Jean Goubault-Larrecq

Bases de données

Bases de données, langages de requêtes, théorème de Codd

Bases de données relationnelles

Schémas de bases de données relationnelles

- * On se donne un ensemble Attr d'attributs qu'on suppose totalement ordonné et infini dénombrable (oublié dans le Alice)
- * Un schéma de relation est un ensemble fini d'attributs
- * Un schéma de base de données est un couple (T, schema) où
 - T est un ensemble fini de **relations** (ou **tables**)
 - schema : T → $P_{fin}(Attr)$
- Ex: T = {Movies, Location, Pariscope} [Alice p.30]
 schema(Movies) = {Title, Director, Actor}
 schema(Location) = {Theater, Address, Phone}
 schema(Pariscope) = {Theater, Title, Schedule}

Bases de données relationnelles

- * Pour chaque attribut a, dom(a) est un ensemble **fini non vide** (les **valeurs** possibles de l'attribut)
- * On supposera que dom(a) est le même pour tout a, pour simplifier; soit dom cet ensemble
- Une instance I d'un schéma (T, schema)
 (= base de données relationnelle sur ce schéma)
 est la donnée, pour chaque relation R dans T,
 d'un ensemble fini I(R) de rangées (ou uplets)
 t : schema(R) → dom
- * Comme Attr est totalement ordonné, on identifie chaque rangée à un élément de domⁿ, où n = | schema(R) |
 - mais attention à être clairs sur votre perspective, attributs nommés ou non

Exemple de BD relationnelle

Movies	Title	Director	Actor
	The Trouble with Harry	Hitchcock	Gwenn
	The Trouble with Harry	Hitchcock	Forsythe
	The Trouble with Harry	Hitchcock	MacLaine
	The Trouble with Harry	Hitchcock	Hitchcock
		•••	•••
	Cries and Whispers	Bergman	Andersson
	Cries and Whispers	Bergman	Sylwan Thulin
	Cries and Whispers	Bergman	
	Cries and Whispers	Bergman	Ullman
Location	Theater	Address	Phone Number
	Gaumont Opéra	31 bd. des Italiens	47 42 60 33
	Saint André des Arts	30 rue Saint André des Arts	43 26 48 18
	Le Champo	51 rue des Ecoles	43 54 51 60
		25.5.5	
	Georges V	144 av. des Champs-Elysées	45 62 41 46
	Les 7 Montparnassiens	98 bd. du Montparnasse	43 20 32 20
Pariscope	Theater	Title	Schedule
	Gaumont Opéra	Cries and Whispers	20:30
	Saint André des Arts	The Trouble with Harry	20:15
	Georges V	Cries and Whispers	22:15
	Cooles .		

Figure 3.1: The CINEMA database

[Alice p.30]

Que faire avec une BD?

- L'interroger = évaluer des requêtes
 Ce sera l'essentiel de ce que nous étudierons
 Plusieurs langages: SQL, RA, logique du premier ordre,
 Datalog (avec ou sans négation), etc.

 Pouvoir expressif
- La modifier: insertion, suppression
 Questions d'implémentation, propriétés ACID
 Je n'insisterai pas là-dessus [Alice chapitre 22]

Requêtes et logique du premier ordre

Formules de la logique du premier ordre

- Fixons un schéma (T, schema)
- * Une **formule** *F* de la logique du premier ordre (**FOL**), dans notre cadre, sera:
 - sur le langage de prédicats $T \cup \{=\}$ arité de R dans T = | schema(R) |
 - à connecteurs logiques parmi ∧, ⊤, ∨, ⊥, ¬, ∃
 (d'autres si vous voulez, mais soyez précis: le Alice oublie le ⊤,
 par exemple, et il est nécessaire pour faire les conjonctions 0-aires)
 - pas de symboles de fonctions autres que les constantes
- * On notera free(*F*) l'ensemble de ses **variables libres** (déf. usuelle)
- * Les **termes** sont donc les constantes ou les variables

Requêtes

- * Fixons un schéma (T, schema)
- * Une requête $\{\underline{x} \mid F\}$ est formée:
 - d'une formule F de la logique du premier ordre
 - d'un **uplet libre** \underline{x} = liste de variables distinctes 2 à 2 ([Alice déf. 4.2.1 p.41] est plus libérale: un uplet libre y est formé de variables et de constantes)
- * et les variables libres de F sont **exactement** celles de \underline{x}
- * Le **domaine** actif adom(F), resp. adom($\{\underline{x} \mid F\}$) est l'ensemble des constantes apparaissant dans F

Exemples de requêtes

```
* \{(x_{th}, x_{ad}) \mid \exists x_{ti}, x_{ac}, x_{s}, x_{p},  [Alice ex. 4.1.1 p.41]

Movies(x_{ti}, \text{ Wear Bergman }, x_{ac}) \land

Pariscope(x_{th}, x_{ti}, x_{s}) \land \text{Location}(x_{th}, x_{ad}, x_{p})\}

(requête conjonctive: n'utilise que \land, \exists)
```

Son domaine actif est {« Bergman »}

Sémantique (1/2)

- * Une **valuation** v (**relative** au domaine dom et pour une formule *F*) est une fonction qui à chaque variable libre de *F* associe un élément de dom
- * On note tv: = v(t) si t variable, = t si t constante Pour tout uplet $\underline{u} = (u_1, ..., u_n)$ de termes (=vars ou constantes), $\underline{u}v = (u_1v, ..., u_nv)$
- * Une instance I satisfait F pour la valuation v, en notation $I \vDash_{dom} F[v]$ ssi (définition par récurrence sur F usuelle en logique): voir transparent suivant
- * Attention: (1) **dépend** du domaine dom d'où le « dom » en indice (2) n'a de sens que si **adom**(F) \subseteq **dom**

Sémantique (2/2)

- * $I \models_{dom} R(\underline{u})[v] ssi \underline{u}v est dans I(R)$
- * $\mathbf{I} \models_{dom} (s=t)[v] \operatorname{ssi} sv = tv$, $\mathbf{I} \models_{dom} \bot[v] \operatorname{jamais}$, $\mathbf{I} \models_{dom} \top[v] \operatorname{toujours}$
- * $\mathbf{I} \vDash_{\text{dom}} (F \land G)[v] \text{ ssi } \mathbf{I} \vDash_{\text{dom}} F[v_{\mid \text{free}(F)}] \text{ et } \mathbf{I} \vDash_{\text{dom}} G[v_{\mid \text{free}(G)}]$
- * $\mathbf{I} \vDash_{\text{dom}} (F \lor G)[v] \text{ ssi } \mathbf{I} \vDash_{\text{dom}} F[v_{\mid \text{free}(F)}] \text{ ou } \mathbf{I} \vDash_{\text{dom}} G[v_{\mid \text{free}(G)}]$
- * $\mathbf{I} \vDash_{\text{dom}} (\neg F)[v] \text{ ssi non } (\mathbf{I} \vDash_{\text{dom}} F[v])$
- * $I \models_{dom} (\exists x . F)[v]$ ssi il existe a dans dom tel que $I \models_{dom} F[v[x:=a]]$
 - où v[x:=a] envoie x vers a et tout y≠x vers v(y)

Sémantique des requêtes

- * Soit q la requête $\{\underline{x} \mid F\}$ son **domaine** actif adom(q) est adom(F), par définition
- * Soit I une instance d'un schéma (T, schema), sur un domaine dom contenant adom(q)
- * La **sémantique** de q relative à **I** est $q(\text{dom}, \mathbf{I}) = l$ 'ensemble des $\underline{x}v$, lorsque v parcourt les valuations (**sur dom**) telles que $\mathbf{I} \vDash_{\text{dom}} F[v]$
- * Alice le note $q(\mathbf{I})$, mais vu les questions d'indépendance de domaine (plus tard), je préfère mentionner dom explicitement

Exemple

		_
-		

Movies	Title	Director	Actor
	The Trouble with Harry	Hitchcock	Gwenn
	The Trouble with Harry	Hitchcock	Forsythe
	The Trouble with Harry	Hitchcock	MacLaine
	The Trouble with Harry	Hitchcock	Hitchcock
		•••	
	Cries and Whispers	Bergman	Andersson
	Cries and Whispers	Bergman	Sylwan
	Cries and Whispers	Bergman	Thulin
	Cries and Whispers	Bergman	Ullman
Location	Theater	Address	Phone Number
	Gaumont Opéra	31 bd. des Italiens	47 42 60 33
	Saint André des Arts	30 rue Saint André des Arts	43 26 48 18
	Le Champo	51 rue des Ecoles	43 54 51 60

	Georges V	144 av. des Champs-Elysées	45 62 41 46
	Les 7 Montparnassiens	98 bd. du Montparnasse	43 20 32 20
Pariscope	Theater	Title	Schedule
	Gaumont Opéra	Cries and Whispers	20:30
	Saint André des Arts	The Trouble with Harry	20:15
	Georges V	Cries and Whispers	22:15
	***	30.00	
	Les 7 Montparnassiens	Cries and Whispers	20:45

Figure 3.1: The CINEMA database

```
q = \{(x_{\text{th}}, x_{\text{ad}}) \mid \exists x_{\text{ti}}, x_{\text{ac}}, x_{\text{s}}, x_{\text{p}},
                   Movies(x_{ti}, « Bergman », x_{ac}) \land
                   Pariscope(x_{th}, x_{ti}, x_s) \land
                   Location(x_{th}, x_{ad}, x_{p})}
  q(\mathbf{I}) = \{
     (« Gaumont Opéra »,
        « 31 bd. des Italiens »),
     (« Georges V »,
        « 144 av. des Champs-Elysées »),
     (« Les 7 Montparnassiens »,
        « 98 bd. du Montparnasse »)
```

Les deux algèbres relationnelles

L'algèbre relationnelle RA (sans noms)

- * Version non nommée:
 - constantes: les relations R de T, les uplets \underline{u} (= ($u_1,...,u_n$), dans domⁿ)
 - + 5 opérations:

```
sélection \sigma_F (F conjonction d'égalités i=j ou i=\text{cst.}, i et j entiers; Alice autorise aussi les \neq) projection \pi_L (L liste d'entiers distincts deux à deux)
```

produit × différence – union ∪

- * Les 3 premières opérations forment l'algèbre SPC [Alice, Sec. 4.4, p.52] et ont le même pouvoir expressif que les requêtes conjonctives
- * Intérêt: implémentation
- * Attention: ces opérations sont (implicitement) typées...

L'algèbre relationnelle RA (sans noms): arités

```
* R: n (pour chaque relation R dans T, d'arité n) (u_1,...,u_n):n (pour chaque uplet) \sigma_F:n\to n (F conj. d'égalités i=j ou i=cst., avec 1\le i,j\le n) \pi_L:n\to \text{len }L (L liste d'éléments de \{1,...,n\}) \times:m\times n\to m+n -, \cup:n\times n\to n (avec le même n à gauche de la flèche)
```

- * Les **requêtes RA** sont les expressions bien typées *q* formées à partir de ces constructions
- * Le **domaine actif** adom(q) est l'ensemble des constantes qui apparaissent dans q (dans les uplets ($u_1,...,u_n$))

L'algèbre relationnelle RA (sans noms): sémantique

```
* Sémantique I[q] \in P_{fin}(dom^n), où q:n
     I \llbracket R \rrbracket = I(R)
    \mathbf{I} \llbracket (u_1, \dots, u_n) \rrbracket = \{ (u_1, \dots, u_n) \}
    \mathbf{I}\llbracket \sigma_F(q) \rrbracket = \{ \underline{x} \in \mathbf{I}\llbracket q \rrbracket \mid \bigwedge_{i=j \in F} x_i = x_j \land \bigwedge_{i=\text{cst} \in F} x_i = \text{cst} \}
    I[[\pi_L(q)]] = \{(x_{i[1]},...,x_{i[k]}) \mid \exists x_{i[1]},...,x_{i[n-k]} \cdot \underline{x} \in I[[q]]\}
                    où L=[i[1],...,i[k]], et i[1],...,i[n-k] énumère
                                          les indices de \{1, ..., n\} hors de L
    \mathbf{I}[[q \times q']] = \mathbf{I}[[q]] \times \mathbf{I}[[q']]
    I[[q-q']] = I[[q]] - I[[q']] (vous voyez l'intérêt du typage?)
    \mathbf{I}[[q \cup q']] = \mathbf{I}[[q]] \cup \mathbf{I}[[q']]
```

L'algèbre relationnelle RA (avec noms)

- * Version nommée: — constantes: les relations R de T, les uplets $\underline{u}: A \rightarrow \text{dom}$ $(A=\{a_1,...,a_n\})$ ensemble fini d'attributs; on notera $\underline{u} \langle a_1:u_1,...,a_n:u_n\rangle$ — + 6 opérations: **sélection** σ_F (F conj. d'égalités a=b ou a=cst, a et b attributs; Alice autorise aussi les ≠) projection π_A (A ensemble d'attributs — et ensemble, pas liste) jointure naturelle ⋈ **renommage** Q_r (r fct. injective partielle de Attr dans Attr) différence union U
- De nouveau, restreintes par typage... [Alice p.50, sans ni ∪]

L'algèbre relationnelle RA (sans noms): sortes

- * Typage *q* : *B*, où *B* est un ensemble d'attributs (la **sorte**)
- * R: schema(R)

$$\langle a_1:u_1,\ldots,a_n:u_n\rangle:\{a_1,\ldots,a_n\}$$

 $\sigma_F: B \to B$ (F conj. d'égalités a=b ou a=cst., avec $a,b \in B$)

$$\pi_A: B \to A \ (A \subseteq B)$$

$$\bowtie : B \times C \rightarrow B \cup C$$

 $Q_r : dom r \rightarrow im r$

-, \cup : $B \times B \rightarrow B$ (avec **le même B** à gauche de la flèche)

L'algèbre relationnelle RA (avec noms): sémantique

```
* Sémantique I[q] \in P_{fin}(schema(q) \rightarrow dom)
       \mathbf{I} \mathbb{I} \mathbb{R} \mathbb{I} = \mathbf{I} \mathbb{R}
       \mathbf{I} [\![ \langle a_1 : u_1, ..., a_n : u_n \rangle ]\!] = \{ \langle a_1 : u_1, ..., a_n : u_n \rangle \}
       \mathbf{I}\llbracket \sigma_F(q) \rrbracket = \{ \underline{x} \in \mathbf{I}\llbracket q \rrbracket \mid \bigwedge_{a=b \in F} \underline{x}(a) = \underline{x}(b) \land \bigwedge_{a=\mathrm{cst} \in F} \underline{x}(a) = \mathrm{cst} \}
       \mathbf{I}[\![\pi_A(q)]\!] = \{\underline{x} \mid A \mid \underline{x} \in \mathbf{I}[\![q]\!]\} \text{ (ens. des restrictions à } A)
       \mathbf{I}[[q \bowtie q']] = \{\underline{x} : \operatorname{schema}(q) \cup \operatorname{schema}(q') \rightarrow \operatorname{dom}(q') \}
                                              |\underline{x}|_{\text{schema}(q)} \in \mathbf{I}[q] \text{ et } \underline{x}|_{\text{schema}(q')} \in \mathbf{I}[q']
       \mathbf{I}\llbracket Q_r(q) \rrbracket = \{ \underline{x} \text{ o } r^{-1} \mid \underline{x} \in \mathbf{I}\llbracket q \rrbracket \}
       \mathbf{I}\llbracket q - q' \rrbracket = \mathbf{I}\llbracket q \rrbracket - \mathbf{I}\llbracket q' \rrbracket
       \mathbf{I}[[q \cup q']] = \mathbf{I}[[q]] \cup \mathbf{I}[[q']]
```

Exemple

* I	=		
Movies	Title	Director	Actor
	The Trouble with Harry	Hitchcock	Gwenn
	The Trouble with Harry	Hitchcock	Forsythe
	The Trouble with Harry	Hitchcock	MacLaine
	The Trouble with Harry	Hitchcock	Hitchcock
	***	•••	•••
	Cries and Whispers	Bergman	Andersson
	Cries and Whispers	Bergman	Sylwan
	Cries and Whispers	Bergman	Thulin
	Cries and Whispers	Bergman	Ullman
Location	Theater	Address	Phone Number
	Gaumont Opéra	31 bd. des Italiens	47 42 60 33
	Saint André des Arts	30 rue Saint André des Arts	43 26 48 18
	Le Champo	51 rue des Ecoles	43 54 51 60
		3.43	
	Georges V	144 av. des Champs-Elysées	45 62 41 46
	Les 7 Montparnassiens	98 bd. du Montparnasse	43 20 32 20
Pariscope	Theater	Title	Schedule
	Gaumont Opéra	Cries and Whispers	20:30
	Saint André des Arts	The Trouble with Harry	20:15
	Georges V	Cries and Whispers	22:15

Figure 3.1: The CINEMA database

Les 7 Montparnassiens Cries and Whispers

- Movies ⋈ Pariscope : {Theater, Title, Director, Actor, Schedule}
- sémantique:
 (« G.Opéra », « C&W », « Bergman »,
 « Andersson », « 20:30 »),
 (« G.Opéra », « C&W », « Bergman »,
 « Sylwan », « 20:30 »),
 « Georges V », « C&W », « Bergman »,
 « Andersson », « 22:15 »),

. . .

20:45

RA

- * Les deux versions de RA ont un pouvoir expressif équivalent
- * On verra ça comme conséquence du théorème de Codd

Traduction de RA en FOL

$RA \rightarrow FOL$

- * **Prop [Alice, Lemme 5.3.11 p.80].** Pour toute requête q de RA (sans noms), on peut calculer une requête (de FOL) $\{\underline{x} \mid F[q]\}$ telle que (en la notant q') $I\llbracket q \rrbracket = q'(\text{dom}, \mathbf{I})$ pour toute instance \mathbf{I} sur dom, pour tout domaine dom contenant adom(q)
- * On se fixe une énumération de variables $x_1, x_2, ...$ toutes distinctes

*
$$F[R] = R(x_1,...,x_n)$$
 où $R:n$

$$F[(u_1, ..., u_n)] = \bigwedge_{i=1}^n x_i = u_i$$

$$F[\sigma_F(q)] = F[q] \land \bigwedge_{i=j \in F} x_i = x_j \land \bigwedge_{i=\text{cst} \in F} x_i = \text{cst}$$

$$F[\pi_L(q)] = (\exists x_{j[1]},...,x_{j[n-k]} . F[q]) [x_{i[1]} := x_1, ..., x_{i[k]} := x_k]$$
où $L = [i[1],...,i[k]]$, et $j[1],...,j[n-k]$ énumère les indices de $\{1, ..., n\}$ hors de L

$$F[q \times q'] = F[q] \land (F[q'][x_1 := x_{m+1},...,x_n := x_{m+n}]) \quad \text{où } q : m, q' : n$$

$$F[q - q'] = F[q] \land \neg F[q'] \qquad F[q \cup q'] = F[q] \lor F[q']$$

Indépendance de domaine (1/5)

- Le domaine actif d'une instance I est adom(I) = {valeurs apparaissant dans au moins un uplet de I}
- * On a $adom(I) \subseteq dom par définition de I$
- * Alice note $adom(q, \mathbf{I}) = adom(q) \cup adom(\mathbf{I})$ et demande juste que dom contienne $adom(q, \mathbf{I})$
- * Pour toute requête RA q,

 I[q] ne dépend pas de dom \supseteq adom(q,I)

```
F[R] = R(x_{1},...,x_{n}) \text{ où } R:n
F[(u_{1}, ..., u_{n})] = \wedge_{i=1}^{n} x_{i}=u_{i}
F[\sigma_{F}(q)] = F[q] \wedge \wedge_{i=j \in F} x_{i}=x_{j} \wedge \wedge_{i=\text{cst} \in F} x_{i}=\text{cst}
F[\pi_{L}(q)] = (\exists x_{j[1]},...,x_{j[n-k]} \cdot F[q]) [x_{i[1]}:=x_{1}, ..., x_{i[k]}:=x_{k}]
\text{ où } L=[i[1],...,i[k]], \text{ et } j[1],...,j[n-k] \text{ énumère}
\text{ les indices de } \{1, ..., n\} \text{ hors de } L
F[q \times q'] = F[q] \wedge (F[q'][x_{1}:=x_{m+1},...,x_{n}:=x_{m+n}]) \quad \text{où } q:m, q':n
F[q-q'] = F[q] \wedge \neg F[q'] \qquad F[q \cup q'] = F[q] \vee F[q']
```

Indépendance de domaine (2/5)

* En revanche, pour une requête (FOL) q' q' (dom,I) peut dépendre de dom, au sens où il peut exister deux ensembles finis dom, dom' \supseteq adom(q',I) tels que q' (dom,I) $\neq q'$ (dom',I)

```
* \{x \mid \neg R(x)\}

\{(x,y) \mid R(x) \lor R(y)\}

\{x \mid R(x) \lor \neg R(x)\}

\{x \mid \forall y . x = y\}

\{x \mid \exists y . (R(x) \lor \neg R(x)) \land S(y)\}
```

- * $I \models_{dom} R(\underline{u})[v] ssi \underline{u}v est dans I(R)$
- * $I \vDash_{dom} (s=t)[v] ssi sv=tv$, $I \vDash_{dom} \bot[v] jamais$, $I \vDash_{dom} \top[v] toujours$
- * $\mathbf{I} \vDash_{\text{dom}} (F \land G)[v] \text{ ssi } \mathbf{I} \vDash_{\text{dom}} F[v_{\mid \text{free}(F)}] \text{ et } \mathbf{I} \vDash_{\text{dom}} G[v_{\mid \text{free}(G)}]$
- * $\mathbf{I} \vDash_{\text{dom}} (F \lor G)[v] \text{ ssi } \mathbf{I} \vDash_{\text{dom}} F[v_{\mid \text{free}(F)}] \text{ ou } \mathbf{I} \vDash_{\text{dom}} G[v_{\mid \text{free}(G)}]$
- * $I \vDash_{dom} (\neg F)[v]$ ssi non $(I \vDash_{dom} F[v])$
- * $\mathbf{I} \vDash_{\text{dom}} (\exists x . F)[v]$ ssi il existe a dans dom tel que $\mathbf{I} \vDash_{\text{dom}} F[v[x:=a]]$

Indépendance de domaine (3/5)

- * On dit qu'une requête FOL q' est **indépendante du domaine** ssi pour toute instance **I**, pour tous dom, dom' \supseteq adom(q',**I**), on a q'(dom,**I**) = q'(dom',**I**)
- * La requête FOL $\{\underline{x} \mid F[q]\}$ construite à partir d'une requête RA q est indépendante du domaine
- * ... car $I[q] = \{\underline{x} \mid F[q]\}$ (dom,I) et I[q] ne dépend pas de dom

Indépendance de domaine (4/5)

- * Dans le Alice, ils étendent ça au cas où dom peut être infini (ce que j'ai exclu depuis le début)
- * En général, une requête FOL q non indépendante du domaine a la particularité que q(dom,I) (où dom est infini) est lui-même **infini**
- * (Je pense que c'est toujours vrai. Probablement parce que toute formule FOL qui a des modèles finis de cardinalité arbitrairement grande a un modèle infini.)

Indépendance de domaine (5/5)

- * Le problème:
 - **ENTREE:** une requête FOL $q = \{\underline{x} \mid F\}$
 - Q: q est-elle indépendante du domaine?
- * est indécidable (si T contient au moins une relation binaire)
- * C'est une conséquence du **théorème de Trakhtenbrot**: l'existence d'un modèle fini pour une formule FOL close *F* est indécidable (et r.e.; on verra ça plus tard)
- * *Preuve:* F a un modèle fini ssi $\{x \mid \neg R(x) \land F\}$ n'est pas indépendante du domaine

Critère d'indépendance du domaine

Critère d'indépendance de domaine

- * Toute requête (FOL) conjonctive, c'est-à-dire construite à l'aide de ∃
 et ∧ seulement (pas ⊤, ∨, ¬, ∀) est automatiquement indépendante
 du domaine (exercice ou appliquer le critère suivant)
- * On va définir un critère:
 - s'il réussit sur la requête FOL q, alors q est indépendante du domaine
 - s'il échoue, on ne sait pas
 - calculable en temps polynomial
 - il réussit sur les requêtes conjonctives, et sur les traductions de requêtes RA
- * La définition du [Alice, Section 5.4] n'est pas totalement rigoureuse

Critère d'indépendance de domaine

- * On définit un ensemble $rr(F) \subseteq free(F)$ de variables (« range restricted » — je dirai les variables contraintes) — calculable en temps polynomial — tel que: pour toute instance I, pour tout dom \supseteq adom(F) (\cup adom(I)), pour toute valuation ν (rel. dom pour F), si $I \vDash_{dom} F[v]$ alors pour toute $x \in rr(F)$, $v(x) \in adom(F) \cup adom(I)$
- * [Alice, Algorithme 5.4.3 p.84, à quelques adaptations près]

Tests d'indépendance de domaine

```
* \operatorname{rr}(R(\underline{u})) = \operatorname{free}(R(\underline{u}))

\operatorname{rr}(x=\operatorname{cst}) = \operatorname{rr}(\operatorname{cst}=x) = \{x\}

\operatorname{rr}(\operatorname{cst}=\operatorname{cst}') = \emptyset \quad \operatorname{rr}(x=y) = \emptyset
```

C'est le cas important

- * $\operatorname{rr}(F \land x = y) = \operatorname{rr}(F) \operatorname{si} x, y \notin \operatorname{rr}(F)$ = $\operatorname{rr}(F) \cup \{x, y\} \operatorname{si} x$ ou y est dans $\operatorname{rr}(F)$ $\operatorname{rr}(F \land G) = \operatorname{rr}(F) \cup \operatorname{rr}(G) \operatorname{si} G$ pas une équation entre variables
- * $\operatorname{rr}(\neg F) = \emptyset$ (on ne se fatigue pas)
- * $\operatorname{rr}(\exists x . F) = \operatorname{rr}(F) \{x\}$ (défini comme \bot [ou **fail**] si $x \notin \operatorname{rr}(F)$ dans le Alice)
- * $\operatorname{rr}(F \vee G) = \operatorname{rr}(F) \cap \operatorname{rr}(G)$

Range restriction

- * On dit que $\{\underline{x} \mid F\}$ est **contrainte** (**range-restricted**) ssi:
 - $-- \operatorname{rr}(F) = \operatorname{free}(F)$
 - dans toute sous-formule $\exists x . G, x \text{ est dans } rr(G)$

(ceci est automatique si on utilise un symbole ⊥ (ou fail) comme dans le Alice)

* Note: pour tout requête RA q:n, $rr(F[q])=free(F[q])=\{x_1,...,x_n\}$

Corollaire: $\{\underline{x} \mid F[q]\}$ est contrainte.

 $F[R] = R(x_{1},...,x_{n}) \text{ où } R:n$ $F[(u_{1}, ..., u_{n})] = \wedge_{i=1}^{n} x_{i}=u_{i}$ $F[\sigma_{F}(q)] = F[q] \wedge \wedge_{i=j\in F} x_{i}=x_{j} \wedge \wedge_{i=\text{cst}\in F} x_{i}=\text{cst}$ $F[\pi_{L}(q)] = (\exists x_{j[1]},...,x_{j[n-k]} \cdot F[q]) [x_{i[1]}:=x_{1}, ..., x_{i[k]}:=x_{k}]$ où L=[i[1],...,i[k]], et j[1],...,j[n-k] énumère $\text{ les indices de } \{1, ..., n\} \text{ hors de } L$ $F[q \times q'] = F[q] \wedge (F[q'][x_{1}:=x_{m+1},...,x_{n}:=x_{m+n}]) \text{ où } q:m, q':n$ $F[q-q'] = F[q] \wedge \neg F[q'] \qquad F[q \cup q'] = F[q] \vee F[q']$

Si on est formel, il faut

associer les A à droite

Range restriction

- Note: la plupart des descriptions commencent par opérer des simplifications préservant la sémantique sur les formules (aplatir les ∧ et les ∨, pousser les négations vers l'intérieur, éliminer les doubles négations, etc.)
- * Ceci permet d'améliorer la précision de l'approximation calculée par rr(), mais (me semble-t-il) **ne sert à rien** pour les résultats théoriques visés

La sémantique de domaine actif

Sémantique de domaine actif

- * Soit *q* une requête FOL. Au lieu de restreindre *q* **syntaxiquement**, on peut utiliser une **sémantique** restreinte
- * Sémantique de domaine actif:

$$q_{act}(\mathbf{I}) = q(adom(q, \mathbf{I}), \mathbf{I})$$

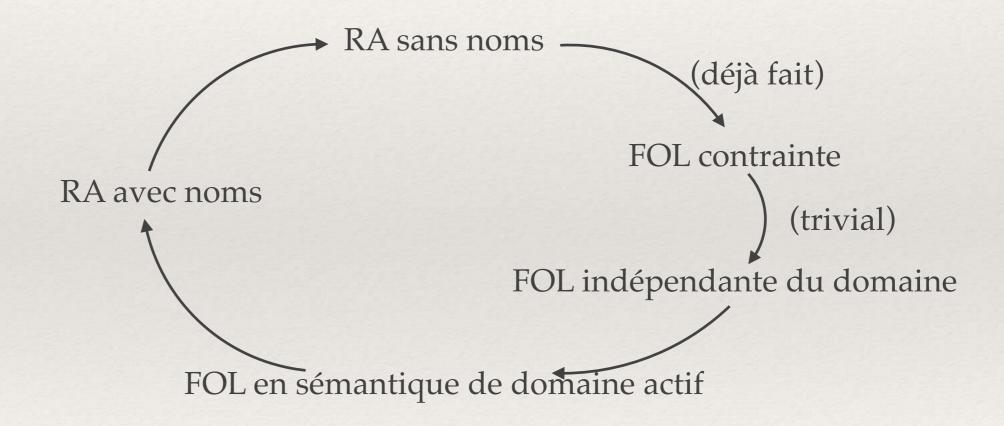
- ... autrement dit, on demande à évaluer q sur le domaine actif adom (q, \mathbf{I}) plutôt qu'un domaine arbitraire dom
- * Note: si q est contrainte (donc indépendante du domaine), alors $q(\mathbf{I}) = q(\text{dom}, \mathbf{I})$ pour tout dom \supseteq adom (q, \mathbf{I})

Le théorème de Codd

- * Théorème de Codd (1972): « Les langages de requêtes suivants ont le même pouvoir expressif:
 - RA avec noms
 - RA sans noms
 - les requêtes FOL contraintes
 - les requêtes FOL indépendantes du domaine
 - les requêtes FOL en sémantique de domaine actif »

Le théorème de Codd

* On va exhiber des traductions:



* ...de sorte que les sémantiques correspondent

RA sans noms -> FOL contrainte

- * Rappel: q requête RA sans noms \rightarrow requête FOL contrainte q'_{π}
- $* q' = \{\underline{x} \mid F[q]\}$
- * I[q] = q'(dom, I) pour toute instance I sur dom, pour tout domaine dom \supseteq adom(q, I)
- * De plus, on a remarqué que F[q] est contrainte

$$F[R] = R(x_{1},...,x_{n}) \text{ où } R:n$$

$$F[(u_{1}, ..., u_{n})] = \wedge_{i=1}^{n} x_{i}=u_{i}$$

$$F[\sigma_{F}(q)] = F[q] \wedge \wedge_{i=j \in F} x_{i}=x_{j} \wedge \wedge_{i=\text{cst} \in F} x_{i}=\text{cst}$$

$$F[\pi_{L}(q)] = (\exists x_{j[1]},...,x_{j[n-k]} \cdot F[q]) [x_{i[1]}:=x_{1}, ..., x_{i[k]}:=x_{k}]$$

$$\text{ où } L=[i[1],...,i[k]], \text{ et } j[1],...,j[n-k] \text{ énumère}$$

$$\text{ les indices de } \{1, ..., n\} \text{ hors de } L$$

$$F[q \times q'] = F[q] \wedge (F[q'][x_{1}:=x_{m+1},...,x_{n}:=x_{m+n}]) \text{ où } q:m, q':n$$

$$F[q-q'] = F[q] \wedge \neg F[q'] \qquad F[q \cup q'] = F[q] \vee F[q']$$

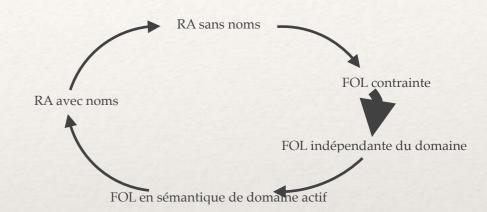
FOL en sémantique de domaine actif

FOL contrainte

FOL indépendante du domaine

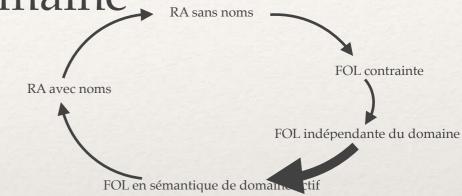
FOL contrainte -> indép. du domaine

- * q requête FOL contrainte
 - → requête FOL indépendante du domaine
- * ... q elle-même, bien sûr



FOL indép. du domaine -> domaine actif

- * q requête FOL indépendante du domaine RA sans noms
 - → requête FOL en sémantique de domaine actif



- * ... q elle-même:
- * pour tout dom \supseteq adom(q, \mathbf{I}), $q_{act}(\mathbf{I}) [= q(adom(q,\mathbf{I}),\mathbf{I})] = q(dom,\mathbf{I})$

FOL domaine actif -> RA avec noms

- * q requête FOL en sémantique de domaine actif
 - → requête RA avec noms
- * C'est présenté de façon compliquée dans [Alice, section 5.4], avec des notions de SRNF, de RANF, etc.

RA avec noms

FOL contrainte

- * Deux idées:
 - définissabilité du domaine actif en RA
 - on utilise simplement les variables comme attributs

Le domaine actif est définissable en RA

- * Soit b un attribut quelconque, et q une requête FOL fixe
- * Pour chaque relation R dans T, de sorte A non vide,

(pour éviter une union vide plus bas...)

adom_R_
$$a(b) = \varrho_{a \to b} \pi_{\{a\}} R$$
 (pour chaque $a \in A$)

$$adom_R(b) = \bigcup_{a \in A} adom_R_a(b) \qquad (... ici!)$$

* Puis:

$$adom(b) = \bigcup_{R \in T \text{ de sorte non vide }} adom_R(b) \cup \bigcup_{u \in adom(q)} \langle b:u \rangle$$

* **Propriété:** la sorte de adom(b) est {b}, et $I[adom(b)] = {\langle b:u \rangle \mid u \in adom(q, I)}$

Le domaine actif est définissable

- * Il est aussi définissable en FOL, bien sûr, et c'est une des choses que fait Alice, mais on ne va pas passer par la RANF du Alice
- * Pour chaque relation R dans T, d'arité $n \ge 1$, on pose adom_ $R_i(x) = \exists x_1, ..., x_{i-1}, x_{i+1}, ..., x_n$. $(1 \le i \le n)$ $R(x_1, ..., x_{i-1}, x, x_{i+1}, ..., x_n)$ $adom_R(x) = adom_R_1(x) \lor ... \lor adom_R_n(x)$
- * Puis: $adom(x) = \bigvee_{R \in T} adom_R(x) \lor \bigvee_{a \in adom(q)} x = a$
- **Propriété:** I \vDash_{dom} adom(x)[v] ssi v(x) ∈ adom(q,I)

Cylindrification

- * (C'est le nom utilisé par Tarski dans les années 40...)
- * Si $q : A \text{ et } A \subseteq B$, $\operatorname{cyl}_{B}(q) = q \times \Pi_{b \in B-A} \operatorname{adom}(b)$
- * **Propriété:** $\operatorname{cyl}_B(q): B$ et $\mathbf{I}[\operatorname{cyl}_B(q)] = \{\operatorname{uplets}: B \to \operatorname{adom}(q, \mathbf{I}) \text{ dont} \}$ la projection sur A est dans $\mathbf{I}[q]$

La traduction (1/4)

- * Comme Attr est infini dénombrable, à bijection près on peut supposer que toute variable est un attribut
- * On peut alors identifier toute **valuation** v sur un ensemble fini de variables *B* à un **uplet** de sorte *B*
- * On traduit chaque formule *F* en une requête RA avec noms q[*F*], telle que:
 - --q[F]: free(F)
 - $-- I[[q[F]]] = {v valuation : free(F) → adom(q,I)}$ $| I ⊨_{adom(q,I)} F[v] }$

La traduction (2/4)

- * $q[x=cst] = \langle x:cst \rangle$ $q[cst=x] = \langle x:cst \rangle$ $q[cst=cst'] = \langle \rangle - \langle \rangle$ si $cst \neq cst'$, $q[cst=cst] = \langle \rangle$ $q[x=y] = \sigma_{x=y}(adom(x) \times adom(y))$ si $x \neq y$, q[x=x] = adom(x)
- * $q[R(\underline{u})]...$ plus tard, c'est un gros morceau
- $q[F \wedge G] = q[F] \bowtie q[G]$
- * $q[F \lor G] = \text{cyl}_{\text{free}(G)-\text{free}(F)}(q[F]) \cup \text{cyl}_{\text{free}(F)-\text{free}(G)}(q[G])$
- * $q[\exists x . F] = \pi_{free(\exists x . F)}(q[F])$
- * $q[\neg F] = \prod_{x \in free(F)} adom(x) q[F]$

La traduction (3/4)

```
* q[R(\underline{u})] = Q_f(\pi_A(\sigma_F(R)))
   où: schema(R) = \{a_1 < ... < a_n\}
                                                            (rappel: Attr totalement ordonné)
          \underline{u} = (u_1, \ldots, u_n)
          I_{cst} = \{i \mid 1 \le i \le n, u_i \text{ est une constante}\}
          I_{\text{var}} = \{i \mid 1 \le i \le n, u_i \text{ est une variable}\}
          pour chaque i \in I_{\text{var}}, fst(i) = \min \{j \in I_{\text{var}} \mid u_i = u_j\}
          F = \bigwedge \{a_i = u_i \mid i \in I_{cst}\} \land \bigwedge \{a_i = a_{fst(i)} \mid i \in I_{var}, i \neq fst(i)\}
          A = \{a_i \mid i \in \text{Im fst}\}\
         f: a_i \mapsto u_i, pour chaque i \in \text{Im fst (injectif, d'accord?)}
* Exemple: si R : \{a_1 < a_2 < a_3 < a_4 < a_5 < a_6\},
                    q[R((a, a), x, (b), y, y, x)] = Q_f(\pi_A(\sigma_F(R)))
```

où $F = a_1 = \langle a \rangle \land a_3 = \langle b \rangle \land a_5 = a_4 \land a_6 = a_2$,

 $A = \{a_2, a_4\}, \text{ et } f : a_2 \mapsto x, a_4 \mapsto y$

La traduction (4/4)

FOL contrainte

FOL indépendante du domaine

FOL en sémantique de domaine actif

- * On rappelle que la requête FOL q est fixée.
- * Propriété: pour toute formule FOL F, RA avec noms

$$--q[F]: free(F)$$

$$-\mathbf{I}[[q[F]]] = \{v \text{ val} : \text{free}(F) \rightarrow \text{adom}(q, \mathbf{I}) \\ | \mathbf{I} \models_{\text{adom}(q, \mathbf{I})} F[v] \}$$

* Preuve: récurrence sur F.

La traduction (4/4)

FOL contrainte

FOL indépendante du domaine

FOL en sémantique de domaine actif

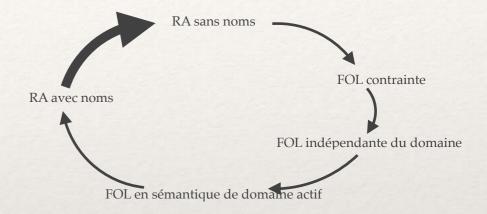
- * On rappelle que la requête FOL q est fixée.
- * Propriété: pour toute formule FOL F, RA avec noms
 - --q[F]: free(F)
 - $-- I[[q[F]]] = {ν val : free(F) → adom(q,I)}$ $| I ⊨_{adom(q,I)} F[ν] }$
- * Preuve: récurrence sur F.
- * Maintenant soit $q = \{\underline{x} \mid F\}$. On la traduit en q[F]:

La traduction (4/4)

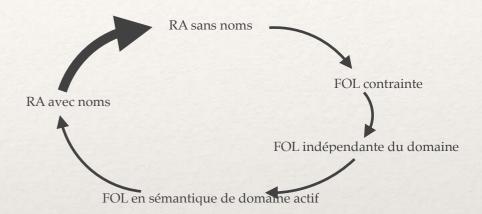
FOL contrainte

FOL indépendante du domaine

- * On rappelle que la requête FOL q est fixée.
- * Propriété: pour toute formule FOL F, RA avec noms
 - --q[F]: free(F)
 - $-\mathbf{I}[[q[F]]] = \{ v \text{ val} : \text{free}(F) \rightarrow \text{adom}(q, \mathbf{I}) \}$ $\mid \mathbf{I} \models_{\text{adom}(q, \mathbf{I})} F[v] \}$
- * *Preuve*: récurrence sur *F*.
- * Maintenant soit $q = \{\underline{x} \mid F\}$. On la traduit en q[F]:
- * Propriété: $I[q[F]] = \{v \text{ val} : \underline{x} \rightarrow \text{adom}(q, \mathbf{I}) \mid \mathbf{I} \models_{\text{adom}(q, \mathbf{I})} F[v]\}$ = $q(\text{adom}(q, \mathbf{I}), \mathbf{I}) = q_{\text{act}}(\mathbf{I})$

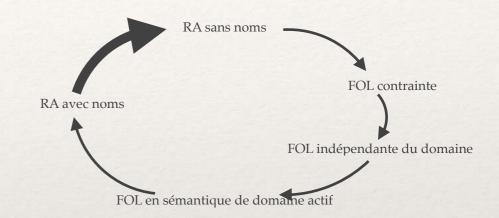


- * q requête RA avec noms
 - \rightarrow requête RA sans noms q^{o}



- * q requête RA avec noms
 - → requête RA sans noms qo
- * On va la calculer de sorte que:
 - si $q : A = \{a_1 < ... < a_n\}$, alors $q^o : n$
 - $-\mathbf{I}\llbracket q^{o}\rrbracket = \{(u_1, ..., u_n) \mid \langle a_1:u_1, ..., a_n:u_n \rangle \in \mathbf{I}\llbracket q\rrbracket \}$

 $(= \mathbf{I}[q], \text{ mod l'identification de } (u_1, ..., u_n) \text{ avec } \langle a_1:u_1, ..., a_n:u_n \rangle)$



- * q requête RA avec noms
 - → requête RA sans noms qo
- * On va la calculer de sorte que:

— si
$$q : A = \{a_1 < ... < a_n\}$$
, alors $q^o : n$

$$-\mathbf{I}\llbracket q^{o}\rrbracket = \{(u_1, ..., u_n) \mid \langle a_1:u_1, ..., a_n:u_n \rangle \in \mathbf{I}\llbracket q\rrbracket \}$$

 $(= \mathbf{I}[q], \text{ mod l'identification de } (u_1, ..., u_n) \text{ avec } \langle a_1:u_1, ..., a_n:u_n \rangle)$

RA avec noms

FOL en sémantique de domaine actif

FOL contrainte

FOL indépendante du domaine

*
$$R^{o} = R$$
 $\langle a_{1}:u_{1}, ..., a_{n}:u_{n}\rangle^{o} = (u_{1}, ..., u_{n})$
 $(\sigma_{F}(q))^{o} = \sigma_{Fo}(q^{o}),$

où F° est la conjonction des i=j (pour chaque conjoint $a_i=a_j$ de F) et des i=cst (pour chaque conjoint $a_i=c$ st de F)

$$(\pi_{\{a_1,...,a_n\}}(q))^{\circ} = \pi_{\{f[1],...,f[m]\}}(q^{\circ}) \text{ où } q: \{a_1 < ... < a_n\} \text{ et } A = \{a_{f[1]} < ... < a_{f[m]}\}$$
 $(q-q')^{\circ} = q^{\circ} - q'^{\circ} \qquad (q \cup q')^{\circ} = q^{\circ} \cup q'^{\circ}$

- * q requête RA avec noms
 → requête RA sans noms q°
- * On va la calculer de sorte que:

— si
$$q : A = \{a_1 < ... < a_n\}$$
, alors $q^o : n$

$$-\mathbf{I}\llbracket q^{o}\rrbracket = \{(u_1, ..., u_n) \mid \langle a_1:u_1, ..., a_n:u_n \rangle \in \mathbf{I}\llbracket q\rrbracket \}$$

 $(= \mathbf{I}[q], \text{ mod l'identification de } (u_1, ..., u_n) \text{ avec } \langle a_1:u_1, ..., a_n:u_n \rangle)$

RA avec noms

FOL en sémantique de domaine actif

FOL contrainte

FOL indépendante du domaine

*
$$R^{o} = R$$
 $\langle a_{1}:u_{1}, ..., a_{n}:u_{n}\rangle^{o} = (u_{1}, ..., u_{n})$
 $(\sigma_{F}(q))^{o} = \sigma_{Fo}(q^{o}),$

où F° est la conjonction des i=j (pour chaque conjoint $a_i=a_j$ de F) et des i=cst (pour chaque conjoint $a_i=c$ st de F)

$$(\pi_{\{a_1,...,a_n\}}(q))^{\circ} = \pi_{\{f[1],...,f[m]\}}(q^{\circ}) \text{ où } q: \{a_1 < ... < a_n\} \text{ et } A = \{a_{f[1]} < ... < a_{f[m]}\}$$
 $(q-q')^{\circ} = q^{\circ} - q'^{\circ} \qquad (q \cup q')^{\circ} = q^{\circ} \cup q'^{\circ}$

* La jointure naturelle se simule à coup de produits, sélections, et projections...

```
* (q \bowtie q')^{\circ} = \pi_L(\sigma_F(q^{\circ} \times q'^{\circ})) où q \bowtie q' : \{a_1 < ... < a_p\}, q : \{a_{f[1]} < ... < a_{f[m]}\}, q' : \{a_{g[1]} < ... < a_{g[n]}\} F est la conjonction des égalités f[i] = g[j] + m, lorsque 1 \le i \le m, 1 \le j \le n, et f[i] = g[j] L = \text{liste de longueur } p, dont le kième élément est i si f[i] = k, j + m si k \notin \text{Im } f et g[j] = k
```

```
* (q \bowtie q')^{\circ} = \pi_L(\sigma_F(q^{\circ} \times q'^{\circ})) où q \bowtie q' : \{a_1 < ... < a_p\}, q : \{a_{f[1]} < ... < a_{f[m]}\}, q' : \{a_{g[1]} < ... < a_{g[n]}\} F est la conjonction des égalités f[i] = g[j] + m, lorsque 1 \le i \le m, 1 \le j \le n, et f[i] = g[j] L = \text{liste de longueur } p, dont le kième élément est i si f[i] = k, j + m si k \notin \text{Im } f et g[j] = k
```

* Exemple: si R : {a < b < d} et S : {b < c < e}, (R \bowtie S) $^{\circ} = \pi_{[1,2,5,3,6]}(\sigma_{2=4}(R^{\circ} \times S^{\circ}))$ (f:1 \mapsto 1,2 \mapsto 2,3 \mapsto 4, g:1 \mapsto 2,2 \mapsto 3,3 \mapsto 5)

Requêtes conjonctives

- * Seuls connecteurs logiques autorisés: ∃ et ∧ [Alice, chapitre 4], égalité, ⊤ interdits
- * Les requêtes les plus utiles en pratique
- * Forme normale: $\{\underline{x} \mid \exists x_1, ..., x_n . \land_{i=1}^n R_i(\underline{u}_i)\}, n \ge 1$

Propriétés des requêtes conjonctives

- * Toutes les requêtes conjonctives q sont:
 - monotones [Alice, Prop. 4.2.2 p.42]: pour toutes instances I et J sur (T, schema) et dom telles que $I(R) \subseteq J(R)$ pour toute R dans T, $q(\text{dom}, I) \subseteq q(\text{dom}, J)$
 - satisfiables [ibid.]:
 - il existe toujours une instance I telle que $q(\text{dom}, I) \neq \emptyset$
 - indépendantes du domaine (et même contraintes)

Satisfiabilité des requêtes conjonctives

- * Soit $q = \{\underline{x} \mid \exists x_1, ..., x_n . \land_{i=1}^n R_i(\underline{u}_i)\}$
- * On rappelle que dom est non vide On définit $I(R_i) = dom^{n_i}$, si $R_i : n_i$, par exemple
- Ceci contraste avec la question de la satisfiabilité des requêtes FOL (même contraintes), qui est indécidable par le théorème de Trakhtenbrot (voir transparents de R. Pichler, chapitre 4)
- * Pour plus d'informations sur les requêtes conjonctives, voir transparents de R. Pichler, chapitre 6