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Abstract
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Chapter 1

Overview

The HimML language is a close cousin to the Standard ML language [6, 9]. Actually, it is Standard ML without its
module system (as of October, 1992), but with some extensions and with a specially designed run-time system. This
document is a reference for HimML version 1.0 alpha 18. It does assume some knowledge of the syntax, static and
dynamic semantics of the Standard ML language, and builds on this knowledge.

The plan of the document is as follows. In the rest of chapter 1, we quickly describe what makes the originality of
HimML. Chapter 2 is devoted to the differences between HimML and Standard ML; they are mainly extensions, but
some are mere differences. Chapter 3 lists the types and values provided upon booting the HimML executable; others
are defined in source form, with their own documentation. There is no guide to the syntax of HimML, for which the
reader is referred to [6], and to the appropriate sections of this report when HimML syntax differs from the Standard
ML syntax. Chapter 4 discusses running the system, and also how you can contribute to improve it, either by reporting
bugs or suggesting changes.

The run-time system is architectured around the concept of maximal sharing, or systematic hash-consing [4], in
which two identical objects in the heap lie exactly at the same address. This makes comparison fast, though memory
management may suffer a bit occasionally. However, this approach has a lot of advantages in terms of memory usage
(reuse of objects) and of speed (via memoization and computation sharing); these points are addressed in [4].

The main feature added to Standard ML in HimML is the collection of set and map operations, types and syntactic
constructs. A set in HimML means a finite collection of objects of the same type, where order and multiplicity are
irrelevant. A map looks like a set: it is a finite collection of associations, called maplets, from objects of a type t1 to
objects of a type t2, forming a many-to-one relation. Because maps subsume sets, sets of objects of type t are just
defined in HimML as maps from objects of type t to the special object (), the empty tuple. The need for sets and
maps as basic type constructors in programming languages is advocated in [3]. In HimML, sets and maps form the
core of the language, and, thanks to maximal sharing, operations on sets and maps are very fast. It is encouraged to
write HimML programs as executable specifications in a set-theoretic framework, for it is easy and in general more
efficient than we think it could be in advance.

Another feature added in HimML is its typing of numerical values with a notion of measure units. This scheme
allows to detect inconsistencies in scientific programs, where the problem lies not in the structure of data (numbers)
but in the nature of what they describe (units).

We shall often refer to the Standard ML language, as defined in [6] and [9]. Sometimes, it will be necessary to
distinguish particular features of a prominent implementation of Standard ML, called Standard ML of New Jersey or
SML-NJ (unpublished documentation, provided with the 1991 release of SML-NJ).

Note that there is a difference between the sign . . ., that is used to describe a repetition of objects in the syntax,
and the sign ..., which is a lexeme, used in tuple and record patterns, and also in extensible types (an extension to
Standard ML’s type system).
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Chapter 2

Differences with Standard ML

2.1 Sets
The type constructor for maps is noted -m>, and is infixed just like the -> function type constructor. When declaring
a type t1 -m> t2, the type t1 must admit equality (that is, the equality operation = must be applicable to elements
of type t1); this is because maps rely on comparison of elements of their domain.

The type of sets of objects of type t (which admits equality) is t set, which is an abbreviation for t -m> unit
(unit is the type of the empty tuple ()).

Any map type t1 -m> t2 admits equality as soon as t2 admits equality (t1 always admits equality).
Special notations are provided to build sets and maps:
{x => y, x’ => y’, x’’ => y’’} is an example of a map described by enumeration. This maps x to

y, x’ to y’, and x’’ to y’’. If some of x, x’ or x’’ are the same, for instance x=x’, then the resulting map may
associate x with either y or y’ nondeterministically.

As a shortcut, we can write x instead of x => (), so that {x,y,z} is the set containing exactly x, y and z.
{f(x) => g(x) | x in set s} is an example of a map described by comprehension. The x in set s

is the domain description. In this example, all maplets f(x) => g(x) are formed for x ranging over the set s
(actually s may be a map, but only its domain matters), and are collected to form a map. The x in set s domain
description is a particular case of the in map domain description: the domain description x => y in map m
makes x range over the domain of m, and simultaneously binds y to the image of x by m, so x in set s is syntactic
sugar for x => _ in map s. In x => y in map m, the => y part may be omitted when y is the constant ().

Other domain descriptions are of the form x in list l, which makes x sweep through the list l, and x sub map m,
which makes x sweep through the set of all maps that are included in the map m. The order in which sets are swept
through (with in set, in map or sub map) is not specified, though sweeping through the same set twice in the
same HimML session will be done in the same order. This is important since if there are two values of x that make
f(x) equal, then only the last is retained in the result. To reverse this behavior (taking the first of the two values), we
use the notation <{, as in <{f(x) => g(x) | x in set s}.

Domain descriptions may be combined with the and connector. For example, the expression

{f(x,y) => g(x) | x in set s1 and y sub map S}

maps f(x,y) to g(x) for all x in the domain of the map s1, and for all submaps y of S. This is used to build cross
products, like in {(x,y) => () | x in set s1 and y in set s2}. The order in which s1 and s2 are
swept through is nondeterministic, except that the same domain description will always sweep through the same data
in the same order during one HimML session, and that if we look at all the values of y produced for one given value
of x, they are all produced in the same order as if there were only the descriptor y in set s2 (same thing if we fix
y and look at the sequence of values for x).

Domain descriptions may be filtered with a such that phrase. For example, the expression

{(x,y) => x+y | x in set s1 and y in set s2 such that x*y=3}
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maps only couples (x,y) such that x*y=3 to their sum.
As for definition by enumeration, writing f(x) instead of f(x) => () is allowed. For instance,

{x | x sub map f}

is the set of all submaps of the map f (the powerset of f when f is a set).

2.1.1 Set and Map Expressions, Comprehensions
In general, we have the following form of set and map comprehension:

{expression [ => expression′] ||||
pattern1 [ => pattern′1] ( in map|in set|in list|sub map ) expression1
( and patterni [ => pattern′i] ( in map|in set|in list|sub map ) expressioni))*
[ such that expression′′]}

where signs and words in typewriter style are meant literally, where parentheses serve as grouping marks,
brackets enclose an optional construct, a vertical bar means an alternative and a star denotes zero or more occurrences
of a construct. The [ => pattern′i] forms are only allowed if followed by in map. The expressions expressions,
expression′, expressioni and expression′′ are ordinary HimML expressions. The patterni and pattern′i are
HimML patterns, that are essentially Standard ML patterns, augmented with special set and map patterns (see sec-
tion 2.1.2).

This expression executes as follows:

• First the expressions expressioni are evaluated, giving domains we noteDi. Let INi be the keyword in map,
in set, in list or sub map that is between patterni and expressioni.

If INi is in list, the typing system ensures thatDi is a list, then let Li = Di. If INi is in set or in map,
Di is a map (this is enforced by the typing system), and we let Li be the list of elements in the domain of Di,
in an order specified in the next paragraph. If INi is sub map, Di is a map again, and we let Li the list of
submaps of Di (i.e, maps having a domain included in the domain of Di, and mapping all x to the same y than
Di), in an order specified in the next paragraph.

Call ni the length of the list Li.

• then the lists Li are swept through, in a cross-product fashion if we used the separator | between the maplet
and domain description parts of the comprehension, or in a parallel fashion (first elements first, then all the
second elements, etc. no notion of concurrency here) if the separator was ||. This yields elements li, which are
matched again the patterni for all i, in a new local environment (in the case of the in map domain descriptor,
the pattern pattern′i, or () if absent, are matched against the image of li by the map Di).

• If all matchings succeed, and if the filter expression′′ evaluates to true in the new environment (if the
such that part is not present, we take expression′′ to be true), then expression and expression′ are
evaluated in the new environment (if absent, expression′ is taken to be ()).

• Finally, all resulting maplets are collected into a map. If there is a collision (i.e, expression evaluates to
the same value for two runs), then the last value of expression′ is taken. Conceptually, every new maplets
overwrites the old ones.

The order in which the domains are swept through has the following properties:

• lists (for in list) are swept through from left to right: x in list [a,b,c] yields a, then b, then c;

• maps (for in set and in map) are swept through in an unspecified order, going through each maplet exactly
once. This order depends only on the session (we call session a given HimML process). This means in particular
that a may come before b in one session, but after b on the same input data, in another session; however, in the
same session, the order will always be the same; this is a weak form of nondeterminism.
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Moreover, this order does not depend on the map itself, so that a and b are always encountered in the same order
in the same session, whether we sweep through {a,b,c} or {x,b,y,a} for instance. This order is actually
a typed instance of the system order �, a total order on HimML objects of the same type. The system order has
no a priori connection with any other order on numbers or strings, or sets, or whatever.

• the submaps of a map (with sub map) are swept through in a yet another unspecified order, which may not be
the arrangement of submaps in the system order. This order has the same weakly nondeterministic behavior as
the in set and in map traversals. The set of all submaps is not actually built, to save space.

• The interleaving of traversals is left unspecified in the case of the | separator. However, the order of individual
traversals is left unchanged. Precisely, number from 1 to ni the elements extracted from Di when we have only
one domain.

When we have m domains D1, . . ., Dm, we sweep through n1.b2 . . . nm elements: index these elements by
tuples (j1, . . . , jm), j1 = 1 . . . n1, . . ., jm = 1 . . . nm. Then, when ∀i 6= k · ji = j′i, the element of index
(j1, . . . , jm) occurs before the element of index (j′1, . . . , j

′
m) if and only if jk < j′k. We leave unspecified the

cases when ∀i 6= k · ji = j′i does not hold.

In the case of the || separator, all the ni are equal, and the element of index (j1, . . . , jm) occurs before the
element of index (j′1, . . . , j

′
m) if and only if ji < j′i for all i.

An alternate form of set or map enumerationsets;defined by enumeration; uses a <{ instead of the opening brace:

<{expression1 [ => expression′1]
(expressioni [ => expression′i])*}

The same holds for comprehension:

{expression [ => expression′] ||||
pattern1 [ => pattern′1] (in map|in set|in list|sub map) expression1
( and patterni [ => pattern′i] (in map|in set|in list|sub map) expressioni))*
[such that expression′′]}

The semantics are the same, except that overwriting is replaced by “underwriting”: in case of a collision, the first
maplet is retained instead of the last.

The comprehension notation has been extended to list comprehensions:

[expression ||||
pattern1 [ => pattern′1] (in map|in set|in list|sub map) expression1
( and patterni [ => pattern′i] (in map|in set|in list|sub map) expressioni))*
[such that expression′′]]

collects values of expression in a list, in the order they are encountered. This subsumes the map functional of
Standard ML:

fun map f l = [f(x) | x in list l]

Comprehensions have also been extended to handle logical structures. In this case, they are called quantifications.
We have universal quantification:

all expression ||||
pattern1 [ => pattern′1] (in map|in set|in list|sub map) expression1
( and patterni [ => pattern′i] (in map|in set|in list|sub map) expressioni))*
[ such that expression′′] end
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which sweeps through the domains as usual, and returns true if expression always evaluates to true, and false
otherwise. Evaluation of the universal quantification stops as soon as expression returns false (all pending ele-
ments of the domains are ignored), or when all domains have been traversed. The all quantifier can be seen as a
generalization of the andalso logical connective.

The existential quantification is dual (by negation) of the universal one:

exists expression ||||
pattern1 [ => pattern′1] (in map|in set|in list|sub map) expression1
( and patterni [ => pattern′i] (in map|in set|in list|sub map) expressioni))*
[ such that expression′′] end

This returns true if for some value in the domains expression evaluates to true, and false otherwise. Evaluation
of the existential quantification stops as soon as expression returns true (all pending elements of the domains are
ignored), or when all domains have been traversed. The exists quantifier can be seen as a generalization of the
orelse logical connective.

Close to existential quantification, we have the choice:

some expression ||||
pattern1 [ => pattern′1] (in map|in set|in list|sub map) expression1
( and patterni [ => pattern′i] (in map|in set|in list|sub map) expressioni))*
[ such that expression′′] end

This looks for the value e of expression in the first environment where all patterni match elements of Di while
making expression′′ true. All other elements of the domains are ignored. If e is found, then it returns SOME e. If
there is no such expression, NONE is returned. (NONE and SOME are the constructors of the option datatype; see
Section 3.)

So, existential quantification is a special case of choice: exists . . . end could be written

case (some /$\ldots$\verb/ end) of NONE => false | SOME _ => true

A last form of comprehension generalizes the sequence connector ;. It is iteration:

iterate expression ||||
pattern1 [ => pattern′1] (in map|in set|in list|sub map) expression1
( and patterni [ => pattern′i] (in map|in set|in list|sub map) expressioni))*
[ such that expression′′] end

It sweeps though the domains in the usual order, and evaluates expression in all matching environments. It is in-
teresting essentially only if expression produces or depends on side-effects. It returns (). This subsumes the app
functional of Standard ML:

fun app f l = iterate f(x) | x in list l end

Corresponding to each form of comprehension, we finally have a form of imperative comprehension, mostly useful
with programs having or depending on side-effects:

{expression [ => expression′]
| while expression′′′

[ such that expression′′]}

This evaluates expression′′′, and returns the empty set {} if it is false. Otherwise, it evaluates expression′′,
and if it is true, then expression and expression′. All maplets that we get this way (such that expression′′ evaluates
to true), are collected in a map, which is returned as soon as expression′′′ evaluates to false. Collisions are
resolved by an overwriting strategy (last maplet wins).

It is syntactic sugar for (expression′′ being assumed true when not present, and expression′ being assumed
() if absent):
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let fun collect s=
if expression′′′

then if expression′′

then collect (s ++ {expression => expression′})
else collect s

else s
in

collect {}
end

assuming s is a new variable (++ is the infix map overwrite function).
Similarly, the underwriting imperative map comprehension notation is:

<{expression [ => expression′]
| while expression′′′

[ such that expression′′]}

which is syntactic sugar for:

let fun collect s=
if expression′′′

then if expression′′

then collect ({expression => expression′} ++ s)
else collect s

else s
in

collect {}
end

The imperative list comprehension notation is:

[expression | while expression′′′

[ such that expression′′]]

which is syntactic sugar for:

let fun collect l=
if expression′′′

then if expression′′

then expression :: collect l
else collect l

else l
in

collect []
end

where l is a new variable, and :: is the infix list constructor (cons is Lisp; note that in HimML as in Standard
ML, a::l evaluates a before l).

The imperative universal quantification notation is:

all expression | while expression′′′

[ such that expression′′]
end

which is syntactic sugar for:
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let fun quantify () =
if expression′′′

then if expression′′

then expression andalso quantify ()
else quantify ()

else true
in

quantify ()
end

The imperative existential quantification notation is:

exists expression | while expression′′′

[ such that expression′′]
end

which is syntactic sugar for:

let fun quantify () =
if expression′′′

then if expression′′

then expression orelse quantify ()
else quantify ()

else false
in

quantify ()
end

The imperative choice notation is:

some expression | while expression′′′

[ such that expression′′]
end

which is syntactic sugar for:

let fun quantify () =
if expression′′′

then if expression′′

then SOME expression
else quantify ()

else NONE
in

quantify ()
end

The imperative iteration notation is:

iterate expression | while expression′′′

[ such that expression′′]
end

which is syntactic sugar for:
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let fun quantify () =
if expression′′′

then if expression′′

then (expression; quantify ())
else quantify ()

else ()
in

quantify ()
end

Notice that when expression′′ is left out (it does really serve no special purpose, but is there for orthogonality),
this is exactly the same as the classical while construct:

while expression′′′ do expression

2.1.2 Set and Map Patterns
To help in writing programs with sets, some standard patterns decomposing sets are provided in HimML.

First, the empty set notation may serve as a pattern, which matches only the empty set. Thus:

case s of
{} => f()

| _ => g(s)

executes f() when s is the empty set, and g(s) if s is not empty.
A pattern of the form {p [ => q]} matches exactly those maps (or sets) of the form {x [ => y]}, where p

matches x and q matches y (q and y are assumed to be () if not written). So:

case s of
{} => f()

| {x => y} => h(x,y)
| _ => g(s)

executes f() when s is the empty set, h(x,y) if s is the map {x => y}, and g(s) if s contains at least two
elements.

The U infix function computes the union of two sets. To mimic this behavior, the U infix pattern operator splits a
map (and not only a set) in two disjoint parts, the first one being matched by the pattern on the left of the U, the second
one being matched by the pattern on the right. For instance:

fn {x => y} U rest => g(x,y,rest)

is a function that decomposes its argument by extracting x from its domain, letting y be the value that x is mapped
to, and rest being the argument with x removed. It then applies g on the tuple (x,y,rest).

Note that the U may be computationally non trivial. It may be required from U to backtrack to find a match. For
instance:

fn {ref x => y} U rest => g(x,y,rest)

is equivalent to:

fn s => case (some (x,y) | ref x => y in map s end) of
SOME (x,y) =>

let val rest = {x} <-| s
in

g(x,y,rest)
end

| NONE => raise Match
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(? is the map application function, <-| is the infix “domain restrict by” function).
Other map patterns are expressible as syntactic sugar for patterns using U:

{p1 [ => q1] (,pi [ => qi])*} [ tt U r]

is equivalent to:

{p1 [ => q1]} ( U {pi [ => qi]})*[ tt U r]

which is not ambiguous, as U associates to the right. Notice that, because of this translation, the pattern {x,y}
matches sets of cardinal exactly 2 (x may never be equal to y), for example.

The pattern on the left of a U is actually constrained to be of the form {p1 [ => q1] (,pi [ => qi])*}. More
general patterns could have been considered, but would have led to a much more complicated evaluator, and were not
deemed worth the trouble.

Another map pattern construction generalizes the ellipsis construct already found in Standard ML record and tuple
patterns:

{p1 [ => q1] (,pi [ => qi])*,...}

is equivalent to:

{p1 [ => q1] (,pi [ => qi])*} U _

A case not covered by the above definition, but which is a natural extension, is the pattern {...} which matches
all maps, but no other object.

In general, a pattern of the form {x [ => y]}, where x [ => y] does not match all maplets inside the value
to be matched, may be slow. Indeed, in this case, the evaluator may have to backtrack to find the correct match. A
particularly simple case is the case when x is a constant pattern, like in {"abc" => y} U rest. In this situation,
the evaluator is optimized so as not to sweep through the map in argument, but to find directly the element mapped to
the constant "abc", match it with the pattern y, and match the rest of the map with the pattern rest.

Note that map patterns never get called repetitively, they only return the first correct match. Hence, for example:

{x | {x,...} in set s}

where s is a set of sets, does not compute the distributed union of elements of s, but a set containing one element
taken in each non empty element of s.

Finally, the system order may be defined with map patterns like this:

fun system_less (x,y) = let val {x’,...} = {x,y} in x’<>y end

which works for any couple of objects of the same equality type (an equality type is a type that admits equality).
Beware that x may be less than y in the system order during one session and greater than y in another session. This
may be a problem when transmitting data from a HimML process to another, or when reading back data that was saved
from a file. However, it is a convenient way to get a total order on objects of a given equality type, when the real nature
of this order does not matter.

2.1.3 Typing Sets and Maps
In the following, the expressions ei are assumed of type τ , and e′i are of type τ ′:

• {} is of type ∀’’a,’b·’’a -m> ’b (the empty map is a map of any map type).

• {e1 => e′1,. . .,en => e′n} and <{e1 => e′1,. . .,en => e′n} are of type τ -m> τ ′.

• {e1,. . .,en} and <{e1,. . .,en} are of type τ -m> unit, that is τ set.
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• The same rules hold for map patterns without the U construct. If p : τ -m> τ ′, and p′ : τ -m> τ ′, then
p U p′ : τ -m> τ ′.

• A domain descriptor p in list e is well-typed if p : τ and e : τ list for some type τ .

• A domain descriptor p [ => p′] in map e (where p′ is taken to be () is absent) is well-typed if p : τ ,
p : τ ′ and e : τ -m> τ ′ for some types τ and τ ′.

• A domain descriptor p in set e is well-typed if p : τ and e : τ -m> τ ′ for some types τ and τ ′.

• A domain descriptor p sub map e is well-typed if p : τ -m> τ ′ and e : τ -m> τ ′ for some types τ
and τ ′.

• A such that e filter is well-typed if e : bool.

• In a type context where the pattern variables inside the domain descriptors make the part after the | or the ||
well-typed, if e : τ and e′ : τ ′ (unit when e′ is absent), then:

– {e[ => e′]||||. . .} :τ -m> τ ′

– <{e[ => e′]||||. . .} :τ -m> τ ′

– [e |||| . . .] : τ list

– some e |||| . . . end : τ option

– iterate e |||| . . . end : unit

If e : bool:

– all e |||| . . . end : bool

– exists e |||| . . . end : bool

• If e : τ , e′ : τ ′ (unit when e′ is not present), e′′ : bool, e′′′ : bool:

– {e[ => e′] |while e′′′[ such that e′′]} : τ -m> τ ′

– <{e[ => e′] |while e′′′[ such that e′′]} : τ -m> τ ′

– [e |while e′′′[ such that e′′]] : τ list

– all e |while e′′′[ such that e′′] end : bool

– exists e |while e′′′[ such that e′′] end : bool

– some e |while e′′′[ such that e′′] end : τ option

– iterate e |while e′′′[ such that e′′] end : unit

These types are deducible from the equivalent forms given in the previous section.

2.2 Numbers and Physical Units
Apart from integers, there is only one numerical object in HimML: the complex number with real and imaginary parts
represented as floating-point numbers (as C doubles, i.e. on 64 bits usually). 1.0, ˜2.5, 1.0E5 and 1.0: ˜2.0
are all numbers in HimML, their values in standard mathematical notation are 1, −2.5, 105 and 1 + 2i. From version
1.0α11 on, there are also integers, but we shall not call them numbers to avoid confusing matters, and we shall consider
the latter rather as counters or sets of bit-fields. 1, 3 are integers, not floating-point numbers.

To help programmers write scientific code, typically to model computations on physical dimensions, a system of
typing with physical units has been created in HimML (see [5]).

We conceive a numerical type as any type that represents a physical quantity, whatever it may be. The simplest
numerical type is num, which is the type of numbers without a unit (all numbers above have type num). We shall see
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that numerical types are monomials over a set of basic dimensions (basic numerical types, like mass, speed, etc.), that
can be declared with the dimension keyword. Units or scales are scale factors inside a dimension (kilogram, ton or
ounce are units, or scales of the dimension called mass).

A numerical type variable can be instantiated only by a numerical type. It is written with a sharp (#) sign in
the name, following all quotes, underscores and digits. For instance, ’#a is a numerical type variable, ’’#a is a
numerical type variable with the equality attribute (this is futile: all numerical types admit equality), ’1#a is an
imperative numerical type variable of strength 1.

The declaration: dimension mass(kg) declares a new base dimension, called mass, which is incomparable
with all other base dimensions. As it is a declaration, it obeys all the usual lexical scoping rules of declarations like
val, fun, type, . . . It also declares a scale by default, called kg (this scale is optional; if it is not provided, as in
dimension person, then the default scale has the same name as the dimension). Scale names can be appended to
numbers to indicate their type: typing 1‘kg; at the toplevel after the above declaration will result in the display:

it : mass
it = 1‘kg
Numerical types can be multiplied or raised to a power (actually, the definition of a numerical type is any product

of powers of dimensions and numerical type variables). For any numerical types t1 and t2, t1‘t2 is the product of
both types, and t1ˆn is the power of t1 to the number n. For instance, we can write:

dimension distance(m) and time(s);
type speed = distance‘timeˆ ˜1;
type acceleration = distance‘timeˆ ˜2;
Scales too can be multiplied and raised to a power. We may declare new scales by multiplying and raising old ones

to a power, with the scale declaration (obeying the lexical scoping rules of declarations):
scale 1‘km = 1000‘m; (* 1 kilometer is 1000 meters *)
scale 1‘h = 3600‘s; (* 1 hour is 2600 seconds *)
scale 1‘kph = 1‘km‘hˆ ˜1; (* kilometer per hours *)
Scale declarations interfere with syntax analysis, so now 130‘km‘hˆ ˜1 is understood by the HimML toplevel,

which answers:
it : distance‘timeˆ ˜1
it = 36.111111111111111‘m‘sˆ ˜1
Thus HimML manipulates not only numbers but numerical values, that is couples of numbers with a scale. Though,

scaling is done during elaboration (the typing phase), so the evaluator never bothers with different scales and is there-
fore as fast as if there were no scaling facility.

Numerical typing is also fully polymorphic, thanks to numerical type variables, and the typing algorithm infers
most general types, even with numerical types (the notion of most general must however be relativized). For instance,
addition is + : ’#a * ’#a -> ’#a, that is, it takes two numerical values representing the same physical di-
mension, and returns a value of the same type. This effectively prohibits adding distances with energies for instance,
while allowing programmers not to declare what dimensions they want to add. More complex types can be used;
for instance, division is / : ’#a * ’#b -> ’#a ‘ ’#bˆ ˜1, which means that it takes two numerical values
having independent types, and returns a value having the quotient type.

Transcendental functions like log, or special functions like floor cannot having fully polymorphic numerical
types, because it would make no sense. This is why the type of log is num -> num, as the type of floor. Note
that type conversions are possible: for example, if x is of type mass, we can convert it to a distance by writing
x*1‘m‘kg ˆ ˜1.

A special case for which we have to be careful is the power operation **. Indeed, ** is basically a transcendental
function, calling exp and log, so is of type num * num -> num. But this type is too restrictive: writing x**2
would imply that x ought to be of type num. To alleviate this, the typing algorithm knows the special case when the
second argument to ** is an explicit numerical constant n (with no scale): the operation fn x => x**n is then of
type ’#a -> ’#aˆn.

Some other subtleties worth mentioning are the following. First, all dimensionless constants (like 1.0, ˜3.5)
have type num, except 0.0, whose type is ’#a; in other words, 0.0 has all numerical types. This is consistent with
the semantics of units. However, 0‘kg still has only the mass type, for example. Notice, by the way, that we write
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dimensionless constants with a dot and a zero figure after the dot (like 0.0 instead of 0). This is to disambiguate
between the number 0.0 (of type num) and the integer 0 (of type int); if you put scales after the constant, this is not
needed since there is no ambiguity.

Then, it is possible to declare scales with negative or even complex scale factors. For example, the declaration
scale 1‘a = ˜2‘b is legal, provided b is an already declared scale. This poses a problem, in that comparison
functions like < then seem to be ill-defined: indeed, assume 1‘b>0 holds, then as ˜0.5‘a=1‘b, we should have
˜0.5‘a>0, which is odd. The solution is to say that all comparisons (as well as all other functions on numerical
values) are done with respect to the default scale. So, in the example, if b is the default scale, then 1‘b>0 and
˜0.5‘a>0.

For a list of dimensions and scales, look at the file ‘units.ml’. Note that units can be used not only to represent
physical dimensions, but also multiplier prefixes (scale 1‘k = 1000.0, so that 1‘km=1‘k‘m), or more abstract
dimensions (dimension memory(byte), dimension apples and oranges, etc.).

2.3 Other Differences
Here we list other differences between HimML and Standard ML.

• As { and } are the most natural candidates to delimit sets and maps, they are used to this purpose in HimML.
Consequently, they cannot be used as record delimiters as in Standard ML. Instead, record expressions, record
patterns and record types are delimited with |[ and ]|.

• map types, and some others too (dynamics, promises, continuations, numerical types) have been added to ML:
see section 3.

• on the chapter of types, contrarily to Standard ML where type functions are total, in HimML they are partial.
Indeed, whereas in Standard ML any type constructor may be applied to any type, this is not so in HimML. The
most prominent cases are operations on numerical types. For example, if we write:

type ’a pair = ’a * ’a;
type ’’a eqpair = ’’a * ’’a;
type ’a wrong_square = ’aˆ2;
type ’#a right_square = ’#aˆ2;
type (’a,’b) wrong_relation = (’a * ’b) set;
type (’’a,’’b) right_relation = (’’a * ’’b) set;

then pair and eqpair denote different types: the latter can only be applied on types that admit equality (to
simplify, types not built with the function arrow, nor with promises, dynamics or continuations); in Standard
ML, the notational difference between ’a and ’’a would have been ignored. wrong_square is illegal in
HimML because you cannot take the square of the non-numeric type ’a; on the other hand, right_square
is correct because ’#a is explicitly restricted to denote only numerical types, and is then a type function whose
domain is that of numerical types. The same holds of wrong_relation and right_relation, this time
considering types that admit equality instead of numerical types (sets can only be built with values that can be
compared by the equality predicate).

• In Standard ML, a tuple is a record whose field names are numerical. Not so in HimML: tuples are different
from records. The reason is that we allow extensible tuple and record types, that is, types whose length or whose
set of fields is not completely determined, and that extension of tuples and of records do not have the same
semantics. Actually, extension of tuples is a single inheritance mechanism, whereas extension of records is a
multiple inheritance device (see section 3). One of the consequences is that numerical labels are forbidden in
records. Another is that () is the empty tuple, of type unit, but that |[]| is the empty record, of type |[]|.
Yet another is that, though there are records with only one field, there are no 1-tuples in HimML, because there
would be no way of coding one; indeed, the notation (e) does not represented the 1-tuple built on e, but e
directly.
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• In Standard ML, the only operations available on records are construction (|[labeli = valuei, 1 ≤ i ≤
n]|), and field selection (#label). In particular, building a record with some fields changed is monomor-
phic: it is impossible to change fields a and b in a record r, say, without rebuilding the whole record as
|[a = x,b = y,. . .]|. HimML provides the ++|[. . .]| construction for this purpose. In the case above,
we could write r ++|[a=x,b=y]|. This is mostly a notational convenience, as it still rebuilds the whole
record at run-time. But it also allows one to write code as above, regardless of which fields are present or not in
r; so, if new fields are added to the type of r in a later version of the same software, code written this way won’t
break.

• The abstype keyword, in Standard ML, introduces abstract data types, that is, data types whose constructors
are hidden, and which are accessible only through a set of functions, defined by the programmer. To make the
implementation of these data types completely hidden from the outside, the designers of Standard ML have
chosen to hide the equality attributes of these types. That is, in Standard ML, no abstract type admits equality.
We felt that it was too bad, and allowed the programmer to explicitly state that he wanted the equality attribute
exported, through an eqtype declaration.

• As in Standard ML of New Jersey, and contrarily to Standard ML, nested recs in val declarations are for-
bidden. Hence, val rec f = . . . and rec g = . . . and val rec rec f = . . . are not parsed in
HimML.

• The names of exceptions are entirely different in HimML and Standard ML, except for Match and Bind. Some
have been added (Empty, ParSweep, NoMem) to accomodate the HimML extensions to Standard ML, others
have been eliminated (arithmetic exceptions mainly), because of their poor practical value, already recognized
in Standard ML of New Jersey. The exceptions associated with file input/output have also been completely
redesigned, for file handling is dealt with completely differently in HimML and Standard ML (see section 4.9).

• Due to the presence of maps in the language, it is very easy to code memoizing functions (functions that re-
member the value they compute on previous arguments). However, Standard ML’s type system would give
’’_a -> ’_b as the most general type for memoizing functions, instead of ’’a -> ’b. To alleviate this
problem, and also to simplify the coding of memo functions, keywords memofn and memofun have been
added, that are the memoizing analogues of fn and fun.

• Finally, some details: parenthesized type variable sequences with only one variable inside are allowed, e.g.

type (’a) foo = ’a bar

is allowed. The if, then, and else constructs are not derived forms, so they don’t change meanings when
redefining true or false. Similarly, the list expressions written in brackets don’t change meanings when ::
is redefined. Type variables may begin with one or two primes, but no more (’’’a is forbidden). Finally, type
variables that could not be generalized at toplevel do not give rise to an error, but only to a warning, and will be
bound to actual types as soon as context permits.

15



Chapter 3

Core Types

• A type variable is an identifier beginning with a quote ’. Following the quote, there may be:

– an optional quote, signalling that this is an equality type variable, that can be instantiated only with equality
types. Intuitively, equality types are the types of those objects that may be safely tested for equality. This
excludes essentially functions, promises, dynamics, continuations and abstract types with no specified
equality1, and all types built from such types, except for ref and array types.

– next, an optional integer, greater than or equal to 1. The variable is then a weak type variable (in Standard
ML of New Jersey parlance, where they were introduced), or an imperative type variable (in Standard ML
parlance). The integer is called the strength of the type variable. Non weak type variables may be thought
as having strength infinity. The strength of a type expression is the minimum of the strengths of its type
variables (infinity if it has none). A weak type variable may only be instantiated by a type of equal or
less strength. The strength of a weak type variable in the type of an expression f may be thought as the
minimum number n of arguments e1, . . ., en such that evaluating f(e1). . .(en) creates the corresponding
mutable object (ref or array in general).
For compatibility with Standard ML, instead of an integer, we may write the underscore (_) character.
This will be interpreted as though we had written the integer 1.

– next, an optional sharp (#) sign. The variable is then a numerical type variable, which may be instantiated
only with numerical types. A numerical type is either a numerical type variable, the special type num, the
name of a dimension (as defined by a dimension declaration), a numerical product τ.τ ′ of numerical
types, or a numerical power of a numerical type τˆx, where x is a number (note that if the number has
a negative real part, there should be a blank between the ˆ and the ˜, because ˆ˜ is a valid ML symbol;
however, in this context the parser is smart enough to know that such a symbol would be useless, and
correctly recognizes ˆ˜ as though it were ˆ ˜).
Any numerical type already admits equality, so the extra quote indicating an equality type variable is
superfluous in the case of numerical type variables.

– finally, a sequence of letters, digits, quotes or underscores beginning with a letter.

Contrarily to Standard ML, attributes of type variables matter in type declarations. For example:

type ’’a pair = ’’a * ’’a

declares a polymorphic type of pairs, but this type is restricted to pairs of values admitting equality. The same
declaration in Standard ML would incur no such restriction. This feature is necessary in HimML because type
functions are partial, whereas they are total (they apply to all types) in Standard ML. Indeed, the numerical

1In Standard ML, no abstract type admits equality; this restriction is lifted in HimML.
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product and the numerical power of types apply only to numerical types, and the map type constructor may only
be applied to two types, the first of which having to admit equality.

Therefore, type declarations such as:

type ’a product = ’a ‘ ’a

type ’a ’b map = ’a -m> ’b

would have no meaning in HimML. We should have written:

type ’#a product = ’#a ‘ ’#a

type ’’a ’b map = ’’a -m> ’b

The imperative nature of type variables is not checked, however, in conformance with the Definition of Standard
ML. Therefore, declaring:

type ’1a fakearray = ’1a ref list

does not preclude the use of the type expression ’2a fakearray, though it seems to break the rule of not
replacing a type variable by a type of higher strength, and is in fact mostly equivalent to:

type ’a fakearray = ’a ref list

The only difference is with datatypes, where:

datatype ’a fakearray = fake of ’a ref list

builds a constructor fake : ’a ref list -> ’a fakearray, whereas declaring

datatype ’1a fakearray = fake of ’1a ref list

would declare the constructor with the more restrictive type fake : ’1a ref list -> ’a fakearray.

• string is the type of all character strings. There is no character type in HimML. However, all one-character
strings are pre-allocated, and play the role of characters. There is no limit on the length of strings except the
length of the largest free block in memory.

• int is the type of integers. Integers are machine integers only, for now. They will be replaced by arbitrary
precision integers (bignums) in a future version, but for now all overflows merely give rise to undefined behavior,
contrarily to what the definition of Standard ML prescribes (such overflows should raise exceptions). Integers
are considered as considered as counters or as bit-fields, but not as proper numbers, which are represented by
objects of numerical types.

Machine integers are in the range [min_int,max_int], and are represented with nbits bits.

• num is the type of all numbers, that is, numerical values with no dimension. Numerical values are stored as
complex numbers with real and imaginary parts in floating point format, double precision (64 bits).

There is no real type as in Standard ML. All Standard ML functions using real arguments, or producing
real arguments use or produce numerical values in HimML, whether of type num or of a more general numer-
ical type.

• bool is the datatype of boolean values:
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datatype bool = false | true

Note that false and true are datatype constructors, and thus may be used in patterns to match themselves.
Contrarily to Standard ML, while loops, if conditionals are not defined as syntactic sugar, and so don’t
change their behavior under a redefinition of true and false. This is also valid of all new comprehension,
quantification and iteration constructs provided in HimML.

• list is the predefined datatype of lists. It is declared by:

datatype ’a list = nil | :: of ’a * ’a list

:: is furthermore declared as having infix status, being right associative, and having precedence 5. This is as
though we had typed:

infixr 5 ::

• option is the predefined datatype of optional values. It is declared by:

datatype ’a option = NONE | SOME of ’a

NONE represents the absence of value, and SOME x represents the presence of the value x.

• void is a predefined empty datatype. It is declared by:

datatype void = VOID of void

and has as sole constructor VOID : void -> void. As you may check, it is impossible to construct a ML
value of type void; this is why it is a void type.

Stupid as it may seem, it is useful at least in the following case. Assume you want to provide a function quit
that never returns. Because quit never returns, it is likely that its type will be of the form τ -> ’a, where ’a
is a new type variable. Now, you may want to declare the type of such functions that never return, as follows:

type never_returns : τ -> ’a

where τ is the argument type, and ’a is a new type variable, making it clear that such a function indeed
cannot return. Unfortunately, you cannot write this in ML, because ’a should be given as a parameter to the
type constructor never_returns, i.e., it forces you to write type ’a never_returns = . . . , which
is probably not what you want. The void is a workaround:

type never_returns : τ -> void

indeed states that a function of type never_returns can only return an object of type void, namely some-
thing that does not exist. On the other hand, if f is a function of this type, expressions like

if . . . then f() else g()

won’t type-check if g() is an expression that returns a result; the solution is to change f() into, say, the
sequence (f(); raise NonSense), which now has any type, and where exception NonSense cannot be
raised.

• ref is the pseudo-datatype of polymorphic mutable references. You may think of it as declared with:
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datatype ’1a ref = ref of ’1a

which also declares a constructor ref : ’1a -> ’1a ref.

• array is the type of polymorphic mutable arrays. They were introduced in Standard ML of New Jersey, and
are somehow a generalization of refs, with multiple indexed mutable entries.

• intarray is the type of (non-polymorphic) arrays of integers. Integer arrays take less space than objects
of type int array and put less pressure on the garbage collector, but are less flexible in that they can only
contain objects of type int.

• exn is the extensible pseudo-datatype of exceptions. Exceptions are declared with the exception declaration,
are raised with the raise construct and caught with the handle construct.

• promise is the abstract type of promises. Promises are a poor man’s implementation of lazy data struc-
tures. When e is an HimML expression of type τ , the expression delay e builds a promise, that is a
structure representing the future evaluation of e, of type τpromise. Evaluation of e if forced with the
force : ’a promise -> ’a function. An expression inside a promise is only evaluated once: forc-
ing a promise stores the result in place of e inside the promise, and sets a flag indicating that the promise has
been forced.

Considering that HimML has memoizing functions, delay e is roughly equivalent to memofn () => e;
then force is fn p => p(), with ’a promise = unit -> ’a. However, promises are more space-
efficient than memoizing functions, and delay and force are more explicit.

Promises come from the algorithmic language Scheme [12]. Promises do not admit equality.

• cont is the abstract type of continuations, inspired from Scheme [12], and typed as in [2]. A continuation is
reified with the callcc function (or the catch function) and thrown with the throw function.

• dynamic is the special type of dynamic values. Dynamic values may be thought as couples (v, σ), where e is
a value and σ is a type, such that e if of type σ. Dynamics are built with the pack pseudo-datatype constructor.

Dynamics are the basis for functions that must operate on data of different types, but do something depending
on the actual type of the data. A different sort of dynamics was introduced in [1], ours is more in the spirit
of Mycroft (cited in the paper). It corresponds rather precisely to the dynamic construct (with type dyn) of
CAML [7]. Uses are type-safe communications of data between independent processes, checkpointing processes
(saving data in a file to retrieve them later), polymorphic printing functions, and so on.

dynamic does not admit equality, because this would not make sense in the general case.

• unit is the type of the 0-ary tuple (). Contrarily to Standard ML, this is not the same as the empty record
|[]| (noted {} in Standard ML; this notation was abandoned in HimML because it was incompatible with the
map notation).

• * is the infix n-ary type product constructor (n ≥ 2): τ1 * . . . * τn is the type of all tuples (e1,. . .,en)
with e1 : τ1, . . ., en : τn.

As an extension to the Standard ML type system, extensible tuple types are introduced in HimML:

τ1 * . . . * τn * ... : ’rest

is the type of all tuples (e1,. . .,em) with m ≥ n and e1 : τ1, . . ., en : τn (an exception is the case n = 1,
where it is not the type of any 1-ary tuple, only 2-ary and higher tuples, because there are just no such things as
1-ary tuples in HimML).

This allows the HimML type system to lift some restrictions on the typing of tuple patterns with an ellipsis: the
pattern (p1,. . .,pn,...) has type τ1 * . . . * τn * ... : ’a, if pi : τi for all i. As a special case,
the selector function #n (n ≥ 1) is fully polymorphic in HimML (not in Standard ML), and has type:
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#n : ’a1 * . . . * ’an * ... : ’rest -> ’an

The type qualifying the ellipsis must be a type variable. This type variable can only be subtituted for by a
tuple type. If it admits equality (say, ’’rest), then all undescribed components are to be of equality types;
imperative and weak type variables (say, ’nrest, with n ≥ 1), constrains all undescribed components to be of
imperative types with strengths at least n; Combinations are possible, too.

A tuple type admits equality if and only if all its component types admit equality (including its possible ellipsis).
The strength of a tuple type is the minimum strength of its component types (and of its ellipsis, if present).

Extension of extensible tuple types is done by instantiating the extension variable. However, extensions are
mostly built by the type inferencing engine. Single inheritance is automatic. To take an example, the selector
function #1 has type ’a * ... : ’rest -> ’a. When applied to, say,

(1,"abc",false) : num * string * bool

the type of #1 is automatically specialized to become num * string * bool -> num.

• For any n types τ1, . . ., τn, and any distinct label identifiers lab1, . . ., labn (n ≥ 0),

|[lab1 : τ1,. . .,labn : τn]|

is the type of all records having exactly the labi as field labels, the field labi having type τi. Labels are ordinary
ML identifiers, that is sequences of letters, digits, quotes or underscores beginning with a letter; contrarily
to Standard ML, positive integers (so-called numerical labelsfields;numerical;) are not considered labels. In
particular, tuples are not special cases of records. Moreover, the delimiting characters for records and record
types in HimML are |[ and ]| instead of { and }; this choice was made so as not to conflict with the map
constructions of HimML.

As for tuples, extensible record types are provided: |[lab1 : τ1,. . .,labn : τn,... : ’rest]| is the
type of all records having at least the labi as labels, the field labi having type τi. The extension variable ’rest
may be constrained to admit equality, or to be imperative or weak, as for tuple extensions. This type variable
can only be subtituted for by a record type.

This enables full typing of record patterns with ellipsis, which Standard ML restricts because of its less powerful
type system. This extension of Standard ML typing is a weaker extension than the one proposed in [13].

As in Standard ML, the field selector #lab is the function that picks the field lab out of the record passed as an
argument. Contrarily to Standard ML, it is fully typable:

#lab : |[lab : ’a, ... : ’rest]| -> ’a

Contrarily to Standard ML again, records are entirely different from tuples. In Standard ML, tuples are just
records with only numerical labels. In HimML, record labels cannot be numerical. This was dictated by a
choice of implementation of records entirely different from the implementation of tuples. Witness the semantic
difference between ellipsis in tuple and record types: were tuples to be special cases of records, an extensible
tuple type like a * b * ... : ’rwould actually stand for |[1 : ’a, 2 : ’b,... : ’r]|, which
would then contain the type |[1 : ’a, 2 : ’b,extra : ’c]|, which is not the type of any tuple,
because extra is not an integer. We want to consider extensible tuple types as containing only tuple types.

A record type admits equality if and only if all its field types admit equality (including those subsumed by its
ellipsis, if any). The strength of a record type is the minimum strength of its field types (and of its ellipsis, if
present).

Extension of extensible record types is done by instantiating the extension variable. However, extensions are
mostly built by the type inferencing engine. Multiple inheritance is automatic: if (α1

1, . . . , α
1
m1
, ρ1)τ1, . . .,

(αn1 , . . . , α
n
m1
, ρn) τn are all extensible record types (where by convention, the extension variable is ρj , the

last variable), and τ ′ is a record type (extensible or not), the construct:
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(α1
1, . . . , α

1
m1
,(. . .(αn1 , . . . , α

n
m1
, τ ′) τn) . . . τ1)

is a new record type, having all the fields of the types τ1, . . ., τn, τ ′, and which is extensible if and only if τ ′ is
extensible. The resulting labels are associated with the types they have in the τi and τ ′. If two types provide the
same label, they must associate it with the same type. Notice also that the types involved may not be records,
but more complicated types involving extensible record types.

We get automatic multiple inheritance on records with this scheme, thanks to type inference. For example, if lab
is an identifier, the selector #lab is the function that takes as argument any record with a label lab, and returns
the corresponding field. Thus, #lab has type |[lab : ’a,... : ’r]| -> ’a in HimML (it is not typable
in Standard ML). Then, a function such as:

fn data => #multiplicand(data) * #multiplier(data)

has the effect that the variable data inherits the types |[multiplicand : ’#a,... : ’r1]| and
|[multiplier : ’#a,... : ’r2]|. Thus, this function has type:

|[multiplicand : ’#a,multiplier : ’#b,... : ’r]| -> ’#a ‘ ’#b

• -> is the infix function type constructor. All functions in ML are basically unary. Zero-ary functions may
be simulated as functions taking () as argument. n-ary functions (n ≥ 2) are functions taking n-tuples as
arguments. Variable arity functions may be coded as functions taking list arguments. If arguments to a function
must be referred to with keywords, it is possible to use record arguments, where the record labels serve as
keywords. If a n-ary function does not depend on the order or multiplicity of their arguments, it is natural to
encode the arguments as a set (for the logical ’or’ or ’and’ on formulas, for an equality function, etc.).

• ‘ is the numerical multiplication type constructor. If τ and τ ′ are numerical types, then τ‘τ ′ is the numerical
type of the product of any two values of types τ and τ ′. For example, if we have

dimension intensity(A) and time(s)

then 3‘A * 4‘s is of type intensity‘time.

The ‘ symbol is also used as the scale multiplication operator: the value of 3‘A * 4‘s is 12‘A‘s. There
can be no confusion between this and the type multiplication operator.

• ˆ is the numerical power type constructor. If n is any number (that is, any complex number, without dimension),
and τ is a numerical type, then τˆn is a numerical type; e.g., we may write dimension distance(m)
and type area = distanceˆ2. The power type operator may be used also to specify inverse types, for
instance in dimension time(s) and type frequency = timeˆ ˜1 (notice the space between ˆ and
˜, which informs the ML parser that we didn’t intend to write the symbol ˆ˜).

The ˆ symbol is also used as the power operator for scales; e.g., the value of 1/100 s is 0.01‘sˆ ˜1. There
can be no confusion between the two uses of ˆ, as with the ˆ infix string concatenation operator.

• -m> is the infix map type constructor. If τ and τ ′ are types, and on the condition that τ admits equality, then
τ -m> τ ′ is the type of maps mapping objects of type τ to objects of type τ ′. The resulting map type admits
equality whenever τ ′ admits equality.

When τ ′ is unit, τ -m> unit is written τ set, and represents the types of finite sets of objects of type τ .

• polymorphic datatypes and abstract datatypes are provided exactly as in Standard ML. An abstract datatype
declaration has the form:

abstype implementation with interface end
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where implementation is a standard datatype binding list (what usually follows a datatype keyword), and
interface is a list of declarations.

In Standard ML, no declared abstract datatype admits equality, to preserve its abstract character. In HimML
however, equality declarations may be used inside the interface part, to define the equality predicate on an
abstract datatype. Equality declarations take the form:

eqtype τ1 [and τi]*

where the τi are amongst the declared abstypes. This declaration must be the first in the interface. It is an error
to declare a τi as admitting equality with this declaration, if it did not admit equality according to the rules of
equality of datatype bindings (see [6] and [9]).
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Chapter 4

The Standard Library

4.1 General Purpose Exceptions and Functions
The following exceptions are defined:

• exception Bind is raised when a value binding (val or val rec) fails to match. The Definition of
standard ML stipulates that Bind may be raised only in situations where a match is not exhaustive, and that the
compiler must warn the user of this. Map pattern matching complicates a lot static analysis of pattern matching,
so the HimML compiler does not warn the user for now. HimML does not give any warning about redundancy
of patterns either.

A typical example of a non-exhaustive pattern is:

let val a::l = r in a end

which raises Bind if r is the empty list.

• exception Match is raised when a function cannot be applied to its argument, though they agree on types.
A typical example is:

(fn (a::l) => a) r

or the equivalent:

case r of a::l => a

which raises Match if r is the empty list.

• exception ParSweep is raised when a comprehension (or quantification, or iteration) using the || sepa-
rator is meant to sweep through domains of different cardinalities (the ni in the explanation of comprehensions
in section 2.1.1).

However, the moment where this exception is raised is voluntarily left unspecified. For example, the current
interpreter checks the cardinalities before sweeping, but it would be easier to check them after sweeping in
compiled code, for example.

• exception NoMem is raised when the garbage collector fails to get enough space to complete a computation.
This exception cannot be handled in production code, because trying to correct the problem usually implies that
we allocate some memory, which only makes the situation worse.
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• exception Stack was intended to be raised whenever the stack overflowed. However, in HimML, it never
overflows, because when the stack becomes full, the system reifies the current continuation, empties the stack
and proceeds with the computation.

• exception NonSense is raised when evaluating a non-sensical expression. In theory, whether it is in
Standard ML or in HimML, this can never happen, because all expressions that type-check are well-formed.
However, when some expression fails to type-check, it is usually bad practice to stop compiling immediately.
The usual solution is to allow for several errors to occur before stopping compilation. In HimML, we have
chosen not to stop compilation at all, and instead to compile a special expression raise NonSense in place
of all non-sensical (ill-typed) expressions.

This exception can also be raised when reloading a module from a file, and then executing some code that
contains continuations coming from that file. Continuations cannot be saved to disk, so NonSense is then
raised. If this happens, the system should have given a warning when loading the module, saying that it was
attempted to load a continuation object. If this happens, it is probably a bug in HimML.

• exception Catch is raised when a continuation captured by catch (not by callcc) is thrown outside
of its defining dynamic scope (i.e, thrown twice, including the implicit throw that happens at the end of the
evaluation of the body of the function given to catch or callcc). A continuation reified by callcc will
never give rise to such a problem, however they are slower to handle. The exception Catch is not systematically
raised each time a continuation captured by catch is thrown twice. Sometimes, such continuations may assume
the behavior of callcc continuations.

• exception ReturnToTheFuture is an exception that should very rarely be raised. Its purpose is to
correct a subtle problem with continuations. At each instant, there is a notion of age in HimML, which counts
the number of toplevel declarations that have been evaluated. Continuations record the age where they were
created. Then, throw is illegal on future continuations (with an age higher than the current one). If throw is
applied on such continuations, the exception ReturnToTheFuture is raised. This can happen because we
can create a toplevel reference r pointing to a continuation, capture the current continuation (at age n), then
evaluate some declarations, capture the current continuation (at age n′ > n), store it in r, then relaunch the
old age n continuation. If now, we evaluate some other declarations and then throw the age n′ continuation
stored in r, we would get into an inconsistent state, because different time lines cannot cohabit in the current
implementation (the only way we know to do it would be to slow down the whole implementation drastically).
So we forbid this.

General functions are:

• identity : ’a -> ’a is the identity function fn x => x.

• not : bool -> bool is the logical negation, fn false => true | true => false.

• = : ’’a * ’’a -> bool is the polymorphic equality predicate, defined only on equality types. It is
declared infix of precedence 4. It is advised not to change this, as the HimML parser depends on it.

• <> : ’’a * ’’a -> bool if the polymorphic difference predicate, that is fn (x,y) => not (x=y).
It is declared infix of precedence 4.

• o : (’b -> ’c) * (’a -> ’b) -> (’a -> ’c) is the function composition operator.

It is declared infix, left associative and of precedence 3. This function could also have been defined as

fn (f,g) => fn x => f(g(x))

• before : ’a * ’b -> ’a evaluates its two arguments, and returns the first. It is declared infix, left
associative of precedence 0. It is used as in e before e′, which evaluates e, then e′, and returns the result of
e.
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4.2 Lists
The exception:

exception Nth

is defined. It is raised whenever it is attempted to access an element outside of a list. Recall that lists are defined
by the datatype declaration:

datatype ’a list = nil — :: of ’a * ’a list

:: : ’a * ’a list -> ’a list is the list constructor, and is declared infix, right associative of prece-
dence 5.

• null : ’a list -> bool returns true if the list in argument is empty. This is equivalent to

fn nil => true | _ => false

• hd : ’a list -> ’a returns the first element of the list in argument, or raises Match if the list is empty.
This is equivalent to:

fun hd (x :: _) = x

• tl : ’a list -> ’a list returns the list composed of all but the first element of the list in argument,
or raises Match if the list is empty. This is equivalent to:

fun tl (_ :: x) = x

• len : ’a list -> int computes the length of a list.

• nth : ’a list * int -> ’a gets the n+ 1th element of the list l when applied to the arguments l and
n. If n is out of range (n < 0 or n >=len l), Nth is raised. Note that elements are indexed starting at 0. nth
is declared infix, left associative of precedence 9.

• nthtail : ’a list * int -> ’a list gets the nth tail of the list l when applied to the arguments l
and n. If n out of range (n < 0 or n >len l), Nth is raised. Note that tails are indexed starting at 0. When
n <len l, op nth (l,n) is the first element of nthtail l,n); if n =len l, nthtail l,n) is nil.

• @ : ’a list * ’a list -> ’a list concatenates two lists. It could have been defined as:

fun op @ (nil,l) = l | op @ (a::l1,l2) = a:: op @(l1,l2)

@ is declared infix, right associative (as in Standard ML of New Jersey; the Definition of Standard ML defines it
to be left associative) of precedence 5.

• append : ’a list list -> ’a list is the distributed concatenation of lists. It could be defined as:

fun append nil = nil | append (l::r) = l @ append r

The application of append to a list comprehension is compiled in an optimized form, where the concatenations
are done on the fly, without building the list comprehension first.

• revappend : ’a list * ’a list -> ’a list appends the reversion of the first list to the second
list. We could define:
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fun revappend (nil,l) = l | revappend (a::l1,l2) = revappend (l1,a::l2)

• rev : ’a list -> ’a list reverses a list. It could be defined as:

fun rev l = revappend (l,nil)

• map : (’a -> ’b) -> ’a list -> ’b list applies its first argument to each element in turn of the
list in second argument, and return the list of all results. This is equivalent to:

fun map f l = [f x | x in list l]

• app : (’a -> ’b) -> ’a list -> unit applies its first argument to each element in turn of the list
in second argument. This is used purely for side-effects.

fun app f l = iterate f x | x in list l end

• fold : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b combines the elements of the list in third
argument by applying the binary operation in first argument on all elements of the list. The second argument is
assumed to be the neutral element of the binary operation. For example, fold (op +) 0 l computes the
sum of the elements of the list l. fold computes from the right end of the list towards the left end. It can be
defined by:

fun fold f b =
let fun f2 nil = b

| f2 (e :: r) = f(e,f2 r)
in

f2
end

• revfold : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b combines the elements of the list in
third argument by applying the binary operation in first argument on all elements of the list. The second ar-
gument is assumed to be the neutral element of the binary operation. For example, revfold (op +) 0 l
computes the sum of the elements of the list l. revfold computes from the left end of the list towards the
right end. It can be defined by:

fun revfold f b =
let fun f2 b nil = b

| f2 b (e::r) = f2 (f (e,b)) r
in

f2
end

4.3 Sets and Maps
Exceptions related to sets and maps are:

• exception MapGet, raised when a map is applied to an element outside of its domain (with the ? function).

• exception Empty, raised when taking the distributed intersection of the empty set, or choosing an element
in the empty map.
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• exception Range, raised when trying to build a range {m, . . . , n} with non-integer bounds (with the to
operator)

Functions on sets and maps are:

• empty : (’’a -m> ’b) -> bool tests whether a map is empty. It is equivalent to fn m => m={}.

• ? : (’’a -m> ’b) -> ’’a -> ’b applies a map to an element. It is currified, so that the expression
?m(a) retrieves the element associated with a in m. If there is no element associated with a in m, the exception
MapGet is raised.

• inset : ’’a * (’’a -m> ’b) -> bool returns true if its first argument belongs to the domain of
the map in second argument. It can be defined as:

fun op inset (a,m) = (?m(a); true) handle MapGet => false

It is declared infix, of precedence 4.

? and inset share a one-entry cache, where the last maplet is stored, so that testing inset then using ? incurs
almost no speed penalty.

• inmap : (’’a * ’’b) * (’’a -m> ’b) -> bool returns true if its first argument is a couple
(x, y) such that the maplet x => y is in the map in second argument. It can be defined as:

fun op inset (a,m) = (?m(a)=b) handle MapGet => false

It is declared infix, of precedence 4.

? and inset share a one-entry cache, where the last maplet is stored, so that testing inset then using ? incurs
almost no speed penalty.

• subset : (’’a -m> ’b) * (’’a -m> ’b) -> bool tests the inclusion of the domains of maps in
argument. It may be defined as:

fun op subset (m1,m2) = all x inset m2 | x in set m1 end

It is declared infix, of precedence 4.

• submap : (’’a -m> ’’b) * (’’a -m> ’’b) -> bool tests the inclusion of maps: it returns true
if the first map is a submap of the second. It may be defined as:

fun op submap (m1,m2) =
all x inset m2 andalso ?m1(x) = ?m2(x) | x in set m1 end

It is declared infix, of precedence 4.

• dom : (’’a -m> ’b) -> ’’a set computes the domain of a map; it is the identity on sets. It is syn-
tactic sugar for:

fun dom m = {x | x in set m}

• rng : (’’a -m> ’’b) -> ’’b set computes the range of a map. The range of a non-empty set is
always {()}. rng is syntactic sugar for:
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fun rng m = {y | _ => y in map m}

• card : (’’a -m> ’b) -> int computes the cardinal of a map. It may be defined as:

fun card {} = 0 | card {_ => _} U m’ = 1+card m’

• <| : (’’a -m> ’c) * (’’a -m> ’b) -> (’’a -m> ’b) is the “domain restrict to” function. If
s is a map and m is another map, then s <| m is the map m, whose domain is restricted to the elements in the
domain of s. This may be defined by:

fun op <| (s,m) = {x => y | x => y in map m such that x inset s}

It is declared infix, right associative of precedence 7.

• <-| : (’’a -m> ’c) * (’’a -m> ’b) -> (’’a -m> ’b) is the “domain restrict by” function.
If s is a map and m is another map, then s <-| m is the map m, whose domain is restricted to the elements
outside the domain of s. This may be defined by:

fun op <-| (s,m) = {x => y | x => y in map m such that not (x inset s)}

It is declared infix, right associative of precedence 7.

• |> : (’’a -m> ’’b) * (’’b -m> ’c) -> (’’a -m> ’’b) if the “range restrict to” function. If
s is a map and m is another map, the m |> s is the map m, where only the maplets x => y such that y is in
the domain of s are considered. This may be defined by:

fun op |> (m,s) = {x => y | x => y in map m such that y inset s}

It is declared infix, left associative of precedence 7.

• |-> : (’’a -m> ’’b) * (’’b -m> ’c) -> (’’a -m> ’’b) if the “range restrict by” function.
If s is a map and m is another map, the m |-> s is the map m, where only the maplets x => y such that y
is outside the domain of s are considered. This may be defined by:

fun op |-> (m,s) = {x => y | x => y in map m such that not (y inset s)}

It is declared infix, left associative of precedence 7.

• ++ : (’’a -m> ’b) * (’’a -m> ’b) -> (’’a -m> b) is the map overwriting operator. It takes
two maps m and m′, and returns a map m′′, whose domain is the union of the domains of m and m′, and which
maps every element x of the domain of m′ to ?m′(x), and every other element x to ?m(x). Thus m′′ is m,
over which the associations of m′ have been written.

To underwrite instead of overwriting, write m′ ++ m instead of m ++ m′. The only difference is that m′

will be evaluated before m.

++ is declared infix, left associative of precedence 6.

• overwrite : (’’a -m> ’b) list -> ’’a -m> ’b is the distributed overwriting function. It re-
turns the first map in the list, overwritten by the second, the third, etc. It is equivalent to:

fun overwrite nil = {}
| overwrite (m1::rest) = m1 ++ overwrite rest
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The application of overwrite to a list comprehension is compiled in an optimized form, where the overwrit-
ings are done on the fly, without building the list comprehension first.

• underwrite : (’’a -m> ’b) list -> ’’a -m> ’b is the distributed underwriting function. It
returns the last map in the list, overwritten by the next to last, the penultimate, etc. It is equivalent to:

fun underwrite nil = {}
| underwrite (m1::rest) = underwrite rest ++ m1

The application of underwrite to a list comprehension is compiled in an optimized form, where the under-
writings are done on the fly, without building the list comprehension first.

Note that overwrite o rev=underwrite, and underwrite o rev=overwrite.

• delta : (’’a -m> ’b) * (’’a -m> ’b) -> (’’a -m> ’b) computes the symmetric difference
of two maps. This is the overwriting of one map by another, restricted by the intersection of the domains. It may
be defined by:

fun op delta (m,m’) = (m’ <-| m) ++ (m <-| m’)

(or equivalently, (m <-| m’) ++ (m’ <-| m)). It generalizes the classical notion of symmetric differ-
ence of sets. It is declared infix, left associative of precedence 7.

• choose : (’’a -m> ’b) -> ’’a chooses an element in the domain of the map in argument. It raises
Empty if the map is empty. It is syntactic sugar for:

fun choose {} => raise Empty
| choose {x => _,...} = x

or for:

fun choose m = case (some x | x in set m end) of
SOME x => x

| NONE => raise Empty

• choose_rng : (’’a -m> ’b) -> ’b chooses an element in the range, and raises Empty if the map is
empty. The element chosen in the range is precisely the image by the map of the one chosen by choose, as
shows the equivalent form:

fun choose_rng m = ?m(choose m)

• split : (’’a -m> ’b) -> (’’a -m> ’b) * (’’a -m> ’b) splits a map in two disjoint maps,
whose union is the original one. In general, the splitting won’t yield maps of equal (or nearly equal) cardinalities.
However, the splitting has the following properties:

– Splitting a map of cardinality greater than or equal to 2 yields two non empty maps. Hence, recursive
procedures that decompose their map arguments with split until its cardinality goes down to 1 or 0 will
always terminate.

– If (m1,m2)=split m, then all elements in the domain of m1 are less than elements in the domain of
m2 in the system order.

– Splitting depends only on the domain, not on the range. That is, assume if dom m=dom m′, and both
(m1,m2)=split m and (m′1,m

′
2)=split m′, then dom m1=dom m′1 and dom m2=dom m′2.
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– Splitting has the statistical property that if two maps have similar domains (that is, their domains differ
for a small number of elements), recursively splitting both domains will on average unearth an optimum
number of common subdomains. For a more detailed description of this property, refer to [11].
As a consequence, recursive memo functions with map arguments that recurse through splittings of their
arguments should be good incremental functions, recomputing quickly their results on data similar to
previous similar data.

• U : ’’a set * ’’a set -> ’’a set is the union of two sets. It may be defined as a special case of
map overwriting, because sets are special cases of maps:

fun op U (s : ’’a set,s’ : ’’a set) = s ++ s’

(or equivalently, s’ ++ s). It is declared infix, left associative, of precedence 6.

• & : ’’a set * ’’a set -> ’’a set is the intersection of two sets. It may be defined as a special
case of map domain restriction, because sets are special cases of maps:

fun op & (s : ’’a set,s’ : ’’a set) = s <| s’

It is declared infix, left associative, of precedence 7.

• intersects : (’’a -m> ’b) * (’’a -m> ’c) -> bool returns true if its two arguments have
domains with a non-empty intersection. It can be defined as:

fun op intersects (m,m’) = not (empty (m <| m’))

It is declared infix, of precedence 4.

• \ : ’’a set * ’’a set -> ’’a set is the difference of two sets. It may be defined as a special case
of the domain restrict by operator, because sets are special cases of maps:

fun op & (s : ’’a set,s’ : ’’a set) = s’ <-| s

It is declared infix, left associative, of precedence 7.

• union : (’’a set -m> ’b) -> ’’a set is the distributed union of the sets in the domain of the
argument, it is quite similar to the overwrite and underwrite functions. It can be defined as:

fun union {} = {}
| union {s => _} = s
| union ss = let val (s1,s2) = split ss

in
union s1 U union s2

end

The application of union to a set or map comprehension is compiled in an optimized form, where the unions
are done on the fly, without building the set comprehension first.

• inter : ((’’a -m> ’’b) -m> ’c) -> (’’a -m> ’’b) is the distributed intersection of maps
(and hence of sets, too) in the domain of its arguments. It is mostly used when ’’b and ’c are both unit, in
which case it computes the distributed intersection of a set of sets. It raises Empty on the empty set. It can be
defined as:

30



fun inter {} = raise Empty
| inter {s => _} = s
| inter ss = let val (s1,s2) = split ss

in
inter s1 & inter s2

end

The application of inter to a set or map comprehension is compiled in an optimized form, where the intersec-
tions are done on the fly, without building the set comprehension first.

• mapadd : (’’a * ’b) * (’’a -m> ’b) -> (’’a -m> ’b) adds one maplet to a map, overwrit-
ing the map. It may be defined as:

fun mapadd ((x,y),m) = m ++ {x => y}

It is only a bit faster than writing m ++ {x => y}.

• mapaddunder : (’’a * ’b) * (’’a -m> ’b) -> (’’a -m> ’b) adds one maplet to a map,
underwriting the map. It may be defined as:

fun mapaddunder ((x,y),m) = {x => y} ++ m

It is only a bit faster than writing {x => y} ++ m (and the order of evaluation is different).

• mapremove : ’’a * (’’a -m> ’b) -> (’’a -m> ’b) removes a maplet from a map. It may be
defined as:

fun mapremove (x,m) = {x} <-| m

It is only a bit faster than writing {x} <-| m.

• inv : (’’a -m> ’’b) -> (’’b -m> ’’a) inverses a map. Its definition is the same as:

fun inv m = {y => x | x => y in map m}

so in case m is not invertible, inv returns a map that maps y to the largest x in the system order such that m
maps x to y.

• O : (’’b -m> ’c) * (’’a -m> ’’b) -> (’’a -m> ’c) is the composition of maps. It is pre-
cisely defined by:

fun op O (m,m’) = {x => ?m(y) | x => y in map m’ such that y inset m}

It is declared infix, left associative of precedence 3. It is the map version of the o function composition operator.

• to : int * int -> int set is the range function. If a and b are the first and second argument respec-
tively, to returns the set of all integers x such that a ≤ x ≤ b. We could have defined to by:

fun op to (a,b) =
let fun f x = if x>b then {} else {x} U f(x+1)
in

f a
end
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to is declared infix, left associative of precedence 9, so that we may write a to b.

• mapoflist : ’a list -> (int -m> ’a) converts a list to a map from its indices to its elements. It
may be defined by:

fun mapoflist l =
let fun f(_,nil) = {}

| f(n,a::l) = {n => a} ++ f(n+1,l)
in

f(0,l)
end

• inds : ’a list -> int set computes the set of indices of a list l, i.e, {0,. . .,len l-1}. It may
be defined by:

fun inds l = 0 to (len l-1)

or by val inds = dom o mapoflist.

• elems : ’’a list -> ’’a set computes the set of elements of the list in argument. It may be defined
by:

fun elems l = {x | x in list l}

or by val elems = rng o mapoflist.

There is now an alternative data type for maps in HimML, the table type. This implements imperative maps:
unlike the map type, objects of type table are updated in a destructive way, just like hash-tables. Objects of type
table, which we shall just call tables, are not really faster than using applicative references, but they put less stress
on the sharing mechanism and the garbage collector of HimML, which may result in space and even time savings.

The type of tables mapping objects of type ’’a to ’b is

type (’’a, ’b) table

You can think as a kind of equivalent of the type (’’a -m> ’b) ref. Associated functions are:

• table : unit -> (’’_a, ’_b) table creates a fresh, empty table. If tables were implemented as
objects of type (’’a -m> ’b) ref, this would be equivalent to:

fun table () = ref {};

• t_get : (’’a, ’b) table -> ’’b -> ’a option reads an element off a table. Precisely, t_get t x
returns SOME y if x is mapped to y by the table t, and NONE if x has no entry in t. If tables were implemented
as objects of type (’’a -m> ’b) ref, this would be equivalent to:

fun t_get t x =
SOME (?(!t) x) handle MapGet => NONE;

• t_put : (’’a, ’b) table -> ’’a * ’b -> unit, called as t_put t (x, y) adds a new bind-
ing from x to y to the table t, erasing any previously existing binding for x. If tables were implemented as
objects of type (’’a -m> ’b) ref, this would be equivalent to:

fun t_put t (x, y) =
t := !t ++ {x => y};
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• t_put_behind : (’’a, ’b) table -> ’’a * ’b -> unit, called as t_put_behind t (x, y)
adds a new binding from x to y to the table t, except if any binding for x already existed. If tables were imple-
mented as objects of type (’’a -m> ’b) ref, this would be equivalent to:

fun t_put_behind t (x, y) =
t := {x => y} ++ !t;

• t_remove : (’’a, ’b) table -> ’’a -> unit, removes any entry associated with its second ar-
gument from the table given in first argument. If tables were implemented as objects of type (’’a -m> ’b) ref,
this would be equivalent to:

fun t_remove t x =
t := {x} <-| !t;

• t_iter : (’’a, ’b) table -> (’’a * ’b -> bool) -> boolis the standard iterator over ta-
bles. This is meant to implement a form of existential quantification, but can be used to loop over the table, and
doing some computation on each entry, just like the iterate quantifier. Calling t_iter t f iterates over
all elements of the table t, in some indefinite order, calls f (x,y) for each entry x => y in t. This stops
when the table has been fully traversed, and then returns false, or after the first call to f returns true, in
which case iter t f returns true.

If tables were implemented as objects of type (’’a -m> ’b) ref, this would be equivalent to:

fun t_iter t f =
exists
f (x, y)

| x => y in map !t
end;

This can be used to implement iterate-style loops, by writing

t_iter t (fn (x, y) => (f(x,y); false)); ()

Warning: it is definitely a bad idea to modify the table t while you iterate on it.

• t_collect : (’’a, ’b) table -> (’’a * ’b -> (’’c -m> ’d)) -> (’’c -m> ’d) is
an iterator over tables, just like t_iter. This one is rather meant to implement set and map comprehensions:
t_collect t f iterates over all elements of the table t, in some indefinite order (although it is guaranteed
to be the same as the one used by t_iter), calls f (x,y) for each entry x => y in t, and computes the
overwrite of all maps returned by each call to f.

If tables were implemented as objects of type (’’a -m> ’b) ref, this would be equivalent to:

fun t_collect t f =
overwrite [f (x, y)

| x => y in map !t];

For example, getting the contents of the table t as a map can be effected as:

t_collect t (fn (x, y) => {x => y})

Building the map of all x => y in t such that the predicate P (x,y) holds can be done by:

t_collect t (fn (x, y) => if P (x,y) then {x => y} else {})

33



Warning: it is definitely a bad idea to modify the table t while you iterate on it.

• t_reset : (’’a, ’b) table -> unit resets the table in argument. If tables were implemented as
objects of type (’’a -m> ’b) ref, this would be equivalent to:

fun t_reset t = (t := {});

4.4 Refs and Arrays
Refs and arrays are the fundamental mutable data structures of HimML, as in Standard ML of New Jersey (only refs
exist in the definition of Standard ML). Ref and array types always admit equality, even if their argument types do not.
Equality is decided according to the following rules:

• Every ref or array is equal to itself.

• Any newly created ref (by ref), or newly created array (by array or arrayoflist or iarray or iarrayoflist),
is different from any other ref or array.

In short, refs and arrays are not shared, and are compared by their addresses1.
Some syntax extensions are defined to allow you to write a more readable code to handle arrays. In particular:

• [|x1, . . . , xn|] denotes the array containing x1, . . . , xn in this order. This is an abbreviation for

arrayoflist [x1, . . . , xn]

Furthermore, the compiler actually does not build the list to convert it to an array afterwards, but builds the array
directly. This is also the syntax used by the pretty-printer to print out arrays.

• a.(n) abbreviates sub (a, n), and denotes the element at position n (starting from 0) in array a.

• a.(n) .:= e abbreviates update (a, n, e), i.e. it stores the value of e in array a at position n. Note that a
need not be a variable name, but can be any object of type an array.

There is however no similar syntactic sugar for non-polymorphic integer arrays (of type intarray), only for
polymorphic arrays (of type ’a array, for any ’a).

The following exception is defined:

exception Subscript

It is raised when accessing an element outside of an array, by sub or update, or by isub or iupdate.
The following functions are provided:

• ref : ’1a -> ’1a ref creates a new mutable reference.

• := : ’a ref * ’a -> unit modifies the value of a reference, that is, assigns the value of the second
argument to the reference in first argument. It is declared infix, of precedence 3.

• ! : ’a ref -> ’a is the dereferencing function. It gets the value stored inside a reference. It could have
been defined as:

fun !(ref v) = v

because ref is understood in ML as a (fake) datatype constructor.

1Actually, all objects in HimML are compared by their addresses, because any two equal objects are located at the same address.
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• array : int * ’1a -> ’1a array creates an array with n elements equal to e, where n and e are the
arguments. If n is negative, the exception Subscript is raised. n is called the length of the array.

• sub : ’a array * int -> ’a dereferences the nth element of the array a (indices start at 0), where
a and n are the arguments. If n is negative or greater than or equal to the length of the array, the exception
Subscript is raised.

A more readable notation for sub (a,n) is a.(n).

• update : ’a array * int * ’a -> unit modifies the nth element of the array a, replacing it by
the value e, where a, n and e are the arguments. If n is negative or greater than or equal to the length of the
array, the exception Subscript is raised.

A more readable notation for update (a, n, e) is a.(b) .:= e.

• length : ’a array -> int gets the length of the array in argument.

• arrayoflist : ’1a list -> ’1a array converts a list into an array with the same elements in the
same order. The length of the resulting array is exactly the length of the argument list.

• iarray : int * int -> intarray creates an array with n integer elements equal to e, where n and e
are the arguments. If n is negative, the exception Subscript is raised. n is called the length of the array.

• isub : intarray * int -> int dereferences the nth element of the integer array a (indices start at
0), where a and n are the arguments. If n is negative or greater than or equal to the length of the array, the
exception Subscript is raised.

• iupdate : intarray * int * int -> unit modifies the nth element of the array a, replacing it
by the integer value e, where a, n and e are the arguments. If n is negative or greater than or equal to the length
of the array, the exception Subscript is raised.

• ilength : intarray -> int gets the length of the array of integers in argument.

• iarrayoflist : int list -> intarray converts a list into an array with the same integer elements
in the same order. The length of the resulting array is exactly the length of the argument list.

4.5 Strings
Strings are ordered sequences of characters (we call size of the string the length of the sequence). ML does not provide
a type of characters, though one-character strings may serve this purpose. Strings are assumed coded according to
the 7-bit ASCII standard. However, characters are usually 8 bits wide: the characters of code greater than 127 are
interpreted in a system-dependent fashion. The string length is encoded separately from the sequence of characters
that composes it: no special character is reserved to represent the end of a string, in particular, any string may contain
the NUL character (\000).

The following exceptions are defined:

• exception Ascii, raised when using a number that is not the code of an ASCII code (with 8-bit characters,
a number that is not an integer between 0 and 255).

• exception StringNth, raised when accessing an element outside a string.

• exception RE of int, raised with an integer error code when the regexp function encounters an error.
The remsg function can be used to get a plain text description of the error.

The functions are:
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• explode : string -> string list converts a string into the list of its characters, where characters
are represented as one element strings. For instance explode "abc" is ["a","b","c"].

• implode : string list -> string is the inverse of explode. If given a list of characters (one-
character strings), it produces the corresponding string. Actually, it accepts any list of strings, whatever their
size, and concatenates them, as a generalization of the intended semantics.

• ˆ : string * string -> string concatenates two strings. It could have been defined as:

fun op ˆ (s,s’) = implode (explode s @ explode s’)

(or implode [s,s’], noticing the generalization of implode though ˆ is more efficient. ˆ is declared
infix, right associative of precedence 6.

• concat : string list -> string is the distributed concatenation of strings. Because of the general
character of implode, implode and concat are synonymous.

• size : string -> int computes the size of a string. This may be defined by:

fun size s = len (explode s)

although it does not build the exploded list.

• chr : int -> string builds the string having as only character the character with code n given as argu-
ment. If n is not the code of a character, the exception Ascii is raised.

• ord : string -> int gets the code of the first character of the string. The exception StringNth is
raised if the string is empty ("").

• ordof : string * int -> int gets the code of the n+1th character in the string s, where s and n are
the arguments. The index n starts from 0. If n < 0 or n is greater than or equal to the size of s, the exception
StringNth is raised. This is equivalent to:

fun ordof (s,n) = ord (explode s nth n) handle Nth => raise StringNth

• substr : string * int * int -> string extracts a substring from the string s, given as first ar-
gument. Call i the second argument, and j the third. substr(s,i,j) returns the string of all characters from
indices i included to j excluded. substr raises StringNth if i < 0 or j >len s, or i or j is not integer. It
may be defined as:

fun substr (s,i,j) =
let fun f k =

if k>=j
then ""

else chr (ordof (s,k)) ˆ f(k+1)
in

f i
end

• strless : string * string -> bool compares strings in lexicographical order, the order on char-
acters being defined by the order on their codes. Equivalently:
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fun op strless (s,s’) =
let fun less (_,nil) = false

| less (nil,_) = true
| less (c::l,c’::l’) =

ord c<ord c’ orelse
ord c=ord c’ andalso less(l,l’)

in
less (explode s,explode s’)

end

strless is declared infix, of precedence 4.

• regexp : string ->
|[match : string -> (int * int) option,

matches : string -> bool,
matchsub : string * int * int -> (int * int) option,
subst : string -> string]|

builds a regular expression matcher and substitution engine, on the model of the Unix grep utility. This is based
on Harry Spencer’s regexp(3) package.

regexp re builds a non-deterministic finite automaton with some optimizations for recognizing the language
defined by the regular expression re. It returns a record with four methods, match, matches and matchsub
for matching, and subst for substituting substrings matched previously by match in a given string.

The match function, applied on a string s to be searched, looks for the first (leftmost) occurrence of a sub-
string of s that is matched by the regular expression re. It returns SOME (i, j) if it has found one, and then
substring (s, i, j) is the matched substring. If it cannot find one, it returns NONE.

For example:

val |[match,...]| = regexp "yp";

builds a match function for finding the first occurrence of "yp" in a string. Then, to look for an occurrence of
the latter in various strings:

match "type checking";

returns SOME (1,3).

The syntax of regular expressions is mostly as in any other regexp package. The special characters are:

– ˆ matches the empty string, but only at the beginning of the string s to be matched.

– $, similarly, matches the empty string, but at the end of the string s to be matched. Therefore, to test
whether a string s is in the language defined by re, it is enough to test:

case #match (regexp "ˆre$") (s,0,size s) of SOME _ => true | _ => false

– \\< matches the empty string at the beginning of a word (any sequence of letters, digits and underscores).

– \\> matches the empty string at the end of a word.

– \\b matches the empty string at the beginning or end of a word.

– \\B matches the empty string everywhere except at the beginning or end of a word.

– \\w matches any word-constituent character (a letter, a digit, or an underscore).

– \\W matches any non word-constituent character (anything but a letter, a digit, or an underscore).
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– \\ (one backslash character) can be used to quote the next character. This is useful when you wish to
include a special character, such as ., as an ordinary character.

– . matches any single character.

– [. . .] defines a character group, so that [a-z] matches any letter in small caps, [ˆA-Z] matches any
character that is not a capital letter, and so on.

– (. . .) defines a group, on which operators like * or + for example can be applied as a whole. Groups can
also be used to mark matched substrings for future reference by the subst function. For example:

val |[match,subst,...]| = regexp "ˆ(foo)*(a*)(bar)*$";
match "foofooaaaaaabar";
subst "\\0;\\1;\\2;\\3";

returns "foofooaaaaaabar;foo;aaaaaa;bar".

– \\1, . . . , \\9 can also be used to match whatever was last recognized by the corresponding parenthesized
group. For example:

val |[subst,match,...]| = regexp "ˆ(a*)b\\1$";
match "aaabaaa";

returns SOME (0,7), and indeed "aaabaaa" is a group of n as (here, n = 3), followed by a b, and
then the same group of n as. This can be used to recognize sets of words that are non regular. (This feature
does not work in Harry Spencer’s version of the regexp package on which the HimML version is based,
but works in HimML.)

– * is a suffix. If g is a letter, a character group or a parenthesized group, g* matches any sequence of zero
or more words, each one matched by g.

– + is as *, except that it matches a sequence of at least one word.

– ? is as *, except that it matches a sequence of at most one word.

The matches function is a trimmed down version of match, which only returns whether there is a match or
none. So #matches (regexp re) s is equivalent to:

(case #match (regexp re) s of SOME _ => true | NONE => false)

The matchsub function is, on the contrary, a puffed up version of match, which does not examine the
whole string to be matched, but only a substring: #matchsub (regexp re) (s, i, j) looks for a sub-
string of s that would be matched by re, but only between positions i and j. It then returns SOME (i′, j′)
if it has found a match: i′ and j′ are the bounds for the leftmost match between positions i and j. Other-
wise, it returns NONE. Notice that i′ and j′ are positions in s, not in the substring substr (s, i, j). In fact,
#matchsub (regexp re) (s, i, j) is equivalent to:

(case #match (regexp re) (substr (s, i, j)) of
SOME (i’,j’) => SOME (i+i’,i+j’)

| NONE => NONE)

As substr, matchsub raise the exception StringNth if the positions i, j are out of bounds.

Any of these functions may raise the exception RE n, where n is an error code. regexp itself may raise it,
when the regular expression re contains a syntax error, or contains too deeply nested parentheses (the current
limit is 10 levels), etc. The remsg function provides a hopefully legible error message.

A possible bug is that NUL characters (of code 0) may be recognized erratically. It is better not to include any
NUL characters in either the regular expression or the string to be matched.
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• remsg : int -> string translates the regular expression error code in argument (as returned as argument
of a RE exception) into a string in human-readable form.

• intofstring : string -> int converts the input string into an integer. This assumes the integer is
written in decimal; minus signs may be written in standard notation (-) or as in ML (˜). No error is returned,
even if the input string is not the decimal representation of an integer. To check this, call regexp "[˜-]?[0-9]+"
first.

Note: to convert back an integer i to a string, use

let val f as |[convert, ...]| = outstring ""
in

print f (pack (i:int));
convert ()

end

• numofstring : string -> num converts the input string into a real number. This assumes the real is
written in decimal; minus signs may be written in standard notation (-) or as in ML (˜). No error is returned,
even if the input string is not the decimal representation of a real. To check this, call

regexp "[˜-]?[0-9]+(\\.[0-9]*)?([eEfFgG][˜-]?[0-9]+)?"

first.

Note: to convert back a number x to a string, use

let val f as |[convert, ...]| = outstring ""
in

print f (pack (x:num));
convert ()

end

4.6 Integer Arithmetic
HimML integers are machine integers, that is, integers in the range [min_int,max_int], and are represented with
nbits bits.

Exceptions on integer operations can be:

• exception Arith, which is raised whenever an arithmetic error occurs, for example division by 0. (Over-
flow in addition or multiplication is normally not dealt with, and just produces wrong results—more precisely,
results modulo the word size—on most machines. This is implementation-dependent.)

Non-negative integers are 0, 1, 2, . . . , 42, . . . Negative integers are written with the ˜ negation operator in front.
The following operations are defined. Basic operations like +, -, etc. are not overloaded as in Standard ML. For

example, + is always an integer function. For analogous numerical (floating-point) functions, see Section 4.7. For
example, floating-point addition is #+, not +.

• + : int * int -> int is integer addition. It is declared infix, left associative of precedence 6.

• - : int * int -> int is integer subtraction. It is declared infix, left associative of precedence 6.

• * : int * int -> int is integer multiplication. It is declared infix, left associative of precedence 7.

• ˜ : int -> int is integer negation.
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• sqr : int -> int squares its argument.

• abs : int -> int computes the absolute value of its argument.

• < : int * int -> bool returns true if its first argument is less than its second argument.

• > : int * int -> bool returns true if its first argument is greater than its second argument.

• <= : int * int -> bool returns true if its first argument is less than or equal to its second argument.

• >= : int * int -> bool returns true if its first argument is greater than or equal to its second argument.

• min : ’#a * ’#a -> ’#a returns the least of its two arguments.

• max : int * int -> int returns the greatest of its two arguments.

• div : int * int -> int is quotient extraction. It is declared infix, left associative of precedence 7. The
definition conforms to the definition of Standard ML, where the quotient has the smallest possible absolute value
(the remainder has the same sign as x).

• mod : int * int -> int is the remainder operation.

It is syntactic sugar for fn (x,y) => x - y*(x div y). It is declared infix, left associative of prece-
dence 7.

• divmod : int * int -> int * int returns both the quotient and remainder of the integers in argu-
ment. This could be defined as fn (x,y) => (x div y,x mod y), but is normally faster.

• bor : int * int -> int computes the binary inclusive or (the disjunction) of the two integers in argu-
ment. There is a one bit at some position in the result if there was a one at the same position in at least one of
the argument integers.

• bxor : int * int -> int computes the binary exclusive or of the two integers in argument. There is
a one bit at some position in the result if there was a one at the same position in exactly one of the argument
integers.

• band : int * int -> int computes the binary and (the conjunction) of the two integers in argument.
There is a one bit at some position in the result if there was a one at the same position in both of the argument
integers.

• bnot : int -> int computes the binary negation of the integer in argument. There is a one but at some
position in the result if there was a zero at the same position in the argument.

• lsl : int * int -> int computes the logical shift left of the first integer by the number of bits specified
in the second argument. Its behavior is unspecified if the number of bits is negative.

• lsr : int * int -> int computes the logical shift right of the first integer by the number of bits spec-
ified in the second argument. Its behavior is unspecified if the number of bits is negative.

• asr : int * int -> int computes the arithmetic shift right of the first integer by the number of bits
specified in the second argument (arithmetic means that the sign bit is kept as is, and propagates through the
shifting). Its behavior is unspecified if the number of bits is negative.

• inc : int ref -> unit increments the integer pointed to by the reference in argument.

• dec : int ref -> unit decrements the integer pointed to by the reference in argument.
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• rand : unit -> int draws a pseudo-random equidistributed number in the integer interval [min_int,
max_int]. The method used is based on a generalized feedback shift register [8], with generating polynomial
x55 + x24 + 1. The period is 255 − 1, which means that, practically, the generator never loops back to any
previous state.

• irand : int -> int draws a pseudo-random equidistributed number in the integer interval [0, x[, where
x is the given argument. If x ≤ 0, it instead draws an equidistributed pseudo-random integer in [0,max_int]∪
[min_int, x[ (think of integers as two’s complement integers). So if x = 0, this is equivalent to rand. This
calls zrand anyway.

This can be used to draw equidistributed integers in [a, b[ (with a < b) by calling a+ irand(b− a).

4.7 Numerical Operations
The real and imaginary parts of numbers are floating-point numbers, which are classified according to the IEEE754
standard. A floating-point number may be:

• zero (0.0). In HimML, the negation of 0.0 is exactly 0.0, that is 0.0 and ˜0.0 are identified in HimML (this is
not so in the IEEE754 specification).

• a normalized, positive or negative number. These are ordinary numbers (significant, non-zero, not too small, not
too large).

• a denormalized number, that is a number whose absolute value is too small to be represented as a normalized
number, but not small enough to be mistaken for zero. Denormalized numbers will only appear in IEEE754
implementations of HimML.

Denormalized numbers are useful because they make the rounding of small numbers degrade smoothly as these
tend towards zero. Numerically speaking, testing a number against being zero or denormalized is the right way
to decide if we can divide by it.

• infinity, whether it be +inf or ˜inf. There are no infinities in non-IEEE754 systems. Dividing by zero a
non-zero number x yields an infinity, positive if x > 0, negative if x < 0 in an IEEE754 system, and raises the
Arith exception in non-IEEE754 systems.

• a NaN (Not a Number). NaNs represent numerical errors (dividing 0 by 0, taking the square root of a negative
real number, etc.), and are provided only in IEEE754 systems; on other systems, an Arith exception is raised
instead.

The fact that an infinity or a Nan is produced (in IEEE754 systems), or an Arith exception is raised (in non-
IEEE754 systems) by a computation means usually that the computation is wrong. In this case, the exception system
is better suited to find numerical bugs, provided we have a means of locating the place where the exception is raised.

However, in production code, these error conditions may still crop up for limit situations. It is then unacceptable
for code to stop functioning because of this: so infinities and NaNs should be used. In general, users had better use a
system obeying the IEEE754 standard (or its successors). The IEEE754 standard defines trapping mechanisms to be
used for debugging numerical codes; they are not used in HimML now, but may be in a future version of the debugger.

Classification of numbers is accomplished with the auxiliary types:

datatype numClass = MNaN of int | MInf | MNormal | MDenormal
| Zero | PDenormal | PNormal | PInf | PNaN of int

numClass encodes both the class and the sign of a real number. In the case of a NaN, the NaN code is also
provided as an integer. NaN codes are system-dependent; only NaN codes from 1 to 7 are recognized in HimML;
unrecognized codes are represented by 0. NaN codes and the constructors MNaN, MInf, MDenormal, PDenormal,
PInf, PNan are never used in a non-IEE754 system. The exception:
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exception Arith

is raised for all arithmetical errors in non-IEEE754 systems, and is never used in IEEE754 systems.
On a different subject, remember that testing complex numbers for equality is hazardous. Therefore, = is not to

be used lightly on numbers (for example, 0.2 * 5 may print as 1 but differ from 1 internally). Normally, though,
computations on sufficiently small integers should be exact (at least on real IEEE754 systems). This warning applies
not only to the explicit = equality function, but also to all operations that use internally the equality test, in particular
the test for being inside a set inset or the application of a map to an object ?, when this object contains numbers.

Moreover, following the principle, valid in HimML, that an object is always equal to itself, +inf = +inf,
˜inf = ˜inf, and all NaNs are equal to themselves, though they are incomparable with any number (for example,
+NAN(0) <= +NAN(0) is false, but +NAN(0) = +NAN(0) is true).

Numerical constants are entered and printed in HimML as x or x:y, where x and y represent real numbers,
possibly followed by a scale. The notation x:y denotes the complex number x+ i.y. There can be no confusion with
the : character used in type constraints, because no type may begin with a character lying at the start of a number. A
real number is defined by the regular expression (in lex syntax):

{INT}E{INT}
| {INT}\.{DIG}+
| {INT}\.{DIG}+E{INT}
| [+˜]inf
| [+˜]NAN\([0-7]\)

where DIG = [0-9] and INT = (\˜?{DIG}+), with the obvious interpretations. Infinities and NaNs cannot be
entered in a non-IEEE754 system.

The exception:

exception Complex

is raised whenever an operation defined only on real values is applied on a complex with a non-zero imaginary part
(even if it is denormalized).

The numerical functions are:

• classify : ’#a -> numClass * numClass classifies the real and imaginary parts of the numerical
value in argument.

• denormal : ’#a -> bool returns true if and only if its argument is zero or a denormalized number. That
is, it returns true if and only if classify returns a couple of classifications, which are both MDenormal,
Zero or PDenormal. denormal is useful because dividing by a number is in fact legal only when this
number is not denormal, in the IEEE754 representation system. In short, being denormalized is the right criterion
for testing whether a number if invertible (and not comparison with 0).

• overflown : ’#a -> bool returns true if and only if its argument is infinite or a NaN. That is, it returns
true if and only if its real part or its imaginary part is infinite or a NaN. This function is useful to detect when
a computation has produced an infinite number; usually, when doing some operations on infinite numbers, like
subtraction, the results are NaNs, hence the test for being either infinite or a NaN.

• #+ : ’#a * ’#a -> ’#a is addition. It is declared infix, left associative of precedence 6.

• #- : ’#a * ’#a -> ’#a is subtraction. It is declared infix, left associative of precedence 6.

• #* : ’#a * ’#b -> ’#a ‘ ’#b is multiplication. It is declared infix, left associative of precedence 7.

• #/ : ’#a * ’#b -> ’#a ‘ ’#bˆ ˜1 is division; it does not raise an exception when dividing by 0 or
a denormalized, except on non-IEEE754 systems (the Arith exception). It is declared infix, left associative of
precedence 7.

42



• #ˆ : num * num -> num is exponentiation (as in FORTRAN); the typing engine knows a special case
about this one: when n is a constant number and e is an expression, then #ˆ in the expression e #ˆ n is given
type ’#a * num -> ’#aˆn. It is declared infix, right associative of precedence 8.

We could almost define #ˆ as fn (a,b) => exp (b #* log a), except for rounding mechanisms and
type inference.

• #˜ : ’#a -> ’#a is negation.

• pi : num is the famous number π.

• fsqr : #a -> #aˆ2 squares its argument.

• fsqrt : ’#a -> ’#aˆ0.5 takes the square root of its argument. It is the principal determination of the
square root, defined by

√
r.ei.θ =

√
r.ei.θ/2 for r ≥ 0, −π < θ ≤ π.

• fabs : ’#a -> ’#a computes the norm of its argument. The norm of z is |z| =
√
z.z, where z is the

complex conjugate of z. When z is real, the norm of z is simply its absolute value.

• conj : ’#a -> ’#a computes the conjugate of a complex numerical value. The complex conjugate of
x+ i.y is x+ i.y = x− i.y. When z is real, the conjugate of z is z itself.

• re : ’#a -> ’#a computes the real part of its argument. It is always a real.

• im : ’#a -> ’#a computes the imaginary part of its argument. It is always a real.

• #< : ’#a * ’#a -> bool returns true if its first argument is less than its second argument, considered as
real quantities. The exception Complex is raised if one of the numbers was complex. Note that comparison
of NaNs may yield surprising results. For quantities with dimensions, the arguments are scaled to the default
scale of the dimension ’#a, and then compared. Confusing results can ensue if you are using negative scaling
factors.

• #> : ’#a * ’#a -> bool returns true if its first argument is greater than its second argument, considered
as real quantities. The exception Complex is raised if one of the numbers was complex. Note that comparison
of NaNs may yield surprising results. For quantities with dimensions, the arguments are scaled to the default
scale of the dimension ’#a, and then compared. Confusing results can ensue if you are using negative scaling
factors.

• #<= : ’#a * ’#a -> bool returns true if its first argument is less than or equal to its second argument,
considered as real quantities. The exception Complex is raised if one of the numbers was complex. Note that
comparison of NaNs may yield surprising results. For quantities with dimensions, the arguments are scaled
to the default scale of the dimension ’#a, and then compared. Confusing results can ensue if you are using
negative scaling factors.

• #>= : ’#a * ’#a -> bool returns true if its first argument is greater than or equal to its second argu-
ment, considered as real quantities. The exception Complex is raised if one of the numbers was complex. Note
that comparison of NaNs may yield surprising results. For quantities with dimensions, the arguments are scaled
to the default scale of the dimension ’#a, and then compared. Confusing results can ensue if you are using
negative scaling factors.

• fmin : ’#a * ’#a -> ’#a returns the least of its two arguments, considered as real quantities. The ex-
ception Complex is raised if one of the numbers was complex. Comparison of NaNs may give some surprises,
as well as the use of negative scaling factors. (See <.)

• fmax : ’#a * ’#a -> ’#a returns the greatest of its two arguments, considered as real quantities. The
exception Complex is raised if one of the numbers was complex. Comparison of NaNs may give some sur-
prises, as well as the use of negative scaling factors. (See >.)
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• exp : num -> num is the exponential, or natural anti-logarithm.

• log : num -> num is the principal determination of the natural logarithm (base e). In the complex plane,
log(r.ei.θ) = log r + i.θ for r ≥ 0 and −π < θ ≤ π.

• exp1 : num -> num is almost syntactic sugar for fn x => exp x #- 1.0, but gives precise results
even when the argument tends to zero.

• log1 : num -> num is almost syntactic sugar for fn x => log (1.0 #+ x), but gives precise re-
sults even when the argument tends to zero.

• sin : num -> num is the (trigonometric) sine.

The default angle scale is the radian (defined as scale 1‘r = 1), but of course the scale system may be used
to input angles in any other unit.

• cos : num -> num is the (trigonometric) cosine. The default angle scale is the radian.

• tan : num -> num is the (trigonometric) tangent, quotient of sine by cosine.

• asin : num -> num is the principal determination of the arc sine. In the complex plane, asinx is defined
as −i. log(i.z +

√
1− z2).

• acos : num -> num is the principal determination of the arc cosine. In the complex plane, acosx is defined
as −i. log(z +

√
z2 − 1).

• atan : num -> num is the principal determination of the arc tangent. In the complex plane, atanx is
defined as i/2. log i+z

i−z .

• sh : num -> num is the hyperbolic sine.

Equivalently, it might be defined as fn z => 0.5 #* (exp z #- exp (#˜ z)), except that this would
not be as precise near 0.

• ch : num -> num is the hyperbolic cosine function.

It could have been defined as fn z => 0.5 #* (exp z #+ exp (#˜ z)).

• th : num -> num is the hyperbolic tangent, quotient of the hyperbolic sine by the hyperbolic cosine.

• ash : num -> num is the principal determination of the argument hyperbolic sine. We have ash z =
log(z +

√
1 + z2).

• ach : num -> num is the principal determination of the argument hyperbolic cosine. We have ach z =
log(z +

√
z2 − 1).

• ath : num -> num is the principal determination of the argument hyperbolic tangent. We have ath z =
1/2. log 1+z

1−z .

• arg : num -> num is the principal determination of the argument. This is always a real in the semi-closed
interval ]− π, π]. It could be defined as fn x => im(log x).

• floor : num -> num computes the lower integer part, or floor, of a real: this is the greatest integer less
than or equal to the argument. It raises Complex if the argument is not real.

• ceil : num -> num computes the upper integer part, or ceiling, of a real: this is the smallest integer
greater than or equal to the argument. It raises Complex if the argument is not real. It is syntactic sugar for
fn x => #˜ (floor (#˜ x)).

• fdiv : ’#a * ’#a -> num is quotient extraction, it always returns an integer-valued real. This is syn-
tactic sugar for fn (x,y) => floor(re(x/y)). It is declared infix, left associative of precedence 7.
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• fmod : ’#a * ’#a -> ’#a is the remainder operation.

It is syntactic sugar for fn (x,y) => x #- y #* (x fdiv y). It is declared infix, left associative of
precedence 7.

• fdivmod : ’#a * ’#a -> num * ’#a returns both the quotient and remainder of the numerical quan-
tities in argument. This could be defined as fn (x,y) => (x fdiv y,x fmod y). fdivmod is not
especially quicker than computing fdiv and fmod separately, because the three functions maintain a common
one-entry cache for quotients and remainders.

• ldexp : ’#a * int -> ’#a applied to x and n computes x.2n.

• frexp : num -> num * int applied to a real number x 6= 0 returns a real number y of the same sign as
x and an integer n such that 0.5 ≤ |y| < 1 and x = y.2n. If x = 0.0, returns (0.0, 0). In general, if x is complex
and <x 6= 0, then it returns (y, n) such that 0.5 ≤ |<y| < 1 and x = y.2n; if x is complex and <x = 0, then it
returns (x, 0).

• modf : num -> num * num splits its real argument into integer and fractional part. If its argument is not
real, then it raises Complex. This function might be defined as fn x => (floor x, x #- floor x)
on non-negative numbers, but it differs on negative numbers; e.g., modf ˜3.15 is (˜3, ˜0.15), not
(˜4, 0.85).

• real : ’#a -> bool tests whether the argument is real, that is, if it has a zero imaginary part. This is the
same as fn z => im z=0.0.

• integer : num -> bool tests whether the argument is an integer (in particular, real). This is the same as
fn z => floor(re z)=z.

• natural : num -> bool tests whether the argument is a natural number.

This is the same as fn z => integer z andalso z>=0.0.

• int : num -> int returns the integer value of the number in argument, as an integer. It raises Complex
if the argument is a complex number. If the argument is real, but not in the range [min_int,max_int], the
result is unspecified. If the argument is not an integer, rounding direction is unspecified.

• num : int -> num converts an integer to a real number having the same value.

• random : unit -> num draws a pseudo-random equidistributed number in the real interval [0, 1[. The
method used is based on a generalized feedback shift register [8], with generating polynomial x55 + x24 + 1.
The period is 255 − 1, which means that, practically, the generator never loops back to any previous state.

• zrandom : unit -> num draws a pseudo-random equidistributed number in the complex square [0, 1[×
[0, 1[. The method used is the same as for random.

• maybe : unit -> bool draws a pseudo-random equidistributed boolean. The method used is the same as
for random and zrandom, and is quicker than the semantically equivalent fn () => random() >= 0.5.

4.8 Large Integer Arithmetic
HimML includes a port of Arjen Lenstra’s large integer package, which provides arbitrary precision arithmetic, i.e.,
arithmetic over a type Int that represents actual integers, without any size limitation as with the int type.

The exception:

exception Lip of int

is raised whenever an error occurs in any of the functions of this section. The numbers as arguments to the Lip
exception are as follows:
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• 1: division by zero;

• 2: modulus is zero in modular arithmetic functions;

• 3: bad modulus in Montgomery arithmetic functions—this means the modulus is 0, negative or positive but
even;

• 4: Montgomery arithmetic modulus is undefined—use zmontstart to define it first;

• 5: moduli in the chinese remaindering function zchirem are not coprime;

• 6: a function was called that expected a positive argument, and got a zero or negative argument; this can be
raised with zln, zsqrt, and a few other functions like zchirem;

• 7: zbezout was called with both arguments zero, or zroot was called to compute an nth root with n = 0;

• 8: a bug occurred in zbezout, please report it to goubault@lsv.ens-cachan.fr, see MAINTENANCE
at the end of the OPTIONS file;

• 9: zchirem was called with identical moduli but different remainders;

• 10: an exponentiation function was called with a negative exponent;

• 11: the square root or some nth root with n even of a negative number was attempted;

• 12: a bug occurred in zpollardrho, please report it to goubault@lsv.ens-cachan.fr, see MAIN-
TENANCE at the end of the OPTIONS file;

• 13: the second argument to zjacobi or zsjacobi is even;

• 14: zrandompprime was given a non-positive value for q;

• 15: a bug occurred in zecm, please report it to goubault@lsv.ens-cachan.fr, see MAINTENANCE
at the end of the OPTIONS file.

• 16: a wrong base was supplied to one of the functions converting integers to a list of digits (e.g., zstobas); a
wrong base is one that is < 2.

• 17: too many small primes were requested.

• 18: one of the random prime generator functions failed.

• 19: zecm failed to factor the input argument, but did not estimate it was prime with any sufficiently high
probability.

The functions are classified into several subgroups.

Conversions

• Int : int -> Int converts a machine integer to an actual integer.

• zint : Int -> int converts an actual integer to a machine integer. In case of overflow, no exception is
raised: on machines with integers in two’s complement arithmetic on k bits (which is most common), zint n
the unique m, −2k−1 ≤ m < 2k−1, such that n = mmod 2k.

• znum : Int -> num converts an integer to an approximate floating-point value. Overflows are not checked,
and may yield unspecified results.

• zsbastoz : int * int list -> Int converts a list of digits in a given base to an integer. More
precisely, zsbastoz (b, [an, . . . , a1, a0]) = anb

n + . . .+ a1b+ a0.
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• zbastoz : Int * Int list -> Int converts a list of digits in a given base to an integer. More pre-
cisely, zbastoz (b, [an, . . . , a1, a0]) = anb

n + . . .+ a1b+ a0.

• zstobas : int * Int -> int list converts an integer to a list of digits in the given base. More
precisely, given a base b and an integer k, returns a list [an, . . . , a1, a0] such that 0 ≤ ai < b for every i,
0 ≤ i ≤ n, an 6= 0 if k 6= 0, and anbn + . . .+ a1b+ a0 = |k|. Converts k = 0 to nil, and raises Lip 16 if
b < 2.

• zstosymbas : int * Int -> int list converts an integer to a list of digits in the given base. More
precisely, given a base b and an integer k, returns a list [an, . . . , a1, a0] such that |ai| ≤ b/2 for every i,
0 ≤ i ≤ n, an 6= 0 if n 6= 0, and anbn + . . .+ a1b+ a0 = |k|. Converts k = 0 to nil, and raises Lip 16 if
b < 2.

• ztobas : Int * Int -> Int list converts an integer to a list of digits in the given base. More
precisely, given a base b and an integer k, returns a list [an, . . . , a1, a0] such that 0 ≤ ai < n for every i,
0 ≤ i ≤ n, an 6= 0 if n 6= 0, and anbn + . . .+ a1b+ a0 = |k|. Converts k = 0 to nil, and raises Lip 16 if
b < 2.

• ztosymbas : Int * Int -> Int list converts an integer to a list of digits in the given base. More
precisely, given a base b and an integer k, returns a list [an, . . . , a1, a0] such that |ai| ≤ b/2 for every i,
0 ≤ i ≤ n, an 6= 0 if n 6= 0, and anbn + . . .+ a1b+ a0 = |k|. Converts k = 0 to nil, and raises Lip 16 if
b < 2.

Large Integer Arithmetic

• zcompare : Int * Int -> int compares two integers, returns −1 if the first is less than the second, 0
if they are equal, and 1 if the first is greater than the second.

• zneg : Int -> Int returns the opposite of the integer in argument.

• zabs : Int -> Int returns the absolute value of the argument.

• zsign : Int -> int returns the sign of the argument, −1 if negative, 0 if zero, 1 if positive.

• zsadd : Int * int -> Int adds two integers. The first is a large integer, the second a machine integer.

• zadd : Int * Int -> Int adds two large integers.

• zsub : Int * Int -> Int takes two large integers m and n, and returns m− n.

• zsmul : Int * int -> Int multiplies two integers. The first is a large integer, the second a machine
integer.

• zmul : Int * Int -> Int multiplies two large integers. This uses Karatsuba’s algorithm, which com-
putes the product of two n-digit numbers in O(n1.58) steps. This is faster than naive multiplication (O(n2)

steps), and in theory is slower than Toom-Cook multiplication (O(n23.5
√

logn) steps) or Fast Fourier Transform
algorithms (O(n log n) steps). But the latter are more complex, and start to be faster in practice for rather large
integers only.

• zsqr : Int -> Int takes the square of the large integer given as argument. This is faster than multiplying
the argument by itself, and uses a variant of Karatsuba’s algorithm.

• zsdivmod : Int * int -> Int * int computes the quotient and remainder of two integers given as
argument. The dividend m is a large integer, while the divisor n is a machine integer. This returns (q, r), where
m = nq + r, |r| < |n|, and the sign of r is the same as n. Note that this is not the same condition as for
divmod. Raises Lip 1 if n = 0.
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• zsmod : Int * int -> int computes the remainder of two integers given as argument. The dividend
m is a large integer, while the divisor n is a machine integer. This returns r, where m = nq + r, |r| < |n|, and
the sign of r is the same as n. Note that this is not the same condition as for mod. Raises Lip 1 if n = 0.

• zdivmod : Int * Int -> Int * Int computes the quotient and remainder of two integers given as
argument. The dividendm and the divisor n are large integers. This returns (q, r), wherem = nq+r, |r| < |n|,
and the sign of r is the same as n. Note that this is not the same condition as for divmod. Raises Lip 1 if
n = 0.

• zmod : Int * Int -> Int computes the remainder of two integers given as argument. The dividend m
and the divisor n are large integers. This returns r, where m = nq + r, |r| < |n|, and the sign of r is the same
as n. Note that this is not the same condition as for mod. Raises Lip 1 if n = 0.

• zsexp : Int * int -> Int, applied to (a, e), computes ae; note that, although a is a large integer, e is
a machine integer. Raises Lip 10 if e < 0 and |a| 6= 1. Note that this function may take some time and build a
huge result: time and space is O(e log a), i.e., proportional to the size of a times e itself, that is, an exponential
of its size. By convention, 00 = 1.

• zexp : Int * Int -> Int, applied to (a, e), computes ae; both a and e are large integers. Raises
Lip 10 if e < 0 and |a| 6= 1. Note that this function may take some time and build a huge result: time
and space is O(e log a), i.e., proportional to the size of a times e itself, that is, an exponential of its size. In
short, although e is a large integer, it should not be too large for zexp to return at all. By convention, 00 = 1.

• zlsl1 : Int -> Int multiplies the argument by 2, that is, shifts it left 1 bit.

• zasl : Int * int -> Int, called on (a, n), shifts a left n bits (if n ≥ 0), or right −n bits (if n < 0).
That is, it returns the greatest integer in absolute value that is less in absolute value than a.2n (this is exactly
a.2n unless n < 0).

• zasr1 : Int -> Int divides the argument by 2, that is, shifts it right 1 bit. For negative arguments, this
does not work as zdivmod, rather as divmod; this does not work as asr either. That is, while asr (˜3, 1)
returns ˜2, zasr1 (Int ˜3) returns ˜1.

• zasr : Int * int -> Int, called on (a, n), shifts a right n bits (if n ≥ 0), or left −n bits (if n < 0).
That is, it returns the greatest integer in absolute value that is less in absolute value than a.2−n.

• zodd : Int -> bool returns true if and only if the argument is odd. Testig zodd (n) is equivalent to
zbit (n, 0).

• zmakeodd : Int -> int * Int returns (k, a) with k highest such that the argument equals 2k.a. Note
that k is a machine integer, while a is a large integer. Raises Lip 7 if argument is 0.

• sqrt : int -> int returns the floor of the square root of the argument, which is a machine integer. Raises
Lip 11 if argument is negative.

• zsqrt : Int -> Int * Int returns (r, d), where r is the floor of the square root of the argument a, and
d is the remainder a− r2. Raises Lip 11 if argument is negative.

• zroot : Int * int -> Int returns the floor of the nth root of a, where (a, n) is provided as argument.
If a is negative and n is odd, returns the opposite of the nth root of −a. Raises Lip 7 if n = 0, Lip 11 if a
is negative but n is even, Lip 1 if a = 0 and n < 0.

• zlog : Int -> num returns the natural logarithm of the argument, or at least a good approximation (on
32-bit architectures, if computes it from the upper 60 bits, for a 56-bit result). If the argument x is negative, the
principal branch of the logarithm is chosen, and log(−x) + iπ is returned. If x = 0, then Lip 7 is raised.

48



• zjacobi : Int * Int -> int applied to (m,n), returns the Jacobi symbol
(
m
n

)
. This is an extension

of the Legendre symbol (defined when n is prime), defined whenever n > 0 is odd, and which can also be
computed in polynomial time.

If n =
∏n
i=1 pi, where pi is prime, the Jacobi symbol

(
m
n

)
equals

∏n
i=1

(
m
pi

)
, a product of Legendre symbols.

If p is prime and odd, the Legendre symbol
(
m
p

)
is 0 if m and p are not coprime, otherwise it is 1 if m is a

quadratic residue modulo p (i.e., m = x2 mod p for some x), otherwise it is −1.

This implies that in general, zjacobi (m,n) returns 0 is m and n are not coprime, and if it returns −1 then m
is not a quadratic residue modulo n.

Computation is based on the identities (where n > 0):
(
0
n

)
= 0;

(
1
n

)
= 1;

(−m
n

)
= (−1)(n−1)/2

(
m
n

)
when

n is odd;
(
2m
n

)
= (−1)(n

2−1)/8 (m
n

)
when n is odd;

(
m
n

)
= (−1)(m−1)(n−1)/4

(
nmodm
m

)
when both m and n

are odd.

Raises Lip 6 if n ≤ 0, Lip 13 if n is not odd.

• zsjacobi : int * int -> int computes the Jacobi symbol of the integers in argument. See zjacobi
for details.

Bit Manipulation

Large integers also serve as bit vectors, of varying size. Every non-negative integer represents a finite set of bits, those
that are set in the binary representation of the integer; while every negative integer represents a cofinite set of bits (i.e.,
a set of bits whose complementary is finite), those that are set in the two’s complement binary representation of the
integer. For example, 23 is . . . 00010111 in binary, and represents the set {0, 1, 2, 4}, since 23 = 24 + 22 + 21 + 20.
And −23 is . . . 11101001, and represents the set {0, 3, 5, 6, 7, . . .}.

• zsnbits : int -> int returns the number of bits needed to represent the argument x, which is a machine
integer. This is dlog2(|x|+ 1)e, where log2 is base 2 logarithm.

• znbits : Int -> int returns the number of bits needed to represent the argument x, which is a large
integer. This is dlog2(|x|+ 1)e, where log2 is base 2 logarithm.

• zsweight : int -> int returns the number of bits set to one in the binary representation of the machine
integer in argument. When the argument is negative, this is also the number of 0 bits in the binary negation of
the argument (see bnot), on two’s complement machines.

• zweight : Int -> int returns the number of bits set to one in the binary representation of |x|, where x
is the large integer in argument. In particular, for negative n, zweight (Int n) does not return the same
number as zsweight n.

• zlowbits : Int * int -> Int, applied to the large integer m and the machine integer n, returns the n
lowest bits ofm as a large integer. Works as thoughm is in two’s complement, and always returns a non-negative
number.

• zhighbits : Int * int -> Int, applied to the large integer m and the machine integer n, returns the
n highest bits of |m| as a large integer. zhighbits (m,n) is equivalent to zasr (|m|,zsnbits (m) − n)
if zsnbits (m) > n, |m| otherwise.

• zcat : Int * Int -> Int concatenates the bit vectors in argument. Calling zcat (m,n) is equivalent
to zor (zasl (m,zsnbits (n)), n). Concatenating two bit vectors m and n, where n is instead known to
contain k significant bits, should instead be done by calling zor (zasl (m, k), n).

• zsreverse : int * int -> int returns the bit reversal of the machine integer m in first argument.
Second argument k is the number of bits in m that should be considered, and is truncated to 0 if negative, and
to the number of bits in a machine integer if greater.
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• zreverse : Int * int -> Int returns the bit reversal of the large integer m in first argument. The
second argument k is the number of bits in m that should be considered, and is truncated to 0 if negative. The
integer m is viewed in two’s complement, and even if m < 0, zreverse (m, k) is ≥ 0. Just reversing m is
done by calling zreverse (m, znbits (m)), provided m ≥ 0.

• setofInt : Int -> int set returns the set of bits set to 1 in the integer argument. Raises Lip 10 if
the argument is negative, in which case the set would be infinite and hence not representable of type int set.

• Intofset : (int -m> ’a) -> Int returns the integer whose 1 bits are at positions specified by the
set in argument. To be precise, it returns

∑
i 2
i, where i ranges over all non-negative machine integers in the

domain of the map in argument. This function is not intended for sets of machine integers that are too large,
otherwise there is a risk of memory overflow.

• znot : Int -> Int returns the binary negation of the argument n. This is exactly the same as computing
−n− 1. Seeing integers as sets of machine integers, this computes the complement of the given set.

• zand : Int * Int -> Int return the bitwise conjunction of the integers in argument. As sets of machine
integers, zand computes the intersection of the sets described by the integers in argument.

• zor : Int * Int -> Int return the bitwise disjunction of the integers in argument. As sets of machine
integers, zor computes the union of the sets described by the integers in argument.

• zxor : Int * Int -> Int return the bitwise exclusive or of the integers in argument. As sets of machine
integers, zxor computes the symmetric difference of the sets described by the integers in argument.

• zbit : Int * int -> bool, applied to (m,n), returns bit number n of the large integer m. One bits
are returned as true, zero bits as false. Returns false if n < 0. The large integer m is taken to be in two’s
complement. This is equivalent to zand (m,Intofset {n}) 6=Int 0.

• zaddbit : Int * int -> Int, applied to (m,n), returns the large integer m with bit n set. Does noth-
ing if n < 0. The large integer m is taken to be in two’s complement. This is equivalent to zor (m,Intofset
{n}).

• zrembit : Int * int -> Int, applied to (m,n), returns the large integer m with bit n cleared. Does
nothing if n < 0. The large integer m is taken to be in two’s complement. This is equivalent to zand (m,znot
(Intofset {n})).

Euclidean Algorithms

• zgcd : Int * Int -> Int computes the greatest common divisor of the arguments by the binary method.
Raises Lip 7 if both arguments are 0.

• zgcde : Int * Int -> Int computes the greatest common divisor of the arguments, by the classical
Euclidean algorithm. This might be faster than zgcd in special cases. Raises Lip 7 if both arguments are 0.

• zbezout : Int * Int -> (Int * Int) * Int : zbezout (a, b) computes the gcd d of a and b,
and two coefficients xa, xb as in Bezout’s Theorem, i.e., such that a.xa + b.xb = d. This is also sometimes
called the extended Euclidean algorithm. The gcd is always ≥ 1.

This raises Lip 7 if both a and b are zero, in which case the gcd is undefined.

This might raise Lip 8, but should not. If this happens, this is a bug, and this should be reported to the author
goubault@lsv.ens-cachan.fr, see MAINTENANCE at the end of the OPTIONS file.

• zchirem : Int * Int * Int * Int -> Int applied to (ma, a,mb, b), returns d such that d = a
modulo ma, and d = b modulo mb, and 0 ≤ d < ma.mb—unless ma = mb, in which case a and b should be
equal, and d = a = b.

Raises Lip 6 if ma ≤ 0 or mb ≤ 0. Raises Lip 9 if ma = mb but a 6= b, and Lip 5 if ma 6= mb but ma
and mb are not coprime.
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Standard Modular Arithmetic

• zmadd : Int * Int * Int -> Int adds modulo m: zmadd (a, b,m) computes (a + b) modm. It
is assumed that 0 ≤ a, b < m; result is also ≥ 0 and < m. Produces erratic results otherwise. Raises Lip 2 if
m = 0.

• zmsub : Int * Int * Int -> Int subtracts modulo m: zmsub (a, b,m) computes (a− b)modm.
It is assumed that 0 ≤ a, b < m; result is also ≥ 0 and < m. Produces erratic results otherwise. Raises Lip 2
if m = 0.

• zmmul : Int * Int * Int -> Int multiplies modulo m: zmmul (a, b,m) computes abmodm. All
arguments are large integers. It is assumed that 0 ≤ a, b < m; result is also ≥ 0 and < m. Produces erratic
results otherwise. Raises Lip 2 if m = 0.

• zsmmul : Int * int * Int -> Int multiplies modulo m: zsmmul (a, b,m) computes abmodm.
The first argument a is a large integer, while b is a machine integer. It is assumed that 0 ≤ a, b < m; result is
also ≥ 0 and < m. Produces erratic results otherwise. Raises Lip 2 if m = 0.

• zmsmul : int * int * int -> int, called on (a, b, n), returns ab mod n; raises Lip 2 if n = 0.
All arguments are machine integers.

• zmsqr : Int * Int -> Int squares modulom: zmsqr (a,m) computes a2modm. It is assumed that
0 ≤ a < m; result is also ≥ 0 and < m. Produces erratic results otherwise. Raises Lip 2 if m = 0.

• zmdiv : Int * Int * Int -> Int divides modulo m: zmdiv (a, b,m) computes a/bmodm. It is
assumed that 0 ≤ a, b < m; result is also ≥ 0 and < m. Produces erratic results otherwise. Raises Lip 2 if
m = 0, Lip 1 if b = 0. If m is not coprime with b, it might also be the base that the quotient is undefined, in
which case no exception is raised, rather some factor of m is returned.

• zminv : Int * Int -> Int computes inverses modulo m: zminv (a,m) computes a−1 modm. It is
assumed that 0 ≤ a < m; result is also ≥ 0 and < m. Produces erratic results otherwise. Raises Lip 2 if
m = 0, Lip 1 if a = 0. If m is not coprime with a, it might also be the base that the inverse is undefined, in
which case no exception is raised, rather some factor of m is returned—namely gcd(a,m).

• zmsexp : int * int * int -> int, applied to (a, e,m), computes a|e| mod m. All arguments are
machine integers. Raises Lip 2 if m = 0. By convention, 00 = 1.

• zsmexp : Int * int * Int -> Int, applied to (a, e,m), computes ae mod m. The exponent e is a
machine integer; however, this is not faster than calling zmexp, since zsmexp calls zmexp. Raises Lip 2 if
m = 0, Lip 10 if e is negative and a and m are not coprime. By convention, 00 = 1.

• zmexp : Int * Int * Int -> Int, applied to (a, e,m), computes ae mod m. The exponent e is a
large integer. Raises Lip 2 if m = 0, Lip 10 if e is negative and a and m are not coprime. By convention,
00 = 1.

• zmexpm : Int * Int * Int -> Int, applied to (a, e,m), computes ae mod m, just like zmexp.
However, it uses the m-ary method, which is faster than zmexp if a is not too small. Raises Lip 2 if m = 0,
Lip 10 if e is negative and a and m are not coprime. By convention, 00 = 1.

• zm2exp : Int * Int -> Int, applied to (e,m), computes 2e mod m. Raises Lip 2 if m = 0,
Lip 10 if e is negative and m is even.

• zmexp2 : Int * Int * Int * Int * Int -> Int, called on (a1, e1, a2, e2,m), computes ae11 .a
e2
2

mod m. Raises Lip 2 if m = 0, Lip 10 if e1 or e2 is negative. This uses Shamir’s method with sliding
window of size 1, 2 or 3, depending on the maximal size of e1 or e2. This should be used if e1 and e2 are
approximately of the same size.
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Montgomery Modular Arithmetic

Modular multiplications can be done division free and therefore somewhat faster (about 20%), if the Montgomery
representation is used [10]. Converting to and from Montgomery representation takes one Montgomery multiplication
each, so it only pays to use Montgomery representation if many multiplications have to be carried out modulo a fixed
odd modulus.

To use Montgomery arithmetic, first initialize the modulus N by using zmontstart, and convert all operands
to their Montgomery representation by ztom, but do not convert exponents. Use the addition, subtraction, multiplica-
tion, squaring, division, inversion, and exponentiation functions, which all start with zmont, below on the converted
operands, just as you would use the ordinary modular functions (starting with zm). The results can be converted back
from Montgomery representation to ordinary numbers modulo N using zmonttoz.

• zmontstart : Int -> unit initializes Montgomery arithmetic mod N , the argument. Raises Lip 3 if
N is not both positive and odd.

If no exception is raised, all subsequent computations using Montgomery arithmetic will use modulus N . Mix-
ing ordinary large integers and Montgomery numbers, or Montgomery numbers based on different moduli yields
surprising results; this should be left to experimented users only.

• ztomont : Int -> Int converts an ordinary large integer to the corresponding Montgomery number mod
N . Raises Lip 3 if N is undefined.

• zmonttoz : Int -> Int converts a Montgomery number mod N to the corresponding ordinary large
integer. Raises Lip 3 if N is undefined.

• zmontadd : Int * Int -> Int adds two Montgomery numbers modN . This actually just calls zmadd
with N as modulus. Raises Lip 3 if N is undefined.

• zmontsub : Int * Int -> Int subtracts two Montgomery numbers mod N . This actually just calls
zmsub with N as modulus. Raises Lip 3 if N is undefined.

• zsmontmul : Int * int -> Int takes one Montgomery number mod N and an ordinary machine in-
teger, multiplies them and returns the result as a Montgomery number mod N . This actually just calls zsmmul
with N as modulus. Raises Lip 3 if N is undefined.

• zmontmul : Int * Int -> Int multiplies two Montgomery numbers mod N . This is essentially the
only function, apart from zmontsqr and zmontinv, that justifies using Montgomery arithmetic. Raises
Lip 3 if N is undefined.

• zmontsqr : Int -> Int squares the Montgomery number mod N in argument. This is essentially the
only function, apart from zmontmul and zmontinv, that justifies using Montgomery arithmetic. Raises
Lip 3 if N is undefined.

• zmontdiv : Int * Int -> Int divides two Montgomery numbers mod N . Raises Lip 3 if N is
undefined, Lip 1 if second argument is 0 mod N . If N is not coprime with the second argument, it might also
be the case that the quotient is undefined. In this case, no exception is raised, rather some factor ofN is returned
(as a regular integer, not as a Montgomery number).

• zmontinv : Int -> Int computes the inverse of a Montgomery number mod N . Raises Lip 3 if N is
undefined, Lip 1 if argument is 0 mod N . If N is not coprime with the argument, it might also be the case that
the inverse is undefined. In this case, no exception is raised, rather some factor of N is returned (as a regular
integer, not as a Montgomery number).

This is one of the rare functions, apart from zmontmul and zmontsqr, that justifies using Montgomery arith-
metic. Indeed, computing the inverse mod N in Montgomery representation means doing just one Montgomery
multiplication by a constant.
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• zmontexp : Int * Int -> Int applied to (a, e), computes ae mod N . Although a is a Montgomery
number, e is not, and is a regular large integer. Raises Lip 3 if N is undefined, Lip 10 if e is negative and a
and N are not coprime. By convention, 00 = 1.

• zmontexpm : Int * Int -> Int, called on (a, e), computes ae mod N , just like zmontexp. How-
ever, it uses the m-ary method, which is faster than zmontexp if a is not too small. Raises Lip 3 if N is
undefined, Lip 10 if e is negative and a and N are not coprime. By convention, 00 = 1.

• zmontexp2 : Int * Int * Int * Int -> Int, called on (a1, e1, a2, e2), computes ae11 .a
e2
2 mod

N . Raises Lip 2 if m = 0, Lip 10 if e1 or e2 is negative. This uses Shamir’s method with sliding window
of size 1, 2 or 3, depending on the maximal size of e1 or e2. This should be used if e1 and e2 are approximately
of the same size.

Primes, Factoring

• primes : int -> unit -> int is a small prime enumerator generator. That is, first call primes n
for some integer n; this returns a function, call it nextprime. Then calling nextprime () repeatedly
returns 2, then 3, 5, 7, 11, . . . , i.e., all primes that hold in a machine integer (small primes). After nextprime
has exhausted all small primes, raises Lip 17.

Note that each new call to primes generates a new prime enumerator. That is, just calling primes n ()
repeatedly will just return 2 each time, by computing a new enumerator each time, and calling it only once.

The small prime number enumerator primes is basically an implementation of Eratosthenes’ sieve. The num-
ber n is an estimation of the largest prime you will need. It serves to allocate a table of m elements, where m is
the largest integer such that 2m(2m + 1) ≤n. On 32 machines, calling primes max_int is recommended.
On 64 machines, doing so will generate a huge table, which will take a few seconds just to initialize, so a smaller
value of n, say, 5 000 000 000, is recommended.

• zpollardrho : Int * int -> (Int * Int) option is an implementation of Pollard’s ρ algo-
rithm. zpollardrho (n, k) tries to factor n, in k iterations or less. The value k = 0 is special and is meant to
denote no bound on the number of iterations.

If the algorithm succeeds, it returns SOME (r, c), where r is a non-trivial factor of n, c = n/r and r ≤ c. If
n < 0, returns SOME (−1, n). If the algorithm fails, returns NONE.

Raises Lip 12 if a bug occurred in zpollardrho. If this happens, this should be reported to the author
goubault@lsv.ens-cachan.fr, see MAINTENANCE at the end of the OPTIONS file.

• ztrydiv : Int * int * int -> (int * Int) option applies to a large integer n, and two ma-
chine integers a and b, and computes the smallest (positive) prime divisor p of n that is ≥ a and ≤ b. If p exists,
it returns SOME (p, n/p), otherwise NONE.

This works by calling primes b to get a function that enumerates all small primes. All primes < a are first
discarded, then all primes between a and b are tested. This is only intended for large n, as it does not stop as
soon as it goes past

√
n, for small a, as enumerating all primes < a takes some time for large a, and for b not

too large (see remark on the efficiency of primes on 64 bit machines).

• zprime : Int * int -> bool takes a large integer m and a machine integer k, and tests whether m is
prime. This runs a probabilistic tests for at most k + 1 runs. It first uses ztrydiv to find small factors first. If
none is found, the Miller-Rabin test is run k + 1 times: when zprime returns false, then m is definitely not
prime, otherwise it is prime with probability at least 1− (1/4)

k+1.

• zrandl : int * (int -> int) -> Int draws an equidistributed large integer of |k| bits, where k
is the first argument. If k < 0, returns opposites of such numbers. The second argument is a pseudo-random
generator function, like irand, which takes a bound x and returns an equidistributed random integer in [0, x[.
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Using irand is not recommended for cryptographic applications, instead cryptographically secure pseudo-
random number generators should be used.

The second argument should preferrably be a function that does not raise any exception, otherwise memory
leaks may occur.

• zrandl1 : int -> Int is equivalent to fn nbits => zrandl (nbits, irand), but faster.

• zrand : Int * (int -> int) -> Int draws an equidistributed large integer of absolute value< m,
where m is the first argument (or returns 0 if m = 0), and of the same sign as m. The second argument is a
pseudo-random generator function, like irand, which takes a bound x and returns an equidistributed random
integer in [0, x[. Using irand is not recommended for cryptographic applications, instead cryptographically
secure pseudo-random number generators should be used.

The second argument should preferrably be a function that does not raise any exception, otherwise memory
leaks may occur.

• zrand1 : Int -> Int is equivalent to fn nbits => zrand (nbits, irand), but faster.

• zrandprime : int * int * (int -> int) -> Int applied to k, n and f , draws random primes
of n bits. This calls f to draw random numbers, which are then tested for primality.

More precisely, if |n| ≥ 2, then this returns a random probable prime of |n| bits, where prime testing is done by
calling zprime with argument k; if |n| < 2, then it raises Lip 18. If n < 0, in addition, the returned prime
number is congruent to 3 modulo 4.

This works by picking odd numbers of the right size, keeping adding two until it is probably prime; or it
is too large, in which case we pick again, and start adding again, in accordance with NIST DSS Appendix.
Using f =irand is not recommended for cryptographic applications, instead cryptographically secure pseudo-
random number generators should be used.

The third argument should preferrably be a function that does not raise any exception, otherwise memory leaks
may occur.

• zrandprime1 : int * int -> Int is equivalent to

fn (nbits, ntries) => zrandprime (nbits, ntries, irand)

• zrandpprime : int * int * Int * (int -> int) -> Int * Int is used to generate a prob-
able prime number p of exactly |k| bits such that q divides p−1, where q is given. The arguments are k, a machine
integer n (used in calling zprime, so that p is prime with probability ≥ 1 − (1/4)

n+1), the large integer q,
and a pseudo-random generator function f taking a bound x and returning an equidistributed random integer in
[0, x[, e.g., irand. Raises Lip 14 if q ≤ 0, Lip 18 if failed to generate p, typically because q already uses
≥ |k| bits. Otherwise, returns (p, bp/qc). If k < 0, in addition, p will be congruent to 3 modulo 4.

This works by generating p at random amongst |k|-bit numbers such that q divides p − 1, until p is probably
prime, in accordance with NIST DSS Appendix. This only works if n is substantially larger than znbits
(q). Using f =irand is not recommended for cryptographic applications, instead cryptographically secure
pseudo-random number generators should be used.

zrandpprime is used to generate pairs (p, q) of prime numbers such that q divides p − 1, where p and q
have specified numbers of bits. To do this, first generate q using zrandprime, then call zrandpprime to
generate p.

The fourth argument should preferrably be a function that does not raise any exception, otherwise memory leaks
may occur.

• zrandpprime1 : int * int * Int -> Int * Int is equivalent to
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fn (k, n, q) => zrandpprime (k, n, q, irand)

• zrandfprime : int * int * Int * (int -> int) -> Int * Int generates a pair of prob-
able prime numbers p and q such that q has |k| bits and p = qr + 1, where k and r are given. The arguments
are (k, n, r, f), where n is given to zprime to test whether both p and q are probably prime, r is the machine
integer above, and f is a pseudo-random generator taking a bound x and returning an equidistributed random
integer in [0, x[, e.g., irand. If k < 0, in addition q will be congruent to 3 modulo 4. Raises Lip 18 if fails,
typically if r < 2 or r is odd.

Using f =irand is not recommended for cryptographic applications, instead cryptographically secure pseudo-
random number generators should be used.

The fourth argument should preferrably be a function that does not raise any exception, otherwise memory leaks
may occur.

• zrandfprime1 : int * int * Int -> Int * Int is equivalent to

fn (k, n, r) => zrandfprime (k, n, r, irand)

• zrandgprime : int * int * bool * (int -> int) -> Int * Int * Int takes four ar-
guments k, n, first, and f , and returns p, q, g where p and q random probable primes (tested with zprimewith
argument n; if k < 0, in addition, q is congruent to 3 modulo 4) such that p = 2q+1 (this uses zrandfprime),
and a generator g of the multiplicative group of all numbers prime to p less than p. If first is true, then g will
be the smallest generator, otherwise g will be selected at random. Raises Lip 18 if it fails.

Using f =irand is not recommended for cryptographic applications, instead cryptographically secure pseudo-
random number generators should be used.

The fourth argument should preferrably be a function that does not raise any exception, otherwise memory leaks
may occur.

• zrandgprime1 : int * int * bool -> Int * Int * Int is equivalent to

fn (k, n, first) => zrandfprime (k, n, first, irand)

• zecm : Int * int * int * int -> (Int * bool) option , called on (n, ncurves, φ1, ntries),
tries to factor the large integer n. It returns NONE if n was found to be probably prime after ntries primality
tests. Otherwise, it returns SOME (f, b): if b =true, then f is a non-trivial factor of n; if b =false (which
should only happen in very exceptional circumstances), then a non-trivial factor of n can be obtained by looking
at the factorization of fn − f .

This runs by using Arjen Lenstra’s elliptic curve algorithm. Up to ncurves random elliptic curves are drawn
with first phase bound φ1 (this increases by 1.02 at each new elliptic curve).

This may raise Lip 19 if zecm fails to reach any conclusion, or if n is too small (on 32-bit machines, n ≤
215 = 32768; in general, n >

√
max int is never too small: in these cases, use ztrydiv first).

Raises Lip 15 if a bug occurred in zecm. In case this happens, this should be reported to the author
goubault@lsv.ens-cachan.fr, see MAINTENANCE at the end of the OPTIONS file.

4.9 Input/Output
Two types are defined, first that of output streams outstream:

type ’rest outstream = |[put:string -> unit,... : ’rest]|
means that output streams are extensible records (classes) with at least a put method, to output a string to the

stream. For example, to make a stream that prints to a string stored inside a ref sr:string ref:
|[put = fn text => (sr := !sr ˆ text)]|
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The type of input streams instream is:
type ’rest instream : |[get:int -> string,... : ’rest]|
providing at least a get method, that reads up to n characters from the stream, n being the number in argument.

If less than n characters have been read, it usually means that an end of stream has been reached. (After the end of
stream is reached, repeated calls to get will return the empty string.) For example, an input stream reading from a
string s:string, with current position stored in a ref posr:num ref is:

|[get = fn n => let val goal = !posr+n
val newpos = (if goal<size s

then goal
else size s)

in
substr(s,!posr,newpos)
before (posr := newpos)

end]|

Note that if you want to read from a string, the instring primitive does this faster.
The following exception is defined:
exception IO of int
is raised when the system was unable to open a file or any other I/O-related operation; it returns as argument the

error code returned by the operating system. (Note that this is OS-dependent.)
The other methods that may be present in predefined streams are:

• flush : unit -> unit flushes the stream, when it is buffered, emptying the buffer.

• seek : int -> unit sets the current position in the file to the integer in argument; if this argument is
negative, it does as if it were 0, that is it goes to the beginning of the file; if it is larger than the file size, it sets
the position to the end of the file.

• advance : int -> unit does a seek from the current position (given by the tell method).

• seekend : int -> unit does a seek from the end of file. Notice that interesting argument values in
this case are negative.

• tell : unit -> int returns the current position in the file, starting at the beginning, for which it is 0.

• getline : unit -> string reads a whole line, until and including the newline character. If instead the
end of file is reached, there won’t be any newline character in the resulting string. After the end of file is reached,
repeated calls to getline will return the empty string.

• truncate : unit -> unit truncates a file open for writing (or for appending) at the current position.
This is useful notably when seeking back into the file, and writing there, to discard any spurious data that might
remain following the current position in the file.

• close : unit -> unit closes the current file. However, although the file is physically flushed and closed
(so that, on systems with exclusive access to files, others can afterwards access the file), it will only be defini-
tively closed when the garbage collector has determined that the associated stream was not used any more.

If any method is invoked on a closed file, the file is first automatically reopened in the state it was in when it was
last closed (except if it was not needed, like for the tell method). This way, even with strange control flows,
coming for example from uses of callcc and throw, everything should go smoothly (no need to forecast
when to reopen the file).

The input/output values and functions are:
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• print : ’a outstream -> dynamic -> unit prints the value stored in the dynamic on the speci-
fied output stream, in the same format that is used by the toplevel loop. The type is not printed, though. Strings
are printed with quotes, and with control characters escaped. If it is desired to print strings merely as the se-
quence of their characters, apply the put method of the stream. Try: #put stdout "Hello, world\n".
(And don’t forget to #flush stdout () afterwards to see your result printed.)

• pretty : ’a outstream -> dynamic -> unit pretty-prints the value stored in the dynamic on the
specified output stream, as done by the toplevel loop. The type is not printed, and the right margin is the system
default (usually, 80).

• stdout : |[put:string -> unit,flush:unit -> unit]| is the standard output stream, that
prints on the console if not redirected. This stream is buffered, the flush method flushes the buffer.

• stderr : |[put:string -> unit,flush:unit -> unit]| is the standard error stream; it prints
on the console if not redirected. This stream is buffered, the flushmethod flushes the buffer (on most operating
systems, an end-of-line also flushes the buffer).

• outfile : string -> |[put:string -> unit,
flush:unit -> unit,
seek:int -> unit,
advance:int -> unit,
seekend:int -> unit,
tell:unit -> int,
truncate:unit -> unit,
close:unit -> unit]|

opens the file whose name is given, creating it if it does not exist, reinitializing it to zero length, and returns an
output stream. If the file could not be opened, the IO exception is raised, applied to the error code.

The stream is buffered, the flush method flushes the buffer.

• appendfile : string -> |[put:string -> unit,
flush:unit -> unit,
seek:int -> unit,
advance:int -> unit,
seekend:int -> unit,
tell:unit -> int,
truncate:unit -> unit,
close:unit -> unit]|

opens the file whose name is given, creating it if it does not exist, setting the current position to the end of file,
and returns an output stream. If the file could not be opened, the IO exception is raised, applied to the error
code.

The stream is buffered, the flush method flushes the buffer.

• outprocess : string * string list -> |[put:string -> unit,
flush:unit -> unit,
kill:unit -> unit]|

creates a process which will execute the shell command given in argument in parallel with the current HimML
process. This shell command is given in the form (command name, arguments). The command name is searched
for, using the PATH shell variable, with arguments as given.

Strings can be sent to the standard input of this process by using the put method (followed by flush to really
send the message), and the process can be terminated by calling the kill method.

Contrarily to files, which can be closed and then revived when necessary, a killed process cannot be revived, and
an IO exception will be raised when attempting to write to a dead process.
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If the process could not be created, then an IO exception is raised (normally, IO 2, “no such file or directory”).

The kill method raises an IO exception when the process exited with a non-zero exit code (as returned by the
C function exit). Then, if n is this code, IO n is raised. (To be fair, n is first taken modulo 256, and only if
the result is non-zero is the exception raised, with n mod 256 as argument.)

The child process can exit by itself, and this can be detected by the fact that putting a string to the child (then
flushing, to be sure that the message has really been sent) will raise an IO error (normally, IO 32, “broken
pipe”). It is then good policy to kill the process, as it allows the operating system to reclaim process structures
allocated for the child (at least on Unix, where this is necessary).

• stdin : |[get:int -> string,getline:unit -> string]| is the standard input stream, that
reads from the console if not redirected. This stream is usually buffered, so that characters cannot be read until
a newline character \n is typed as input.

• infile : string -> |[get:int -> string,
getline:unit -> string,
seek:int -> unit,
advance:int -> unit,
seekend:int -> unit,
tell:unit -> int,
close:unit -> unit]|

opens the file whose name is given, and returns an input stream. If the file could not be opened, the IO exception
is raised, applied to the error code. The stream is buffered for speed, but no flushing method should be necessary.

• inprocess : string * string list -> |[get:int -> string,
getline:unit -> string,
kill:unit -> unit]|

creates a process which will execute the shell command given in argument in parallel with the current HimML
process. This shell command is given in the form (command name, arguments). The command name is searched
for, using the PATH shell variable, with arguments as given.

All text that is printed on the parallel process’s standard output can be read by the HimML process by using the
get and getline methods, and the process can be terminated by calling the kill method.

Contrarily to files, which can be closed and then revived when necessary, a killed process cannot be revived, and
an IO exception will be raised when attempting to read from a dead process.

If the process could not be created, then an IO exception is raised (normally, IO 2, “no such file or directory”).

The kill method raises an IO exception when the process exited with a non-zero exit code (as returned by the
C function exit). Then, if n is this code, IO n is raised. (To be fair, n is first taken modulo 256, and only if
the result is non-zero is the exception raised, with n mod 256 as argument.)

The child process can exit by itself, and this can be detected by the fact that the get and getline methods
will all return empty strings (end of file, at least after the internal buffer is emptied). It is then good policy to
kill the process, as it allows the operating system to reclaim process structures allocated for the child (at least
on Unix, where this is necessary).

• instring : string -> |[get:int -> string,
getline:unit -> string,
seek:int -> unit,
advance:int -> unit,
seekend:int -> unit,
tell:unit -> int]|

opens a stream for reading on the string given as argument . This is a souped up version of the input stream
example at the beginning of the section.
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• outstring : string -> |[put:string -> unit,
seek:int -> unit,
advance:int -> unit,
seekend:int -> unit,
tell:unit -> int,
truncate:unit -> unit,
convert:unit -> string]|

opens a stream to write on, as if it were a file. The convert method is used to get the current contents of the
stream in the form of a string. This is useful notably to print data to a string. The stream is initialized with the
string given as argument to outstring.

This is a souped up version of the output stream example at the beginning of the section.

• inoutprocess : string * string list -> |[get:int -> string,
getline:unit -> string,
put:string -> int,
flush:unit -> unit,
kill:unit -> unit]|

creates a process which will execute the shell command given in argument in parallel with the current HimML
process. This shell command is given in the form (command name, arguments). The command name is searched
for, using the PATH shell variable, with arguments as given.

All text that is printed on the parallel process’s standard output can be read by the HimML process by using the
get and getline methods; moreover, HimML can sent data, as text, by writing to its standard input with the
put method, while flush empties the output buffers to really send the text to the process; and the latter can
be terminated by calling the kill method.

Contrarily to files, which can be closed and then revived when necessary, a killed process cannot be revived,
and an IO exception will be raised when attempting to read from a dead process. For other remarks, see items
inprocess and outprocess.

• delete : string -> unit deletes the file whose name is given in argument. If any I/O error occurs,
then the exception IO is raised, applied to the corresponding error code. In particular, if the argument is the
name of a directory, rmdir should be used instead.

• rename : string * string -> unit renames the file whose name is given as first argument to the
name given as second argument. If any I/O error occurs, then the exception IO is raised, applied to the corre-
sponding error code. Note that the capabilities of rename vary greatly from system to system. For example,
rename can move files from any place to any other place on BSD Unix; this is restricted on Unix System V,
Amiga and Mac systems to move files only inside the same volume (file system).

• filetype : string -> string set takes the name of a file and returns a set of properties of this file
as character strings. If the file does not exist or any other I/O error occurs, then the exception IO is raised,
applied to the corresponding error code. Otherwise, the following strings are used for properties:

– "a" means the file is an archive (Amiga only);

– "b" means this is a block special file (Unix only);

– "c" means this is a character special file (Unix only);

– "d" means the file is a directory;

– "e" means the file is erasable, either by delete or by rmdir (by the owner, on Unix systems; by all,
on other systems); on Unix, "eg" means the file is writable by users in the same group, "eo" means the
file is writable by all other users.

– "f" means this is a fifo, a.k.a. a pipe (Unix only);

59



– "g" means the file has the setgid bit set (Unix only);

– "l" means the file is a symbolic link (Unix only);

– "n" means this is a regular (normal) file;

– "p" means the file is pure (Amiga only);

– "r" means the file is readable (by the owner, on Unix systems; by all, on other systems); on Unix, "rg"
means the file is readable by users in the same group, "ro" means the file is readable by all other users.

– "s" means the file is a script file (Amiga only);

– "S" means the file is a socket (Unix only);

– "u" means the file has the setuid bit set (Unix only);

– "v" means the file has the “save swapped text after use” option (Unix only, should be obsolete);

– "w" means the file is writable (by the owner, on Unix systems; by all, on other systems); on Unix systems,
if a file is writable, it is also erasable; on Unix again, "wg" means the file is writable by users in the same
group, "wo" means the file is writable by all other users.

– "x" means the file is executable (by the owner, on Unix systems; by all, on other systems); on Unix again,
"xg" means the file is writable by users in the same group, "xo" means the file is writable by all other
users.

• dir : string -> string set takes a path as input, which should be a correct path name for a directory,
and returns the set of all file names (except . and .. on Unix systems) inside this directory. If any I/O error
occurs, then the exception IO is raised, applied to the corresponding error code.

• cd : string -> unit changed the current directory to the one specified by the path given as input. If any
I/O error occurs, then the exception IO is raised, applied to the corresponding error code.

• pwd : unit -> string returns a name for the current directory, as changed by cd. If any I/O error
occurs, then the exception IO is raised, applied to the corresponding error code. This may notably be the case if
the path name is too long.

• mkdir : string -> unit creates a new directory by the name given in argument. If any I/O error occurs,
then the exception IO is raised, applied to the corresponding error code.

• rmdir : string -> unit creates a new directory by the name given in argument. If any I/O error occurs,
then the exception IO is raised, applied to the corresponding error code. In particular, on most operating systems,
rmdir can be used on empty directories only. To delete files, use delete.

• system : string -> int issues the shell command given as argument. On Unix systems, this calls the
system(3S) function, which calls a sh-compatible shell to execute the command. system launches the
command, waits for it to return, and returns the exit code of the command (0 if all went well). If an error occurs
(not enough memory, not enough processes available, command interrupted by a signal, typically), then an IO
exception is raised.

• getenv : string -> string option reads the value of the environment variable whose name is
given, and returns NONE if it has not been defined, and SOME of its value, otherwise.

• args : unit -> string list returns the list of command-line options given after the -- switch on
HimML’s command-line.

• iomsg : int -> string translates the I/O error code in argument (as returned as argument of a IO ex-
ception) into a string in human-readable form. This is the same message as the one printed by the C function
perror() on Unix systems.
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• leftmargin : int ref defines the left margin for printing, as a number of spaces to print at the beginning
of a new line when pretty-printing. It is ref 0 by default.

• rightmargin : int ref defines the right margin for printing, as a number of columns (counted as char-
acters) from the beginning of the line where a new line has to be forced by the pretty-printing functions. It is
ref 80 by default.

• maxprintlines : int ref defines the limit on the number of lines printed by pretty-printing functions,
mainly to avoid looping while printing infinite structures, or to avoid printing structures of humongous sizes
fully. This is also valid for printing values defined on the toplevel, since pretty is used for this purpose. The
default value is ref 100. To suppress the limit in practice, write maxprintlines := max_int.

• numformat : string ref is a reference to the string that is used to format floating-point values for
printing. Any C-style format for printing doubles may be used, i.e. it is %[- | + | | #] ∗ [0 − 9] ∗ (\.[0 −
9]+)?[feEgG], where - forces left adjustment, + forces a sign in front of the value, a blank puts a space instead
of a plus sign in front of the value, a hash sign (#) forces a radix character (i.e, a dot in general; besides, trailing
zeroes are not removed in the case of g and G conversions); the following optional decimal number specifies the
minimum field width (with the left adjustment flag -, the number is padded on the right if it is not large enough);
if this is followed by a dot, and a decimal number, this specifies the number of digits to appear after the radix
character for e and f conversions, the maximum number of significant digits for the g conversion. The possible
conversion characters are: f prints in the format [ ] ddd.ddd with 6 digits by default (this can be modified by
precision specifications; 0 says not to output the radix character); e or E print in the format [ ] d.dde[+ ]dd (or
with E instead of e, respectively), with one digit before the radix character, and 6 digits by default; g or G choose
between f and e (resp. E) conversions: the latter is chosen if the exponent is less than −4 or greater than or
equal to the precision (by default, 6).

The default is "%G".

4.10 Miscellaneous
Interesting values are:

• it : unit is a special variable containing the last expression evaluated at toplevel. It is implicitly rede-
fined every time an expression (not a declaration) is input at toplevel. Indeed, an expression e at toplevel is
conceptually equivalent to writing the declaration:

val it = e

• features : |[OS : string,
reftyping : string,
continuations : string set,
numbers : string set,
structures : string set,
profiling : string set,
debugging : string set,
floatformat : string,
version : int * int * string * int,
recompiled : string,
started : string,
maintenance : string,
creator : string]|

(may be extended in future versions) is a description of the features in the implementation and the session. Its
use is informative, but it may also serve for conditional compilation. The fields currently defined are:
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– OS defines the operating system for which this HimML compiler was compiled; it may be "Mac",
"Amiga", "Unix System V" or "Unix BSD" for now. Currently, The Mac port is lagging be-
hind, due to the demise of my old Mac II. A port for PCs should be possible, though there seems to be
some major hurdles to overcome (mainly because of segmenting schemes).

– reftyping defines the scheme used to handle types of imperative constructs in HimML. Its value may
be "imperative tyvars", meaning the Standard ML typing scheme [6], "weak tyvars", mean-
ing the Standard ML of New Jersey typing scheme with weak type variables (assumed throughout this
document), or "effect tyvars", meaning typing with more precise effect descriptions[14], or yet
another, not yet implemented.
Frankly, the latter was never fully implemented, and while the weak tyvars discipline remained the default
for years, and was buggy and not really required. Today, HimML uses the imperative tyvars discipline.

– continuations defines the style of continuation reifying mechanism. It is a set of strings, which may
contain "callcc" (callcc reifies the whole functional state of evaluation, i.e. the whole stack) and
"catch" (catch does the same as callcc, but the continuation it reifies is valid only while we are
still evaluating the catch call).

– numbers is a set of strings defining the styles of numerical objects we may handle: it may contain
"complex floating point", which defines complex floating point values with attached dimen-
sions and scales, and also "big rationals" which defines infinite precision rational numbers. Only
the first of these options has been implemented.

– structures defines the structuring mechanism used in HimML (modules). Its value is a set of strings
that may contain "Standard ML structures", indicating the structure system described in [6] and
[9], and "separate compilation a la CaML", indicating we have a separate compilation mod-
ule system a la CaML. The first (not yet implemented) provides a sound way of structuting name spaces
for types and values. The second only provides separate compilation facilities. It is described in Section
5.6.

– profiling defines the profiling possibilities. It is a set that may contain:

∗ "call counts", meaning that the number of times each function is called is tallied,
∗ "proper times", meaning that a statistical estimation of the time spent in each function (exclud-

ing any other profiled function it has called) is computed,
∗ "total times" (same, but including time spent in every called function),
∗ "proper allocations" and "total allocations". The last two options mean that mem-

ory consumption is recorded, as well, but have not been implemented yet. See Section 5.4 for a
detailed description of the profiler.

– debugging defines the debugging support. It may contain:

∗ "standard", which means we can set breakpoints and read values at breakpoints, and we can
consult the call stack;

∗ and "replaying debugger", if the debugger may reverse execution up to specified control
points to show the origins of a bug. Only the last option has not been implemented in HimML.
(See Section 5.3 for a description of the debugger.)

– floatformat defines the format of floating point numbers. This is important since certain numerical
features are not provided in certain modes, and since the management of rounding may differ with a format
or another. The floatformat may be "IEEE 754" or "unknown".

– version defines the current version of HimML. It is composed of:

∗ a major version (currently 1), incremented each time a fundamental decision is made by the creator of
the language which affects deeply the way we program in it (deletions or modifications of values or
constructions in the language may qualify if they are important enough)

∗ a minor version (currently 0), incremented for any minor revision (addition of functionalities qualify;
deletion or modification of minor functions qualify too)
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∗ the code status, a string which may be:
"alpha" , if only the creator (or close friends) have access to the implementation;
"beta" , if released for beta-testing to a group of people;
"gamma" , if deemed enough stable and bug-free to be used by final users;
"release" , if distributable.

∗ the revision (currently 11), incremented each time a bug is corrected or something is made better
inside the language, without changing its overall behavior.

– recompiled is the last date of recompilation of this revision of HimML.

– started is the date the current session was started. This may be used inside a HimML program to see if
it has been restarted from disk or if it has just been transferred to another session.

– maintenance is a description of the person or service the user should contact if there is any problem
with HimML.

– creator is the name of the creator of the language, that is, "Jean Goubault".

• times : unit -> time * time computes the user time (first component of the returned couple) and
the system time (second component). On Unix systems, this time takes its origin at the moment the current
HimML process was launched. On other systems, the origin may be the time at which the machine was last
booted. These times are in seconds, the default scale of dimension time, defined as:

dimension time(s)

• force : ’a promise -> ’a forces evaluation of a promise (created with the delay construct), and
returns the result. A delayed expression is evaluated at most once: the result of forcing is memoized.

• callcc : (’1a cont -> ’1a) -> ’1a reifies the current continuation, and passes it to the function
in argument. This continuation includes a copy of the current stack of exception handlers, so that triggering
a continuation reinstalls the exception handlers in use when reifying the continuation: this is the reason why
imperative types are used.

The extent of the continuation is indefinite, i.e. it can be thrown at any time, even after the call to callcc is
completed.

• catch : (’1a cont -> ’1a) -> ’1a reifies the current continuation, and passes it to the function in
argument. This continuation includes a copy of the current stack of exception handlers, so that triggering a
continuations reinstalls the exception handlers in use when reifying the continuation: this is the reason why
imperative types are used.

Contrarily to callcc, the extent of the continuation is not indefinite, that is, throwing the reified continuation
is valid only until the call to catch is completed. Afterwards, any attempt to throw the continuation may raise
the exception Catch. (This is not systematic, however.)

catch is the basic mechanism for implementing threads, a.k.a. coroutines, i.e. separate computations sharing
the same process space, and which can be suspended or resumed at will. The current implementation actually
builds catch as basically a thread mechanism, where the process stack is split up in several different stack
zones, called thread caches, and thread switching is implemented as changing caches. callcc is implemented
in the same way, except that thread caches are copied back to the heap for possible future reuse. Thread caches
may also be copied to the heap to make room for a new thread when there is no remaining available cache in
catch or callcc, and they are copied back from the heap when executing throw

• throw : ’a cont -> ’a -> ’b reactivates a continuation, by passing it the return value of the contin-
uation.

63



• gc : unit -> unit forces a garbage collection—not necessarily a major one—to take place. This is
usually not needed. It may be used in alpha status to scramble the heap and see if it incurs any nasty memory
management bug in the HimML run-time. It may also be used prior to doing some benchmarks, but as of yet,
there is no guarantee that the garbage collection will indeed collect every free objects (this does not force a
major collection).

• major_gc : string -> unit forces a major garbage collection. This can be used in theory to get back
some memory that you know can be freed right away, but it takes time. Its main use is in conjunction with
the -gctrace <file-name> command-line option: then each garbage collection will write some statistics
to <file-name>, which can be used to detect space leaks. Typically, when you wish to see how much mem-
ory is allocated or freed in a call to some function f, call major_gc "before f" before calling f, and
major_gc "after f" afterwards. Then consult <file-name>. There should be some information on the
status of memory before f, beginning with a line of the form:

==[before f]=========================

then sometime later another block of information on the status of memory after the call to f, beginning with a
line of the form:

==[after f]=========================

• abort : unit -> ’a aborts the current computation, and returns to toplevel without completing the cur-
rent toplevel declaration (actually, it invokes the toplevel continuation). This is the function that is internally
used when syntax errors, type errors or uncaught exceptions are triggered. Following the definition of Standard
ML, the current toplevel declaration is abandoned, so that its effect are nil, except possibly on the store.

• quit : int -> ’a aborts all computations, and returns to the operating system with the return code in
argument.

• stamp_world : unit -> unit internally records a checksum and a copy of the current HimML envi-
ronment. All modules (see Section 5.6) are compiled in the latest stamped copy of the HimML environment,
and are saved to disk with the corresponding checksum. This way, when a module is reloaded, its checksum is
compared to the checksums of all stamped environments in memory, and an error is triggered if no environment
exists with the same checksum (meaning that we cannot safely use the module, either because it needed a richer
or incompatible environment, or because the version of HimML has changed too much). The environment is
automatically stamped just before HimML starts up.

• system_less : ’’a * ’’a -> bool is the system order. It returns true if the first argument is less
than the second in the system order. You may use this ordering as a total ordering on all data of equality
admitting types.

Another total ordering on equality admitting types is

fun system_less_2 (x,y) =
case {x,y} of {z,...} => z=x

but this is slower. It is also a different order.

• inline_limit : int ref is a reference to a limit on the size of functions that the compiler will accept
to inline. Its default value is 30. (Units are unspecified, but are roughly the numbers of basic operations and of
variables in the function.) In version 1.0 alpha 18, there is no compiler yet, but one that produces C source code
to feed to your favorite C compiler is in the works.
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Chapter 5

Running the System

5.1 Starting up
HimML runs on Unix systems, and Amigas. Previous versions also worked on Apple Macintoshes, but this one lacks
some functions. On a Mac, the only way to launch a HimML session is to double-click on the HimML icon; a text
window opens, asking to enter Unix command-style arguments: enter the arguments to the HimML command, except
the command’s name itself. From then on, all work happens in this console, at toplevel, as on Amiga and Unix systems.

On Amigas and Unix boxes, type himml followed by a list of arguments. The legal arguments are obtained by
typing himml ?, to which HimML should answer:

Usage: himml [-replay replay-file] [-mem memory-size]
[-cmd ML-command-string] [-init ML-init-string] [-path path]
[-col number-of-columns]
[-grow memory-grow-factor] [-maxgrow max-memory-grow-factor]
[-nthreads max-cached-threads] [-threadsize thread-cache-size]
[-maxcells max-cells] [?] [-gctrace file-name]
[-pair-hash-size #entries] [-int-hash-size #entries]
[-real-hash-size #entries]
[-string-hash-size #entries] [-array-hash-size #entries]
[-pwd-prompt format-string] [-core-trace] [-data-hash-size #entries]
[-c source-file-name] [-inline-limit max-inlined-size] [-nodebug]
[-- arguments...]

and exit. Launching HimML without any arguments is fine. There are other HimML tools, used to compile, link and
execute bytecode compiled files; they are listed at the end of this section.

To load a file, the use keyword may be used; it begins a declaration, just like val or type, that asks HimML
to load a file and interpret it as if it were input at the keyboard (except it does not use stdin. The path that use
uses can be extended on the command line by the -path switch, or inside HimML by changing the contents of
usepath : string list ref, which is a reference to the list of volumes or directories in which to search for
files, from left to right.

The explanation of the various options are:

• -replay <replay-file>: whenever himml is executed, it records every single word it parses in a replay file,
named HimML.trace by default; this is useful notably in debugging the language (see section 5.10), but also
to see a computation evolve (because HimML writes there its garbage collection statistics as ML comments).
To replay such a file, the -replay option is used with the name of the replay file. This option is incompatible
with all the others.
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• -core-trace instructs HimML to create and fill in a replay file for use with the -replay option. The
replay file is named HimML.trace and is created in the current directory. It records every single line typed on
standard input or in any included file (by use).

• -mem <memory-size> sets the initial amount of memory HimML takes for its heap. By default, it is 400000
(400 Kbytes) on Unix systems, and this is expanded on demand by chunks of 400 Kbytes. On Macs, where the
heap cannot be expanded, the initial memory size is the maximum memory size; by default, it is 16000000 (16
Mbytes), and the system tries to allocate a heap at most that large on launching. If it cannot do it, it reduces
automatically the figure until the heap can be allocated or until it finds out there is not enough memory to load.
On Amigas, the policy is like on Unix systems.

-mem can be used only once on the command line.

• -maxcells <max-cells> sets an upper bound on the number of cells to allocate. This limit is not strict:
if the system feels it absolutely needs more memory, it will grab some, but only a minimal amount of it, to
avoid aborting the current HimML process. By default, the number of cells is unlimited, but it may be useful
in some situations to limit it, otherwise HimML will take as much memory as it wants to feel at ease, without
consideration of any other processes on the same machine.

-maxcells can be used only once on the command line.

• -nthreads <max-cached-threads> sets the number of cache threads that are available for the implementa-
tion of callcc and catch. In the current implementation, the process stack is split into several distinct stack
regions that act as stacks for threads, and callcc and catch use these as caches for heap-based thread stacks
(the more, the better). By default, there are 10 such caches, i.e. the default option is -nthreads 10.

-nthreads can be used only once on the command line.

• -threadsize <thread-cache-size> sets the size in bytes of the cache threads that are available for the im-
plementation of callcc and catch. In the current implementation, the process stack is split into several
distinct stack regions that act as stacks for threads, and callcc and catch use these as caches for heap-based
thread stacks. The larger the thread caches, the less often cache overflows will occur (in which case, catch
is used transparently to switch threads and resume computation in a new empty thread); the smaller the thread
caches, the faster catch and mostly callcc will be (the former might have to copy thread caches to or from
memory; the latter needs to). By default, thread caches are 20000 bytes wide, with 4000 bytes left as safety
zone; i.e., the default option is -threadsize 20000.

-threadsize can be used only once on the command line.

• -pair-hash-size <#entries> sets the number of slots in the global hash-table that is used to keep a record
of all shared pairs (couples, list cells, basic blocks for sets, and so on).

You may wish to give it a value higher than the default (typically 23227) for memory-hungry programs. A rule
of thumb is to evaluate how many cells your program needs (one tuple is one cell, a n-element list uses up n
cells, a n-element set or map uses up some 2n cells; or, more practically, run HimML with the -gctrace
option on, and look at the statistics on total live homo cells), and then to divide this number by, say, 3.

On the other hand, having a big table for few values makes for longer garbage collection times, so you may also
wish to reduce this value on programs that do not use much memory, or which only allocate very short-lived
data.

• -int-hash-size <#entries> is the same as -pair-hash-size, except it is concerned with integers.
(All integers are boxed and shared in HimML.)

You may wish to raise its value if your program builds and keeps lots of integers in data-structures, or you may
wish to decrease its value if you use few integers or only allocate them for temporary computations.

• -real-hash-size <#entries> is the same as -pair-hash-size, except it is concerned with reals
(floating-point values).
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You may wish to raise its value if your program builds and keeps lots of numbers in data-structures, or you may
wish to decrease its value if you use few numerical quantities or only allocate them for temporary computations.
(In particular, there is no need to increase its value for ordinary number-crunching, except if you are handling
big matrices.)

• -string-hash-size <#entries> is the same as -pair-hash-size, except it is concerned with strings.

You may wish to raise its value if your program builds and keeps lots of strings, or does a lot of text processing.
It is not advised to reduce its value, as many strings are used internally by the compiler and the type-checker.

• -array-hash-size <#entries> is the same as -pair-hash-size, except it is concerned with arrays
(in general, with n-tuples, n ≥ 3, or records with at least two fields, or arrays with at least 3 entries).

You may wish to raise its value if your program builds and keeps lots of tuples, records and arrays, or you may
wish to decrease its value in case you don’t use many of these structures.

• -cmd <ML-command-string> is used to launch HimML as a batch process. It makes HimML execute the pro-
gram whose text appears in the string <ML-command-string>, and exit upon termination. The string is parsed
and executed as if it were input at the keyboard; e.g., this might be of the form "use \"myfile.ml\";",
where ‘myfile.ml’ contains declarations and a call to the main function in the project. No welcome ban-
ner, no result of typing or evaluation and no spurious message is printed; to print a message, you must use the
input/output functions. Moreover, standard input is not used by the parser, and can be read by input/output
functions.

-cmd can be used only once on the command line, and is incompatible with -init.

• -init <ML-init-string> is used to initialize a HimML process. It makes HimML execute the program whose
text appears in the string <ML-command-string>, and then present the usual toplevel interface. The string is
parsed and executed as if it were input at the keyboard, though standard input is not used to this end; typically,
this string will be of the form "use \"myfile.ml\";", where ‘myfile.ml’ contains declarations.

-init can be used only once on the command line, and is incompatible with -cmd.

• -path <path> instructs HimML to look for files to load (by the use keyword) in the directory <path> if
it didn’t find them before. The current directory is always the first searched directory. Then come the paths
specified on the command line, in the order in which they arrive.

• -gctrace <file-name> is an option that is off by default. If you specify it, this turns it on: then, each time
HimML will trigger a garbage collection, some information will be written to the specified file. This information
is a sequence of lines of the form:

=========================
GC...done:

total number of allocated memory cells [nCells] = 54272
allocated homo cells in young generation : 4608 (˜73728 bytes,

not counting sharing overhead)
allocated hetero cells in young generation : 512 (˜8192 bytes,

not counting sharing and contents overhead)
live homo cells in young generation : 4019
live hetero cells in young generation : 25
total live homo cells : 4019
total live hetero cells : 25
strings freed : 43 bytes
patcheckbits freed : 0 bytes
stacks freed : 360 bytes
vectors (environments, arrays, tuples, records) freed : 6608 bytes
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16 externals freed
garbage collection time = 0.089s.
There were 0 old generations, plus one new;
there are 1 old generations, plus one new.
Number of stacks (threads) allocated since startup: 7
Number of allocated bytes of temporary (stack) storage: 52400

The latter means the following: one garbage collection has just been done (if the system crashes during a
GC, you will just get GC...), the number of cells in the system is 54272, of which 4608 + 512 = 5120 are
considered young (i.e., will be considered as highly likely to become garbageable at the next GC); among these,
4019 + 25 = 4044 are live, i.e., not free. And the system as a whole also contains 4019 + 25 = 4044 live cells.
The purpose of the “homo” and “hetero” figures is to separate between homogeneous cells (couples, integers,
maps, reals, complexes, etc.) and heterogeneous cells (which point to non-first class data, like strings, which
point to an area of memory where its contents lies, or arrays, or n-tuples with n ≥ 3, or records with at least
2 fields, which are allocated as a cell pointing to an internal array of values). For hetero cells, the amount
of additional memory freed is shown: 43 bytes of strings, none of patcheckbits (an internal structure of the
compiler), 360 bytes of stacks (i.e., of local thread structure), 6608 bytes of vectors, and 16 externals were
freed. Externals are interfaces between HimML and non-HimML data, typically files. The time taken to do this
garbage collection was 0.089s., and the heap had only one generation (the so-called young generation) before
garbage collection, and is segmented in two generations afterwards. It allocated 7 local threads since startup (it
allocates at least one at each toplevel command), most of which have been freed since then. And it allocated
and freed so many bytes of temporary storage (typically for local HimML variables during execution of code),
of which 52400 remain allocated at the end of garbage collection.

Calling major_gc invokes a major collection, and the argument passed to major_gc is printed at the start of
the information block, e.g.:

==[test]=========================
GC...done:

total number of allocated memory cells [nCells] = 54272
allocated homo cells in young generation : 36864 (˜589824 bytes,

not counting sharing overhead)
allocated hetero cells in young generation : 512 (˜8192 bytes,

not counting sharing and contents overhead)
live homo cells in young generation : 6145
live hetero cells in young generation : 14
total live homo cells : 6145
total live hetero cells : 14
strings freed : 29 bytes
patcheckbits freed : 0 bytes
stacks freed : 240 bytes
vectors (environments, arrays, tuples, records) freed : 156204 bytes
16 externals freed
garbage collection time = 0.119s.
There were 1 old generations, plus one new;
there are 1 old generations, plus one new.
Number of stacks (threads) allocated since startup: 11
Number of allocated bytes of temporary (stack) storage: 118832

• -col <number-of-columns> specifies the width of the screen of a HimML session, in characters (by default,
80). This is used by the HimML toplevel when it prints types and values, and by the debugger.

• -grow <memory-grow-factor> specifies the initial ratio of the size of the heap to the size occupied by live
data that the garbage collector tries to maintain. By default, it is 2.0. The greater the number, the less time will
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be spent in garbage collection overall, but the more time a single garbage collection may take. This number can
not go lower than 1.0, and evolves across garbage collections to adapt to the evolving nature of the computations.

• -maxgrow<max-memory-grow-factor> puts an upper bound to the ratio of the size of the heap to the size of
the live data space. By default, it is 8.0.

• -pwd-prompt followed by a format string tells HimML that it should use a prompt that mentions the HimML
current directory (as modified by the HimML cd function and read by the HimML pwd function). The HimML
Emacs mode uses a format string starting with the escape character and continuing with |%s|%s: the first %s
will be replaced by the HimML current directory, the second by the current prompt (normally, >). This is used
by Emacs to synchronize its current directory with HimML’s in HimML mode.

• -inline-limit<limit> installs a new size limit that the compiler reads when deciding whether it should
inline functions or not. This is essentially the same as setting inline_limit to <limit> at HimML initial-
ization time.

• -c<himml-source-file> compiles the given source file, and produces a compiled module file: see Section 5.6.3.

• -nodebug disables the debugger: typing control-C will still interrupt the currently running HimML program,
but instead of entering the debugger, it will stop the program. Moreover, raised exceptions won’t enter the
debugger either.

Finally, using -nodebug will direct the bytecode compiler not to output any debugging information. This can
be used to produce stripped modules (i.e., without any debugging information), typically to save space or to
prevent or make reverse engineering of production code difficult.

Note that, if you compile a module with -nodebug, and execute it under HimML (with the debugger on), then
typing control-C or raising non-benign exceptions will enter the debugger, but the debugger won’t be able to
extract any information from the compiled code.

• -- stops parsing of all options, and instructs HimML that the rest of the command-line consists of options and
arguments that will be available from HimML programs by looking at the list args().

5.2 Compiling, Linking, Finding Dependencies
As said earlier, the HimML distribution includes other tools to compile, link and run bytecode compiled files:

• himml -c compiles a module (see Section 5.6 for details). That is,

himml -c foo.ml

compiles "foo.ml", and produces a bytecode file "foo.mlx". This does exactly the same thing as typing
#compile "foo.ml" at the HimML prompt; typing open "foo.ml" does almost the same thing, except
HimML will then print a list of all types and identifiers defined in "foo.ml", and will declare them in the
current toplevel.

• himmllnk links a series of bytecode files into one; this works both as a linker and as an archiver. Syntax is:

himmllnk archive-file file1.mlx . . . filen.mlx

to create an archive file—in which case it is recommended to give it a .mla extension—, or a bytecode exe-
cutable file.
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• himmlrun runs the HimML bytecode interpreter: himmlrun "foo.mlx" followed by arguments will exe-
cute the main () function in file "foo.mlx" (that the name ends in .mlx is, by the way, totally irrelevant),
and the HimML args() function will get back the command-line arguments. There is in fact no need to ex-
plicitly call himmlrun, as (at least on Unix) launching "foo.mlx" will invoke himmlrun automatically, if
properly installed.

• himmldep computes dependencies between HimML source files. This is used in building makefiles, as used
by make .

A typical use of himmldep is to run

himmldep *.ml >.depend

at the (Unix) command-line. This will produce a file .depend listing all dependencies between files, which
can be used by make to help reconstruct all proper .mlx files.

In fact, the standard makefile for projects using HimML is as follows:

%.mlx : %.ml
himml -c $<

OBJS = a.mlx b.mlx c.mlx

prog: $(OBJS)
himmllnk prog $(OBJS)

clean:
-rm *.mlx prog

cleanall : clean
-rm *˜

depend:
himmldep *.ml >.depend

include .depend

The first line (works only with GNU make) tells make that to build or rebuild any bytecode file, say foo.mlx,
it should call himml -c foo.ml. The OBJS = line is a macro definition, stating what bytecode files we
would like to build. The prog: line states the main rule, which is to build a HimML executable file or a
library file prog, by calling himmllnk to link all bytecode files in OBJS. The clean and cleanall are
targets meant to remove compiled files, and are called with make clean or make cleanall respectively.
Dependencies are recomputed by typing make depend, which creates dependencies in the .depend file; the
latter is in turn included in the current makefile using GNU make’s include directive.

If you don’t have GNU make, then you cannot include .depend, and you will have to copy its contents
manually at the end of makefile. Additionally, the %.mlx : %.ml line should be replaced by:

.SUFFIXES: .ml .mlx

.mlx.ml:
himml -c $<
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5.3 Debugger
HimML contains a debugger, as shown by consulting the set #debugging features, which should be non-empty.
It can be called by the break function:

• break : unit -> unit enters the debugger.

Another way of entering the debugger is when an exception is raised but not caught by any handler.
There are two ways of entering the debugger. These are shown on entry by a message, stop on break (we en-

tered the debugger through break, or by typing control-C or DEL when evaluating an expression), or stop at. . . (we
entered the debugger at a breakpoint located just before the execution of an expression).

In any case, the debugger enters a command loop, under which you can examine the values of expressions, see the
call stack, step through code, set breakpoints, resume or abort execution. The debugger presents a prompt, normally
(debug). It then waits for a line to be typed, followed by a carriage return, and executes the corresponding command.
These commands are:

• h, or help, displays a summary of all debugger commands. This is no replacement of the general documenta-
tion (this document), its aim is to remind the user of the particuliar commands the debugger offers. The summary
is also displayed whenever the debugger did not understand your last command.

• s, or step, resumes execution in single-step mode. That is, the current execution is resumed, and after ex-
ecuting a single instruction, the debugger is entered again. When coming upon a procedure call, s enters the
procedure and stops on entry.

• n, or next, resumes execution in single-step mode. That is, the current execution is resumed, and after execut-
ing a single instruction, the debugger is entered again. When coming upon a procedure call, n evaluates the call
without entering the procedure, and stops at the beginning of the next instruction. When the called procedure
raises an exception that is not caught inside the procedure, the debugger manages to stop at the beginning of the
next instruction to be executed, which is not necessarily the one just after the breakpoint—it will probably be
one at the beginning of an exception handler.

• c, or cont, or continue resumes execution, as though the debugger had not been called. In particular, it does
not single-step through the code. If the debugger was entered through break, execution is resumed as though
we had never entered the debugger, and break acts as the identity function. If the debugger was entered through
a breakpoint, execution is resumed. If it was entered through an uncaught exception, execution is aborted, and
control returns to the toplevel.

The c command may take an argument, which should be a HimML expression e. This expression is parsed,
type-checked, compiled and evaluated in the current environment (which is the environment as seen from the
point where execution was stopped; but see the u, d and w commands). No breakpoint in the expression is
ever triggered, and interrupting its evaluation by control-C or DEL just cancels the evaluation and returns to the
debugger, without, say, entering a recursive level of debugging.

If the expression successfully evaluates, the resulting value v is returned as the result of the expression on which
execution was stopped. This means the following: on a stop on break, the return value is replaced by v, and
execution is resumed with this new value instead of the previously computed one; on a stop on entry to an
expression e′, the expression e′ is not evaluated, and v masquerades as the value that e′ should have (this is
useful when e′ is not a reliable piece of code, but we know in advance what it should return and we don’t want
to lose time debugging e′).

Note that, although there is some type-checking involved in the evaluation of the expression e, this only provides
a relative, not absolute, level of safety. That is, type-checking under the debugger may catch some type errors,
but not all (in short, the debugger is not type-safe). For example:

exception Div0
fun inv x = if x=0.0 then raise Div0 else 1.0/x
inv 0.0
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will enter the debugger at the raise expression, and e will be coerced to the finest type the debugger can infer
from the definition of inv alone, that is, ’#aˆ ˜1 (since inv : ’#a -> ’#aˆ ˜1). However, the only
allowable type in the current context would be num. So if you type c 35‘cm, inv will return with a mostly
unpredicatable value. Even more seriously, in other cases this may cause the HimML system to crash, although
this risk is limited because there are run-time safeguards against that in the HimML system when the debugger
is present.

• p, or print, prints the value of the HimML expression that follows. This is useful notably to display values
of variables or of components of values of variables. However, any HimML expression, including expressions
with side-effects, or that print values in a special format and return () afterwards, can be given as argument to
p: this allows to actually execute any expression from inside the debugger.

The argument expression is parsed, type-checked, compiled and evaluated in the current environment (which is
the environment as seen from the point where execution was stopped; but see the u, d and w commands). No
breakpoint in the expression is ever triggered, and interrupting its evaluation by control-C or DEL just cancels
the evaluation and returns to the debugger, without, say, entering a recursive level of debugging.

As for the c command, the type-checker can only provide a relative, not absolute, level of type-safety, and it is
possible to evaluate non-sensical expressions because the type-checker cannot hope to detect all possible type
errors. This is because the debugger uses only the types that have been inferred statically, but it cannot specialize
them to the real run-time types.

• b, or break, sets a breakpoint on entry to an expression. This expression is referenced by function name (im-
mediately following a @ character), a line number and a column number ( immediately following a : character),
all of which being optional. If the function name is omitted, the current function is assumed (as shown at level
1 of the call stack by the w command, or as specified by the last function listed by the l command). If the line
number is omitted, the first line is assumed; if the column number is omitted, the breakpoint is set as far left on
the line as possible.

After successfully setting the breakpoint, it is associated a breakpoint number, which is then shown between
square brackets, followed by information about the breakpoint location. If no breakpoint could be set at the
indicated location, the debugger won’t install any breakpoint, and will say so.

• sb, or showbreakpoints, shows all currently set breakpoints.

• e, or erase, erases the breakpoint whose number is given as argument.

• w, or where, shows the call stack at the point where execution was stopped. The levels inside the call stack are
numbered from 1 (current scope, shown first; we say it’s the bottom of the stack, although it is shown first, and
therefore on the top of the other levels) to toplevel.

The commands u and d move up and down the stack respectively, and the current level is shown in the stack
display by being preprended the > character. This shows the environment that will be used to type-check,
compile and evaluate expressions, as with the p print command or the c continue command. By default, the
current level is 1 (bottom of stack).

By default, w only shows 10 levels of stack. This is to avoid huge stack dumps in the case of infinite recursions.
You can specify another depth limit by giving w a numeric argument.

• u, or up, moves up the specified number of levels (1 by default) in the call stack: see w.

• d, or down, moves down the specified number of levels (1 by default) in the call stack: see w.

• l, or list, lists the function whose name is given as argument, with line numbers in front of each line, so as to
help set breakpoints or spot where the debugger was stopped. If there are several functions with the same names
in the various environments lying in the call stack, the one that is in scope relative to the current stack level is
listed.

This also sets the current function to the specified one, so that the b command can then be issued to set a
breakpoint in this function without having to retype the name of the function.
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• q, or quit leaves the debugger and aborts the current computation, returning to toplevel. This does not quit the
HimML session, as the quit function, it just leaves the debugger and returns to the toplevel.

The way that the interpreter gives control to the debugger is by means of code points, which are points in the code
where the compiler adds extra instructions. These instructions usually do nothing. When you set a breakpoint, they
are patched to become the equivalent of break. Alternatively, these instructions also enter the debugger when we are
single-stepping through some code.

These instructions are added by default by the compiler, but they tend to slow the interpreter. If you wish to
dispense with debugging information, you may issue the directive:

(*$D-*)

which turns off generation of debugging information (of code points). If you wish to reinclude debugging information,
type:

(*$D+*)

These directives are seen as declarations by the compiler, just like val or type declarations. As such, they obey
the same scope rules. It is recommended to use them in a properly scoped fashion, either inside a let or local
expression, or confined in a module.

5.4 Profiler
The way that the interpreter records profiling information is by means of special instructions that do the tallying.

These instructions are not added by default by the compiler, since they tend to slow the interpreter by roughly a
factor of 2, and you may not wish to gather profiling information of every piece of code you write. To use the profiler,
you first have to issue the directive:

(*$P+*)

which turns generation of profiling instructions on. The functions that will be profiled are exactly those that were
declared with the fun or the memofun keyword.

If you wish to turn it off again, type:

(*$P-*)

These directives are seen as declarations by the compiler, just like val or type declarations. As such, they obey
the same scope rules. It is recommended to use them in a properly scoped fashion, either inside a let or local
expression, or confined in a module. Usually, you will want to profile a collection of modules. It is then advised to
add (*P+*) at the beginning of each. Time spent in non-profiled functions will be taken into account as though it
had been spent in their profiled callers.

Then, the HimML system provides the following functions to help manage profiling data:

• report_profiles : unit
-> |[location : string * string * (int * int) * (int * int),

ncalls : int,
proper : |[time : time * time,

ngcs : int, gctime : time * time]|,
total : |[time : time * time,

ngcs : int, gctime : time * time]|
]| set

returns the set of all profiling data that the interpreter has accumulated until now on all profiled functions. This
is a dump of all internal profiling structures of the interpreter.
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The location field describes where the function that is profiled is located. Its first component is the function
name, its second component is the file name where this function was defined (or the empty string "" if this
function was defined at the toplevel prompt), its third and fourth components are respectively the starting and
ending positions of the definition in this file, as line/column pairs. Note that the function name alone is not
enough to denote accurately which function is intended, as you can build anonymous functions (by fn, for
example): it was chosen to let these functions inherit the name of the function in which they are textually
enclosed. The file name and positions in the file are then intended to give a more precise description of what
function it is that is described.

The ncalls shows how many times this function was called.

The proper and total fields contain statistics in the same format: time is the time spent in the function (in
the format returned by times, i.e. user time and system time), ngcs is the number of garbage collections that
were done while executing the function (this gives a rough idea of the memory consumption of the function),
and gctime is the time spent garbage collecting in this function. While the statistics in proper only include
information of what happened when the interpreter was really executing the function, total also includes the
times spent executing all its callees.

report_profiles only reports statistics for those functions that were called at least once (or at least once
since the last call to reset_profiles.)

report_profiles is pretty low-level, and is intended to be used as a basic block for more useful report
generators. One such generator is located in "Utils/profile.ml". To get a meaningful report, execute
your program, then type:

open "Utils/profile";
prof stdout;

to get a report on your console, or:

fprof "prof.out"

to get a report in a file named "prof.out" in the current directory. (To open the module "profile" on a
Macintosh, write open "Utils:profile"; in general, it’s better to modify the path to include the Utils
directory, and not bother with directory names.)

• reset_profiles : unit -> unit resets all profile information, so that a new profiling round can be
launched on a clear basis.

• clear_profiles : unit -> unit purges the system from all profiling instructions. I.e., executing the
same code again won’t generate any profiling information; the code should go a bit faster, but not as fast as if it
had been compiled without profiling first (it patches the profiling instructions to become no-ops).

What can you do with profile information? The main goal is to detect what takes up too much time in your code,
so as to focus your efforts of optimization on what really needs it. A good strategy to do this is the following:

• Identify the functions in which the most (proper) time is spent, and optimize them.

• If the latter are already optimized, or do almost nothing, then look at the number of times they are called.
Usually, such functions take time just because they are called often; then, identify their callers and rewrite them
so that they don’t go through this subroutine over and over again (i.e., take shortcuts in common situations).

• Finally, in rare occasions, strange cases may occur: it may be the case that some function appears to be more
costly than another one, which does the same amount of work or more. In general, this is because the interpreter
needed to do some extra work behind the scenes. Typically, because it keeps on getting a full stack when entering
this function, and has to switch threads (which is fast, but takes some time when done repetitively); in this case,
try to make your programs less recursive—but this is really a misfeature on HimML’s part.
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5.5 Conditional Compilation
HimML offers a feature known as conditional compilation. A language like C, through the use of its preprocessor,
provides directives named #if. . . [#else]. . .#endif, which may be used to compile one chunk of code or another,
depending on the condition after the #if keyword being true or false.

Because HimML cannot have exactly the same features on each platform, this is a desirable feature to have to
ensure portability of HimML applications across different OSes. This is already the main use of these directives in C:
we can use the fork() call on Unix systems, but it is usually impossible even to emulate on other systems, like the
Amiga or the Macintosh.

This portability concern also extends to different versions of HimML, even on the same platform. Some versions
of HimML use a type system slightly different from other versions, or some may include a module system, or some
may be interfaced with a graphical user interface library, . . . And we want the HimML programmer to be able to write
code that will correctly use the available facilities on each version of HimML. Detecting these differences, whether
related to the processor type, operating system, or HimML version, can be done by examining the value of the special
variable features.

Finally, having conditional compilation directives allows one to parameterize one’s applications with respect to a
file of global declarations. For example, if you want one version of your code with and one without debugging code
interspersed, you might define a variable to be true in one case, false in the other, and then test it at all points where
conditional behaviour should occur.

There is no such feature in Standard ML, probably because having conditional compilation would pose too many
problems in general. Using if. . .then. . .else won’t work in general. Consider:

if "callcc" inset #continuations features
then callcc (fn k => . . .)

else . . .

which is intended to test whether we have callcc in the implementation, and if so, to use it. This presents two
problems. First, the type checker will be run on the whole expression, not just the part that will indeed be executed:
if callcc is not provided in the implementation, then the the type-checker will just fail on the second line of the
example. Then, even if we could overcome this problem, we would need an optimizer to recognize that the test
expression above is actually a constant, and that only one branch of the test has to be compiled; and there are versions
of HimML with no such optimizer (actually, none yet has one).

Instead, you should use an alternative conditional, built with #if. . . [#elsif. . . ][#else]. . .#endif, namely
the same preprocessor directives as in C. The #else and #elsif parts are optional, but don’t forget the #endif:
HimML needs to see it to know that the #if clause is over. Each keyword must lie at the beginning of the line. If this
keyword is #if or #elsif, then the rest of the line is taken to be a test expression, in HimML syntax. Otherwise,
the rest of the line is ignored. (So, don’t write HimML code on the same line as an #else or an #endif!)

This conditional works mostly as in C, with the following important difference: the expression tested by #if or
#elsif, which is the one after the keyword and extending to the end of the line, can be any HimML expression,
which is evaluated to determine its truth value. (In C, we can only test for what the preprocessor knows, namely
#defines and a few arithmetic comparisons.) But note well that these expressions are always evaluated in the
toplevel environment, not the current environment.

For example:

fun f x =
#if x=3

frozzle ()
#else

foo ()
#endif
;

does not evaluate x as the value of the argument to f, which cannot be guessed at compile-time. Instead, the value is
taken in the toplevel environment. Most likely, x won’t be defined in the toplevel environment. This won’t cause an
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error, though: If the test expression is ill-typed or gives rise to an uncaught exception, then it is assumed that its value
if false. So, in this case, it is likely that f x will be compiled as just calling foo (), although the possibility that
it will be compiled as frozzle () is not zero. It is doubtful that this is the intended code.

The same problem happens in the following less clear situation:

let val x=3
in
#if x=3

frozzle ()
#else

foo ()
#endif
end;

because the local binding introduced by let is not a toplevel binding.
The final case where an unexpected behaviour can occur is when writing toplevel declarations not ended by a

semicolon (;). For example:

val x=3 (* and not ’val x=3;’ *)
#if x=3

frozzle ()
#else

foo ()
#endif
;

will also have the same problem. The reason is that the HimML parser only processes declarations when it sees a
semicolon or an end of file. Then, it parses, type-checks, compiles and evaluates all declarations before this semicolon
or this end of file, as a whole. This is for efficiency reasons. Then, when it tries to evaluates the #if test above, the
previous declaration val x=3 has not yet been processed, since it did not end with a semicolon.

The keywords #if, #else, #elsif, #endif must lie at the beginning of the line to be taken into account
as conditional compilation directives. This is because #elsif and #endif are otherwise perfectly valid HimML
expressions, namely the functions that select the field named elsif, resp. endif, from a record argument. If you
wish to use the #elsif field selection function, you can do it by invoking (#elsif), its parenthesized version. It
is strongly recommended not to use these keywords as fields, in fact.

For indenting reasons, any number of spaces or tabulations are allowed before the sharp (#) sign, and between the
sharp sign and the if, else, elsif, or endif part.

You may test the conditional compilation directives in an interactive toplevel session, but it is generally advised not
to use the conditional compilation directives at the toplevel prompt. If you have no prompt after typing return, most
probably there is an unclosed #if expression (type #endif on a line by itself), or you haven’t typed a semi-colon at
the end of the line, so that the parser does not know that you have completed your input.

Finally, the test expression e may have side-effects, or may loop, or may raise an exception, in which case the
whole when clause has side-effects, loops or raise the exception, but it is advised to avoid these behaviours.

Examples of uses of #if are as follows:

• Testing an operating system dependency:

#if #matches (regexp "Unix") (#OS features)
val parentdir = ".."

#elsif #matches (regexp "Amiga") (#OS features)
val parentdir = "/"

#elsif #matches (regexp "Mac") (#OS features)
val parentdir = "::"

#else #put stderr "Unknown OS.\n"; #flush stderr (); quit 1
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#endif
;

to define how the parent directory is named in a portable way, for example. (Notice that we have not put the
final semicolon on the same line as the #endif, where it would just be ignored.)

• Testing a feature in HimML:

#if #reftyping features = "weak tyvars"
val fifo : ’2a -> ’2a -> ’2a ref = . . .

#else val fifo : ’_a -> ’_a -> ’_a ref : . . .
#endif
;

This illustrates a source of difficulty with typing imperative features. Although the second declaration for fifo
would also be valid in the first case (when we use Standard ML of New Jersey’s notion of weak type variables),
it would actually expand into fifo : ’1a -> ’1a -> ’1a ref, which does not have the required type.
In fact, when such type declarations bother you, just drop them: the type inferencer is smart enough to find them
all by itself. The problem is only real when declaring, say, datatypes with imperative features.

• Making several versions of a program: assume you want to have a version of your program, with tests done,
statistics printed to the output, and so on, but that they should be gone in the production version. The easi-
est way to do this is to begin your program by a declaration of the form val testing = true (for test-
ing) or val testing = false (for the production version). Then all calls to tests or statistic printing
routines can be compiled conditionally as follows. Say you want to print your statistics by using a function
print_statistics, with two arguments this and that. You would declare it as:

#if testing
fun print_statistics (this, that) =
. . . definition of your statistic printing routine. . .

#endif;

and then use it as, for example:

fun frozzle (x,y,z) =
(. . . do something. . .
#if testing
; print_statistics (this, that)
#endif
)

The syntax is not particularly elegant, but this is due to the interaction between the #if syntax and the syntax
of sequences of statements in Standard ML: we need to put the semi-colon just before print_statistics
above, since if testing is false, leaving it at the end of the previous line would yield a syntax error. We
also need the parentheses, since otherwise the parser would believe that the semicolon ends the definition of
frozzle.

5.6 Separate Compilation and Modules

5.6.1 Overview
The main goal of the HimML module system is to implement separate compilation, where you can build your program
as a collection of modules that you can compile independently from each other, and then link them together.
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The HimML module system was designed so that it integrated well with the rest of the core language, while
remaining simple and intuitive. At the time being, the HimML module system does not provide the other feature that
modules are useful for, namely management of name spaces. The module system of Standard ML seems best for this
purpose, although it is much more complex than the HimML module system.

Consider the following example. Assume that your program consists naturally of three files, a.ml, b.ml and
c.ml. The most natural way of compiling it would be to type:

use "a.ml";
use "b.ml";
use "c.ml";

But, b.ml will probably use some types and values that were defined in a.ml, and similarly c.ml will probably use
some types and values defined in a.ml or b.ml. In particular, if you want to modify a definition in a.ml, you will
have to reload b.ml and c.ml to be sure that everything has been updated.

This is not dramatic when you have a few files, and provided they are not too long. But if they are long or many, this
will take a lot of time. Separate compilation is the cure: with it, you can compile a.ml, b.ml, and c.ml separately,
without having to reload other files first.

The paradigm that has been implemented in HimML is close to that used in CaML, and even closer in spirit to the
C language. In particular, modules are just source files, as in C. Two new keywords are added to HimML: extern
and open. Note that the Standard ML module system also has an open keyword, but there is no ambiguity as it is
followed by a structure identifier like Foo in Standard ML, and by a module name like "foo" in HimML.

The extern keyword specifies some type or some value that we need to compile the current file, telling the
type-checker and compiler that it is defined in some other file. Otherwise, if you say, for example, val y=x+1 in
b.ml, but that x is defined in a.ml, the type-checker would complain that x is undefined when compiling b.ml. To
alleviate this, just precede the declaration for y by:

extern val x : int

This tells the compiler that x has to be defined in some other file, and that it will know its values only when linking all
files together. This is called importing the value of x from another module.

Not only values, but datatypes can be imported:

extern datatype foo

imports a datatype foo. The compiler will then know that some other module defines a datatype (or an abstype) of
this name. However, it won’t know whether this datatype admits equality, i.e. whether you can compare objects of this
datatype by =. If you wish to import foo as an equality-admitting datatype, then you should write:

extern eqtype foo

Of course, if foo is a parameterized datatype, you have to declare it with its arity, for example:

extern datatype ’a foo

for a unary (not necessarily equality-preserving) datatype, or

extern eqtype (’a, ’b) foo

for an equality-preserving datatype with two type parameters.
Finally, dimensions can be imported as well:

extern dimension foo

imports foo as a dimension (type of a physical quantity, typically).
Given this, what does the following mean? We write a file "foo.ml", containing:

extern val x:int;
val y = x+1;
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Then this defines a module that expects to import a value named x, of type int (alternatively, to take x as input), and
will then define a new value y as x+1 and export it.

Try the following at the toplevel (be sure to place file "foo.ml" above somewhere on the load path, as referenced
by the variable usepath):

val x = 4;
open "foo";

You should then see something like:

x : int
y : int
x = 4
y = 5

Opening "foo" by the open declaration above proceeded along the following steps:

• First, open precompiled the textual description of the module "foo.ml" into an object module "foo.mlx"
in the same directory as "foo.ml". This object module contains, in a binary format, all information that was
in "foo.ml", plus the types it has computed, as well as a representation of the interpreted code for what’s in
"foo.ml".

In fact, open will recompile .mlx files from the corresponding .ml files whenever one of the .ml files on
which it depends has been updated, so as to maintain consistency between the textual versions of the modules
(in .ml files, usually) and their precompiled versions (the .mlx files). On the other hand, if an up-to-date
.mlx file is present, it won’t recompile it, and will proceed directly to the next step.

• Then, open opened the module by loading the contents of foo.mlx.

• Finally, open linked the module by resolving all extern declarations. In this example, open checked that
there was a variable named x in the environment in which we issued the open declaration, checked that its type
was int (to be more precise, that its type could be instantiated to int), and has defined the value x of inside
the module as being the same as the value of x in the outside environment.

A variant on open is open*, which does just the same, except it does not try to recompile the source file "foo.ml":
it just assumes that "foo.mlx" is up to date, or fails. This is useful when shipping compiled bytecode modules, and
is used internally in the himmlpack and himmllnk tools.

Assume now that we didn’t have any value x handy; then open would still have precompiled and opened the
resulting object module "foo.mlx". Only, it would have failed to link it to the rest of the system. If you wish to just
compile "foo.ml" without loading it and linking it, issue the directive:

#compile "foo.ml"

at the toplevel. (The # sign must be at the start of the line.) This compiles, or re-compiles, "foo.ml" and writes the
result to "foo.mlx".

5.6.2 Header Files
Another problem pertaining to separate compilation is how to share information between separate modules. For
example, you might want to define again three modules a.ml, b.ml and c.ml, where a.ml would define some
value f (say, a function from string to int), and b.ml and c.ml would use it.

A first way to do this would be to write:

• in a.ml:

fun f name = ...
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• in b.ml:

extern val f : string -> int;

... f "abc" ...

• and in c.ml:

extern val f : string -> int;

... f "foo" ...

but this approach suffers from several defects. First, no check is done that the type of f is the same in all three files; in
fact, the check will eventually be performed at link time, that is, when doing:

open "a";
open "b";
open "c";

but we had rather be warned when first precompiling the modules.
Then, whenever the type of f changes in a.ml, we would have to change the extern declarations in all other

files, which can be tedious and error-prone.
The idea is then to do as in the C language, namely to use one header file common to all three modules. (This

approach still has one defect, and we shall see later one how we should really do.) That is, we would define an auxiliary
file "a_h.ml" (although the name is not meaningful, the convention in HimML is to add _h to a module name to get
the name of a corresponding header file), which would contain only extern declarations. This file, which contains
in our case:

extern val f : string -> int;

is then called a header file.
We then write the files above as:

• a.ml:

use "a_h.ml";

fun f name = ...

• in b.ml:

use "a_h.ml";

... f "abc" ...

• and in c.ml:

use "a_h.ml";

... f "foo" ...
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This way, there is only one place where we have to change the type of f in case we wish to do it: the header file
a_h.ml.

What is the meaning of using a_h.ml in a.ml, then? Well, this is the way that type checks are effected across
modules. The meaning of extern then changes: in a.ml, f is defined after having been declared extern in a_h.ml,
so that f is understood by HimML not as being imported, rather as being exported to other modules. This allows
HimML to type-check the definition of f against its extern declaration, and at the same time to resolve the imported
symbol f as the definition in a.ml. This is more or less the way it is done in C.

On thing that still does not work with this scheme, however, is how we can share datatypes. This is because
datatype declarations are generative. Try the following. In a_h.ml, declare a new datatype:

datatype foo = FOO of int;
extern val x:foo;

In a.ml, define the datatype and the value x:

use "a_h.ml";

val x = FOO 3;

Now in b.ml, write:

use "a_h.ml";

val y = x : foo;

Then, open "a", then "b". This does not work: why? The reason is that the definition of the datatype foo in
a_h.ml is read twice, once when compiling a.ml, then when compiling b.ml, and that both definitions created fresh
datatypes (which just happen to have the same name foo). These datatypes are distinct, hence in val y = x : foo,
x has the old foo type, whereas the cast to foo is to the new foo type.

The remedy is to avoid useing header files, and to rather open them. So write the following in a.ml:

open "a_h";

val x = FOO 3;

and in b.ml:

open "a_h";

val y = x : foo;

Opening a_h produces a compiled module a_h.mlx, which holds the definition for foo and the declaration for x.
In the compiled module, the datatype declaration for foo is precompiled, so that opening a_h does not re-generate a
new datatype foo each time a_h is opened, rather it re-imports the same.

Technically, imagine that fresh datatypes are produced by pairing their name foo with a counter, so that each
time we type datatype foo = FOO of int at the toplevel, we generate a type (foo, 1), then (foo, 2), and so
on. This process is slightly changed when compiling modules, and the datatype name is paired with the name of the
module instead, say, (foo,a_h). Opening a_h twice then reimports the same datatype.

The same works for exceptions, except there is no extern exception declaration. The reason is just that it
would do exactly the same as what exception already does in a module. If you declare:

exception Bar of string;

in a_h.ml, and import a_h as above, by writing open "a_h" in a.ml and b.ml, then both a.ml and b.ml will
be able to share the exception Bar. Typing the following in a_h.ml would not work satisfactorily, since Bar would
not be recognized as a constructor in patterns:
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extern val Bar : string -> exn;

That is, it would then become impossible to write expressions such as:

f(x) handle Bar message => #put stdout message

in a.ml. However, if you don’t plan to use pattern matching on Bar, then the latter declaration is perfectly all right.

5.6.3 Summary
The following commands are available in HimML:

• open opens a module. The declaration open "foo" imports and links the compiled module foo.mlx; if
the latter does not exist or is older than foo.ml, then open first recompiles the latter, producing foo.mlx,
the imports and links the latter. (The name foo can of course be replaced by any other name.)

The open keyword can also be used in local declarations, e.g.:

let val y = 3
open "foo"

in
x+1

end

is allowed, and links the module locally. That is, assuming that foo.mlx imports y and exports x = 2*y,
then the above would return 2 ∗ 3 + 1, namely 7.

• #compile compiles a module. The declaration #compile "foo" compiles foo.ml, producing foo.mlx.
The sharp sign # should be at the start of the line. The differences with open are that, first, the module is re-
compiled unconditionally, and second, it is not attempted to load or link the resulting module.

It is easier to compile modules by typing the following under the shell:

himml -c foo.ml

which does exactly the same as launching HimML, and typing #compile "foo"; quit 0; under the HimML
toplevel.

You can then use himml as a HimML standalone compiler, and compile each of your modules with himml -c.
This is especially useful when using the make utility. A typical makefile would then look like:

.mlx : %.ml
himml -c $<

a_h.mlx: a_h.ml
a.mlx: a.ml a_h.mlx
b.mlx: b.ml a_h.mlx
pack.mlx: pack.ml a.mlx b.mlx

The first lines define a rule how to make compiled HimML modules from source files ending in .ml. It has a syntax
specific to GNU make. If your make utility does not support it, replace it by:

.SUFFIXES: .mlx .ml

.mlx.ml:
himml -c $<
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The last lines of the above makefile represent dependencies: that a.mlx depends on a.ml and a_h.mlx means
that make should rebuild a.mlx (from a.ml, then) whenever it is older than a.ml or a_h.mlx. Such dependencies
can be found automatically by the himmldep utility. For example, the dependency line for a.mlx was obtained by
typing:

himmldep a.ml

at the shell prompt.
There is no specific way to link compiled modules together, since open already does a link phase. To link a.mlx

and b.mlx, write a new module, say pack.ml, containing:

open "a";
open "b";

then compile pack.ml. The resulting pack.mlx file can also be executed, provided it has no pending imported
identifiers, either by launching HimML, opening pack, and running main (); (provided pack.ml exports one
such function), but it is even easier to type the following from the shell:

himmlrun pack

Under Unix, every module starts with the line:

#!/usr/local/bin/himmlrun

assuming that /usr/local/bin is the directory where himmlrun was installed, so that you can even make
pack.mlx have an executable status:

chmod a+x pack.mlx

and then run it as though it were a proper executable file:

pack.mlx

This will launch himmlrun on module pack.mlx, find a function main and run it.

5.7 Editor Support
Any ASCII text editor can be used to write HimML sources. But an editor can also be used as an environment
for HimML. In GNU Emacs, there is a special mode for Standard ML, called ‘sml-mode.el’ and that comes with
the Standard ML of New Jersey distribution, that can be adapted to deal with HimML: this is the ‘ml-mode.el’ file.
However, it was felt that it did not indent properly in all cases, because of the complicated nature of the ML syntax. A
replacement version is in the works, called ‘himml-mode.el’; it is not yet operational.

5.8 Bugs
Remember: a feature is nothing but a documented bug! You may therefore consider the following as features :-).

• Continuations always capture the toplevel, but due to all sorts of trickeries that can be played internally, it is
unsafe to capture and store continuations in the toplevel environment, and then to throw them. In particular, it
is not advised to throw a continuation that was captured during a use: after throwing it, the system would find
itself in a situation where it believes it is loading a file, but where no such file is open. A core dump is almost
certain to ensue. I don’t plan to fix this soon.

• Strange behaviour from #if conditional compilation directives can happen; see Section 5.5. This seems hard
to fix, too.
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• Scale syntax is kludgy, but I don’t see any way of fixing it nicely.

• Toplevel should provide a secondary prompt on incomplete input. Currently, it does not show any, which can be
confusing. Also, the toplevel parser shows two prompts after successfully useing a file.

• inoutprocess exhibits quirky behaviour. This seems to be due to some cruftiness inside Unix, where open-
ing a bidirectional channel with a child process by using two pipes has strange consequences. In particular, try
inoutprocess on the Unix command cat. You would think that sending the child cat process a newline-
terminated line, and then reading the output from cat would give you back your message, but it won’t on most
Unix machines. This is not related to flushing buffers, either in HimML or in the child process. This is unfortu-
nate, since HimML will block on reading, deadlocking both processes. To avoid this, you should first test your
own communication protocols by hand on small examples using inoutprocess.

5.9 Common Problems

5.9.1 Problems When Installing HimML
P: When I type make, nothing happens except that I get a message telling me to type a sequence of commands.

This is normal. The installation procedure needs to make configuration files, for interpreting your favorite
options (in file OPTIONS) or for determining system or compiler behaviours. So, just do as indicated.

P: I don’t understand the meaning of an option in file OPTIONS.

Then leave it alone. Most options have reasonable default values.

P: When I run HimML, it just stops on abort: attempt to longjmp() to lower stack or a similar
message.

See next question.

P: After typing make, I get messages such as:

mksyscc: 20847 Abort - core dumped
longjmp() is brain-damaged (won’t allow you to jump to a lower stack)
trying to find a standard patch...

Some operating systems (mostly BSD systems, although the only example I know is AIX) implement a “smart”
longjmp() routine that first checks whether the current stack pointer is lower than the one it is trying to
restore, and aborts if this is not the case. HimML needs to be able to do just that, in order to implement
continuations (and continuations are heavily used internally, even if you don’t plan to use them). The best
solution I’ve come up with on AIX is to write a small patching utility (dpxljhak) that hunts for a specific
piece of code in the prologue of the longjmp() function and puts no-ops instead. A better solution would be
to rewrite the function in assembler, but I’ve been unable to do this.

If this happens to you, try to rewrite longjmp() so that it does not check for stack levels and link your new
definition. Or write a patch, just like me; you’ll need to experiment a bit.

Please also contribute your modification so that I can include it in the next HimML release. (See MAINTE-
NANCE at the end of the OPTIONS file to know whom to write to.)

P: My machine is a Cray/VMS machine/PC-Dos machine, and I cannot manage to make the darn thing compile or
execute.

Cray machines have a weird stack format, and my scheme for capturing continuations has no hope of working
on these machines. If it’s absolutely necessary for you, I’ll see what I can do, provided you promise to tell me
whether it works or not. (See MAINTENANCE at the end of the OPTIONS file to know my address.)

84



I don’t have any VMS machine handy, so I cannot test HimML on it. The HimML implementation is pretty
much centered around Unix, so I would be surprised if it worked without changes. Please tell me what you have
been forced to do to make it work.

PC-Dos machines won’t do. 640K is not enough for HimML, and HimML has no knowledge of extended
or expanded memory. HimML must run in one segment only, lest its sharing mechanism be defeated by one
physical address having two distinct representations (from two different segments). This may work on 486’s
or higher, which can use large segments, but the operating system (Dos or Windows, any version until now) is
the stumbling block. Your best bet is to change for Linux or any other Unix for PCs. Windows/NT or OS/2 is
expected not to pose any problem.

P: When I run HimML, it just core dumps.

Check the OPTIONS file: there is no safeguard against illegal values there (in particular stack values). Put
back the default values; if this does not work, try to increase the stack parameters (notably SAFETY_SIZE and
SECURITY). See also previous questions; it is quite likely that this is due to stack problems. If nothing works,
mail me (goubault@lsv.ens-cachan.fr, see MAINTENANCE at the end of the OPTIONS file).

5.9.2 Problems When Running HimML
P: I have typed a command line at the toplevel prompt, then typed return, but nothing happens.

Most probably, you have not terminated your command line with a semicolon (;). Although the syntax of
Standard ML makes semicolons optional between declarations, the toplevel parser has no way of knowing
that input is complete unless it finds a terminating semicolon (or an end of file). Consider also all the ways to
complete input such as, say, 1: if you write a semicolon afterwards, then this is an abbreviation of val it=1;,
but if you write +2;, even on the following line, then you really meant val it=1+2;, and if you type return
just after 1, the parser has no way to know which possibility you intended.

It may happen that typing a semicolon does not cure the problem. This may happen is you have not closed all
parentheses and brackets. Consider (frozzle (): if you type a semicolon afterwards, then your input is still
incomplete, as you may want to write, say, (frozzle (); foo). The semicolon is not only a declaration
separator, but also the sequence instruction.

Finally, it may be the case that you are in the middle of a conditionally compiled phrase. See Section 5.5 for
details.

P: When opening modules that open header modules, I keep getting type errors, and the explanation is that some
datatypes are not the same in each type?

First, check that you are not defining or declaring datatypes (or dimensions) in header files that you use instead
of opening. Each time you use a given file, it creates new versions of the datatypes or dimensions inside it. To
avoid it, open the file instead; this creates unique stamps for the datatype (or dimension), which it records in a
file of the same name, with .mlx at the end. This will work only if your header file can be compiled separately,
so be prepared to modularize your code.

If the above does not apply, it may happen that your .ml files have inconsistent modification dates. The module
system always tries to recompile a .ml file when the .ml file appears to be newer than the corresponding .mlx
file. Therefore, if the last modification date of the .ml file is some future date, it will always recompile it, as
many times as it is opened; and this leads to the same problem as above. A quick fix is to set the modification
date manually (with touch on Unix, or setdate on Amigas; there’s probably a public-domain utility to fix
this on Macintoshes, but I don’t know). In any case, there’s probably something wrong with the way the date is
set up on your system, and it’s worth having a look at it.

85



5.10 Reporting Bugs, Making Suggestions
This is an alpha revision of HimML. This means that I do not consider it as a distributable version. This means that I
deem the product robust enough to be given only to my friends, counting on their comprehensive support, mostly as far
as bugs are concerned. This also means that I want some feedback on the usability of the language, and on reasonable
ways to improve the implementation.

To help me improve the implementation (and possibly the language, though I am not eager to), you can submit a
note to the person in charge of maintaining the system (type #maintenance features at the toplevel to know
who, where and when). The preferred communication means is electronic mail, but others (snail-mail notably) are
welcome. If you think you have found a bug in HimML, or if you want something changed in HimML, you should
send the person in charge a message that should contain:

• whether it is a bug or a suggestion of improvement;

• what the problem or suggestion is. You should give it a meaningful title, and a precise description.

In case of a bug, the preferred description is in form of a short piece of code, together with the symptoms, and
the kind of machine and operating system you are working on. It should be possible for somebody else than
you to replay the bug. If you don’t find any small code that would exhibit the same buggy behaviour as the one
you’ve just experienced, send the contents of the HimML.trace file: every time you use HimML, it logs every
single toplevel or file input in this file, so as to ease replaying your actions. This may not always work, but it can
help. (This file may have another name, if you have chosen to use the -replay-file command-line option.)

In case of a suggestion, please refrain from submitting your idea of what would be a cute extension of the
language. Suggestions should improve the level of comfort you can have from using the implementation, and
should be implementable without destroying the spirit of HimML. If you want to propose a suggestion, definitely
argue that it will be needed, and the maintainer will try and see if it is doable.
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Appendix A

Precedence Table

This is the default set of precedences when you launch HimML:

infix 0 before
infix 3 o :=
infix 4 = <> < > <= >= #< #> #<= #>= inset inmap submap subset strless
infixr 5 @ O
infixr 5 ::
infix 6 + - ˆ #+ #- ++ U <| <-| |> |->
infix 7 * div mod divmod #* #/ fdiv fmod fdivmod & \ delta intersects
infixr 8 #ˆ
infix 9 nth to sub

Note that @ is declared infixr, that is, right-associative, although the Definition of Standard ML dictates that it is
infix, i.e. left-associative. This should not make much differences.
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