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Today

❖ Approximation problems

❖ The class PCP

❖ MAX3SAT is not ε-approximable iff NP=PCP

❖ The Arora-Safra theorem: NP=PCP (no proof…)



Approximation problems



Approximation

❖ Attempt to attack NP-complete problems, by relaxing 
requirements.  E.g., 3SAT is NP-complete.  Instead, 
given ε ∈ ]0,1[, let MAX3SAT be:

❖ INPUT: a finite set S of 3-clauses 
OUTPUT: an environment ρ that satisfies (1– ε)opt(S) 
where opt(S)≝maxρ env. (#clauses of S s.t. ρ ⊨ S)

❖ For which values of ε is that in P?
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❖ For each input x,                  [e.g., a set of 3-clauses] 

a finite set F(x) of so-called 
feasible solutions               [e.g., all assignments ρ on the vars of S}]
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Minimization problems
❖ For each input x, 

a finite set F(x) of so-called 
feasible solutions

❖ For each y ∈ F(x), 
a cost c(y)

❖ Goal: estimate opt(x) ≝ miny ∈ F(x) c(y)

❖ ε-approximable iff can find y ∈ F(x) / c(y) ≤ 1/(1–ε).opt(x) in 
polynomial time

❖ Defn.  The approximation threshold = infε-approximable ε



Optimization problems

❖ Optimization = maximization or minimization

❖ ε-approximable iff can find y ∈ F(x) / 
           |c(y)–opt(x)|/max(c(y),opt(x)) ≤ ε 
in polynomial time (ugly formula, but generalizes the previous formulae)

❖ Defn.  The approximation threshold = infε-approximable ε

❖ Let us see, through a few examples, that this can be 
pretty much any number in [0,1].



NODE COVER



❖ INPUT: an undirected graph G ≝ (V, E) 
FEASIBLE SOL.: node covers, i.e., subsets C ⊆ V 
  such that every edge u — v meets C 
  (u or v or both are in C) 
COST: card(C)

NODE COVER

By Miym - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6017739

By Miym - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6017749



❖ The associated 
decision problem: 
INPUT: G, a budget k 
QUESTION: does G have 
a node cover C with card(C) ≤ k?

❖ is NP-complete.
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❖ The associated 
decision problem: 
INPUT: G, a budget k 
QUESTION: does G have 
a node cover C with card(C) ≤ k?

❖ is NP-complete.

❖ What is the approximation threshold of NODE COVER?

❖ Hint: the best known approximation algorithm is also one of 
the dumbest… and no, picking a vertex to be put in the cover, 
removing all incident edges, and going on is not dumb enough

NODE COVER



❖ Algorithm: (init: C:=∅); 
pick an edge u — v, 
add both u and v to C, 
then remove u and v 
and all incident edges, and proceed until no edge left.

❖ Let M be the set of edges picked by the algorithm. 
M is a matching: a vertex-disjoint collection of edges

❖ card(C)=2.card(M)

NODE COVER is ½-approximable



❖ Given a node cover C’, 
every edge of M meets C’ 
at a distinct vertex

❖ So card(M) ≤ card(C’)

❖ Since card(C) = 2.card(M), card(C) ≤ 2. card(C’)
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❖ Given a node cover C’, 
every edge of M meets C’ 
at a distinct vertex

❖ So card(M) ≤ card(C’)

❖ Since card(C) = 2.card(M), card(C) ≤ 2. card(C’)

❖ Hence NODE COVER 
is ½-approximable. 
(½ is in fact the best we can do, unless P=NP)

NODE COVER is ½-approximable



The traveling salesman problem 
(TSP)



❖ INPUT: a matrix D≝(dij)1≤i,j≤n of ‘distances’ between cities 
               (only constraint: dii=0) 

FEASIBLE SOL.: tours, i.e., permutations π of {1,…,n} 
COST: dπ(1)π(2)+dπ(2)π(3)+…+dπ(n–1)π(n)+dπ(n)π(1)

TSP

http://www.crpc.rice.edu/CRPC/newsletters/sum98/news_tsp.html

13,509 U.S. cities with populations of more than 500 people connected optimally
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❖ INPUT: a matrix D≝(dij)1≤i,j≤n of ‘distances’ between cities 
               (only constraint: dii=0) 

FEASIBLE SOL.: tours, i.e., permutations π of {1,…,n} 
COST: dπ(1)π(2)+dπ(2)π(3)+…+dπ(n–1)π(n)+dπ(n)π(1)

❖ Decision problem (is cost ≤ 
some given budget?) is 
NP-complete

❖ ε-approximable for no ε ∈ ]0,1[ 
unless P=NP.  Hence approximation 
threshold is 1 (worst possible!)

TSP

http://www.crpc.rice.edu/CRPC/newsletters/sum98/news_tsp.html

13,509 U.S. cities with populations of more than 500 people connected optimally
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❖ We use the fact that HAMILTONIAN CYCLE: 
INPUT: an undirected graph G ≝ (V, E) 
QUESTION: ∃cycle in G going once through each vertex? 
is NP-complete

❖ We build a poly time reduction from HAMILTONIAN 
CYCLE to (the decision form) of TSP,

❖ showing that if TSP is ε-approximable, then 
HAMILTONIAN CYCLE is in P, hence P=NP.

TSP is not approximable



❖ Given G [N≝card(V)] and 
M > 1/(1–ε).N, 
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let dij ≝ 1 if edge i — j, 
             M if no edge.  Defines an instance D of TSP.

❖ Tour π: cost = N if Hamiltonian cycle, ≥ M otherwise

❖ Assume an ε-approximation (poly time) algorithm A for TSP

❖ If G has a Hamiltonian cycle, opt(D) = N 
A(D) will find a tour of cost ≤ 1/(1–ε).opt(D) < M, 
          hence a Hamiltonian cycle, in poly time
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COST: Σi ∈ S vi

KNAPSACK



❖ INPUT: prices vi and weights wi, 1≤i≤n, a max weight W 
               (all are natural numbers) 

FEASIBLE SOL.: a subset S ⊆ {1,…,n} / Σi ∈ S wi ≤ W 
COST: Σi ∈ S vi

❖ Decision problem (is cost ≤ some given budget?) is 
NP-complete

KNAPSACK



❖ INPUT: prices vi and weights wi, 1≤i≤n, a max weight W 
               (all are natural numbers) 

FEASIBLE SOL.: a subset S ⊆ {1,…,n} / Σi ∈ S wi ≤ W 
COST: Σi ∈ S vi

❖ Decision problem (is cost ≤ some given budget?) is 
NP-complete

❖ ε-approximable for every ε ∈ ]0,1[. 
Approximation threshold is 0 (best possible!)

KNAPSACK



❖ A well-known dynamic 
programming algorithm for KNAPSACK:

❖ Let V ≝ Σi=1n vi, and, for all 1≤j≤n and 0≤v≤V: 
          W(j,v) = min {Σi ∈ S wi | S ⊆ {1,…,j}, Σi ∈ S vi=v}
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exponential in size(V)=O(log V) 
if numbers in binary
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❖ Do all computations on 
values (i.e., v, vi) by only 
keeping the 
      k most significant bits 
of each number and 
      rounding down
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k ≝ ⎡size(nV)–log2(εV/n)⎤ 
   = log2 (n2/ε)+O(1)
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❖ And final value is between (1–ε)opt and opt 
         (see lecture notes for details, Prop. 2.7).
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MAX3SAT



MAXSAT
❖ INPUT: a finite list S of clauses 

FEASIBLE SOL.: an environment ρ 
VALUE: #clauses satisfied by ρ

❖ Decision problem (is value ≥ some given goal?) 
                is NP-complete

❖ ε-approximable for which ε ∈ ]0,1[? 
Let me give you the best known (and silliest) 
algorithm…



Johnson’s algorithm
❖ Rough idea: while there is a variable A left, decide to set A to 1 

(true) or 0 (false) depending on which of 
        E(#clauses of S[A:=1] satisfied by ρ)          and 
        E(#clauses of S[A:=0] satisfied by ρ)          is larger, 
where ρ is drawn at random.
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(true) or 0 (false) depending on which of 
        E(#clauses of S[A:=1] satisfied by ρ)          and 
        E(#clauses of S[A:=0] satisfied by ρ)          is larger, 
where ρ is drawn at random.

❖ S[A:=1]: remove clauses where A occurs positively, 
               remove ¬A from remaining clauses

❖ S[A:=0]: remove clauses where ¬A occurs 
                                             (i.e., A occurs  negatively), 
               remove A from remaining clauses



Johnson’s algorithm
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                            [linearity of expectation]

❖ If Cj is a tautology A ⋁ ¬A ⋁ … (or ⊤), Prρ(not ρ ⊨ C) = 0 
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❖ Claim.  E(S) = ½(E(S[A:=1])+E(S[A:=0]))

❖ Proof. By linearity of expectation, enough to check it for a single 
clause Cj

❖ If Cj tautology, 0 = ½(0+0), otherwise…

❖ If Cj =A ⋁ rest, E(Cj) = 1/2|Cj | = ½ 1/2|rest|, 
                         E(Cj[A:=1]) = E(⊤) = 0 
                         E(Cj[A:=0]) = E(rest) = 1/2|rest|

❖ Similarly if Cj =¬A ⋁ rest

❖ If neither A nor ¬A occurs in Cj, Cj[A:=1] = Cj[A:=0] = Cj.  ☐

The key observation
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❖ List all the variables as A0, …, An.  Set S0 ≝ S (= [C1, …, Cm])

Decreasing expectations

E(S0[A1:=1])≤E(S0[A1:=0])?

set A1:=1
S1:=S[A1:=1]

set A1:=0
S1:=S[A1:=0]

yes no

E(S1[A2:=1])≤E(S1[A2:=0])?

set A2:=1
S2:=S1[A2:=1]

set A2:=0
S2:=S1[A2:=0]

yes no

E(S2[A3:=1])≤E(S2[A3:=0])?

set A3:=1
S3:=S2[A3:=1]

set A3:=0
S3:=S2[A3:=0]

etc.yes no

❖ By the claim, E(Si+1) ≤ E(Si).  So E(Sn) ≤ E(S).

❖ Let ρ be the final environment 
The only clauses in Sn are ⊤ (if ρ ⊨ Cj), or the empty clause ⊥

❖ Note: E(Sn) = #empty clauses in Sn. 
So ρ satisfies m–E(Sn) ≥ m–E(S) clauses in S.
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❖ Therefore ρ satisfies ≥ m (1– 1/2k) ≥ opt(S) (1– 1/2k) clauses in S:
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❖ Thm. MAXSAT restricted to S / 
    each non-tautological Cj has ≥k literals, is 1/2k-approximable.

❖ One can always prepare S by eliminating unit clauses, so k≥2: 
MAXSAT is 1/4-approximable.

❖ If every clause in S has at least 3 literals, then 
1/8-approximable.

❖ Hence MAX=3SAT (all clauses have exactly 3 literals) is 
1/8-approximable.  It turns out that this is optimal. 

MAXSAT is approximable



PCP
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PCP machines

❖ Two read-only tapes

❖ As many work tapes 
as you need 
(but only a constant 
number!)

x

r

(size n)

Three
y

proof tapeProof tape is accessed in random access mode

pos address tape
With the usual proviso:
head can only move right on random tape r

position in binary, points to
cell #pos on proof tape y
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Running a PCP machine
1. On input x, Merlin fills in 

proof tape y — but keeps 
it masked (= cryptographic 
                       commitment)

2. Arthur, only knowing |y| (and x), 
computes k=Q(n) positions 
p1, …, pk on the proof tape in binary, 
in polynomial time, using R(n) random bits

3. Merlin reveals y[p1], …, y[pk]

4. Arthur computes 
f(y[p1], …, y[pk]) ∈ {accept, reject} in time T(n) where f may also depend on x, and 

on the random bits of step 2



Acceptance conditions

❖ If x ∈ L, then Merlin can 
provide a proof tape y such that 
Arthur will always accept

❖ If x ∉ L, then whichever 
proof tape Merlin provides, 
Arthur will reject with probability ≥ ½

❖ The languages L that can be decided this way form the 
complexity class PCP(R(n),Q(n),T(n))



The Arora-Safra theorem
❖ Theorem.  NP = PCP(O(log n), O(1), O(1))

❖ I.e., one can decide every language in NP 
by running a PCP machine that: 
— asks Q(n)=O(1) questions (positions) 
— computed using only R(n)=O(log n) random bits, 
     in poly time 
— and finally decides 
     in T(n)=O(1) time.

❖ Proof would require a whole term!



The Arora-Safra theorem
❖ Theorem.  NP = PCP(O(log n), O(1), O(1))

❖ I.e., one can decide every language in NP 
by running a PCP machine that: 
— asks Q(n)=O(1) questions (positions) 
— computed using only R(n)=O(log n) random bits, 
     in poly time 
— and finally decides 
     in T(n)=O(1) time.

❖ Proof would require a whole term!

NP=PCP, 
for short



NP=PCP and the hardness of approximation

❖ What I will explain is that NP=PCP is equivalent to the 
ε-inapproximability of MAX3SAT for some ε>0

❖ Arora-Safra prove NP=PCP

❖ … and there is a simplified (still extremely complex) 
proof by Irit Dinur
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The easy direction: PCP ⊆ NP
❖ Derandomize naively: 

for every string of R(n) 
random bits, simulate 
Arthur’s computation

❖ If more than ½ of the 
simulations accept, then accept, else reject

❖ Works in time 2R(n)log R(n) poly(n)+T(n)

❖ So PCP(R(n)≝O(log n), Q(n)≝whatever, T(n)≝poly(n)) ⊆ NP



PCP and the hardness of 
approximating SAT
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MAX3SAT(ε)
❖ … is the following promise problem: 

INPUT: a finite set S of m propositional 3-clauses 
PROMISE: S satisfiable / opt(S) < (1–ε)m 
QUESTION: which is true?  [opt(S) = max #sat. clauses]

❖ We will see that: 
— if 3SAT is ε-approximable then MAX3SAT(ε) 
     is polytime decidable 
— (∃ ε>0, MAX3SAT(ε) is NP-hard) iff NP=PCP

❖ That was known before Arora-Safra. 
With Arora-Safra: ∃ ε>0, 3SAT is not ε-approximable, unless P=NP

Note: NP-complete 
would not 
make sense 

for promise problems
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If 3SAT ε-approximable then MAX3SAT(ε) polytime

❖ Given a (polytime) ε-approximation 
algorithm A for 3SAT:

❖ For every instance S of MAX3SAT(ε), 
         ρ≝A(S) satisfies ≥ (1–ε).opt(S) clauses of S

❖ If S satisfiable, opt(S)=m, so ρ satisfies ≥ (1–ε)m clauses

INPUT: a finite set S of m propositional 3-clauses 
PROMISE: S satisfiable / opt(S) < (1–ε)m 
QUESTION: which is true?

MAX3SAT(ε)



If 3SAT ε-approximable then MAX3SAT(ε) polytime

❖ Given a (polytime) ε-approximation 
algorithm A for 3SAT:

❖ For every instance S of MAX3SAT(ε), 
         ρ≝A(S) satisfies ≥ (1–ε).opt(S) clauses of S

❖ If S satisfiable, opt(S)=m, so ρ satisfies ≥ (1–ε)m clauses

❖ Otherwise, ρ satisfies < (1–ε)m clauses by the promise
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If 3SAT ε-approximable then MAX3SAT(ε) polytime

❖ Given a (polytime) ε-approximation 
algorithm A for 3SAT:

❖ For every instance S of MAX3SAT(ε), 
         ρ≝A(S) satisfies ≥ (1–ε).opt(S) clauses of S

❖ If S satisfiable, opt(S)=m, so ρ satisfies ≥ (1–ε)m clauses

❖ Otherwise, ρ satisfies < (1–ε)m clauses by the promise

❖ Hence comparing #clauses satisfied by ρ≝A(S) with (1–ε)m 
yields a polytime algorithm deciding MAX3SAT(ε).  ☐

INPUT: a finite set S of m propositional 3-clauses 
PROMISE: S satisfiable / opt(S) < (1–ε)m 
QUESTION: which is true?

MAX3SAT(ε)



(∃ ε>0, MAX3SAT(ε) NP-hard) 
iff NP=PCP: 

the left to right direction
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If ∃ ε>0, MAX3SAT(ε) NP-hard then NP=PCP

❖ We already know PCP ⊆ NP.  Conversely, 
let L be any language in NP.

❖ ∃polytime reduction from L to 
MAX3SAT(ε), since MAX3SAT(ε) NP-hard by assumption

❖ PCP is closed under 
polytime reductions 
(important!)

❖ So it suffices to exhibit a 
PCP machine deciding 
MAX3SAT(ε)

INPUT: a finite set S of m propositional 3-clauses 
PROMISE: S satisfiable / opt(S) < (1–ε)m 
QUESTION: which is true?

MAX3SAT(ε)
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If ∃ ε>0, MAX3SAT(ε) NP-hard then NP=PCP

❖ A PCP machine deciding 
MAX3SAT(ε).  Let S≝[C1,…,Cm]

1. Merlin fills in y with ρ

2. Arthur chooses Cj at random, 
(say +A32 ⋁ –A71 ⋁ –A239) 
and gives the corresponding 
3 positions (here: 32, 71, 239)

INPUT: a finite set S of m propositional 3-clauses 
PROMISE: S satisfiable / opt(S) < (1–ε)m 
QUESTION: which is true?

MAX3SAT(ε)



If ∃ ε>0, MAX3SAT(ε) NP-hard then NP=PCP

❖ A PCP machine deciding 
MAX3SAT(ε).  Let S≝[C1,…,Cm]

1. Merlin fills in y with ρ

2. Arthur chooses Cj at random, 
(say +A32 ⋁ –A71 ⋁ –A239) 
and gives the corresponding 
3 positions (here: 32, 71, 239)

3. Merlin reveals the corresponding 
truth values

INPUT: a finite set S of m propositional 3-clauses 
PROMISE: S satisfiable / opt(S) < (1–ε)m 
QUESTION: which is true?

MAX3SAT(ε)



If ∃ ε>0, MAX3SAT(ε) NP-hard then NP=PCP

❖ A PCP machine deciding 
MAX3SAT(ε).  Let S≝[C1,…,Cm]

1. Merlin fills in y with ρ

2. Arthur chooses Cj at random, 
(say +A32 ⋁ –A71 ⋁ –A239) 
and gives the corresponding 
3 positions (here: 32, 71, 239)

3. Merlin reveals the corresponding 
truth values

4. Arthur evaluates Cj using a precompiled 
circuit, of constant size… in time O(1) 
(here,                                              )

INPUT: a finite set S of m propositional 3-clauses 
PROMISE: S satisfiable / opt(S) < (1–ε)m 
QUESTION: which is true?

MAX3SAT(ε)

orno
t

no
t

accepts if true, 
rejects if false



If ∃ ε>0, MAX3SAT(ε) NP-hard then NP=PCP

❖ A PCP machine deciding 
MAX3SAT(ε).  Let S≝[C1,…,Cm]

1. Merlin fills in y with ρ
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INPUT: a finite set S of m propositional 3-clauses 
PROMISE: S satisfiable / opt(S) < (1–ε)m 
QUESTION: which is true?
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❖ If S satisfiable, then Merlin can produce 
a satisfying assignment, so Arthur will accept

❖ If opt(S) < (1–ε)m, then whatever ρ is given, 
Prj(ρ ⊨ Cj) < (1–ε)

INPUT: a finite set S of m propositional 3-clauses 
PROMISE: S satisfiable / opt(S) < (1–ε)m 
QUESTION: which is true?

MAX3SAT(ε)

Shoot!  We needed ½ here…

Note: j is random here, 
not ρ as in Johnson’s algorithm
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just one number j (1≤j≤m) at random

❖ Q(n)=O(1) (indeed, =3) 
T(n)=O(1)

❖ If S satisfiable, then Merlin can produce 
a satisfying assignment, so Arthur will accept

❖ If opt(S) < (1–ε)m, then whatever ρ is given, 
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k ≝ ⎡–log 2/log (1–ε)⎤

≤ ½
and
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❖ Assume NP=PCP.  Then there is a PCP(R(n)≝k log n,O(1),O(1)) 
machine M deciding SAT

❖ We look for a polytime reduction 
from SAT to MAX3SAT(ε), 
for some ε>0

❖ Let us look at M(x)’s possible runs, 
for each R(n)-bit word r 
drawn at random in step 2

❖ (Note that the assumption that T(n)=O(1) in step 4 is superfluous: 
f only has a constant #inputs, and can always be encoded by a constant-size circuit, evaluated in time O(1)…)
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❖ For each k log2 n-bit random string r, Arthur computes O(1) 
positions, and a constant-size 
circuit Cr (say, ≤G fan-in 2 gates)

Cr

proof tape

2k log2 n=nk 
instances

❖ If input S satisfiable, then Merlin 
can provide y / output wire of Cr is true, for every r

❖ Otherwise, whatever y, ≥ ½nk output wires false
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If NP=PCP then ∃ ε>0, MAX3SAT(ε) NP-hard

❖ We now encode those circuits as a 3SAT formula, e.g.:

Cr

proof tape

nk instances, 
each with 
≤G fan-in 2 
gates

(or rather, its clausal form, 
of ≤ 3G+1 clauses)

or

not not

32 71 239

ar br

cr

or

dr

ar = ¬y71

br = ¬y239

cr = y32 ∨ ar 
dr = cr ∨ br 
dr

Clause set S’r
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can provide y /∀r, output(Cr) true, 
so S’ ≝ ∧r Sr is satisfiable

❖ Otherwise, whatever y, there is 
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❖ hence ∀ρ (giving truth values to each yi and to every auxiliary var.), 
       at least one clause in each S’r, r ∈ I, must be unsatisfied by ρ

❖ so opt(S’) ≤ #clauses in S’ – ½nk, and #clauses in S’ ≤ (3G+1)nk, 
so opt(S’)/#clauses in S’ ≤ 1–(½nk)/((3G+1)nk) = 1–1/(6G+2)

❖ Therefore S’ is an instance of MAX3SAT(ε), with ε ≝ 1/(6G+2)
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If NP=PCP then ∃ ε>0, MAX3SAT(ε) NP-hard

❖ Summary: If S satisfiable, 
         then S’ ≝ ∧r Sr is satisfiable 
Else, opt(S’) ≤ (1–ε).#clauses in S’ 
         where ε ≝ 1/(6G+2)

❖ Additionally, each Cr can be 
computed in polynomial time (simulating Arthur’s 
computation), 
and computing S’r from Cr also takes polynomial time

❖ Hence we have found a polytime reduction 
from SAT to MAX3SAT(ε) (assuming NP=PCP).  ☐



Irit Dinur

Par נובאמת — Travail personnel,  
CC BY-SA 4.0,  

https://commons.wikimedia.org/w/index.php?curid=72395593

(2007)

❖ Simplified proof… 
I will only give a rough 
sketch

❖ Uses expander graphs, « powering » on random 
walks, Hadamard codes, etc.
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❖ Instead of MAX3SAT(ε), Dinur uses:

❖ Defn.  A constraint graph is an undirected graph (V, E) 
plus a set of constraints c(e) ⊆ Σ×Σ, one for each edge e 
… where Σ is a finite set of values, or colors, 
that each vertex may assume under a color assignment
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❖ Defn.  A constraint graph is an undirected graph (V, E) 
plus a set of constraints c(e) ⊆ Σ×Σ, one for each edge e 
… where Σ is a finite set of values, or colors, 
that each vertex may assume under a color assignment

❖ Question: is there a color assignment satisfying all the 
edge constraints?

❖ NP-complete, generalizes 3-COLORABILITY
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The gap
❖ The gap of an unsatisfiable contraint graph is 

min (#unsatisfied edge constraints) / m       [m ≝ #edges]

❖ We start with an unsatisfiable constraint graph G

❖ … of gap ≥ 1/m

❖ and we modify it so as to increase its gap 
until we reach a constant non-zero number

❖ Applied to a satisfiable constraint graph, 
the modifications will preserve satisfiability.
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Graph expanders
❖ A graph expander is a family of undirected graphs 

                with « good connectivity »

❖ Defn.  The edge expansion h(G) of a graph G is 
             min (#edges between S and its complement/#S) 
             over subsets S of <n/2 vertex of G       [n≝#vertices]

❖ A graph expander is a family of graphs Gn, n ∈ N, 
— each regular of constant degree d0 
— with n vertices each 
— such that h(Gn)≥h0, a positive constant This exists, and Gn can 

even be produced in 
polynomial time (in n)



Graph expanders
❖ A graph expander is a family of undirected graphs 

                with « good connectivity »

❖ A random walk on a graph expander is rapidly mixing, 
namely: just doing a few steps gets you exponentially 
close to the stationary distribution
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1. Sparsification
❖ First step: make G sparse enough 

          (so as to allow step 2 to apply; the important step is step 3) 

precisely: make it regular and of small enough degree d

❖ Gap decreases by a constant factor only

❖ Replace every vertex (degree, say, k) by 
     a graph expander of degree d–1 with k vertices
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2. Expanderize
❖ First step: make G an expander 

          (so as to allow step 3 to apply)

❖ By taking the union with a good expander

❖ Gap (also) decreases by a constant factor (only)



3. Amplify the gap
❖ This is the difficult step.
❖ Fix a constant t>0, and build a new constraint graph Gt 

          whose single edges simulate paths of t edges in G 
                                     (there are as many edges between x and y in Gt as paths in G)

❖ Encode distance ≤ t/2 neighborhoods around each vertex 
New colors = assignment of (old) colors to vertices in those nbds 
                                                   (« opinions »)

x

All vertices in G 
at distance ≤t/2 

from x

y

All vertices in G 
at distance ≤t/2 

from y

Need O(|Σ|^(td/2)) new colors to 
express lists of [original] colors 
on all possible simulated paths



3. Amplify the gap
❖ Problem: close vertices in G may be assigned incompatible opinions (consistency problem) 

x
y

x and y may have different 
opinions about the color of 

vertices here



3. Amplify the gap
❖ Problem: close vertices in G may be assigned incompatible opinions (consistency problem) 

❖ Correctness proof: given a color assignment on Gt, 
build back a color assignment on G: 
          color of x (in G) ≝ most likely result as given by: 
                                       (do random walk in G starting from x; 
                                          stops at y with probability 1; 
                                          if y is in neighborhood of x 
                                                then return opinion of y on what the color of x should be 
                                          else ignore y) 

x
y

x and y may have different 
opinions about the color of 

vertices here
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3. Amplify the gap
❖ The analysis is a bit complex, but:

❖ Gap is (finally) amplified, by roughly  while gap≤1/tt

❖ … although we need O(|Σ|^(td/2)) new colors to solve consistency 
     (express lists of [original] colors on all possible simulated paths)
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assignments are encoded by Hadamard error-correcting codes 
[correct many errors, but exponentially large — 
 which is not a problem here because this will be the exponential of a constant…]
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4. Alphabet reduce
❖ Reduce back the alphabet of colors constant size (26, i.e. 64)

❖ By encoding constraints through assignment testers 
assignments are encoded by Hadamard error-correcting codes 
[correct many errors, but exponentially large — 
 which is not a problem here because this will be the exponential of a constant…]

❖ Decreases back gap by some constant factor

❖ … and repeat steps 1—4 until gap becomes larger than a constant 
   (requires O(log m) iterations)



Dinur’s algorithm summarized

https://courses.cs.washington.edu/courses/cse533/05au/



and…



That’s it, folks!

❖ I hope you enjoyed the material of the course!


