from SAT to MAX3SAT(ε),
for some ε>0

❖ Let us look at M(x)’s possible runs,
for each R(n)-bit word r
drawn at random in step 2

❖ (Note that the assumption that T(n)=O(1) in step 4 is superfluous:
f only has a constant #inputs, and can always be encoded by a constant-size circuit, evaluated in time O(1)…)

If NP=PCP then ∃ ε>0, MAX3SAT(ε) NP-hard

❖ For each k log2 n-bit random string r, Arthur computes O(1)
positions, and a constant-size
circuit Cr (say, ≤G fan-in 2 gates)

Cr

proof tape

2k log2 n=nk
instances

If NP=PCP then ∃ ε>0, MAX3SAT(ε) NP-hard

❖ For each k log2 n-bit random string r, Arthur computes O(1)
positions, and a constant-size
circuit Cr (say, ≤G fan-in 2 gates)

Cr

proof tape

2k log2 n=nk
instances

❖ If input S satisfiable, then Merlin
can provide y / output wire of Cr is true, for every r

If NP=PCP then ∃ ε>0, MAX3SAT(ε) NP-hard

❖ For each k log2 n-bit random string r, Arthur computes O(1)
positions, and a constant-size
circuit Cr (say, ≤G fan-in 2 gates)

Cr

proof tape

2k log2 n=nk
instances

❖ If input S satisfiable, then Merlin
can provide y / output wire of Cr is true, for every r

❖ Otherwise, whatever y, ≥ ½nk output wires false

If NP=PCP then ∃ ε>0, MAX3SAT(ε) NP-hard

❖ We now encode those circuits as a 3SAT formula, e.g.:

Cr

proof tape

nk instances,
each with
≤G fan-in 2
gates

If NP=PCP then ∃ ε>0, MAX3SAT(ε) NP-hard

❖ We now encode those circuits as a 3SAT formula, e.g.:

Cr

proof tape

nk instances,
each with
≤G fan-in 2
gates

If NP=PCP then ∃ ε>0, MAX3SAT(ε) NP-hard

❖ We now encode those circuits as a 3SAT formula, e.g.:

Cr

proof tape

nk instances,
each with
≤G fan-in 2
gates

or

not not

32 71 239

ar br

cr

or

dr

If NP=PCP then ∃ ε>0, MAX3SAT(ε) NP-hard

❖ We now encode those circuits as a 3SAT formula, e.g.:

Cr

proof tape

nk instances,
each with
≤G fan-in 2
gates

(or rather, its clausal form,
of ≤ 3G+1 clauses)

or

not not

32 71 239

ar br

cr

or

dr

ar = ¬y71

br = ¬y239

cr = y32 ∨ ar
dr = cr ∨ br
dr

Clause set S’r

If NP=PCP then ∃ ε>0, MAX3SAT(ε) NP-hard

❖ If S satisfiable, then Merlin
can provide y /∀r, output(Cr) true,
so S’ ≝ ∧r Sr is satisfiable

If NP=PCP then ∃ ε>0, MAX3SAT(ε) NP-hard

❖ If S satisfiable, then Merlin
can provide y /∀r, output(Cr) true,
so S’ ≝ ∧r Sr is satisfiable

❖ Otherwise, whatever y, there is
a set I of ≥ ½nk values of r /
∀r ∈ I, output(Cr) false

If NP=PCP then ∃ ε>0, MAX3SAT(ε) NP-hard

❖ If S satisfiable, then Merlin
can provide y /∀r, output(Cr) true,
so S’ ≝ ∧r Sr is satisfiable

❖ Otherwise, whatever y, there is
a set I of ≥ ½nk values of r /
∀r ∈ I, output(Cr) false

❖ hence ∀ρ (giving truth values to each yi and to every auxiliary var.),
 at least one clause in each S’r, r ∈ I, must be unsatisfied by ρ

If NP=PCP then ∃ ε>0, MAX3SAT(ε) NP-hard

❖ If S satisfiable, then Merlin
can provide y /∀r, output(Cr) true,
so S’ ≝ ∧r Sr is satisfiable

❖ Otherwise, whatever y, there is
a set I of ≥ ½nk values of r /
∀r ∈ I, output(Cr) false

❖ hence ∀ρ (giving truth values to each yi and to every auxiliary var.),
 at least one clause in each S’r, r ∈ I, must be unsatisfied by ρ

❖ so opt(S’) ≤ #clauses in S’ – ½nk, and #clauses in S’ ≤ (3G+1)nk,
so opt(S’)/#clauses in S’ ≤ 1–(½nk)/((3G+1)nk) = 1–1/(6G+2)

If NP=PCP then ∃ ε>0, MAX3SAT(ε) NP-hard

❖ If S satisfiable, then Merlin
can provide y /∀r, output(Cr) true,
so S’ ≝ ∧r Sr is satisfiable

❖ Otherwise, whatever y, there is
a set I of ≥ ½nk values of r /
∀r ∈ I, output(Cr) false

❖ hence ∀ρ (giving truth values to each yi and to every auxiliary var.),
 at least one clause in each S’r, r ∈ I, must be unsatisfied by ρ

❖ so opt(S’) ≤ #clauses in S’ – ½nk, and #clauses in S’ ≤ (3G+1)nk,
so opt(S’)/#clauses in S’ ≤ 1–(½nk)/((3G+1)nk) = 1–1/(6G+2)

❖ Therefore S’ is an instance of MAX3SAT(ε), with ε ≝ 1/(6G+2)

If NP=PCP then ∃ ε>0, MAX3SAT(ε) NP-hard

❖ Summary: If S satisfiable,
 then S’ ≝ ∧r Sr is satisfiable
Else, opt(S’) ≤ (1–ε).#clauses in S’
 where ε ≝ 1/(6G+2)

If NP=PCP then ∃ ε>0, MAX3SAT(ε) NP-hard

❖ Summary: If S satisfiable,
 then S’ ≝ ∧r Sr is satisfiable
Else, opt(S’) ≤ (1–ε).#clauses in S’
 where ε ≝ 1/(6G+2)

❖ Additionally, each Cr can be
computed in polynomial time (simulating Arthur’s
computation),
and computing S’r from Cr also takes polynomial time

If NP=PCP then ∃ ε>0, MAX3SAT(ε) NP-hard

❖ Summary: If S satisfiable,
 then S’ ≝ ∧r Sr is satisfiable
Else, opt(S’) ≤ (1–ε).#clauses in S’
 where ε ≝ 1/(6G+2)

❖ Additionally, each Cr can be
computed in polynomial time (simulating Arthur’s
computation),
and computing S’r from Cr also takes polynomial time

❖ Hence we have found a polytime reduction
from SAT to MAX3SAT(ε) (assuming NP=PCP). ☐

Irit Dinur

Par נובאמת — Travail personnel,  
CC BY-SA 4.0,  

https://commons.wikimedia.org/w/index.php?curid=72395593

(2007)

❖ Simplified proof…
I will only give a rough
sketch

❖ Uses expander graphs, « powering » on random
walks, Hadamard codes, etc.

Constraint graph satisfiability
❖ Instead of MAX3SAT(ε), Dinur uses:

❖ Defn. A constraint graph is an undirected graph (V, E)
plus a set of constraints c(e) ⊆ Σ×Σ, one for each edge e
… where Σ is a finite set of values, or colors,
that each vertex may assume under a color assignment

Constraint graph satisfiability
❖ Instead of MAX3SAT(ε), Dinur uses:

❖ Defn. A constraint graph is an undirected graph (V, E)
plus a set of constraints c(e) ⊆ Σ×Σ, one for each edge e
… where Σ is a finite set of values, or colors,
that each vertex may assume under a color assignment

❖ Question: is there a color assignment satisfying all the
edge constraints?

Constraint graph satisfiability
❖ Instead of MAX3SAT(ε), Dinur uses:

❖ Defn. A constraint graph is an undirected graph (V, E)
plus a set of constraints c(e) ⊆ Σ×Σ, one for each edge e
… where Σ is a finite set of values, or colors,
that each vertex may assume under a color assignment

❖ Question: is there a color assignment satisfying all the
edge constraints?

❖ NP-complete, generalizes 3-COLORABILITY

The gap
❖ The gap of an unsatisfiable contraint graph is

min (#unsatisfied edge constraints) / m [m ≝ #edges]

❖ We start with an unsatisfiable constraint graph G

The gap
❖ The gap of an unsatisfiable contraint graph is

min (#unsatisfied edge constraints) / m [m ≝ #edges]

❖ We start with an unsatisfiable constraint graph G

❖ … of gap ≥ 1/m

The gap
❖ The gap of an unsatisfiable contraint graph is

min (#unsatisfied edge constraints) / m [m ≝ #edges]

❖ We start with an unsatisfiable constraint graph G

❖ … of gap ≥ 1/m

❖ and we modify it so as to increase its gap
until we reach a constant non-zero number

The gap
❖ The gap of an unsatisfiable contraint graph is

min (#unsatisfied edge constraints) / m [m ≝ #edges]

❖ We start with an unsatisfiable constraint graph G

❖ … of gap ≥ 1/m

❖ and we modify it so as to increase its gap
until we reach a constant non-zero number

❖ Applied to a satisfiable constraint graph,
the modifications will preserve satisfiability.

Graph expanders
❖ A graph expander is a family of undirected graphs

 with « good connectivity »

❖ Defn. The edge expansion h(G) of a graph G is
 min (#edges between S and its complement/#S)
 over subsets S of <n/2 vertex of G [n≝#vertices]

Graph expanders
❖ A graph expander is a family of undirected graphs

 with « good connectivity »

❖ Defn. The edge expansion h(G) of a graph G is
 min (#edges between S and its complement/#S)
 over subsets S of <n/2 vertex of G [n≝#vertices]

❖ A graph expander is a family of graphs Gn, n ∈ N,
— each regular of constant degree d0
— with n vertices each
— such that h(Gn)≥h0, a positive constant

Graph expanders
❖ A graph expander is a family of undirected graphs

 with « good connectivity »

❖ Defn. The edge expansion h(G) of a graph G is
 min (#edges between S and its complement/#S)
 over subsets S of <n/2 vertex of G [n≝#vertices]

❖ A graph expander is a family of graphs Gn, n ∈ N,
— each regular of constant degree d0
— with n vertices each
— such that h(Gn)≥h0, a positive constant This exists, and Gn can

even be produced in
polynomial time (in n)

Graph expanders
❖ A graph expander is a family of undirected graphs

 with « good connectivity »

❖ A random walk on a graph expander is rapidly mixing,
namely: just doing a few steps gets you exponentially
close to the stationary distribution

1. Sparsification
❖ First step: make G sparse enough

 (so as to allow step 2 to apply; the important step is step 3)

precisely: make it regular and of small enough degree d

1. Sparsification
❖ First step: make G sparse enough

 (so as to allow step 2 to apply; the important step is step 3)

precisely: make it regular and of small enough degree d

❖ Gap decreases by a constant factor only

1. Sparsification
❖ First step: make G sparse enough

 (so as to allow step 2 to apply; the important step is step 3)

precisely: make it regular and of small enough degree d

❖ Gap decreases by a constant factor only

❖ Replace every vertex (degree, say, k) by
 a graph expander of degree d–1 with k vertices

2. Expanderize
❖ First step: make G an expander

 (so as to allow step 3 to apply)

2. Expanderize
❖ First step: make G an expander

 (so as to allow step 3 to apply)

❖ By taking the union with a good expander

2. Expanderize
❖ First step: make G an expander

 (so as to allow step 3 to apply)

❖ By taking the union with a good expander

❖ Gap (also) decreases by a constant factor (only)

3. Amplify the gap
❖ This is the difficult step.
❖ Fix a constant t>0, and build a new constraint graph Gt

 whose single edges simulate paths of t edges in G
 (there are as many edges between x and y in Gt as paths in G)

❖ Encode distance ≤ t/2 neighborhoods around each vertex
New colors = assignment of (old) colors to vertices in those nbds
 (« opinions »)

x

All vertices in G
at distance ≤t/2

from x

y

All vertices in G
at distance ≤t/2

from y

Need O(|Σ|^(td/2)) new colors to
express lists of [original] colors
on all possible simulated paths

3. Amplify the gap
❖ Problem: close vertices in G may be assigned incompatible opinions (consistency problem)

x
y

x and y may have different
opinions about the color of

vertices here

3. Amplify the gap
❖ Problem: close vertices in G may be assigned incompatible opinions (consistency problem)

❖ Correctness proof: given a color assignment on Gt,
build back a color assignment on G:
 color of x (in G) ≝ most likely result as given by:
 (do random walk in G starting from x;
 stops at y with probability 1;
 if y is in neighborhood of x
 then return opinion of y on what the color of x should be
 else ignore y)

x
y

x and y may have different
opinions about the color of

vertices here

3. Amplify the gap
❖ The analysis is a bit complex, but:

❖ Gap is (finally) amplified, by roughly while gap≤1/tt

3. Amplify the gap
❖ The analysis is a bit complex, but:

❖ Gap is (finally) amplified, by roughly while gap≤1/tt

3. Amplify the gap
❖ The analysis is a bit complex, but:

❖ Gap is (finally) amplified, by roughly while gap≤1/tt

❖ … although we need O(|Σ|^(td/2)) new colors to solve consistency
 (express lists of [original] colors on all possible simulated paths)

4. Alphabet reduce
❖ Reduce back the alphabet of colors constant size (26, i.e. 64)

❖ By encoding constraints through assignment testers
assignments are encoded by Hadamard error-correcting codes
[correct many errors, but exponentially large —
 which is not a problem here because this will be the exponential of a constant…]

4. Alphabet reduce
❖ Reduce back the alphabet of colors constant size (26, i.e. 64)

❖ By encoding constraints through assignment testers
assignments are encoded by Hadamard error-correcting codes
[correct many errors, but exponentially large —
 which is not a problem here because this will be the exponential of a constant…]

❖ Decreases back gap by some constant factor

4. Alphabet reduce
❖ Reduce back the alphabet of colors constant size (26, i.e. 64)

❖ By encoding constraints through assignment testers
assignments are encoded by Hadamard error-correcting codes
[correct many errors, but exponentially large —
 which is not a problem here because this will be the exponential of a constant…]

❖ Decreases back gap by some constant factor

❖ … and repeat steps 1—4 until gap becomes larger than a constant
 (requires O(log m) iterations)

Dinur’s algorithm summarized

https://courses.cs.washington.edu/courses/cse533/05au/

and…

That’s it, folks!

❖ I hope you enjoyed the material of the course!

