
Jean Goubault-Larrecq

Randomized
complexity classes

Today: the
Arthur vs. Merlin
hierarchy, and
interactive proofs

Tous droits réservés, Jean Goubault-Larrecq, professeur, ENS Paris-Saclay, Université Paris-Saclay
Cours « Complexité avancée » (M1), 2020-, 1er semestre
Ce document est protégé par le droit d’auteur. Toute représentation ou reproduction intégrale ou
partielle faite sans le consentement de l’auteur est illicite.

Today

❖ Arthur vs. Merlin games

❖ Interactive proofs

❖ Various characterizations of AM

Arthur vs. Merlin games

László Babai
Trading Group Theory for Randomness

La’siszld Babai

Dept. Algebra
Eijtviis University
Rudapt~st
Hungary II-1088

Abstract.

la a previous paper [BS] we proved, using the elements of
the Clwory of nilyotenf yroupu, that some of the /undamcn-
la1 computational problems in mat& proup, belong to NP.
These problems were also ahown to belong to CONP,
assuming an unproven hypofhedi.9 concerning finilc simple
Q’ oup,.

The aim of this paper is t.o replace most of the (proven
and unproven) group theory of IBS] by elementary com-
binatorial argumenls. The rev& we prove is that relative
to a random oracle f3, tbc meutioned matrix group prob-
lems belong to (NPncoNP)L!

Thr problems we consider arr membership in and order
of a matrix group given by a list of gnrrntors. These prob-
trms can bc vicwrd as m~lt~idimcnsio~r;lI vemiorm of a closr
rrldivr of t.hc disrrct,r logarilhm prob1c.m. I tencc
A’ltiro.VI’ might be the lowrst natural romplcxity rla.us
t bry may ii1 in.

Wr remark that the resutt,s remain valid for blark boz
groupa where group operations are prrformcd by an oracle.

Thcb tools we inlroduce seem interesting in their own
right. \Ve define a new hierarchy of complexit)y ctesscs
A.4Ak) “just above NP’, introduring Arthur ud. Merlin
games, the bonnded-away version of Pnpadimitriou’s
Games against Nature. We prove th:rt. in spite of their
analogy with the polynomial time hierarchy, the finite lev-
rls of this hierarchy collapse t,o Afsf=Ah42). Using a com-
binatorial lemma on finite groups [IIE], we construct a
game by whirh t.he nondeterministic player (Merlin) is able
to coavlnre the random player (Arthur) about the rctation
ICj=N provided Arthur trusts conclusions based on st,a-
tisticnl rvidrnce (such as a Solovay-Strassen type “proof”
of primatit,y).

One can prove that AM consists precisely of t&ose
langungrs which belong to iV@ for almost every oracle 13.

Our hirrarchy has an intrrcsjdng, still unclarified reta-
tion to imother hierarchy, obt,ained by rcnloving the cen-
t.rat ingrrdirnt from the l&r ~a. Ezpcrl games of
(;otctwassrr, Mirati and Rarkoff.

permission 10 copy without fee all or part ot this material is granted
provided that the copies arc not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Q 1985 ACM 0-89791-ISI-2/85/005/0421 $00.75

Dept. Computer Science
I Jnivrrsity of Chicago
I 100 E 58th St.
(Chicago, II, 60637

1. Introduction

1.1. Randomness vs. mathematical intractabil-
ity: a tradeoff

l’aul E&k has taught us that randomness can do
miracles as tong as we don’t insist on explicit con-
structions. If we do, quite often much heavier
mathrmatics has to be invoked - if there is any help
at all. The few citSes where randomness has SUCCCSS-
futiy hccn eliminated, like for expanding graphs, point
to the tIiITiiculty (cf. [Pin], [PipJ vs. [Mar], [CC]).

A ra.ndom st.ring can sometimes replace the most
forrnidahle msthelrtotical hypothesis. The Solovay-
Strnsscn bf(JntC? Carlo primality test [SS] vs. Gary
Mittrr’s det.erministic primality test, based on the
Extended ltirmann Hypothesis [Mill, is one of the
famous examples.

The objective of this paper is to introduce some
new random tools to replace an unproven group
theoretic hypothesis.

1.2. Matrix groups

Lly far the most common wrry to represent
groups is by matrices. This is almost the only way
groups are being thought of in science. The term
“ltcprceentation Theory” refers to matrix representa-
tions, a central tool in the theory of finite groups, har-
monic analysis, quantum mechanics and other fields.

It s.ppears that the main reason why compn+a-
tional group theory has so far mainly concentrated on
permutation groups is that while many of the basic
problems in permutation groups are solvable in poly-
nomial time (cf.[Sinr], (FHL], (BKL]), even the sim-
plrst questions on matrix groups seem computation-
ally infr.asiblc.

The membership problem (does a given matrix
belong to a group given by a list of generators?) is
undecida6le for 4 by 4 integral matrices (hlih].

It seems therefore wise to r&rict our attention
to malrix groups over finite fields. Here the basic
problems (membership, order) are at least finite and in
fact easily seen to belong to PSPACE, On the other
ha.nd, finding a polynomial time algorithm seems
hopclcss even in the one-dimensional (number
theoretic) case. Concerning the place of these

421

JOURNAL OF COMPUTER AND SYSTEM KXNCES 36, 254-276 (1988)

hh

and a Hierarchy of Complexity Classes

LAsz~6 BABAI

Eiirviis University, Budapest, Hungary and

University qf Chicago, Chicago Illinois

AND

SHLOMO MORAN

Technion, Haifa, Israel

Received June 24, 1986; revised August 3, 1987

One can view NP as the complexity class that captures the notion of efficient provability by
classical (formal) proofs. We consider broader complexity classes (still “just above NP”), in
the hope to formalize the notion of efficient provability by overwhelming statistical evidence.

Such a concept should combine the nondeterministic nature of (classical) proofs and the
statistical nature of conclusions via Monte Carlo algorithms such as a Solovay-Strassen style
“proof’ of primality. To accomplish this goal, two randomized interactive proof systems have
recently been offered independently by S. Goldwasser, S. Micah, and C. Rackoff (GMR
system) (in “Proceedings, 17th ACM Symp. Theory of Comput., Providence, RI, 1985,”
pp. 291-304) and by L. Babai (Arthur-Merlin system) (in “Proceedings, 17th ACM Symp.
Theory of Comput., Providence, RI, 1985,” pp. 421429), respectively. The proving power of
the two systems has subsequently been shown by S. Goldwasser and M. Sipser (in

“Proceedings, 18th ACM Symp. Theory of Comput., Berkeley, CA, 1986”) to be equivalent. In
both systems, a nondeterministic prover (Merlin) tries to convince a randomizing verifier
(Arthur) that a certain string x belongs to a language L. The verifier operates under
polynomial time constraint. The GMR system uses private coin tosses whereas in the
Arthur-Merlin proof system, coin tosses are public. In this paper we give an exposition of the
Arthur-Merlin system. We describe the resulting hierarchj of complexity classes AM(f(n)),
where t(n) is the number of rounds of interaction on inputs of length n. The “Collapse
Theorem” (Babai, lot. cif.) states that for r(n) > 2, AM(r(n) + 1) = AM(t(n)). In particular, the
finite levels of the hierarchy collapse to AM gf AM(2). We prove the following stronger ver-
sion (“Speedup Theorem”): for t(n) 2 2, AM(2t(n)) = AM(r(n)). This complements a result of
W. Aiello, J. Hastad, and S. Goldwasser (in “Proceedings, 27th IEEE Symp. Found. of Com-
put. Sci., 1986,” pp. 368-379), saying that in a relativized world, no unbounded reduction of
the number of rounds is possible. R. Boppana, J. Hastad, and S. Zachos, (Inform. Process.

&RI[., in press) provided a strong piece of evidence to support the view that AM is “not much
larger” than NP by showing that if AM contains coNP then the polynomial time hierarchy
collapses to x$ = n$ = AM. We show that this is an immediate consequence of the Collapse
Theorem. A combination of the result of S. Goldwasser and M. Sipser, a striking observation
by 0. Goldreich, S. Micali, and A. Widgerson, and the Collapse Theorem imply that graph
non-isomorphism belongs to AM. We give a direct proof of this fact and generalize it to the
coset intersection problem for permutation groups. In view of the Boppana-Hastad-Zachos

0022-0000/88 $3.00
Copyright 0 1988 by Academx Press, Inc.
All rights of reproduction in any form reserved.

254

Par Schmid, Renate — https://opc.mfo.de/detail?photo_id=14372, CC BY-SA 2.0 de,  
https://commons.wikimedia.org/w/index.php?curid=18096981

(STOC’1985)

Arthur vs. Merlin games
❖ Imagine we would like to decide

whether x ∈ L

❖ We ask Arthur —
a mere mortal, who lives only
for polynomial time

❖ Arthur can ask Merlin…
a supernatural being able to give
the answer to any problem
 (even non-computable)

❖ but Arthur does not trust Merlin…

Arthur: http://lusile17.l.u.pic.centerblog.net/273f716e.jpg
Merlin: https://www.ecranlarge.com/uploads/image/001/011/merlin-l-enchanteur-photo-merlin-disney-1011190.jpg

x

?

yes!
(trust me)

Arthur vs. Merlin games
❖ Imagine we would like to decide

whether x ∈ L

❖ We ask Arthur —
a mere mortal, who lives only
for polynomial time

❖ Arthur can ask Merlin for a proof
y that x is in L

❖ now Arthur can check Merlin’s proof…
provided y has polynomial size

Arthur: http://lusile17.l.u.pic.centerblog.net/273f716e.jpg
Merlin: https://www.ecranlarge.com/uploads/image/001/011/merlin-l-enchanteur-photo-merlin-disney-1011190.jpg

x

?

y

Arthur vs. Merlin games
❖ INPUT: x

❖ Merlin answers y

❖ We check whether
(x,y) ∈ D (for some D in P)

❖ The languages decided this way
are just those in NP.

Arthur: http://lusile17.l.u.pic.centerblog.net/273f716e.jpg
Merlin: https://www.ecranlarge.com/uploads/image/001/011/merlin-l-enchanteur-photo-merlin-disney-1011190.jpg

x

?

y

The class AM
❖ Now Arthur can also draw (uniform) random strings

❖ INPUT: x

❖ Arthur draws r at random
and computes a question
 q ≝ A(x,r)

❖ … and sends x#q#r to Merlin

❖ Merlin answers y

❖ We check whether
x#q#r#y ∈ D (for some D in P)

❖ Acceptance condition: if x ∈ L then succeeds with high prob.
 if x ∉ L then fails with high prob.

Arthur: http://lusile17.l.u.pic.centerblog.net/273f716e.jpg
Merlin: https://www.ecranlarge.com/uploads/image/001/011/merlin-l-enchanteur-photo-merlin-disney-1011190.jpg

x

y

x#q#r

… with a catch!
(in fact, two)

What honest Merlin plays,
in order to make us accept

when x ∈ L

The class AM, formally (1st try)
❖ L is in AM iff there are:

— a poly time Turing machine A
 (used by Arthur to compute questions q ≝ A(x,r))
— a function M : Σ* → Σ* producing poly size outputs
 (a Merlin map, not necessarily computable)
— a poly time decidable language D
such that:

❖ if x ∈ L then Prr(x#q#r#y ∈ D) ≥ 2/3

❖ if x ∉ L then Prr(x#q#r#y ∈ D) ≤ 1/3

❖ where q ≝ A(x,r), y ≝ M(x#q#r) First catch: when x ∉ L,
we should reject with high prob.

even if Merlin is dishonest,
namely whatever y it plays

The class AM, formally (2nd try)
❖ L is in AM iff there are:

— a poly time Turing machine A
— a Merlin map M : Σ* → Σ* producing poly size outputs
— a poly time decidable language D
such that:

❖ if x ∈ L then Prr(x#q#r#y ∈ D) ≥ 2/3
 where q ≝ A(x,r), y ≝ M(x#q#r)

❖ if x ∉ L then ∀Merlin map M’,
 Prr(x#q#r#y ∈ D) ≤ 1/3
 where q ≝ A(x,r), y ≝ M’(x#q#r)

Second (more benign) catch:
I do not know of any correct proof of error

reduction in the literature;
and I do not know of any simple one.

The class AM, formally (final)
❖ L is in AM iff ∀polynomial n ↦ g(n), there are:

— a poly time Turing machine A
— a Merlin map M : Σ* → Σ* producing poly size outputs
— a poly time decidable language D
such that:

❖ if x ∈ L then Prr(x#q#r#y ∈ D) ≥ 1–1/2g(n)
where q ≝ A(x,r), y ≝ M(x#q#r)

❖ if x ∉ L then ∀Merlin map M’,
 Prr(x#q#r#y ∈ D) ≤ 1/2g(n)
where q ≝ A(x,r), y ≝ M’(x#q#r)

❖ In general, for any word w ≝ a1a2…ak ∈ {A, M}*,
there is a class w (note: boldface), of languages L such that ∀g, ∃A,M,D:

❖ If x ∈ L then Prr(protw(M; x, r) accepts) ≥ 1–1/2g(n)

❖ if x ∉ L then ∀M’, Prr(protw(M’; x, r) accepts) ≤ 1/2g(n)

❖ protw(M; x, r1r2…rk):
inp := x
for j=1…k:
 if aj=A then (qj := A(inp,rj); inp := inp#rj#qj)
 else (yj := M(inp); inp := inp#yj)
accept if inp ∈ D, else reject

The Arthur-Merlin hierarchy

Arthur’s turn.
« draw rj at random »,
compute question qj,
add both to history inp

Merlin’s turn.
find answer yj,
add it to history inp

❖ When w=ε (k=0), ε=?

The Arthur-Merlin hierarchy: the low levels

❖ When w=ε (k=0): ε=P

❖ When w=A: A=?

The Arthur-Merlin hierarchy: the low levels

❖ When w=ε (k=0): ε=P

❖ When w=A: A=BPP

❖ When w=M: M=?

The Arthur-Merlin hierarchy: the low levels

❖ When w=ε (k=0): ε=P

❖ When w=A: A=BPP

❖ When w=M: M=NP

❖ Then we have MA, AM,
AMAM = AM[2], AM[3], …,
 AM[k], …

The Arthur-Merlin hierarchy: the low levels

Interactive proofs

The Knowledge Complexity of Interactive Proof-Systems

(Extended Abstract)
Shafi Goldwasser Silvio Micali Charles Rackoff
MIT MIT University of Toronto

1. Introduction
In the first part of the paper we introduce a

new theorem-proving procedure, that is a new efl-
cierlt method of communicafirrg a proof: Any such
method implies, directly or indirectly, a definition of
proof. Our “proofs” arc probabilistic in nature. On
input an II-bits long statement, we may erroneously
be convinced of its correctness with very small proba-
bility, say, -$, and rightfblly be convinced of its

1 correctness with very high probability, say, 1 - -.
2”

Our proofs are Clreruclhre. To eficicntly verify the
correctness of a statement, the “recipient” of the
proof must actively ask questions and receive answers
from the “prover”.

In the second part of the paper, we address the
following question:

How much knowledge should be communicated
fir proving a theorem T?

Certainly enough to see that T is true, but usually
much more. For instance, to prove that a graph is
Hamiltonian it suffices to exhibit an Hamiltonian tour.
This appears, however, to contain ,much additional
knowledge than the single bit “HamiltonianInon-
Hamiltonian”.

We give a computational complexity measure of
knowledge and measure tic amount of additional
knowlcdgc contained in proofs.

Permission to copy without fee all or part of this material is granted
provided that the copies arc not made or distributed for direct
commercial advantage. rhe ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to repubhsh. requires a fee and/or specific permission.

@ 1985 ACM 0.89791-l51-2/85/005/0291 $00.75

We propose to classify languages according to the
amount of additional knowledge that must be
relcascd for proving membership in them.

Of particular interest is the case where this addi-
tional knowledge is essentially 0 and we show that is
possible to interactively prove that a number is qua-
dratic non residue mod m releasing 0 additional
knowledge. This is surprising as no efficient algorithm
for deciding quadratic rcsiduosity mod m is known
when m’s factorization is not given. Moreover, all
known NP proofs for this problem exhibit the prime
factorization of tn. This indicates that adding interac-
tion to the proving process, may decrease the amount
of knowledge that must be communicated in order to
prove a theorem.

2. Interactive Proof Systems
Much effort has been previously devoted to

make precise the notion of a theorem-proving pro-
cedure, NP constitutes a very successful formaliza-
tion of this notion. Loosely speaking, a theorem is in
provable in NP if its proof is easy to verify once it has
been found. Let us recall Cook’s [C] (and indepen-
dently Letin’s [t]) influential definition of NP in this
light.

The NP proof-system consists of two communi-
cating Turing machines A and a : respectively,
the prover and the verifier. The prover is
exponential-time. the verifier is polynomial-time.
Both A and f? arc dctcrministic, read a common
input and interact in a very elementary way. On

This research was supponcd in part by 1B.M Young Faculty
Development Award dated Scptcmber 1983. IBM Young
Fzrulty Dcvelopmcnt Award dated Scptcrnber 1984, and
NSF grant DCR-8413577

Interactive proofs

By Weizmann Institute of Science - Weizmann Institute of Science, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=12112705

By Rguillou228 - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=74039300

https://alchetron.com/cdn/charles-rackoff-3aa39129-7251-4443-9d07-4e01fcfdc9c-resize-750.jpeg

(STOC’1985
aussi!)

Interactive proofs

❖ Note that in Arthur-Merlin games,
Arthur must communicate not just q
 but also its random bits r
to Merlin

❖ In interactive proofs, Arthur only gives out q,
and may therefore keep r secret
(but is not forced too).

The class AM
❖ L is in AM iff ∀polynomial n ↦ g(n), there are:

— a poly time Turing machine A
— a Merlin map M : Σ* → Σ* producing poly size outputs
— a poly time decidable language D
such that:

❖ if x ∈ L then Prr(x#q#r#y ∈ D) ≥ 1–1/2g(n)
where q ≝ A(x,r), y ≝ M(x#q#r)

❖ if x ∉ L then ∀Merlin map M’,
 Prr(x#q#r#y ∈ D) ≤ 1/2g(n)
where q ≝ A(x,r), y ≝ M’(x#q#r)

IP[1]X
Note that r still takes part

in the final decision
(and in Arthur’s computations, of course)

IP[1]

Example: Graph Isomorphism
❖ Let V = {1, …, N} set of vertices,

 GN ≝ directed graphs on V,
 SN ≝ group of permutations of V.

❖ SN acts on GN by: ∀π ∈ SN, ∀G=(V,E) ∈ GN,
 π.G ≝ (V, {(π(u), π(v)) | (u, v) ∈ E}

❖ Two graphs
 G1=(V, E1), G2=(V, E2) (with the same V)
are isomorphic (G1 ≡ G2) iff ∃ π ∈ SN, π.G1=G2.

Example: Graph Isomorphism
❖ Graph isomorphism:

INPUT: 2 graphs G1=(V, E1), G2=(V, E2) (with the same V)
QUESTION: are G1, G2 isomorphic?

❖ Clearly in NP

❖ Not known to be in P,
nor NP-complete…

❖ We will show, using results on MA, AM, IP[1], etc.
that it is not NP-complete (unless PH collapses)

(This is only the beginning: Babai gave a super polynomial time algo for GI in 2015;
you need to understand first everything in the course to have a hope of understanding it!)

Example: Graph Non-Isomorphism
❖ GNI ≝ complement of GI: in coNP,

 not known to be in P or coNP-complete

❖ Prop. GNI is in IP[1].

❖ Algorithm.
— Arthur draws i ∈ {1,2}, π ∈ SN at random uniformly,
 sends q ≝ π.Gi
— Merlin answers j ∈ {1,2}
— We accept if i=j, reject otherwise.

GI

❖ Prop. GNI is in IP[1].

❖ Proof.
— If (G1, G2) ∈ GNI,
 there is a unique j ∈ {1,2}
 such that Gj ≡ π.Gi, (viz., i)
 Merlin plays that j, forcing acceptance (always).

GNI is in IP[1] (1/3)

GNI is in IP[1] (2/3)
❖ Prop. GNI is in IP[1].

❖ Proof.
— If (G1, G2) ∉ GNI,
 then G1 ≡ G2 ≡ π.Gi, (viz., i)
 and Merlin has no information about i
Whatever Merlin plays, Pr(acceptance)=1/2.

That is in fact irrelevant to the proof.
But that shows that GNI has a

zero-knowledge proof!

GNI is in IP[1] (3/3)
❖ Prop. GNI is in IP[1].

❖ Error too big (1/2).
⇒ Repeat experiments (à la RP), but in parallel.

❖ —Arthur draws g(n) bits i1, …, ig(n)

 and g(n) permutations π1, …, πg(n),
 sends (π1.Gi_1, …, πg(n).Gi_g(n))
— Merlin replies j1, …, jg(n)

— We accept if i1=j1 and … and ig(n)=jg(n), reject otherwise.

❖ Error 1/2g(n) now (and still no error if (G1, G2) ∈ GNI).

GNI is in AM
❖ We will see later that GNI is in AM.

❖ This is a better result, since AM ⊆ IP[1]
(Any AM game can be simulated as an IP[1] game
 where Arthur sends both q and r as its question!)

❖ In fact, AM = IP[1]… but this is a pretty hard result,
due to Goldwasser and Sipser.

❖ Meanwhile, let us return to the study of MA, AM, etc.

Other equivalent definitions of AM
1. BP·NP

The BP· operator
❖ Generalizing BPP.

For any class C, the class BP · C:

❖ A language L is in BP · C iff
there is a language D in C, and a poly time TM M
such that for every input x (of size n):
— if x ∈ L then Prr [M(x,r) ∈ D] ≥ 2/3
— if x ∉ L then Prr [M(x,r) ∈ D] ≤ 1/3.

❖ In particular, BP · P = BPP.

Error reduction: democracy
❖ As for BPP, we can reduce

the error in BP · C from 1/3
to 1/2g(n) for any polynomial g(n)

❖ … provided that C is democratic
 (non-standard name; obtained through a vote in class a few years ago)

❖ Defn. C is democratic iff for every L ∈ C,
 {w1#…#wk |a majority of words wi is in L} is in C.

❖ Let L ∈ BP · C, with D as here →

❖ Let D’ ≝ {w1#…#wk |
 a majority of words wi is in D}
D’ is again in C

❖ It suffices to decide whether
M(x,r1)#…#M(x,r36g(n)log 2) ∈ D’

 (in poly-time)

❖ Then error is ≤ 1/2g(n) (Chernoff!)

Error reduction through democracy

g(n)

1/2g(n)?

❖ We have proved:
Thm. Let C be democratic,
 and g(n) be a polynomial.
Then BP · C, is also the class of
languages L such that […]:
— if x ∈ L then
 Prr [M(x,r) ∈ D] ≥ 1–1/2g(n)
— if x ∉ L then
 Prr [M(x,r) ∈ D] ≤ 1/2g(n).

Error reduction through democracy

1/2g(n)?

g(n)

❖ Fact. P is democratic. (Easy.)

❖ Prop. NP is democratic.

❖ No, we cannot check whether each wi is in L,
because if that check fails,
then the whole computation
fails.

❖ Instead, we guess a subset I of indices of ≥k/2 elements,
and we check that ∀i ∈ I, wi is in L. ☐

Examples of democratic classes

BP · NP has error reduction
❖ Thm. L ∈ BP · NP iff ∀poly g,

 ∃D ∈ NP, poly time TM M /
— if x ∈ L then
 Prr [M(x,r) ∈ D] ≥ 1–1/2g(n)
— if x ∉ L then
 Prr [M(x,r) ∈ D] ≤ 1/2g(n).

❖ Thm (Prop. 3.5). AM = BP·NP.

❖ Proof (1/4). Let L ∈ AM, as here:

❖ Let D’ ≝ {x#r | ∃y, x#q#r#y ∈ D, where q ≝ A(x,r)}:
 D’ is in NP.

❖ If x ∈ L, Prr(x#r ∈ D’)
 = Prr(∃y, x#q#r#y ∈ D, where q ≝ A(x,r))
 ≥ Prr(x#q#r#y ∈ D, where q ≝ A(x,r), y ≝ M(x#q#r))
 ≥ 1–1/2g(n)

AM = BP·NP

because ∃y, P(y) is implied
by P(M(x#q#r))

❖ Thm (Prop. 3.5). AM = BP·NP.

❖ Proof (2/4). Let L ∈ AM, as here:

❖ Let D’ ≝ {x#r | ∃y, x#q#r#y ∈ D, where q ≝ A(x,r)}: D’ is in NP.

❖ If x ∉ L, then let M’(x#q#r) ≝ best of Merlin’s responses,
 i.e., some y such that x#q#r#y ∈ D if one exists

❖ Then Prr(x#r ∈ D’)
 = Prr(∃y, x#q#r#y ∈ D, where q ≝ A(x,r))
 ≤ Prr(x#q#r#M’(x#q#r) ∈ D, where q ≝ A(x,r))
 ≤ 1/2g(n)

AM = BP·NP

because M’ is best:
(∃y, x#q#r#y ∈ D) ⇒ x#q#r#M’(x#q#r) ∈ D

❖ Thm (Prop. 3.5). AM = BP·NP.

❖ Proof (3/4). Let L ∈ BP·NP, as here:
Let D ≝ {q | ∃y, q#y ∈ D’}, with D’ ∈ P,
 D’’ ≝ {x#q#r#y | q#y ∈ D’}: in P.

❖ Let A(x,r) ≝ M(x,r), and M(x#q#r) ≝ some y such that q#y ∈ D’ if one exists,

❖ If x ∈ L, Prr(x#q#r#y ∈ D’’, where q ≝ A(x,r), y ≝ M(x#q#r))
 = Prr(q#y ∈ D’, where q ≝ A(x,r), y ≝ M(x#q#r))
 ≥ Prr(∃y, q#y ∈ D’, where q ≝ A(x,r))
 = Prr(M(x,r) ∈ D) ≥ 1– 1/2g(n)

AM = BP·NP

because M is best:
(∃y, q#y ∈ D’) ⇒ q#M(x#q#r) ∈ D’

❖ Thm (Prop. 3.5). AM = BP·NP.

❖ Proof (4/4). Let L ∈ BP·NP, as here:
Let D ≝ {q | ∃y, q#y ∈ D’}, with D’ ∈ P,
 D’’ ≝ {x#q#r#y | q#y ∈ D’}: in P.

❖ Let A(x,r) ≝ M(x,r)

❖ If x ∉ L, for any M’, Prr(x#q#r#y ∈ D’’, where q ≝ A(x,r), y ≝ M’(x#q#r))
 = Prr(q#y ∈ D’, where q ≝ A(x,r), y ≝ M'(x#q#r))
 ≤ Prr(∃y, q#y ∈ D’, where q ≝ A(x,r))
 = Prr(M(x,r) ∈ D) ≤ 1/2g(n) ☐

AM = BP·NP

because ∃y, P(y) is implied
by P(M’(x#q#r))

Other equivalent definitions of AM
2. Extended quantifiers

❖ Let us say that Arthur is lazy if Arthur does not
bother to compute any question: A(x,r) = ε

❖ Prop (Lemma 3.8). For every word w ∈ {A, M}*,
the class wlazy when Arthur is constrained to be lazy
is equal to the class w.

❖ Proof. See lecture notes.
Idea: Merlin is so
powerful he can
reconstruct Arthur’s
questions without
Arthur’s help. ☐

Lazy Arthur

❖ protwlazy(M; x, r1r2…rk):
inp := x
for j=1…k:
 if aj=A then (qj := A(inp,rj); inp := inp#rj#qj)
 else (yj := M(inp); inp := inp#yj)
accept if inp ∈ D, else reject

A logical approach

❖ Model both Arthur and Merlin as quantifiers (over r, y)

❖ … for « predicates » with values in [0, 1] over finite sets

❖ Arthur (expectation):
 Er ∈ R, F(r) ≝ ∑r ∈ R F(r) / card R

❖ Merlin (maximize):
 ∃y ∈ Y, F(y) ≝ maxy ∈ Y F(y)
 (Note: if F takes its values in {0,1}, this is really the existential quantifier…)

A small catch

❖ The notations E, ∃ are practical,
e.g.:

❖ (∃y ∈ Y, F(y)) ≥ a iff there is a y ∈ Y such that F(y) ≥ a

❖ But beware that
(∃y ∈ Y, F(y)) ≤ a iff for every y ∈ Y, F(y) ≤ a.

« Skolemization »
❖ Prop. Er ∈ R, ∃y ∈ Y, F(r,y)

 = ∃f : R → Y, Er ∈ R, F(r,f(r))

❖ Proof (1/2).
Let f(r) ≝ best y, viz. some y that maximizes F(r,y)
Then ∃y ∈ Y, F(r,y) = F(r,f(r))

❖ Take expectations:
 Er ∈ R, ∃y ∈ Y, F(r,y) = Er ∈ R, F(r,f(r))

❖ … ≤ maxf : R → Y Er ∈ R, F(r,f(r))

« Skolemization »
❖ Prop. Er ∈ R, ∃y ∈ Y, F(r,y)

 = ∃f : R → Y, Er ∈ R, F(r,f(r))

❖ Proof (2/2).
For every f, F(r,f(r)) ≤ maxy ∈ Y F(r,y)

❖ Take expectations:
 Er ∈ R, F(r,f(r)) ≤ Er ∈ R, maxy ∈ Y F(r,y)

❖ Now take max over f. ☐

« Skolemization »: an example
❖ Er1, ∃y1, Er2, ∃y2, F(x,r1,y1,r2,y2)

❖ = ∃f1, Er1, Er2, ∃y2, F(x,r1,y1,r2,y2)
 where y1 ≝f1(r1)

❖ = ∃f1, f2, Er1, r2, F(x,r1,y1,r2,y2)
 where y1 ≝f1(r1), y2 ≝f2(r1,r2)

❖ Let F be {0,1}-valued (not [0,1])
 i.e., a predicate

❖ Recall that ∃y ∈ Y, F(y) (=max)
is then the existential quantifier
(… and is therefore {0,1}-valued)

❖ Also, Er, F(r) = Prr(F(r)=1)

(« expectation of a predicate = its probability of occurring »)

Expectations and probabilities

A-M as E-∃ formulae
❖ Prop (3.10). L ∈ AMAM iff

for every polynomial g(n),
there is a poly time predicate P /
— if x ∈ L, then G(x) ≥ 1–1/2g(n)
— if x ∉ L then G(x) ≤ 1/2g(n)
 where G(x) ≝ Er1, ∃y1, Er2, ∃y2, P(x,r1,y1,r2,y2)

❖ Proof (1/5). G(x) = ∃f1, f2, Er1, r2, P(x,r1,y1,r2,y2)
 where y1 ≝f1(r1), y2 ≝f2(r1,r2) « skolemization »

❖ Hence G(x) = ∃f1, f2, Prr1, r2(x#r1#y1#r2#y2 ∈ D)
 where D ≝ {x#r1#y1#r2#y2 | P(x,r1,y1,r2,y2)=1} (note: D ∈ P)

(I will let you
generalize

to other
classes of
the A-M

hierarchy)

A M A M

A-M as E-∃ formulae
❖ Proof (2/5). If L ∈ AMAM

with Merlin map M
and a lazy Arthur,

❖ if x ∈ L then let f1(r1) ≝ M(x#r1) (in short, y1)
 f2(r1,r2) ≝ M(x#r1#f1(r1)#r2) (y2)

❖ Then G(x) = ∃f1, f2, Prr1, r2(x#r1#y1#r2#y2 ∈ D)
 ≥ Prr1,r2(x#r1#y1#r2#y2 ∈ D)
 ≥ 1–1/2g(n)

G(x) ≝ ∃f1, f2, Prr1, r2(x#r1#y1#r2#y2 ∈ D)
 and y1 ≝f1(r1), y2 ≝f2(r1,r2)

A-M as E-∃ formulae
❖ Proof (3/5). If L ∈ AMAM

with Merlin map M
and a lazy Arthur,

❖ if x ∉ L then for all maps f1, f2,
 let M’(x#r1) ≝ f1(r1), M’(x#r1#y1#r2) ≝ f2(r1,r2)
 and M’ of anything else be arbitrary (e.g., ε)

❖ Then G(x) ≤ Prr(x#r1#y1#r2#y2 ∈ D) ≤ 1/2g(n)
 where y1 ≝ M’(x#r1), y2 ≝ M’(x#r1#y1#r2)

G(x) ≝ ∃f1, f2, Prr1, r2(x#r1#y1#r2#y2 ∈ D)
 and y1 ≝f1(r1), y2 ≝f2(r1,r2)

A-M as E-∃ formulae
❖ Proof (4/5). If L is as here →

❖ for each x ∈ L there are maps f1, f2
such that
 Prr1, r2(x#r1#y1#r2#y2 ∈ D) ≥ 1–1/2g(n)
 where y1 ≝f1(r1), y2 ≝f2(r1,r2)

❖ Let M(x#r1) ≝ f1(r1), M(x#r1#y1#r2) ≝ f1(r1,r2), else arbitrary

❖ If x ∈ L then Prr(x#r1#y1#r2#y2 ∈ D) (y1 ≝ M(x#r1), y2 ≝ M(x#r1#y1#r2))
 = Prr1, r2(x#r1#y1#r2#y2 ∈ D) (y1 ≝f1(r1), y2 ≝f2(r1,r2))
 ≥ 1–1/2g(n)

G(x) ≝ ∃f1, f2, Prr1, r2(x#r1#y1#r2#y2 ∈ D)
 and y1 ≝f1(r1), y2 ≝f2(r1,r2)

A-M as E-∃ formulae
❖ Proof (5/5). If L is as here →

❖ If x ∉ L then
for every Merlin map M’,
 let f1(r1) ≝ M’(x#r1) (in short, y1)
 f2(r1,r2) ≝ M’(x#r1#f1(r1)#r2) (y2)

❖ Then Prr(x#r1#y1#r2#y2 ∈ D) (y1 ≝ M’(x#r1), y2 ≝ M’(x#r1#y1#r2))
 = Prr1, r2(x#r1#y1#r2#y2 ∈ D) (y1 ≝f1(r1), y2 ≝f2(r1,r2))
 ≤ G(x) ≤ 1/2g(n). ☐

G(x) ≝ ∃f1, f2, Prr1, r2(x#r1#y1#r2#y2 ∈ D)
 and y1 ≝f1(r1), y2 ≝f2(r1,r2)

Next time…

The Arthur-Merlin hierarchy collapses!
❖ We will see that the whole

Arthur-Merlin hierarchy looks
like this! → ⊆

P
⊆

BPPNP
⊆

⊆ ⊆

MA

AM (All other classes
w equal to AM)

