Randomized complexity classes
Today

- Arthur vs. Merlin games
- Interactive proofs
- Various characterizations of AM
Arthur vs. Merlin games
Trading Group Theory for Randomness

László Babai

Dept. Algebra
Eötvös University
Budapest
Hungary H-1088

Dept. Computer Science
University of Chicago
1100 E 58th St.
Chicago, IL 60637

Abstract.

In a previous paper [9] we proved, using the elements of
the theory of nilpotent groups, that none of the
fundamental computational problems in matrix groups is
privileged byelementary arguments. The result we prove
here is that the mentioned matrix groups have
infinite nilpotent subgroups.

The aim of this paper is to replace most of
the nilpotent group theory of [9] by elementary
arguments. The result we prove is that
The problems we consider are membership in
a matrix group given by a list of generators.

We remark that the results remain valid
for the discrete logarithm problem
NP=coNP might be the lowest natural complexity level
that they may fit in.

1. Introduction

1.1. Randomness vs. mathematical intractability: a tradeoff

Arthur Merlin Games: A Randomized Proof System, and
a Hierarchy of Complexity Classes

LÁSZLÓ BABAI

Eötvös University, Budapest, Hungary and
University of Chicago, Chicago Illinois

AND

SHLOMO MORAN

Technion Haifa, Israel

Received June 24, 1986; revised August 3, 1987

One can view NP as the complexity class that captures the notion of efficient provability by classical (formal) proofs. We consider broader complexity classes (still "just above NP"), in the hope to formalize the notion of efficient provability by overwhelming statistical evidence.

Such a concept should combine the nondeterministic nature of (classical) proofs and the statistical nature of conclusions via Monte Carlo algorithms such as a Solovay-Strassen style "proof" of primality. To accomplish this goal, two randomized interactive proof systems have recently been offered independently by S. Goldwasser, S. Micali, and C. Rackoff (GMR system) in "Proceedings, 17th ACM Symp. Theory of Comput., Providence, RI, 1985," pp. 291-304 and by L. Babai (Arthur-Merlin system) in "Proceedings, 17th ACM Symp. Theory of Comput., Providence, RI, 1985," pp. 421-429, respectively. The proving power of the two systems has subsequently been shown by S. Goldwasser and M. Sipser to...
Imagine we would like to decide whether $x \in L$

We ask Arthur — a mere mortal, who lives only for polynomial time

Arthur can ask Merlin… a supernatural being able to give the answer to any problem (even non-computable)

but Arthur does not trust Merlin…

Arthur: [image link]
Merlin: [image link]
Arthur vs. Merlin games

- Imagine we would like to decide whether \(x \in L \)
- We ask Arthur — a mere mortal, who lives only for polynomial time
- Arthur can ask Merlin for a proof \(y \) that \(x \) is in \(L \)
- now Arthur can check Merlin’s proof… provided \(y \) has polynomial size
Arthur vs. Merlin games

- **INPUT**: x
- Merlin answers y
- We check whether $(x,y) \in D$ (for some D in \mathbb{P})
- The languages decided this way are just those in NP.

Arthur: http://lusile17.1.u.pic.centerblog.net/273f716e.jpg
The class AM

- Now Arthur can also draw (uniform) **random strings**
- INPUT: x
- Arthur draws r at random and computes a question $q \equiv A(x,r)$
- ... and sends $x\#q\#r$ to Merlin
- Merlin answers y
- We check whether $x\#q\#r\#y \in D$ (for some D in P)
- Acceptance condition: if $x \in L$ then succeeds with high prob.
 - if $x \notin L$ then fails with high prob.

Arthur: [Image](http://lusile17.1.u.pic.centerblog.net/273f716e.jpg)

... with a catch! (in fact, two)
The class AM, formally (1st try)

- L is in AM iff there are:
 - a poly time Turing machine A (used by Arthur to compute questions $q = A(x,r)$)
 - a function $M : \Sigma^* \rightarrow \Sigma^*$ producing poly size outputs (a Merlin map, not necessarily computable)
 - a poly time decidable language D such that:
 - if $x \in L$ then $\Pr_r(x \# q \# r \# y \in D) \geq 2/3$
 - if $x \not\in L$ then $\Pr_r(x \# q \# r \# y \in D) \leq 1/3$
 - where $q \equiv A(x,r)$, $y \equiv M(x\#q\#r)$

What honest Merlin plays, in order to make us accept when $x \in L$

First catch: when $x \not\in L$, we should reject with high prob. even if Merlin is dishonest, namely whatever y it plays
The class AM, formally (2nd try)

- L is in AM iff there are:
 - a poly time Turing machine A
 - a Merlin map $M : \Sigma^* \rightarrow \Sigma^*$ producing poly size outputs
 - a poly time decidable language D such that:
 - if $x \in L$ then $\Pr_r(x \# q \# r \# y \in D) \geq 2/3$
 where $q \equiv A(x, r), y \equiv M(x \# q \# r)$
 - if $x \not\in L$ then \forall Merlin map M',
 $\Pr_r(x \# q \# r \# y \in D) \leq 1/3$
 where $q \equiv A(x, r), y \equiv M'(x \# q \# r)$

Second (more benign) catch: I do not know of any correct proof of error reduction in the literature; and I do not know of any simple one.
The class AM, formally (final)

- L is in AM iff $\forall \text{polynomial } n \mapsto g(n)$, there are:
 - a poly time Turing machine A
 - a Merlin map $M : \Sigma^* \rightarrow \Sigma^*$ producing poly size outputs
 - a poly time decidable language D such that:

- if $x \in L$ then $\Pr_r(x \# q \# r \# y \in D) \geq 1 - 1/2g(n)$
 where $q \triangleq A(x, r), y \triangleq M(x \# q \# r)$

- if $x \notin L$ then \forall Merlin map M',
 $\Pr_r(x \# q \# r \# y \in D) \leq 1/2g(n)$
 where $q \triangleq A(x, r), y \triangleq M'(x \# q \# r)$
In general, for any word $w \equiv a_1 a_2 \ldots a_k \in \{A, M\}^*$, there is a class w (note: boldface), of languages L such that $\forall g, \exists A, M, D$:

- If $x \in L$ then $\Pr_r(\text{prot}_w(M; x, r) \text{ accepts}) \geq 1 - 1/2^g(n)$
- If $x \notin L$ then $\forall M', \Pr_r(\text{prot}_w(M'; x, r) \text{ accepts}) \leq 1/2^g(n)$

prot$_w(M; x, r_1 r_2 \ldots r_k)$:

- $\text{inp} := x$
- for $j = 1 \ldots k$:
 - if $a_j = A$ then $(q_j := A(\text{inp}, r_j); \text{inp} := \text{inp} \# r_j \# q_j)$
 - else $(y_j := M(\text{inp}); \text{inp} := \text{inp} \# y_j)$
- accept if $\text{inp} \in D$, else reject

Arthur’s turn.
« draw r_j at random », compute question q_j, add both to history inp

Merlin’s turn.
find answer y_j, add it to history inp
The Arthur-Merlin hierarchy: the low levels

- When \(w = \varepsilon \) (\(k = 0 \)), \(\varepsilon = ? \)

In general, for any word \(w = a_1a_2\ldots a_k \in \{A, M\}^* \), there is a class \(\mathcal{U} \) (note: boldface), of languages \(\mathcal{L} \) such that \(\forall \mathcal{U}, \exists \mathcal{A}, \mathcal{M}, D: \)

- If \(x \in \mathcal{L} \) then \(\Pr_x(\text{prot}_\varepsilon(M; x, r) \text{ accepts}) \geq 1 - 1/2^{e(n)} \)
- If \(x \notin \mathcal{L} \) then \(\forall \mathcal{M}', \Pr_x(\text{prot}_\varepsilon(M'; x, r) \text{ accepts}) \leq 1/2^{e(n)} \)

\[
\text{prot}_\varepsilon(M; x, r_1 r_2 \ldots r_k): \\
\text{inp} := x \\
\text{for } j = 1 \ldots k: \\
\text{ if } a_j = A \text{ then } (q_j := A(\text{inp}, r_j); \text{ inp } := \text{ inp}\#r_j\#q_j) \\
\text{ else } (y_j := M(\text{inp}); \text{ inp } := \text{ inp}\#y_j) \\
\text{ accept if } \text{ inp } \in D, \text{ else reject}
\]

Arthur’s turn. « draw \(r_j \) at random », compute question \(q_j \), add both to history \(\text{ inp } \)

Merlin’s turn. find answer \(y_j \), add it to history \(\text{ inp } \)
The Arthur-Merlin hierarchy: the low levels

- When $w=\varepsilon$ $(k=0)$: $\varepsilon=\mathbf{P}$
- When $w=A$: $A=?$

In general, for any word $w = a_1a_2...a_k \in \{A, M\}^*$, there is a class \mathcal{L} (note: boldface), of languages L such that $\forall g, \exists A, M, D$:

- If $x \in L$ then $\Pr_r(\text{prot}_{\mathcal{L}}(M; x, r) \text{ accepts}) \geq 1 - 1/2^{\Omega(n)}$
- If $x \notin L$ then $\forall M', \Pr_r(\text{prot}_{\mathcal{L}}(M'; x, r) \text{ accepts}) \leq 1/2^{\Omega(n)}$

```
prot_{\mathcal{L}}(M; x, r_1r_2...r_k):
inp := x
for j=1...k:
  if a_j=A then (q_j := A(inp, r_j); inp := inp#r_j#q_j)
  else (y_j := M(inp); inp := inp#y_j)
accept if inp \in D, else reject
```
The Arthur–Merlin hierarchy: the low levels

- When \(w=\varepsilon \) (\(k=0 \)): \(\varepsilon=P \)
- When \(w=A \): \(A=BPP \)
- When \(w=M \): \(M=? \)

In general, for any word \(w = a_1 a_2 \ldots a_k \in \{A, M\}^* \), there is a class \(w \) (note: boldface), of languages \(L \) such that \(\forall g, \exists A, M, D: \)

- If \(x \in L \) then \(\Pr_t(\text{prot}_w(M; x, r) \text{ accepts}) \geq 1-1/2^{g(n)} \)
- If \(x \notin L \) then \(\forall M', \Pr_t(\text{prot}_w(M'; x, r) \text{ accepts}) \leq 1/2^{g(n)} \)

\[\text{prot}_w(M; x, r_1 r_2 \ldots r_k): \]
\[\begin{align*}
\text{inp} &:= x \\
\text{for } j=1 \ldots k: \\
\text{if } a_j=A &\text{ then } (q_j := A(\text{inp}, r_j); \text{ inp } := \text{ inp } \# r_j \# q_j) \\
\text{else } (y_j := M(\text{inp}); \text{ inp } := \text{ inp } \# y_j) \\
\text{ accept if } \text{ inp } \in D, \text{ else reject}
\end{align*} \]
The Arthur-Merlin hierarchy: the low levels

- When $w = \varepsilon$ ($k=0$): $\varepsilon = \text{P}$
- When $w = A$: $A = \text{BPP}$
- When $w = M$: $M = \text{NP}$
- Then we have MA, AM, $\text{AMAM} = \text{AM}[2]$, $\text{AM}[3]$, \ldots, $\text{AM}[k]$, \ldots

In general, for any word $w = a_1a_2\ldots a_k \in \{A, M\}^*$, there is a class w (note: boldface), of languages L such that $\forall g, \exists A, M, D$:

- If $x \in L$ then $\Pr_r(\text{prot}_w(M; x, r) \text{ accepts}) \geq 1 - 1/2^{c(n)}$
- If $x \notin L$ then $\forall M', \Pr_r(\text{prot}_w(M'; x, r) \text{ accepts}) \leq 1/2^{c(n)}$

```
\text{prot}_w(M; x, r_1r_2\ldots r_k):
inp := x
for j=1\ldots k:
  if $a_j = A$ then $(q_j := A(inp, r_j); inp := inp\#r_j\#q_j)$
  else $(y_j := M(inp); inp := inp\#y_j)$
accept if $inp \in D$, else reject
```

Arthur's turn. « draw r_j at random », compute question q_j, add both to history inp

Merlin's turn. find answer y_j, add it to history inp
Interactive proofs
Interactive proofs

(STOC'1985 aussi!)

The Knowledge Complexity of Interactive Proof-Systems

(Extended Abstract)

Shaft Goldwasser
MIT

Silvio Micali
MIT

Charles Rackoff
University of Toronto

1. Introduction

In the first part of the paper we introduce a new theorem-proving procedure, that is a new efficient method of communicating a proof. Any such method implies, directly or indirectly, a definition of proof. Our “proofs” are probabilistic in nature. On accepting statements, the correct is correct and right:

- Very high
- Interactive
- Correctly ask question
- Second part of the

We propose to classify languages according to the amount of additional knowledge that must be released for proving membership in them.

Of particular interest is the case where this additional knowledge is essentially 0 and we show that is possible to interactively prove that a number is quadratic or not.
Interactive proofs

- Note that in Arthur-Merlin games, Arthur must communicate not just q but also its random bits r to Merlin.

- In interactive proofs, Arthur only gives out q, and may therefore keep q secret (but is not forced too).
The class \(\text{AM} \) \(\times \) \(\text{IP}[1] \)

- \(L \) is in \(\text{IP}[1] \) iff \(\forall \) polynomial \(n \mapsto g(n) \), there are:
 - a poly time Turing machine \(A \)
 - a Merlin map \(M : \Sigma^* \to \Sigma^* \) producing poly size outputs
 - a poly time decidable language \(D \)
 such that:
 - if \(x \in L \) then \(\Pr_r(x \# q \# r \# y \in D) \geq \frac{1}{2} g(n) \)
 where \(q \triangleq A(x, r) \), \(y \triangleq M(x \# q \# r) \)
 - if \(x \notin L \) then \(\forall \) Merlin map \(M' \),
 \(\Pr_r(x \# q \# r \# y \in D) \leq \frac{1}{2} g(n) \)
 where \(q \triangleq A(x, r) \), \(y \triangleq M'(x \# q \# r) \)

Note that \(r \) still takes part in the final decision
(and in Arthur’s computations, of course)
Example: Graph Isomorphism

- Let $V = \{1, \ldots, N\}$ set of vertices,

 $G_N \overset{\text{def}}{=} \text{directed graphs on } V,$

 $S_N \overset{\text{def}}{=} \text{group of permutations of } V.$

- S_N acts on G_N by: $\forall \pi \in S_N, \forall G=(V,E) \in S_N,$

 $\pi.G \overset{\text{def}}{=} (V, \{(\pi(u), \pi(v)) \mid (u, v) \in E\})$

- Two graphs

 $G_1=(V, E_1), G_2=(V, E_2)$ (with the same V)

 are isomorphic $(G_1 \equiv G_2)$ iff $\exists \pi \in S_N, \pi.G_1=G_2.$
Example: Graph Isomorphism

- **Graph isomorphism:**

 INPUT: 2 graphs $G_1=(V, E_1)$, $G_2=(V, E_2)$ (with the same V)

 QUESTION: are G_1, G_2 isomorphic?

- Clearly in **NP**

- Not known to be in **P**, nor **NP-complete**...

- We will show, using results on **MA**, **AM**, **IP**[1], etc. that it is **not NP-complete** (unless **PH** collapses)

(This is only the beginning: Babai gave a super polynomial time algo for GI in 2015; you need to understand first everything in the course to have a hope of understanding it!)
Example: Graph Non-Isomorphism

- GNI \equiv complement of GI: in coNP, not known to be in P or coNP-complete

- Prop. GNI is in IP[1].

- Algorithm.
 - Arthur draws $i \in \{1,2\}$, $\pi \in S_N$ at random uniformly, sends $q \equiv \pi.G_i$
 - Merlin answers $j \in \{1,2\}$
 - We accept if $i=j$, reject otherwise.
Prop. GNI is in IP[1].

Proof.
— If \((G_1, G_2) \in \text{GNI}\),
there is a unique \(j \in \{1,2\}\)
such that \(G_j \equiv \pi.G_i\) (viz., \(i\))
Merlin plays that \(j\), forcing acceptance (always).

— Arthur draws \(i \in \{1,2\}, \pi \in S_N\) at random uniformly,
sends \(q \neq \pi.G_i\)
— Merlin answers \(j \in \{1,2\}\)
— We accept if \(i=j\), reject otherwise.
GNI is in $\text{IP}[1]$ (2/3)

- Prop. GNI is in $\text{IP}[1]$.

- Proof.
 - If $(G_1, G_2) \notin \text{GNI}$,
 then $G_1 \equiv G_2 \equiv \pi.G_i$, (viz., i)
 and Merlin has no information about i
Whatever Merlin plays, $\Pr(\text{acceptance})=1/2$.

That is in fact irrelevant to the proof. But that shows that GNI has a zero-knowledge proof!
GNI is in $\textbf{IP}[1]$ (3/3)

- **Prop. GNI is in $\textbf{IP}[1]$.**
- Error too big (1/2).
 ⇒ Repeat experiments (à la \textbf{RP}), but in parallel.
- Arthur draws $g(n)$ bits $i_1, \ldots, i_{g(n)}$ and $g(n)$ permutations $\pi_1, \ldots, \pi_{g(n)}$, sends $(\pi_1.G_{i_1}, \ldots, \pi_{g(n)}.G_{i_{g(n)}})$
 - Merlin replies $j_1, \ldots, j_{g(n)}$
 - We accept if $i_1=j_1$ and ... and $i_{g(n)}=j_{g(n)}$, reject otherwise.
- Error $1/2^{g(n)}$ now (and still no error if $(G_1, G_2) \in \text{GNI}$).
GNI is in AM

- We will see later that GNI is in AM.
- This is a better result, since $\text{AM} \subseteq \text{IP}[1]$
 (Any AM game can be simulated as an $\text{IP}[1]$ game
 where Arthur sends both q and r as its question!)
- In fact, $\text{AM} = \text{IP}[1]$… but this is a pretty hard result,
 due to Goldwasser and Sipser.
- Meanwhile, let us return to the study of MA, AM, etc.
Other equivalent definitions of AM

1. BP\cdot NP
The **BP·** operator

- Generalizing **BPP**.
 For any class C, the class $\text{BP} \cdot C$:

- A language L is in $\text{BP} \cdot C$ iff there is a language D in C, and a poly time TM M such that for every input x (of size n):
 - if $x \in L$ then $\Pr_r [M(x, r) \in D] \geq \frac{2}{3}$
 - if $x \notin L$ then $\Pr_r [M(x, r) \notin D] \leq \frac{1}{3}$.

- In particular, $\text{BP} \cdot \text{P} = \text{BPP}$.

A language L is in **BPP** if and only if there is a polynomial-time TM M such that for every input x (of size n):

- if $x \in L$ then $\Pr_r [M(x, r) \text{ accepts}] \geq \frac{2}{3}$
- if $x \notin L$ then $\Pr_r [M(x, r) \text{ accepts}] \leq \frac{1}{3}$.

Error reduction: democracy

- As for BPP, we can reduce the error in $\text{BP} \cdot C$ from $1/3$ to $1/2^{g(n)}$ for any polynomial $g(n)$

- ... provided that C is democratic
 (non-standard name; obtained through a vote in class a few years ago)

- **Defn.** C is democratic iff for every $L \in C$,
 \[\{w_1\# \ldots \# w_k \mid \text{a majority of words } w_i \text{ is in } L\} \text{ is in } C. \]

A language L is in $\text{BP} \cdot C$ iff there is a language D in C, and a poly time TM M such that for every input x (of size n):
- if $x \in L$ then $\Pr_r [M(x,r) \in D] \geq 2/3$
- if $x \notin L$ then $\Pr_r [M(x,r) \notin D] \leq 1/3$.
Error reduction through democracy

- Let $L \in \mathbf{BP} \cdot C$, with D as here →

- Let $D' \equiv \{w_1\#\ldots\#w_k \mid\text{ a majority of words } w_i \text{ is in } D\}$
 D' is again in C

- It suffices to decide whether
 $M(x, r_1)\#\ldots\#M(x, r_{36g(n)\log 2}) \in D'$
 ... doable in C if C closed under poly time reductions

- Then error is $\leq 1/2^{g(n)}$ (Chernoff!)
Error reduction through democracy

We have proved:

Thm. Let C be democratic and closed under poly time reductions, and $g(n)$ be a polynomial. Then $BP \cdot C$ is also the class of languages L such that […]:

— if $x \in L$ then
\[\Pr_r [M(x,r) \in D] \geq 1 - 1/2g(n) \]
— if $x \notin L$ then
\[\Pr_r [M(x,r) \notin D] \leq 1/2g(n). \]

Defn. C is democratic iff for every $L \in C$,
\[\{w_1 \ldots w_k \mid \text{a majority of words } w_i \text{ is in } L \} \text{ is in } C. \]

A language L is in $BP \cdot C$ iff there is a language D in C, and a poly time TM M such that for every input x (of size n):

— if $x \in L$ then $\Pr_r [M(x,r) \in D] \geq 2/3$
— if $x \notin L$ then $\Pr_r [M(x,r) \notin D] \leq 1/3$.

Application to voting (4/4)

- Assume that $\Pr_r (M(x,r) \text{ errs}) \leq 1/3$, how large should N be so that the probability P that more than $1/2$ of N votes $M(x,r)$ is $\leq 1/2g(n)$?
 - Answer: at least $36 \cdot g(n) \cdot \log 2$
- Proof. $\exp(-N/36) \leq 1/2g(n)$ iff $-N/36 \leq -q(n) \log 2$
Examples of democratic classes

- **Fact.** P is democratic. (Easy.)
- **Prop.** NP is democratic.
- No, we cannot check whether each w_i is in L, because if that check fails, then the whole computation fails.
- Instead, we **guess** a subset I of indices of $\geq k/2$ elements, and we check that $\forall i \in I, w_i$ is in L. □

Defn. C is democratic iff for every $L \in C$, \{w_1\#\ldots\#w_k \mid a majority of words w_i is in L\} is in C.
BP · NP has error reduction

- **Thm.** \(L \in \text{BP} \cdot \text{NP} \) iff \(\forall \text{poly } g, \exists D \in \text{NP}, \) poly time TM \(M / \)

 — if \(x \in L \) then
 \[\Pr_r [M(x,r) \in D] \geq 1 - \frac{1}{2^g(n)} \]

 — if \(x \notin L \) then
 \[\Pr_r [M(x,r) \notin D] \leq \frac{1}{2^g(n)}. \]
AM = BP·NP

- Thm (Prop. 3.5). AM = BP·NP.

- Proof (1/4). Let $L \in AM$, as here:

- Let $D' \equiv \{x \# r \mid \exists y, x \# q \# r \# y \in D, \text{ where } q \equiv A(x,r)\}$:

 - D' is in NP.

- If $x \in L$, $Pr_r(x \# r \in D')$

 - $= Pr_r(\exists y, x \# q \# r \# y \in D, \text{ where } q \equiv A(x,r))$

 - $\geq Pr_r(x \# q \# r \# y \in D, \text{ where } q \equiv A(x,r), y \equiv M(x \# q \# r))$

 - $\geq 1 - 1/2^{g(n)}$

 - because $\exists y, P(y)$ is implied by $P(M(x \# q \# r))$
Thm (Prop. 3.5). \(\text{AM} = \text{BP} \cdot \text{NP} \).

Proof (2/4). Let \(L \in \text{AM} \), as here:

- Let \(D' \triangleq \{ x \# r \mid \exists y, x \# q \# r \# y \in D, \text{where } q \triangleq A(x, r) \} \): \(D' \) is in \(\text{NP} \).
 - If \(x \notin L \), then let \(M'(x \# q \# r) \triangleq \text{best} \) of Merlin’s responses, i.e., some \(y \) such that \(x \# q \# r \# y \in D \) if one exists
 - Then \(\Pr_r(x \# r \in D') = \Pr_r(\exists y, x \# q \# r \# y \in D, \text{where } q \triangleq A(x, r)) \leq \Pr_r(x \# q \# r \# M'(x \# q \# r) \in D, \text{where } q \triangleq A(x, r)) \leq 1/2^{g(n)} \)

because \(M' \) is best:

\[(\exists y, x \# q \# r \# y \in D) \Rightarrow x \# q \# r \# M'(x \# q \# r) \in D \]
Thm (Prop. 3.5). \(\text{AM} = \text{BP} \cdot \text{NP} \).

Proof (3/4). Let \(L \in \text{BP} \cdot \text{NP} \), as here:
Let \(D \equiv \{ q \mid \exists y, q\#y \in D' \} \), with \(D' \in \mathbf{P} \),
\(D'' \equiv \{ x\#q\#r\#y \mid q\#y \in D' \} \): in \(\mathbf{P} \).

Let \(A(x,r) \equiv M(x,r) \), and \(M(x\#q\#r) \equiv \) some \(y \) such that \(q\#y \in D' \) if one exists,

If \(x \in L \), \(\Pr_r(x\#q\#r\#y \in D'', \text{ where } q \equiv A(x,r), y \equiv M(x\#q\#r)) \)
\(= \Pr_r(q\#y \in D', \text{ where } q \equiv A(x,r), y \equiv M(x\#q\#r)) \)
\(\geq \Pr_r(\exists y, q\#y \in D', \text{ where } q \equiv A(x,r)) \)
\(= \Pr_r(M(x,r) \in D) \geq 1 - 1/2^{g(n)} \)

because \(M \) is best:
\((\exists y, q\#y \in D') \Rightarrow q\#M(x\#q\#r) \in D \)
AM = BP·NP

- **Thm (Prop. 3.5).** AM = BP·NP.

- **Proof (4/4).** Let \(L \in BP \cdot NP \), as here:
 Let \(D \triangleq \{ q | \exists y, q\#y \in D' \} \), with \(D' \in P \),
 \(D'' \triangleq \{ x\#q\#r\#y | q\#y \in D' \} \): in \(P \).

- Let \(A(x,r) \equiv M(x,r) \)

- If \(x \notin L \), for any \(M' \),
 \[\Pr_r(x\#q\#r\#y \in D'', \text{ where } q \equiv A(x,r), y \equiv M'(x\#q\#r)) \]
 \[= \Pr_r(q\#y \in D', \text{ where } q \equiv A(x,r), y \equiv M'(x\#q\#r)) \]
 \[\leq \Pr_r(\exists y, q\#y \in D', \text{ where } q \equiv A(x,r)) \]
 \[= \Pr_r(M(x,r) \in D) \leq 1/2^g(n) \]

 because \(\exists y, P(y) \) is implied by \(P(M'(x\#q\#r)) \)
Other equivalent definitions of AM

2. Extended quantifiers
Lazy Arthur

- Let us say that Arthur is **lazy** if Arthur does not bother to compute any question: $A(x,r) = \varepsilon$

Prop (Lemma 3.8). For every word $w \in \{A, M\}^*$, the class w_{lazy} when Arthur is constrained to be lazy is equal to the class w.

Proof. See lecture notes. Idea: Merlin is so powerful he can reconstruct Arthur’s questions without Arthur’s help. □

```
prot_{wlazy}(M; x, r_1 r_2 \ldots r_k):

inp := x
for j=1\ldots k:
    if $a_j=A$ then $(q_j := A(inp,r_j); inp := inp#r_j#q_j)$
    else $(y_j := M(inp); inp := inp#y_j)$

accept if $inp \in D$, else reject
```
A logical approach

- Model both Arthur and Merlin as quantifiers (over \(r, y \))
- ... for « predicates » with values in \([0, 1]\) over finite sets
- **Arthur** (expectation):
 \[
 E_r \in R, F(r) \overset{\text{def}}{=} \frac{\sum_{r \in R} F(r)}{\text{card } R}
 \]
- **Merlin** (maximize):
 \[
 \exists y \in Y, F(y) \overset{\text{def}}{=} \max_{y \in Y} F(y)
 \]
 (Note: if \(F \) takes its values in \(\{0,1\} \), this is really the existential quantifier...)

The notations E, \exists are practical, e.g.:

$(\exists y \in Y, F(y)) \geq a$ iff there is a $y \in Y$ such that $F(y)) \geq a$

But beware that

$(\exists y \in Y, F(y)) \leq a$ iff for every $y \in Y$, $F(y)) \leq a$.
Prop. \(\forall r \in R, \exists y \in Y, F(r,y) = \exists f : R \to Y, \forall r \in R, F(r,f(r)) \)

Proof (1/2).
Let \(f(r) \overset{!}{=} \text{best } y \), viz. some \(y \) that maximizes \(F(r,y) \)
Then \(\exists y \in Y, F(r,y) = F(r,f(r)) \)

Take expectations:
\[\forall r \in R, \exists y \in Y, F(r,y) = \mathbb{E}r \in R, F(r,f(r)) \]

\[\ldots \leq \max_{f : R \to Y} \mathbb{E}r \in R, F(r,f(r)) \]
Prop. \(Er \in R, \exists y \in Y, F(r,y) \)
\[= \exists f : R \to Y, Er \in R, F(r,f(r)) \]

Proof (2/2).
For every \(f \), \(F(r,f(r)) \leq \max_{y \in Y} F(r,y) \)

Take expectations:
\(Er \in R, F(r,f(r)) \leq Er \in R, \max_{y \in Y} F(r,y) \)

Now take max over \(f \). \(\Box \)
« Skolemization »: an example

- $E_r, \exists y_1, E_r, \exists y_2, F(x,r_1,y_1,r_2,y_2)$
- $= \exists f_1, E_r, E_r, \exists y_2, F(x,r_1,y_1,r_2,y_2)$
 where $y_1 \overset{\text{def}}{=} f_1(r_1)$
- $= \exists f_1, f_2, E_r, r_2, F(x,r_1,y_1,r_2,y_2)$
 where $y_1 \overset{\text{def}}{=} f_1(r_1), y_2 \overset{\text{def}}{=} f_2(r_1,r_2)$
Let F be \{0,1\}-valued (not [0,1]) i.e., a predicate

Recall that $\exists y \in Y, F(y)$ (=max) is then the existential quantifier (… and is therefore \{0,1\}-valued)

Also, $E_r, F(r) = \Pr_r(F(r)=1)$

(« expectation of a predicate = its probability of occurring »)
A-M as E-∃ formulae

Prop (3.10). $L \in \text{AMAM}$ iff for every polynomial $g(n)$, there is a poly time predicate P:
— if $x \in L$, then $G(x) \geq 1 - 1/2g(n)$
— if $x \notin L$ then $G(x) \leq 1/2g(n)$
where $G(x) \equiv \exists r_1, \exists y_1, \exists r_2, \exists y_2, P(x, r_1, y_1, r_2, y_2)$

Proof (1/5). $G(x) = \exists f_1, f_2, \exists r_1, \exists r_2, P(x, r_1, y_1, r_2, y_2)$
where $y_1 \equiv f_1(r_1), y_2 \equiv f_2(r_1, r_2)$ « skolemization »

Hence $G(x) = \exists f_1, f_2, \exists r_1, r_2 (x \# r_1 \# y_1 \# r_2 \# y_2 \in D)$
where $D \equiv \{x \# r_1 \# y_1 \# r_2 \# y_2 \mid P(x, r_1, y_1, r_2, y_2) = 1\}$ (note: $D \in \mathbb{P}$)
A-M as E-∃ formulae

Proof (2/5). If $L \in \text{AMAM}$ with Merlin map M and a lazy Arthur,

- if $x \in L$ then let $f_1(r_1) \overset{\text{def}}{=} M(x \# r_1)$ (in short, y_1)

 $f_2(r_1,r_2) \overset{\text{def}}{=} M(x \# r_1 \# f_1(r_1) \# r_2)$ (y_2)

- Then $G(x) = \exists f_1, f_2, \Pr_{r_1, r_2}(x \# r_1 \# y_1 \# r_2 \# y_2 \in D)$
 $\geq \Pr_{r_1, r_2}(x \# r_1 \# y_1 \# r_2 \# y_2 \in D)$
 $\geq 1 - 1/2g(n)$

Prop (3.10). $L \in \text{AMAM}$ iff for every polynomial $g(n)$,
- if $x \in L$, then $G(x) \geq 1 - 1/2g(n)$
- if $x \notin L$, then $G(x) \leq 1/2g(n)$
 where $G(x) \equiv \exists f_1, f_2, \Pr_{r_1, r_2}(x \# r_1 \# y_1 \# r_2 \# y_2 \in D)$
 and $y_1 \equiv f_1(r_1), y_2 \equiv f_2(r_1, r_2)$
A-M as $E-\exists$ formulae

- Proof (3/5). If $L \in AMAM$ with Merlin map M and a lazy Arthur,
 - if $x \notin L$ then for all maps f_1, f_2,
 - let $M'(x \# r_1) \triangleq f_1(r_1)$, $M'(x \# r_1 \# y_1 \# r_2) \triangleq f_1(r_1, r_2)$
 - and M' of anything else be arbitrary (e.g., ε)
 - Then $G(x) \leq \Pr_{r_1, r_2} (x \# r_1 \# y_1 \# r_2 \# y_2 \in D) \leq 1/2^g(n)$
 - where $y_1 \triangleq M'(x \# r_1)$, $y_2 \triangleq M'(x \# r_1 \# y_1 \# r_2)$

Prop (3.10). $L \in AMAM$ iff for every polynomial $g(n)$,
- if $x \in L$, then $G(x) \geq 1 - 1/2^g(n)$
- if $x \notin L$ then $G(x) \leq 1/2^g(n)$
 where $G(x) \equiv \exists f_1, f_2, \Pr_{r_1, r_2}(x \# r_1 \# y_1 \# r_2 \# y_2 \in D)$
 and $y_1 \equiv f_1(r_1)$, $y_2 \equiv f_2(r_1, r_2)$
Proof (4/5). If L is as here →

- for each $x \in L$ there are maps f_1, f_2 such that
 $$\Pr_{r_1, r_2}(x \# r_1 \# y_1 \# r_2 \# y_2 \in D) \geq 1 - 1/2g(n)$$
 where $y_1 \equiv f_1(r_1), y_2 \equiv f_2(r_1, r_2)$

- Let $M(x \# r_1) \equiv f_1(r_1), M(x \# r_1 \# y_1 \# r_2) \equiv f_1(r_1, r_2)$, else arbitrary

- If $x \in L$ then $\Pr_r(x \# r_1 \# y_1 \# r_2 \# y_2 \in D) (y_1 \equiv M(x \# r_1), y_2 \equiv M(x \# r_1 \# y_1 \# r_2))$
 $$= \Pr_{r_1, r_2}(x \# r_1 \# y_1 \# r_2 \# y_2 \in D) (y_1 \equiv f_1(r_1), y_2 \equiv f_2(r_1, r_2))$$
 $$\geq 1 - 1/2g(n)$$
A-M as E-∃ formulae

- Proof (5/5). If L is as here →

- If $x \notin L$ then
 for every Merlin map M',
 let $f_1(r_1) \stackrel{\text{def}}{=} M'(x#r_1)$ (in short, y_1)
 $f_2(r_1,r_2) \stackrel{\text{def}}{=} M'(x#r_1#f_1(r_1)#r_2)$ (y_2)

- Then $\Pr_r(x#r_1#y_1#r_2#y_2 \in D)$ ($y_1 \stackrel{\text{def}}{=} M'(x#r_1)$, $y_2 \stackrel{\text{def}}{=} M'(x#r_1#y_1#r_2)$)
 $= \Pr_{r_1,r_2}(x#r_1#y_1#r_2#y_2 \in D)$ ($y_1 \stackrel{\text{def}}{=} f_1(r_1)$, $y_2 \stackrel{\text{def}}{=} f_2(r_1,r_2)$)
 $\leq G(x) \leq 1/2^{g(n)}$. □

Prop (3.10). $L \in \text{AMAM}$ iff
for every polynomial $g(n)$,
— if $x \in L$, then $G(x) \geq 1 - 1/2^{g(n)}$
— if $x \notin L$, then $G(x) \leq 1/2^{g(n)}$
where $G(x) \equiv \exists f_1, f_2, \Pr_{r_1, r_2}(x#r_1#y_1#r_2#y_2 \in D)$
and $y_1 \equiv f_1(r_1), y_2 \equiv f_2(r_1, r_2)$
Next time...
The Arthur-Merlin hierarchy collapses!

- We will see that the whole Arthur-Merlin hierarchy looks like this!

\[
\begin{align*}
\text{NP} & \subseteq \text{BPP} \\
\text{NP} & \subseteq \text{AM} \\
\text{NP} & \subseteq \text{MA} \\
\text{NP} & \subseteq \text{BPP} \\
\text{NP} & \subseteq \text{P}
\end{align*}
\]

(All other classes \(w \) equal to AM)