
N
N

T
:

2
0

19
S

A
C

L
N

0
6

4
T

h
ès

e
d

e
d

o
ct

or
a
t

Jeux Stochastiques sur des Graphes

avec des Applications à

l’Optimisation des Smart-Grids
Thèse de doctorat de l’Université Paris-Saclay

préparée à l’École Normale Supérieure Paris-Saclay (LSV)

& à CentraleSupélec (L2S)

École doctorale n◦580 : Sciences et Technologies de l’Information

et de la Communication (STIC)

Thèse préparée par

Mauricio GONZÁLEZ

Composition du jury :

David PARKER Rapporteur

Professeur,

Université de Birmingham, School of Computer Science

Yezekael HAYEL Rapporteur

Maitre de conférence,

Université d’Avignon, LIA/CERI

Clémence ALASSEUR Examinatrice

Ingénieur de Recherche,

EDF, Laboratoire de Finance des Marchés de l’Énergie

Serge HADDAD Examinateur

Professeur des Universités,

Ecole Normale Supérieure Paris-Saclay, LSV

Patrick PANCIATICI Examinateur

Ingénieur,

RTE France

Patricia BOUYER Directrice de thèse

Directeur de Recherche,

École Normale Supérieure Paris-Saclay, LSV

Samson LASAULCE Co-directeur de thèse

Directeur de Recherche,

CentraleSupélec, L2S

Nicolas MARKEY Co-directeur de thèse

Directeur de Recherche,

Université de Rennes 1, IRISA

[ November 20, 2019 at 17:47 – classicthesis ]



[ November 20, 2019 at 17:47 – classicthesis ]



S T O C H A S T I C G A M E S
O N G R A P H S

W I T H
A P P L I C AT I O N S T O

S M A RT - G R I D S O P T I M I Z AT I O N

mauricio gonzález gómez

Ph.D Candidate

French National Center for Scientific Research (CNRS)

University of Paris-Saclay

Laboratory of

Specification and Verification (LSV)

École Normale Supérieure (ENS) Paris-Saclay

&

Laboratory of

Signal and Systems (LSS)

CentraleSupélec

November 2019– Version 2.3

[ November 20, 2019 at 17:47 – classicthesis ]



supervisors:
Patricia Bouyer-Decitre
Samson Lasaulce
Nicolas Markey

rapporteurs:
David Parker
Yezekael Hayel

location:
France

Mauricio González Gómez: Stochastic Games on Graphs with Applica-

tions to Smart-Grids Optimization, Ph.D Candidate, © November 2019

[ November 20, 2019 at 17:47 – classicthesis ]



ABSTRACT

Applications such as energy networks become more and more impor-
tant in our modern world. To design these networks, engineers resort
more and more to advanced mathematical tools. Two key features for
the design of a network are correctness and optimality. While correct-
ness and optimality are in the core of formal methods, their effective
application to energy networks remains largely unexplored. This con-
stitutes one strong motivation for the work developed in this thesis,
which is strongly based on formal methods of computer science and
game theory. A special emphasis is made on the generic problem of
power consumption scheduling. This is a scenario in which the con-
sumers have a certain energy demand and want to have this demand
to be fulfilled before a set deadline (e.g., an Electric Vehicle (EV) has
to be recharged within a given time window set by the EV owner).
Therefore, each consumer has to choose at each time the consumption
power so that the final accumulated energy reaches a desired level. The
way in which the consumption power profiles are chosen is according
to a sequence of functions (namely, a “strategy”) mapping at any time
the relevant information of a consumer (e.g., the current accumulated
energy for EV-charging) to a suitable power consumption level. The
design of such strategies may be centralized (in which there is a sin-
gle decision-maker for consumers) or decentralized (in which there are
several decision-makers, each of them representing a consumer). We an-
alyze both scenarios by exploiting game theory and formal methods of
computer science. More specifically, the power consumption scheduling
problem can be modeled using stochastic games and Markov Decision
Processes. For instance, probabilities provide a way to model the en-
vironment of the electrical system, namely: the noncontrollable part
of the total consumption (e.g., the non-EV consumption). The control-
lable consumption can be adapted to the constraints of the Distribution
Network (DN) (e.g., to the maximum shutdown temperature of the DN-
transformer), and to their objectives (e.g., all EVs are charged). At first
glance, this can be seen as a stochastic system with multi-constraints
objectives. Therefor, the contributions of this thesis also concern the
area of multi-criteria objective models, which allows one to pursue sev-
eral objectives at the time such as having design which is functionally
correct and robust against changes of the environment.

v
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We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty.

— knuth:1974 [knuth:1974]
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Part I

B A C K G R O U N D

This part presents a brief introduction of the basic concepts
of the research field and the general context of this work.
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1
INTRODUCTION

Abstract:

We start this work with a brief introduction of some concepts of

the research field. Afterwards, we introduce our motivation and in-

spiration of this work, which is founded mainly on formal methods

and game theory to provide algorithmic solutions and guarantees

for systems control designs and applications, as in the are of smart

grids. We focus mainly on a problem of power consumption schedul-

ing and on its formalism. We discuss the main direction of our

work and we close the chapter by mentioning the organization and

structure of this thesis.
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4 introduction

1.1 INSERTION OF THE METHODOLOGIES

Quantitative games and Markov Decision Processes (MDPs) are stan-
dard models in the fields of reactive systems [63, 64, 95] and formal
methods [43, 48, 61]. These are also widely studied in the field of the
(modern) game theory [79, 84, 111]. First of all, we briefly revisit some
“standard” definitions to present the general context of this work.

(i) Reactive systems: they are architectural and design pattern
of computer systems that continuously interact with their envi-
ronment. Their correctness is often critical for building more re-
sponsive and capable strategies (system controllers) of sustaining
a safe behavior despite the potentially adversarial effects of the
environment. They are significantly more tolerant of failure and
when failure does occur, they are not in a disaster.

(ii) Formal methods: they are particular mathematical tools for the
specification, development and verification for reactive systems to
prove that the system follows a given specification modeling de-
sired behaviors. Building appropriate strategies is not easy and
classical development techniques based on testing are largely in-
adequate. Formal methods are essential to assert the correctness
of strategies controlling the system.

(iv) Game theory: this is a mathematical modeling of strategic in-
teraction among cooperating and/or competing players (agents),
who play to the best of their decisions in order to satisfy similar,
opposed or mixed interests, and objectives over the outcomes that
may result from these decisions. One player’s payoff is contingent
on the strategy implemented by the other players.

1.1.1 DECISION-MAKING

Games and MDPs are two known methods that can be represented
on directed graphs to model the decision-making of a system against
the behavior of its environment. For instance, the latter can behave as
adversary (purely antagonistic player(s)) and/or completely stochas-
tic (without strategic interests in the outcomes, playing randomly). A
correct behavior of a decision-maker is often computed as a “winning”
strategy. Aiming to be a winning strategy is to enforce a given specifi-
cation, encoded through an objective. An objective is a predefined set
of paths of states of the system. A path either satisfies the property
(we therefore say that it is winning) or it does not (i.e., it is losing).
Specifying objectives for a model can be formulated in different ways.
We focus mainly on this work in qualitative objectives (e.g., in probabil-
ity, in almost-surely or sure mode), and in quantitative objectives (e.g.,
computing expected values). Objectives can also be seen as constraints
in the model of the system to be satisfied when the decision-making
is made. Briefly, we identify two ways of decision-making: centralized

[ November 20, 2019 at 17:47 – classicthesis ]



1.1 insertion of the methodologies 5

(in which there is a single decision-maker) and decentralized (in which
there are several decision-makers).

1.1.2 UNCERTAINTY

A main goal in this work is to provide appropriate and efficient strate-
gies, ensuring that these behave correctly and in an optimal way (or at
least with good performances) under the uncertainties of the environ-
ment in the system [75]. In this work, the uncertainties are considered
in two ways: it is assumed that the environment is either determinis-
tic or stochastic. For example, think about the Electric Vehicles (EVs)
charging (which is a controllable consumption) made at home or in
a business park. We may have a forecast of the noncontrollable part
of the total electricity consumption to schedule a suitable consump-
tion/charging strategy for the EVs. Such a forecast could be available
for a day and to be completely deterministic (a vector of parameters)
or stochastic (a vector of random variables).

1.1.3 ROBUSTNESS

A robust strategy is one that its performance does not change “much”
if it is applied to a system that works slightly different from the system
model used for its synthesis. In this work, when it is referred to good
robustness properties in the numerical applications of the proposed al-
gorithms to schedule strategies, this is always done a posteriori, i.e.,
forecast errors on data are simulated, and strategies are scheduled over
a noisy (deterministic or stochastic) scenario of the environment to ob-
serve after the robustness of the strategies over a perfect forecast, i.e.,
over the real environment that is a simple sequence of values. A deter-
ministic forecast represents thus a noisy scenario (a simple vector) of
the real environment, and the stochastic one represents several scenar-
ios with associated probabilities of occurrence (a stochastic vector) of
the real environment. If the strategy is robust against noise in the first
case (which is less complex to build), such an approach is suitable. If
not, the strategy must adapt to the possible random behaviors of the
environment (which could be more complex to build).

1.1.4 SYNTHESIS

A main question is to decide whether a decision-maker has a (win-
ning) strategy satisfying certain an objective, e.g., reaching a set of
goal states. Synthesis is not only concerned with the existence of win-
ning strategies, but also in their synthesis, with concerns related to
the simplicity of the computed solution. We favor strategies that are
considered simple (less complex) to implement and/or using a mini-
mal amount of resources, notable the memory requirements over paths
(also understood as scenarios or history of the system). Memory can
be necessary to fulfill a (complex) objective. Hence, it is of interest to
find strategies with perfect recall (or full memory), as they correspond
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to strategies that can be implemented in practice. Simpler strategies
include for instance so-called memoryless (also called Markov) strate-
gies, which are strategies that their decisions only based on the current
state of the system, not on the full history. Those strategies are easier
to implement as a real program; hence they will usually be preferred
(provided they are powerful enough for the considered objectives). On
the contrary, strategies with prohibitive (infinite) memory requirements
are not implementable [29]. In this work, we provide algorithmic solu-
tions for control design to assert the correctness of scheduling strategies
when constraints/objectives are taken into account for the modeling.
To design suitable and appropriate strategies, we also resort to tools
from control theory [11],measure theory [52], dynamic program-
ming [96], optimization [30] and model checking [41]. To prove
that a system follows a given specification modeling desired behaviors,
model checking is of particular interest to be detailed a little more.

1.1.5 MODEL CHECKING

From the introduction of model checking, see for example [42, 109],
the verification of strategies controlling a system has been improved
for their designs. Model checking (see also [16] for another book about
this topic) has demonstrated to be relevant on the technology industry
to verify desired behaviors on systems. This is a verification method
that applies a posteriori to check that a preexisting formal model of a
scheduling strategy satisfies a given specification. Of course, one would
like to start from the specification of a model with all objectives and
constraints, and synthesize a solution from it, in such a way that the
desired properties of the system are satisfied. However, that is very
ambitious and considerably harder to get when the model is stochastic
and covers a priori many objectives, constraints, and so on. See for
example [100]. In this work, we use model checking as verification of
objectives/constraints of strategies in the modeling after these were
built. This will be specified when it is necessary, e.g., when the modeling
is relaxed to synthesize a strategy because of the complexity of the
scheduling problem.

1.2 INSPIRATION AND INVENTIVENESS

Application domains like smart grids or energy networks [88] are be-
coming more and more widespread in our modern word. Their design
requires a formal mathematical approach which will ensure that they
behave correctly and in an optimal way, or at least with good perfor-
mances (see for instance [65] for a logical analysis favoring the use of
formal methods). While correctness and optimality are in the core of
formal methods, those applications have only seldomly been attacked
through formal models (see [32] for some approach). Among the pos-
sible reasons for this lack of communications between those scientific
areas, may be the relative complexity of using formal methods. One of
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the principal motivations of this work is founded on formal methods
to provide algorithmic solutions and guarantees for control designs and
applications, as in smart grids.

1.2.1 MOTIVATION

The main inspiration of this work started from a smart grid prob-
lem, namely the power consumption scheduling problem. In plain
terms, consider a scenario in which several consumption entities (house-
holds, electric appliances, EVs, etc.) generically called “consumers” have
a certain energy demand and want to have this demand to be fulfilled
before a set deadline (e.g., a simple instance of such a scenario is the
case of a pool of EVs which have to recharge their battery to a given
state of charge within a given time window set by the EV owner). There-
fore, each consumer has to choose at each time the consumption power
so that the accumulated energy reaches a desired level. This is the prob-
lem of power consumption scheduling (this is introduced in Chapter 2
in a basic setting). In this work, we focus mainly on building appro-
priate and efficient strategies for consumers (provided of existenceness)
face to the uncertainties of the environment, namely the part of the
total electricity consumption that is uncontrollable.

1.2.2 ASPECTS AND FEATURES

One important aspect to reduce costs of particular consumers and those
related to the management of electrical systems, is how to make the re-
lation between network operators and particular consumers to be more
flexible. Reducing the impact of consumption operations on the distri-
bution network is also an important issue that must be analyzed to
guarantee the accuracy of the system. Notably, part of the total elec-
tricity consumption of particular consumers (e.g., in a district) can be
adapted to the constraints of the electrical system (e.g, the maximum
shutdown temperature of the distribution transformer), even adaptable
to particular objectives and/or needs of the consumers (e.g., minimizing
the total electrical consumption payment). In the whole of the poten-
tially controllable electric consumption, EVs have a very favorable posi-
tion according to its popularity and expected future development in the
domain of smart grids, see for example [57]. They will be the representa-
tives of the controllable electrical uses in the numerical applications in
this work, wherein we examine the technical and economic interactions
between EVs and the electricity distribution network. Some approxima-
tions have been made to reduce the impact of electricity consumption
(see for example [17, 44, 72, 99]), but no formal methods have been
provided to guarantee correctness and optimality, which must be in
line with smart grid topics. This is the main objective of the Chapter 4
and Chapter 5.
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1.2.3 NUMERICAL ANALYSIS

In the numerical applications, a forecast of the noncontrollable part of
the total electricity consumption is available to compute strategies for
consumers (these assumed to be EVs as we stated above). More pre-
cisely, the noncontrollable consumption is forecasted either by means
of a deterministic function, or by random variables built from statistics.
The main objective of the numerical applications in this work, is to show
that the built strategies are adaptable to forecast errors (robustness ac-
curacy). This is discussed mainly in the Chapter 3 and Chapter 6, in
which resp. the centralized and decentralized decision-making are de-
manded. In such chapters it is also presented the general mathematical
modeling for a deterministic and stochastic points of view.

1.3 ORGANIZATION AND STRUCTURE

This thesis is divided into five parts with several chapters. We have
tried to draft each chapter so that each one can be read independently.
The structure of this work is the following:

Part I : BACKGROUND

Following this introductory Chapter 1 is Chapter 2. In which the
background of the chosen application framework and the research
tools are presented. The main (power consumption scheduling)
problem of this work is introduced in a basic setting and the
background of Markov processes and formal methods take place.

Part II : CENTRALIZED MODELING

Here, we discuss the centralized approach for the power con-
sumption scheduling problem, in which a single entity controls
and builds the strategies for the consumers. This part is divided
into three chapters. These begin with Chapter 3 that shows the
modeling and the different approaches to solve the (centralized)
problem, in which these depend on whether the forecast of the
environment is deterministic or stochastic. Chapter 4 covers the
research related to the existence of strategies for the general multi-
constrained problem of this work under a stochastic setting of the
environment. The algorithmic approach is based on two sequences
of optimization problems, in which their solutions are assumed un-
der randomized strategies. In Chapter 5, the existence and syn-
thesis of a solution for the optimization problems is proved under
mixed strategies. So that, the synthesis of randomized strategy so-
lution of the multi-constrained problem comes naturally by using
tools of game theory.
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Part III : DECENTRALIZED MODELING

This discusses the decentralized modeling for the power consump-
tion scheduling problem, in which each consumer builds his own
strategy. This part contains one chapter. This is the Chapter 6,
which describes the modeling and approaches to solve the (decen-
tralized) problem, in which these depend on whether the forecast
of the environment is deterministic or stochastic. The main idea is
to use a technique so-called sequential best response dynamic be-
tween the consumers, in which convergence of the method can be
shown for the deterministic case, and only a numerical approach
is developed in the stochastic case due to its complexity.

Part IV : CONCLUSION

Within this part, the summary of this work is covered in the
Chapter 7, which includes conclusions and suggestions for related
future works (several ideas, computational challenges, approaches,
etc.).

Part V : APPENDIX

This covers the Appendix B wherein the mathematical proofs of
our research are drafted.
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2
RESEARCH BACKGROUND

Abstract:

This chapter first places the work of this thesis on the subject

of smart grids. It specifies the chosen application framework ori-

ented towards the load flexibility of controllable consumption enti-

ties (consumers) to limit their impact on a distribution network.

Second, after a basic problem of consumption scheduling is pre-

sented, the main tools used in this work are introduced. In partic-

ular, the consumers are faced to an antagonistic adversary (the

noncontrollable part of the total load consumption) that can be de-

terministic or stochastic. The latter opens the possibility to use

Markov decision processes, wherein fixing the controllable consump-

tion of consumers according to well-chosen scheduling strategies,

the model becomes purely stochastic (Markov chain). Strategies are

analyzed with regard to several criteria such as their expected cost,

their memory requirements and so on. We illustrate many usual

objectives and notably discuss reachability and shortest path objec-

tives.
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LIST OF ABBREVIATIONS AND SYMBOLS

DN Distribution Network HS Hot-Spot (temperature)
EVs Electric Vehicle(s) PaC Plug-and-Charge
SNR Signal-to-Noise Ratio SSP Stochastic Shortest Path
MC Markov Chain MDP Markov Decision Process
h hour min minutes
kW Kilowatt kWh Kilowatt-hour
TWh Terawatt hour dB decibel
°C Degree Celsius

A finite action space inM
B(Ωx1) Borel sigma-algebra over Ωx1

C MC model
Cx1 cost function under an initial condition x1

Cyl cylinder set generating B(Ωx1)

δ randomized scheduling strategy
∆ set of randomized strategies
∆[Π] set of mixed strategies over Π

∆ set of randomized Markov strategies
D(S) set of probability distributions over a finite set S
∆t time-step duration of each time-slot
ei energy demand of i
E expectation operator
f evolution law of the system state
G set of goal states of a system
i controllable electric device or consumer
I number of controllable electric devices or consumers
I set of controllable electric devices or consumers
`min
i minimum power of i
`max
i maximal power of i
`i,t controllable load of i at t
Li,t function representing `i,t
`i controllable load profile of i of length T
Li function representing `i
`t controllable load vector at t of length I
Lt function representing `t at t
`0,t real noncontrollable load at t
`0 real noncontrollable load profile of length T
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˜̀
0,t deterministic forecast of `0,t at t˜̀
0 deterministic forecast profile of length T
L̃0,t stochastic forecast of `0,t at t
L̃0 stochastic forecast profile of length T
`max maximal power of the DN-transformer
`t total load consumption at t
L̃t function representing the total load under L̃0 at t
L total load consumption space
M MDP model
MT unfolding ofM with depth T
N (µ,σ2) Gaussian (normal) distribution with mean µ and variance σ2

ω history or path of a system
ωt history or path of length t of the system
Ωx1 set of histories or paths of a system from an initial state x1

projj projection function on the j-component of a sequence
π pure scheduling strategy
Π set of pure strategies
Π set of pure Markov strategies
P transition probability between the states of a system
PT transition probability between states inMT

P0 probability distribution of L̃0,t

P probability measure on B(Ωx1)

σ mixed scheduling strategy
st state in ST at t
ST augmented space of states inMT

t time-slot
T finite horizon time-slot
TG random reachability time to G
T set of time-slots
TS truncated sum function
TS expected truncated sum
xmax upper bound of the system state values
xt system state at t
x̃t system state under ˜̀0,t at t
X̃t function representing the system state under L̃0 at t
X finite set of system states
Ωx1 set of finite histories or paths of a system from an initial state x1
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2.1 SMART GRIDS

Being guided by [17, 73], let’s start with the seven goals set by the U.S.
Department of Energy [1] to go to the electrical grids more “intelligent”:

(i) Improve information to consumers: this point will be dis-
cussed indirectly in this work. The coordination of the consump-
tion, e.g., the one over a set of Electric Vehicles (EVs), will be
studied from an algorithmic point of view. A signal is in fact sent
by a central operator (which is the most common scenario) from
the electrical Distribution Network (DN) to the consumers. This
signal is partly intended to give information about the state of the
electrical grid to the consumers so that they can schedule their
controllable consumption decisions by integrating the potential
impact on the electrical system, namely the DN.

(ii) Integrate new production and storage opportunities: this
will not be addressed in this document. In this work, each con-
sumer is seen as a load consumption on the DN. For instance,
the storage to be able to transport energy (e.g., from workplace
to home) will not be used here. This choice results in more con-
straints in the architecture of the model, making the DN more
complex. See [92] for an example of “re-injection to buildings”
made by EVs-to-Building.

(iii) Integrate new products, services and markets: this is largely
evoked in this work. This will be reflected on the coordination of
the consumers, which leads to necessarily define new services.

(iv) Improve the quality of electric power: although it could be
a physical metric to inject into the proposed algorithms in this
work, it will not be treated here. The main reason is that it often
requires to use more complex functions to reflect the impacts
generated on the DN. These are not easy to integrate into the
models that often take, at least initially, approximate metrics to
show their contribution. See for example [59] in which the aging
metric of the DN-transformer is finely studied by integrating, e.g.,
electric current.

(v) Efficient management and optimization of electrical equip-
ment: this is directly related to the algorithms proposed in this
work to compute suitable consumption scheduling strategies. The
technical and economical models used in the numerical applica-
tions in this document, allow to carry out the scheduling that
takes into account not only the preferences of the consumers, but
also the impacts on the DN. For instance, the recharge of EVs is
used efficiently, both from the point of view of the consumers and
the operator of the DN.
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(vi) Move towards an independent management of incidents:
this is not studied in this work. A priori, it involves placing at
much shorter time scales than those studied in this document.
Such a point of view must be designed to be fast. It may not open
the door to an “iterative communication” between the network
operator and the consumers (as is the case in this work).

(vii) Be flexible face to the randomness: this is the kernel of this
work to evaluate the performance of the proposed algorithms in
the context where forecast errors are made on the model. This is
opposite to the works reported in [17, 19, 20, 56, 106] for example,
in which all simulations have been performed over a noisy setting.
More precisely, in those early works, forecast errors over the non-
controllable part of the total consumption are ignored, and all
their work is based on a deterministic forecast (even under the
ambitious hypothesis of perfect forecast). The main algorithms
proposed in our work are performed on a stochastic forecast, al-
lowing us to build consumption scheduling strategies that are
robust to noises of forecast. Moreover, formal methods developed
here take as input any stochastic model of the environment, pro-
viding existence and synthesis of scheduling strategies.

EVs currently play the role of the controllable consumption whose
impact on the distribution networks, markets and electrical systems
in general must be analyzed, according to its popularity and expected
future development in the domain of smart grids. They will be the
representatives of the controllable electrical uses in the numerical ap-
plications in this work.

2.1.1 ELECTRIC VEHICLES

Recent numbers indicate a significant increase in registrations of EVs.
For example, the worldwide number of EVs was more than 3 million in
2018, see Figure 2.1. Statistics also show a significant increase for 2030
in the world fleet of EVs: according to the “New Policies” scenario of
the AIE [7] (based on current or announced policies), the world fleet
of EVs could be around 125 million units in 2030 (and up to 220 mil-
lion in the scenario “EV30@30” aiming to increase the market share of
electric mobility worldwide to 30%). In addition, the worldwide elec-
tricity consumption from EVs will reach 404 TWh in the “New Policies’
scenario and 928 TWh in the “EV30@30” scenario. These values rep-
resent, respectively, a 7-fold and 17-fold increase when compared with
the electricity consumed by EVs in 2017. It is therefore essential to an-
ticipate the issue of charging/consuming, well before the peak of EVs
development.
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Figure 2.1: Worldwide number of EVs from 2012 to 2018. There were some 3
million EVs in use globally in 2018. Source [2, 7].

CHARGING POWER

An important point is the mode of charging/consuming of EVs. This
can be summarized as normal, fast or accelerated mode. The latter two
have typically high costs (even prohibitive for quick drop) for a very
low use. The charging mode that is predominant, is the normal one
(mostly made at home and business parks, with an acceptable cost),
that is usually to be 3 kW of power and implemented in the night. This
is the main charging mode that we use in the numerical applications
in this work, but the results of this thesis remain invariant under any
charging mode.
In summary, the significant development of EVs must be accompa-

nied by reflecting on the ecosystem. The charging infrastructure is in
particular a point of interest. In this work, we focus in particular on
the interaction between EVs and the electrical system (the DN) when
the vehicles are charging/consuming. The objective is to propose and
explore methods to build suitable consumption scheduling strategies,
that can be applied to the EVs domain to limit the impact of consum-
ing on the DN. This is part of discussions on smart grids [69, 98], which
is intended to increase the flexibility and the “intelligence” or electrical
networks, in particular by strengthening the link between DN-operators
and consumers (e.g., EVs). For all these reasons, EVs are good actors
to use in the numerical applications in this work.
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2.2 AIM OF MODELLING POWER CONSUMPTIONS

In almost all the contributions of the literature on Smart grids, an
intermediate step to modeling problems of power consumption schedul-
ing is the calculation of the total electricity consumption profile of a
district. In this work, we consider a finite set I representing several
controllable consumption entities (also called controllable electric de-
vices or simply consumers here). The total electricity consumption
at time t can therefore be written of the form:

`t︸︷︷︸
total electricity

consumption

= `0,t︸︷︷︸
noncontrollable

electricity consumption

+
∑
i∈I

`i,t︸ ︷︷ ︸
sum of controllable

electricity consumption

, (2.1)

where the first term on the right side, `0,t, represents the electricity
consumption in the district that excludes the consumption of the con-
trollable electric devices at time t. This value contains the aggregated
consumption of all traditional electrical uses, e.g., heating, lighting,
cooking, etc. This consumption is supposed to be noncontrollable,
i.e., it does not adapt to the impacts measured on the electric DN
(e.g., the degradation of the DN in terms of the DN-transformer life-
time, the electrical consumption payment due to the total electricity
consumption, etc.). This amount at each time t can be forecasted de-
terministically or stochastically. The two forms presented remains valid
and are taken into account in this work. We will specify through this
work if we consider the modeling based on a deterministic forecast,
i.e., when the noncontrollable consumption is forecasted by means of a
deterministic function (and then `0,t boils down to a simple parameter
denoted by ˜̀0,t), or when this is forecasted as a random variable (and
then `0,t is statistically estimated using past databases, that we denote
by L̃0,t).

The second term on the right side in the eq. (2.1),
∑
i∈I `i,t, is the

accumulated consumption due to the consumers of the district, where
each i ∈ I consumes `i,t at time t and can be scheduled within a
time interval with a fixed time horizon. This component is said con-
trollable since each one is, and is adaptable to the constraints of a
scheduling problem, i.e., to the impacts that can be measured on the
DN. Controllable devices (consumers) that can be considered in this
work could include, e.g., EVs, dishwasher, water-heaters, etc., which
can be scheduled to reach a given (cumulative) energy demand to com-
plete a corresponding task, e.g., charging EVs, arranging a dishwasher
program, etc. In this work, we refer in general to controllable electric
devices or consumers, but we will refer to EVs when it is necessary to
clarify the presentation and the numerical results.

Note that the total electricity consumption (2.1) can be taken into
account as a current, a power or an energy; depending on the physical
models used. The results presented in this work are unchanged, and
only the functions expressing the physical impacts on the DN will have
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to be adapted. Subsequently, we will usually refer to power loads or
simply as loads.

Independently of the knowledge of the noncontrollable part of the
total load consumption (2.1), which can be deterministic or stochastic,
the DN experiences an increased amount of variable loads depending
on the consumption of the consumers. In particular, the way in which
the controllable loads are scheduled, has an impact on the total load
consumption, introducing new load variations and, possibly causing
overloading on the DN [72]. For example, depending on the features of
the load strategies for a large number of EVs, could result in energy
losses [20], in increasing of the DN-transformer aging [19][M1]. Such
load consumption variations depend on when the controllable devices
are available to schedule, at which power loads, the energy demanded
to complete the tasks, among others. For all these reasons, we aim
to construct suitable scheduling load strategies for each controllable
electric device (consumer), minimizing their resulting impact on the
DN.

2.3 CONTROLLABLE LOAD CONSUMPTION

Standard electrical load consumption typically starts as soon as an
electric device is plugged, e.g., when an EV is plugged into the grid
to charge its battery, and typically the load consumption is carried out
at the maximum admissible power by the charging system. The credit of
this very simple scheduling method, so calledPlug-and-Charge (PaC),
is that it does not require any interaction between the users and the
electric grid, and minimizes the time needed to reach a given cumula-
tive energy to complete an associate task, e.g., recharging the battery
of an EV. On the other hand, such a method has the disadvantage of
potentially strongly impacting the grid, since it ignores the total load
consumption demand associated with all the other electric devices. For
instance, if a large number of EVs are most usually charged in a grid
by the PaC scheduling method, the total load consumption will be
amplified, generating demand peaks and potentially causing that the
DN-transformer reaches its (maximum) shutdown temperature, see Fig-
ure 2.2 for instance. In addition, in scenarios where time-differentiated
electrical consumption payment are implemented, the monetary cost
paid by the users can also increase [86].

One of the goals of the work reported in this thesis is to provide
new load scheduling strategies whose main purpose is to minimize the
impact of the power loads of the controllable electric devices on a pre-
cise part of the electric grid namely: the DN. For example, minimizing
the degradation of the DN in terms of the DN-transformer aging, the
electrical payment due to the total load consumption, etc. The derived
results can be re-exploited for other problems in smart grids such as
problems of load scheduling with delay constraints [28, 107]; therein
the system state is given by the available stored energy and the cost
are market-based or generation ones. The scheduling problem studied
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in this work is based mainly on the knowledge of the noncontrollable
part of the total load consumption (2.1), which can be given by a de-
terministic or stochastic forecast.
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Figure 2.2: Impact of the charging scheme Plug-and-Charge (PaC) on the evo-
lution of the DN-transformer Hot-Spot (HS) temperature, under
the assumption of I = 10 Electric Vehicles (EVs). In this case, the
shutdown temperature is exceeded for such a method of charging.
(the HS model used was the one of [19] and the real data was taken
from [3]).

2.4 NONCONTROLLABLE LOAD UNCERTAINTY

Besides the controllable load consumption, there is a noncontrollable
part in the total load consumption (2.1) that is uncertain, i.e., it is not
perfectly known when the controllable loads are being scheduled. In
this work, the real noncontrollable load profile:

`0 := (`0,t)t∈T , (2.2)

is represented by a given forecast (or prediction) on a finite time set
T , to schedule power consumption strategies. Here, we consider two
approaches of how the real noncontrollable loads are forecasted: a de-
terministic approach and a stochastic one.
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2.4.1 DETERMINISTIC FORECAST APPROACH

When the forecast of the noncontrollable load consumption is assumed
to be deterministic, one can express the profile `0 as a simple vector of
parameters on the time set T , which is used to schedule controllable
loads by means of strategies. To assess the impact of not being able
to forecast the noncontrollable load consumption perfectly, we assume
that the scheduling problem is fed in the numerical applications with
a noisy deterministic forecast, expressed as:

˜̀
0 := ( ˜̀0,t)t∈T , (2.3)

where each parameter ˜̀0,t at time t can be of the form:

˜̀
0,t = `0,t + zt , (2.4)

where, for each t fixed we take a single value zt ∼ N (0, σ2
T ), which

represents a noise of forecast. The variance σ2
T can be computed on

a day if T represents a day, e.g., by means of Signal-to-Noise Ratio1

(SNR) expressed in decibel (dB) (see for instance [18]), which allows
one to measure to what extent the noncontrollable load consumption
can be forecasted (details about such a measure will be shown in the
numerical analysis). Figure 2.3 shows several deterministic forecast of
the real noncontrollable load consumption on time-slots t of 30 min for
under different noises expressed in decibel (dB).
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Figure 2.3: Real noncontrollable energy consumption ∆t `0 (black line), where
∆t = 0.5 represents an half hour. Two deterministic forecast (ob-
tained with a sampling noise) are plotted over this figure, built by
the model (2.4): the first one is based on a SNR = 7 dB and the
second one is based on a SNR = 14 dB. Real data was extracted
from [3].

1 This will be explained a little further in the numerical applications.
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2.4.2 STOCHASTIC FORECAST APPROACH

Besides the previous Section 2.4.1, the forecast on the real noncontrol-
lable load consumption can be assumed to be stochastic. This can be
understood as many scenarios with respective probability of occurrence.
In this work, a stochastic forecast of the noncontrollable load pro-
file (2.2) is supposed to be represented by the following random vector:

L̃0 := (L̃0,t)t∈T , (2.5)

which is a finite collection of i.i.d. random variables2. Following the
model (2.4), we can express for instance the following stochastic fore-
cast of the real noncontrollable load `0,t at time t as following:

L̃0,t = L0,t + Zt , (2.6)

where (L0,t)t∈T is the sequence taking the real noncontrollable load
profile (2.2), and Zt be a random noise independent of L0,t. For exam-
ple, as in (2.4), for each t fixed we take a Zt ∼ N (0, σ2

T ), where the
variance σ2

T can be computed on a day if T represents a day, e.g., by
means of Signal-to-Noise Ratio(SNR) expressed in decibel (dB). The
Figure 2.4 shows a stochastic forecast over the real noncontrollable
loads on time, which can be seen as several deterministic forecast with
associated probabilities of occurrence.

Figure 2.4: Real noncontrollable energy consumption ∆t `0 (black line), where
∆t = 0.5 represents an half hour. The complete (continuous) re-
gion of a stochastic forecast is plotted over this figure. Real data
was extracted from [3] to build the forecast, which is based on the
model (2.6) with a SNR = 7 dB.

2 Which can be alternatively defined on a common probability space, let say (Ω,F ,P ),
or by means of a probability distribution P0 without explicit reference of the under-
lying probability space. Either the original probability measure P or the induced
distribution P0 can be used to compute probabilities of the events involving L̃0.
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Based on the forecast of the noncontrollable load consumption, the
state of the system can be obtained by means of a dynamic evolution
in function of the (controllable and noncontrollable) load consumption.
The basic scheduling problem of power consumption is therefore pre-
sented in next.

2.5 THE BASIC SCHEDULING PROBLEM

The basic problem that we aim to study through this document is in-
troduced in this section. Firstly, we consider a scenario in which I ∈ N
controllable electric devices (or consumers) have a certain energy de-
mand and want to have this demand to be fulfilled before a set deadline
T ∈ N. A simple instance of such a scenario is the case of a pool of
EVs which have to recharge their battery to a given state of charge
within a given time window set by the EV owner. Thus, each consumer
i ∈ I := {1, ..., I} has to choose at each time t ∈ T := {1, ...,T} the
consumption power `i,t ∈ R+

0 so that the accumulated energy reaches
a desired level ei ∈ R+. This is the problem of power consumption
scheduling that we aim to study and exploit throughout this work. The
basic form of such a problem is presented as follows:

Basic Power Consumption Scheduling Problem

min
`

∑
t∈T

Cx1(xt, `t, `0,t) (2.7)

s.t. xt+1 = f(xt, `t, `0,t) (2.8)

∆t
∑
t∈T

`i,t ≥ ei (2.9)

where x1 ∈ R+ is an initial condition for the system state value
(namely, a precise metric of the DN). More about such a variable and
the constraint are discussed in the Section 2.5.2.

2.5.1 CENTRALIZED AND DECENTRALIZED SCHEDULING

The controllable variable ` represents the consumption power of con-
sumers i = 1, ..., I over time t = 1, ...,T . This can be seen as the
following matrix:

` =


`1,1 `1,2 · · · `1,T

`2,1 `2,2 · · · `2,T
...

... . . . ...
`I,1 `I,2 · · · `I,T

 ,

which can be either controlled by a single entity (centralized form), or
controlled separately by I decision-makers (decentralized form). In the
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first case, there is a single decision-maker that controls in each instant
t = 1, ...,T the controllable load vector:

`t := (`i,t)i∈I ,

i.e., all the load variable `. In the second case, there are several decision-
makers, where each one represents a consumer i and then, the decen-
tralized form can be seen as each one controls its respective column i
of the matrix `, i.e., controlling its controllable load profile:

`i := (`i,t)t∈T .

Details about the two scheduling architectures (centralized and decen-
tralized) is explained in the following.

CENTRALIZED AND DECENTRALIZED APPROACHES

In order to solve the scheduling problem (2.7), the controllable loads
need to be coordinated. This coordination is done through each load
consumption profile of each controllable electric device (consumer). We
identify two principal approaches of communication and control that
can be performed between them, see for instance [99]. These two cate-
gories refer to a decentralized and centralized scheduling architectures,
which relate to the level on which the controllable loads are scheduled,
given an objective function and constraints that need to be met given a
certain scenario (that in this work it can be deterministic or stochastic
due to the noncontrollable load consumption forecast).
First, we gain reliability in the controllable loads under a central-

ized scheduling, because all the information of the load consumption
of the controllable electric devices is available to scheduling. However,
since such approach controls jointly the vectors `t for each t = 1, ...,T
(i.e., the complete variable `), it requires a high degree of information
in order to get precise scheduling when T or I is large, and also, it
does not preserve the privacy of the controllable load consumption of
the consumers. For this reason, a centralized architecture increases the
complexity of scheduling [82]. In order to address such complexity, a
decentralized architecture is often more appropriate.
Second, when a decentralized scheduling architecture is used, the

set I is considered as a set of different decision-makers, each one of them
representing a consumer i ∈ I. This approach allows each i to choose
its load profile `i according to the objective function of the problem to
arrange the load consumption process. Thus, the information between
the decision-makers (also refereed as consumers) has to be coordinated
and incorporated in the scheduling problem in order to find effective
scheduling load profiles while the constraints are satisfied, in particular
satisfying the required energy (2.9) of each i. Although a decentralized
approach requires more exchange of information, this can be made iter-
atively between the consumers and the size of the scheduling problem
is confined to one unit in each iteration, i.e., to find a load profile `i
for i while the consumption of the other consumers is fixed.
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2.5.2 VARIABLES AND CONSTRAINTS

In the basic problem (2.7), the variable xt represents a certain metrics of
interest of the system at t (namely the DN), so called the system state,
e.g., this can represent the total electricity bill corresponding to the
total load consumption, the the hot-spot DN-transformer temperature,
etc. This metric could be either deterministic or stochastic depending of
the noncontrollable load knowledge (the deterministic forecast (2.3) or
the stochastic one (2.5) resp.). In addition, the system state is assumed
to evolve at each time with a function f representing a dynamic law,
see eq. (2.8). An important assumption to make an effective calculation
with the proposed algorithms in this work, is the one shown in the
Assumption 2.5.1.

Assumption 2.5.1

The function f is a function that depends of the total load con-
sumption, i.e., of the form: f ′(xt, `t), with `t of eq. (2.1).

Explicit expressions of f are developed in the numerical applications,
mainly in the Section 3.5 and Section 6.5.

Example 2.5.2. Let us now consider an example where the state of

the system represents the hot-spot temperature of a DN-transformer.

The system state is assumed to obey the following dynamic law [M1]

[68, 70], which has a single period time-lag in the load consumption:

xt+1 = αxt + β `2t + γ `2t−1 + zt ,

where α,β, γ ∈ R are constants of the model [70], and zt ∈ R+
0 is

a known deterministic function (it typically represents the ambient

temperature in Celsius degrees). The initial conditions of the model

are assumed to be given.

On the other hand, the constraint (2.9) expresses the energy de-
mand ei ∈ R+ to complete a corresponding task of a controllable elec-
tric devise (consumer) i, e.g., an energy required can be ei = 3.6 kWh
for a full-load dishwasher cycle, ei = 24 kWh for an EV to recharge its
battery, etc. In the eq. (2.9), ∆t represents the time-step duration, e.g.,
to be ∆t = 0.5 if each t represents a time-slot of 30 min.

VARIABLES UNDER A NONCONTROLLABLE LOAD FORECAST

Under a deterministic (2.3) or stochastic (2.6) forecast of the noncon-
trollable load consumption, the total load (2.1) and the system state
(which evolves with the dynamic law (2.8)) are evidently affected. When
a deterministic or stochastic case is assumed, we implement different
notations. This is summarized in the following table, which shows how
we write the main variables considered in this document.
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Mode Deterministic
Forecast

Stochastic
Forecast

Noncontrollable Load ˜̀
0,t L̃0,t

Controllable Load `i,t Li,t

Total Load ˜̀
t L̃t

System State x̃t X̃t

ADDITIONAL CONSTRAINTS

The constraints in this work, are also referred as “objectives” to satisfy.
Some constraints concerning the DN that are not been presented in
the basic problem (2.7), but that will be studied in this work, are the
following:

(i) The system state xt must be bounded by an upper safety limit,
denoted by xmax ∈ R+, so that the system operates in safe con-
ditions. Mathematically, this is expressed for each t ∈ T by:

xt ≤ xmax . (2.10)

For example, if the state of the system represents the hot-spot
DN-transformer temperature (see Example 2.5.2 for instance),
exceeding a high temperature xmax (e.g., xmax = 150 °C) might
put the transformer in dangerous conditions of shut down.

(ii) Concerning the DN-transformer, there is a maximal power ad-
missible. It is for this reason that we want to keep the total load
consumption (2.1) upper bounded by a certain value `max ∈ R+.
This can be expressed by:

`t ≤ `max . (2.11)

For example, the maximal power of a typical DN-transformer in
a urban district is `max = 90 kW.

(iii) An additional constraint is considered for each consumer i when
he is charging to satisfy the constraint of energy demand (2.9).
The power load `i,t at time t is assumed to be at least a minimum
power `min

i ∈ R+
0 and also, it cannot exceed the maximum power The minimum

power refers when,

e.g., i is switched

off but is designed

to draw some load

in standby mode.

at which the consumer i can be charging. Mathematically, this is
expressed by:

`min
i ≤ `i,t ≤ `max

i .

For example, dishwashers may use `max
i = 1.8 kW of maximum

power, an EV may be charged at `max
i = 3 kW in a slow charging

mode (typically at home).
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Due to the available knowledge about the noncontrollable load con-
sumption (2.2) to schedule the controllable loads of the consumers, i.e.,
the forecast that can be deterministic (2.3) or stochastic (2.6), all the
constraints (and even more, the scheduling problem in question) that
involve the stochastic case, become stochastic as well. When the fore-
cast is deterministic, the noncontrollable load at each time boil down to
a simple parameter and then, the (deterministic) constraints (without
going into details of how to satisfy them) are easier to express, e.g., see
the ones in (2.10) and (2.11). On the contrary, when the constraints be-
come stochastic, these can be formulated in different ways [10, 71], e.g.,
in expectation, in almost surely mode, in probability, etc. We explain
more about that in the Section 2.6.5.

2.5.3 COST FUNCTION

In the basic problem (2.7), the impact of the charging operation on the
DN of the different consumers, is measured by an objective function,
which is expressed as a sum of a cost function C. At each instant t,
each controllable load `1,t, ..., `I,t has an effect of increasing the load
consumption, causing a cost that is measured by C(xt, `t, `0,t) ∈ R.
The latter amount takes into account the state of the system xt, the load
vector `t = (`1,t, ..., `I,t), and the noncontrollable load consumption `0,t.
Such a cost function can represent, e.g., the degradation of the DN in
terms of the DN-transformer lifetime, the Joule losses, the electrical
consumption payment due to the load operations, among other. Based
on a (deterministic or stochastic) forecast of the noncontrollable load
consumption, the cost function C is expressed in this work either a
deterministic function, or an expectation, which also depends on the
way in which the controllable loads are managed (in a centralized or
decentralized) way. We summarize how we write the cost incurred at
each time t in the following table:

Mode Centralized Decentralized

Deterministic C(x̃t, `t ; ˜̀0,t) C(x̃t, `1,t, ..., `I,t ; ˜̀0,t)

Stochastic E
[
C(X̃t,Lt; L̃0,t)

]
E
[
C(X̃t,L1,t, ...,LI,t; L̃0,t)

]
A suitable method to model the scheduling problems studied in this

work when a stochastic forecast on the noncontrollable part of the to-
tal load consumption is assumed, is the so-called Markov decision pro-
cess [96]. To go to such a model, we revisit some research background
in the next section.
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2.6 BACKGROUND OF MARKOV PROCESSES

All the models studied in this work are based on directed graphs.
The vertices are called states. A pebble is placed in an initial state
and moved from state to state creating an infinite path in the graph,
so-called “play”. How the pebble moves depends on who possesses the
origin state. States can either belong to a player or be stochastic. In the
first case, the player chooses where to move the pebble according to his
scheduling strategy. In the second one, the pebble is moved according to
a predefined probability distribution over successor states in the graph.

First, for a finite set X , we let D(X ) as the set of probability distri-
butions over X . This can be expressed mathematically as:

D(X ) :=
{
p : X → [0, 1]

∣∣∣ ∑
x∈X

p(x) = 1
}

.

2.6.1 MARKOV CHAINS

Definition 2.6.1: Markov Chain

A Markov Chain (MC) is a structure:

C = (X , P ) , (2.12)

where X is a finite set of states, and P : X → D(X ) is a probability
transition function between states.

Since X is assumed to be a finite set, we can take any bijective
function X ↪→→ {0, 1, ..., | X | − 1}, to label the states with natural
numbered indices. Based on this, for a Markov chain C = (X ,P ) and
a given initial state3 x0 ∈ X , we define the set Ωx0 of infinite paths
in C from x0, also called sample space, by:

Ωx0 :=
{
(x0,x1, ...) ∈ XN | P (xt−1)(xt) > 0, ∀ t ∈ N

}
. (2.13)

When we refer to finite paths, we denote by Ωx0 the set of these. We
let B(Ωx0) as the Borel sigma-algebra over Ωx0 generated by all
possible cylinder sets:

Cyl(x0,x1, ...,xT ) :=
{
ω ∈ Ωx0 | projXt (ω) = xt, ∀ t ≤ T

}
,

(2.14)

for each T ∈ N, where projXt is the tth-projection map on paths. In
words, a cylinder set specifies the first T states after x0 for the paths.
To reside in such a set, an ω must match these on the first T states,

3 Although all the modeling of power consumption scheduling problems studied in this
work using Markov process, start from a given initial state of the system (namely, the
DN) denoted by x1, here we write x0 since it is more natural in this mathematical
context. When necessary for the consumption modeling, we turn to the pertinent
notation of x1. All the results shown here remain invariant.

[ November 20, 2019 at 17:47 – classicthesis ]



28 research background

but can have arbitrary assignment thereafter. From any initial state
x0 ∈ X , there is induced a probability space denoted by:(

Ωx0 , B(Ωx0), Px0

)
, (2.15)

with probability distribution over set of paths4 Px0 : B(Ωx0) → [0, 1],
such that for each cylinder Cyl(x0,x1, ...,xT ) ∈ B(Ωx0),

Px0 [Cyl(x0,x1, ...,xT )] =
T∏
t=1

P (xt−1)(xt) . (2.16)

The latter probability Px0 is such that Px0 [∅] = 0 and Px0 [Ωx0 ] = 1.
Note that the elements of B(Ωx0) are those subsets of Ωx0 which have
well-defined probabilities. We call each one an event.

Definition 2.6.2: State Process

A Markov chain C = (X ,P ), with a given initial state x0 ∈ X ,
induces a stochastic state process (Xt)t∈N0 over Ωx0 , which is a
sequence of X -valued random variables (r.vs.), defined as Xt(ω) :=
projXt (ω) for ω ∈ Ωx0 .

In other words, for a path ω = x0x1..., Xt(ω) = xt to each t ∈ N0.
Note that for a state xt ∈ X , the probability that the state process
(Xt)t∈N is xt at time-step t from an initial state x0 ∈ X , is:

Px0 [Xt = xt] =
∑

x1,...,xt−1

t∏
τ=1

Px0 [Xτ = xτ | Xτ−1 = xτ−1]

=
∑

x1,...,xt−1

t∏
τ=1

P (xτ−1)(xτ ) ,
(2.17)

where
∑
x1,...,xt−1 denotes the summation over all tuples of the form

(x1, ...,xt−1) ∈ X t−1. In addition, (Xt)t∈N0 satisfies theMarkov prop-
erty or “memorylessness”, i.e., for all states x1, ...,xt ∈ X , it holds:

Px0 [Xt = xt | Xt−1 = xt−1, ..., X1 = x1] =Px0 [Xt = xt | Xt−1 = xt−1]

=P (xt−1)(xt)

We denote the expectation operator over the probability space (2.15)
as Ex0 . Thus, for a measurable function, let say F : Ωx0 → R, we can
compute its expected value as:

Ex0 [F (X0, ..., XT )] =
∑

x1,...,xT

F (x0, ..., xT )
T∏
t=1

P (xt−1)(xt) . (2.18)

For example, this operator can help us compute the expected lifetime
of the DN-transformer, to quantify the impact of consuming on the
DN. The expected operator (2.18) can be naturally extended to func-
tions over infinite paths by considering the limit behaviour. In general,
such expected value does not need to converge as T → +∞, but it is

4 Carathéodory’s extension theorem induces a unique probability measure on the Borel
sigma-algebra over the simple space [52].
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also possible to define two variants: the lim inf and the lim sup limits.
Provided that

Ex0 [ |F (X0, ..., XT )| ] (2.19)

is convergent as T → +∞ from x0, the expected value (2.18) is thus
extended for functions F : Ωx0 → R, and can be written as:

lim
T→+∞

Ex0 [F (X0, ..., XT )] .

We mainly focus on doubly-weighted processes in this work, but the
technical developments mainly rely on simply-weighted process. We
therefore define the setting with an arbitrary number of weights (cost
functions).

Definition 2.6.3: Multi-Weighted Markov Chain

A multi-weighted Markov Chain is a structure:

C = (X , P , (Cj)Jj=1) ,

where J ∈ N, (X , P ) is a Markov chain (2.12), and Cj : X ×X →
R is a cost functions over transitions for each j = 1, ..,J .

Note that above, the cost functions are defined on transitions. Sim-
ilarly, a multi-weighted MC can be defined with costs over states, i.e.,
with costs Cj : X → R, j = 1, ...,J . In any case, there is a correspon-
dence between costs defined on transitions and on states. Indeed, let
j ∈ {1, ...,J} and let any state xt ∈ X with cost Cj(xt). The latter can
be transformed into a cost on transitions from such state xt as:

Cj(xt,xt+1) := Cj(xt)

for each xt+1 such that P (xt)(xt+1) > 0. Conversely, if a transition
takes place from any xt to some xt+1, i.e., P (xt)(xt+1) > 0, and the
cost Cj(xt,xt+1) is incurred, we can define the cost on xt as:

Cj(xt) :=
∑

xt+1∈X
Cj(xt,xt+1)P (xt)(xt+1) (2.20)

Note that the latter is the expected value (2.18) of the cost in one-step,
i.e., for each state xt ∈ X , Cj(xt) = Ext [Cj(Xt,Xt+1)].
An important example to compute the expected value involving the

costs functions of a multi-weighted MC, is considering the sum of cost
with a given finite-horizon time. It is known as the finite truncated sum,
also called total-payoff.
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Definition 2.6.4: Finite-Truncated Sum

Let C = (X ,P , (Cj)Jj=1) a multi-weighted MC, with J ∈ N. For
j ∈ {1, ...,J} and T ∈ N, we define the Truncated Sum (TS) up to
the finite-horizon T , by:

TSj,T :=
T∑
t=1

Cj(Xt−1,Xt) (2.21)

From the latter, computing an expected cost over the truncated sum
comes naturally with the eq. (2.18), which formalizes the accumulation
procedure of costs along paths by simple expected summations. In addi-
tion, it is also possible to extend the summations to the limit, provided
there is convergence. Formally, we define the following.

Definition 2.6.5: Expected Truncated Sum

Let C = (X ,P , (Cj)Jj=1) a multi-weighted MC, with J ∈ N, and
T ∈ N. For each j = 1, ...,J , we define the expected truncated
sum up to T , as the function TSj,T : X → R, which take any state
x0 ∈ X and defines:

TSj,T (x0) := Ex0 [TSj,T ] . (2.22)

In addition, if the latter is convergent for each x0 ∈ X as T → +∞,
the expected truncated sum with infinite-horizon is defined as:

TSj,∞(x0) := lim
T→+∞

TSj,T (x0) .

In general, the function TSj,T need not converge as T → +∞. For
example, if costs have different signs, then their accumulate sum can
oscillate. In order not to be concerned with such oscillations, we can im-
pose the stronger condition on the absolute convergence for the infinite-
horizon case, as in eq. (2.19). In the following, we provide a method
which helps to evaluate the expected truncated sum [60].

Proposition 2.6.6

Let C = (X ,P , (Cj)Jj=1) be a multi-weighted MC, with J ∈ N. For
a fixed j ∈ {1, ...,J} and any state x0 ∈ X , the following holds:

(i) for T ∈ N fixed, TSj,T (x0) can be computed iteratively
through:

TSj,T (x0) = Cj(x0) +
∑
x1∈X

P (x0)(x1)TSj,T−1(x1) ,

where TSj,0(x0) := 0 for each x0 ∈ X .
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(ii) if TSj,∞(x0) exists, then it satisfies the system of linear eqs.:

TSj,∞(x0) = Cj(x0) +
∑
x1∈X

P (x0)(x1)TSj,∞(x1) .

Proof. See Proof B.1.1 in Appendix B.1.
�

In this work, we are principally interested in computing the truncated
sum until some goal set, also called target set, i.e., an a priori defined
subset of states, is reached by the state process (2.6.2). Formally, a
state x ∈ X is said a reachable state from a fixed initial state x0,
if there exists t ∈ N0 such that Px0 [Xt = x] > 0. Moreover, such
a state is called almost-surely reachable state if this is reached
with probability one. Based on this, we define the following random
variable (r.v.), called reachability time, which represents when the
state process eventually reaches x. It is defined by:

Tx := inf
{
t ∈ N0 ∪ {+∞} | Xt = x

}
. (2.23)

Note that Tx is finite if x is an almost-surely reachable state, and it is
+∞ if along a path ω ∈ Ωx0 the process never reaches x. For example,
if the state process represents the dynamic of charging the battery of an
EV, the reachability time can represent when the battery is recharged.
In the following, we define the truncated sum (2.6.4), but now consid-
ering the stochastic reachability time to reach a goal set.

Definition 2.6.7: Truncated Sum

Let C = (X ,P , (Cj)Jj=1) a multi-weighted MC, with J ∈ N. For
j ∈ {1, ...,J}, and a given set of goal states G ⊂ X , we define the
Truncated Sum (TS) by:

TSGj :=


TG∑
t=1

Cj(Xt−1,Xt) if TG ∈ N

+∞ otherwise
(2.24)

where TG is the reachability time defined in (2.23) for the set G.

In the rest of this chapter, we assume that the goal set G is ab-
sorbent, i.e., that there is a single loop in each state of G whose costs
are all equal to zero. This assumption is w.l.o.g., since we will study
the truncated sums, which only consider the finite paths up to the first
visit to the goal set G. Mathematically, we assume the following.

Assumption 2.6.8: Absorbent Goal Set

For any defined goal set G ⊂ X , we assume that ∀x ∈ G, P (x)(x) =
1 and Cj(x,x) = 0 for each j = 1, ...,J .
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2.6.2 MARKOV DECISION PROCESSES

Roughly speaking, an MDP extends the pure stochastic behaviour of
an MC by introducing actions, which can be used by a scheduling
controller in order to control state transitions.

Definition 2.6.9: Multi-Weighted MDP

A multi-weighted Markov Decision Process (MDP) is a structure:

M :=
(
X , A, P , (Cj)Jj=1

)
,

where J ∈ N, X is a finite set of states, A is an alphabet of actions,
P : X ×A → D(X ) is a probability transition function between
states, and Cj : X ×A×X → R is a cost function over transitions
for each j = 1, ..,J .

In analogy with Markov chains, see eq. (2.20), we denote for j = 1, ...,J ;
the cost on a state xt when an action at is taken and the transition to
some xt+1 takes place, i.e., P (xt, at)(xt+1) > 0, as the expected cost:

Cj(xt, at) :=
∑

xt+1∈X
Cj(xt, at,xt+1)P (xt, at)(xt+1) . (2.25)

We assume that there exists a single entity, called scheduling con-
troller or system operator, that schedules the actions from the set A,
based on some information of the system. More precisely, such con-
troller uses a function called scheduling strategy or decision rule to
define an action to play in each state. The controller takes into account
the finite paths (also called histories) of the system, which represents
the visited system states and the actions chosen previously to when
he should choose the action. First, analogously to the set of infinite
paths (2.13) in a MC, we extend it for an MDPM = (X ,A,P , (Cj)Jj=1)

as:

Ωx0 =
{
(x0, a0,x1, ...) ∈ X × (A×X )N | P (xt−1, at−1)(xt) > 0, ∀ t ∈ N

}
.

We write projXt and projAt , to refer to the tth-projection map on paths,
resp. over X andA for t ∈ N0, e.g., for a path ω = x0a0x1..., projXt (ω) =
xt and projAt (ω) = at.
The notion of Borel sigma-algebra B(Ωx0), cylinder sets (2.14), and

thus the induced probability space (2.15) are naturally extended, wherein
for each Cyl(x0, a0,x1, ...,xT ) ∈ B(Ωx0), the probability distribution (2.16)
is now as:

Px0 [Cyl(x0, a0,x1, ...,xT )] =
T∏
t=1

P (xt−1, at−1)(xt) .

A useful technique that we use in this work is called “unfolding”,
which takes a multi-weighted MDP and defines another MDP without
costs between transitions. More precisely, the unfolding is constructed
by explicitly keeping track of the cost functions in the states.
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Definition 2.6.10: Unfolding of an MDP

Let M = (X ,A,P , (Cj)Jj=1) a multi-weighted MDP, with J ∈ N.
For a given initial state x0 ∈ X and T ∈ N, we define the unfolding
ofM of depth T as the MDP:

MT := (ST , s0, A, PT ) ,

where the space of states here is:

ST := X ×
J

ą

j=1

[T Cmin
j , T Cmax

j ]× {0, 1, ..., T} ,

with Cmin
j ,Cmax

j ∈ R to be resp. the minimum and maximum cost
appearing in the transitions of M due to Cj , j = 1, ...,J . The
initial state is s0 := (x0, 0, 0), A is the set of actions from M,
and PT : ST ×A → D(ST ) is the probability transition function
between states defined as PT := P ◦ (proj1, idA). In addition, each
state sT ∈ ST such that projJ+2(sT ) = T , is considered as an
initial state of M, i.e., we keep a copy of M below each leaf of
MT .

2.6.3 STRATEGIES

As we said before, the way in which the actions are chosen by the
scheduling controller in each state is according to a function called
strategy. This can be defined in several manners, we focus here on
pure, randomized and mixed strategies [84]. In the following, we fix an
initial state x0 ∈ X in the MDPM, and we consider Ωx0 be the set of
finite paths.

First, a pure strategy is defined as a function:

π : Ωx0 −→ A

assigning an action for each finite path ωt = (x0, a0, ...,xt) ∈ Ωx0 ,
where t ∈ N0, i.e., π(ωt) = at. This strategy is also called determin-
istic strategy. We denote by Π the set of all pure strategies. On the
other hand, a randomized strategy is defined as a function:

δ : Ωx0 −→ D(A)

defining a probability distribution over actions for each finite path, i.e.,
for each ωt = (x0, a0, ...,xt) ∈ Ωx0 , with t ∈ N0, this is defined as
δ(ωt)(at) ∈ [0, 1]. From the traditional game theory [84], the previ-
ous definition corresponds to the one of behavioural strategy, i.e.,
putting a randomization on the choice of actions. We denote by ∆ the
set of all randomized strategies. Note that a pure strategy may be re-
garded as a special case of a randomized one in which the probability
distribution on the set of actions is degenerate, i.e., δ(ωt)(at) = 1 for
some at ∈ A. This type of strategies is in contrast to mixed strate-
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gies, which directly put a probability distribution over pure strategies.
Mathematically, a mixed strategy is a function:

σ : Π −→ [0, 1]

We denote by ∆[Π] the set of mixed strategies. When the set of pure
strategies is finite, i.e., when |Π| ∈ N, the set ∆[Π] can be seen as a
simplex in R|Π|, which is compact, convex and of dimension |Π| − 1.
Thus, a mixed strategy can be regarded as a convexification of pure
strategies.
Intuitively, the difference between randomized and mixed strategies,

is that a randomized one defines whenever an action must be chosen,
whereas a mixed strategy defines once before starting to play, how to
choose randomly a pure strategy. An important result is that in a game
with several players (also-called controllers or decision-makers here) in
extensive form5 under a setting of perfect information about the past of
finite paths (which is the case in this work), the well-known Kuhn’s the-
orem applies [12, 77], which states that randomized and mixed strate-
gies have the same “power”. In other words, if the scheduling controller
can fulfill an objective with any of those strategy types, he can also
fulfill the objective when restricted to the other one. We quote the
theorem that interests us:

Theorem 2.6.11: [ Kuhn, 1953 ]

In every game in extensive form, if a player has perfect recall, then
for every mixed strategy of such a player, there exists an equivalent
behavior strategy.

Proof. See, e.g., Proof of Theorem 6.15 in [84]
�

In our context, an unfolded-MDP can be seen as a game in extensive
form with two players: the scheduling controller and the “Nature”. The
latter is a player who has no strategic interests in the outcome (or paths)
in the system and plays randomly. Thus, the probability transition
between state can be seen as a fixed randomized strategy of the Nature.
In this work, we are interested in defining a randomized strategy from
a mixed one of the controller. This will be useful in the Chapter 5.
From the proof of the Theorem 2.6.11, let σ a mixed strategy, and
ωt a fixed finite path. An equivalent randomized strategy for σ in an
unfolded-MDP can be defined for each action at available at t, by:

δ(ωt)(at) =
∑
π∈Π

σ(π)1π(ωt)(at) , (2.26)

where 1π(ωt)(at) = 1 if π(ωt) = at, and 1π(ωt)(at) = 0 otherwise. Of
course, Kuhn’s theorem is more general since a randomized strategy can
be defined over sets of information. Here, such sets are reduced to be

5 That is, a game tree, which consists of a directed graph in which the set of vertices
represents positions in the game. In each vertex a player is assigned to take an action,
see [84] for more details
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singleton sets. The definition in eq. (2.26) is sufficient for our purposes
in Chapter 5, where we also see that the number of pure strategies to
define the randomized one that interests us is finite.

MEMORY

We say that a pure strategy π (resp. a randomized one δ) is said mem-
oryless or Markov if:

π(ωt) = π(ω′t) (resp. δ(ωt) = δ(ω′t′)) ,

where ωt,ω′t′ ∈ Ωx0 are any two finite paths, such that projXt (ωt) =

projXt′ (ω′t′). That is to say that the only relevant information that a
Markov strategy needs is contained in the current state of the system.
The set of pure (resp. randomized) Markov strategies is denoted by Π
(resp. ∆). In such a case, we sometimes represent the action at taken
in a state xt by a pure (resp. randomized) Markov strategy as:

π(xt) = at (resp. δ(xt)(at) ∈ [0, 1] ) .

Note that we do not define mixed strategies with memory, because if
it is the case, this is due to the memory of pure strategies.
On the other hand, we say that a strategy is non-memoryless if

it does not take the same action every time it visits the same state,
and is thus dependent of time. In such case, we denote πt (resp. δt)
a non-memoryless pure (resp. randomized) strategy. The mainly goal
here is to provide efficient implementable strategies. Hence, we favor
strategies that are considered simple to implement and/or using a mini-
mal amount of resources, notable the memory requirements over paths,
where memoryless or Markov strategies are preferred. However, memory
can be necessary to fulfill a (complex) objective. Hence, it is of interest
to find strategies with finite-memory, as they correspond to strategies
that can be implemented in practice. On the contrary, strategies with
prohibitive (infinite) memory requirements are not implementable, see
for example [29].

2.6.4 INDUCED MARKOV CHAIN

When a strategy is fixed, the resulting paths inM are fully stochastic,
where no more decisions are made anymore. More precisely, a strat-
egy resolves the non-deterministic choice between actions and thus, an
MDP is reduced into a MC [96]. Indeed, let M = (X ,A,P , (Cj)Jj=1)

a multi-weighted MDP and a fixed initial state x0 ∈ X . First, suppose
that the scheduling controller uses some pure Markov strategy π. In
such a case, we can define a multi-weighted MC by:

Mπ :=
(
X , x0, P π, (Cπj )Jj=1

)
,

where, P π is the probability transition function between states defined
from P , i.e., if a transition from xt to xt+1 takes place using π, then:

P π(xt)(xt+1) := P (xt,π(xt))(xt+1) , (2.27)
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Analogously, for each j = 1, ...,J the cost function Cπj is defined from
Cj resp., i.e.,

Cπj (xt,xt+1) := Cj(xt,π(xt),xt+1) .

On the other hand, suppose that the scheduling controller uses some
randomized Markov strategy δ. In such case, we can define a multi-
weighted MC by:

Mδ :=
(
X , x0, P δ, (Cδj )Jj=1

)
,

where as before, if a transition from xt to xt+1 takes place using δ, then:

P δ(xt)(xt+1) :=
∑
at∈A

δ(xt)(at)P (xt, at)(xt+1) , (2.28)

and for each j = 1, ...,J the cost function Cπj is defined from Cj resp.
by:

Cδj (xt,xt+1) :=
∑
at∈A

δ(xt)(at)Cj(xt, at,xt+1) .

From the definition of P π in (2.27) (resp. P δ in (2.28)), the set
of infinite paths in the Markov chain Mπ (resp. Mδ) is well-defined,
which we denoted by Ωπ

x0 (resp. Ωδ
x0). Analogously for the set of finite

paths, we write Ωπ
x0 (resp. Ωδ

x0). In this way, the notion of the in-
duced probability space (Ωπ

x0 , B(Ωπ
x0), Pπ

x0) and (Ωδ
x0 , B(Ωδ

x0), Pδ
x0)

are naturally understood. Also, expectation operator (2.18) over the
probability space induced by a pure strategy π (resp. a randomized
strategy δ), is denoted by Eπ

x0 (resp. Eδ
x0).

Remark 2.6.12: MC by a non-Markov Strategy

Analogous constructions apply to finite history-dependent strate-
gies, i.e., strategies that are not Markov and take the information
of the set of finite paths Ωx0 to select actions. Its probability tran-
sition function is defined based on the distributions prescribed by
the strategy and in order to accurately account for the memory
updates, i.e., the finite paths taken into account for decisions. For
instance, if the set of states in the MDP is X and a non-Markov
strategy is used, let say a pure one π, the state space for the induced
MC will be Ωπ

x0 ×X . Still, there exists a bijection between paths
of the MC and their traces in the MDP, thanks to the projection
operator [34].
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2.6.5 OBJECTIVES AND SYNTHESIS PROBLEM

The goal of the scheduling controller is to enforce a given specification,
encoded through an objective. From the tradition formal methods the-
ory, see for example [61], an objective is a predefined set of paths in
an MDP. A path either satisfies the property (we therefore say that it
is winning) or it does not (i.e., it is losing). Specifying objectives for
a model can be formulated in different ways. We focus in this work in
(i) qualitative objectives, e.g., in probability, in almost-surely or sure
mode; and in (ii) quantitative objectives, e.g., the expected value. Be-
cause we are interested in measuring predefined sets of paths in an
MDP, objectives are events that have well-defined probabilities. Also,
objectives can be seen as constraints in modelling a system. In the
following, we present the principal objectives considered in this work.
Since pure strategies can be seen as a particular case of randomized
strategies, we define the principal objectives for randomized strategies.

QUALITATIVE OBJECTIVES

This type of objectives express Boolean properties [61] on paths of the
system, e.g., the reachability objective to some predefined set of goal
states. Qualitative specifications are sufficient to model yes/no proper-
ties. Thus, a path is either correct or incorrect, with no interpretation
of how well it behaves, and then cost functions are not relevant here.
We consider two types of objectives: the almost-surely and the proba-
bility objectives. We fix an ordinary MDP, i.e., without cost functions,

M = (X , A, P ) (2.29)

an initial state x0 ∈ X , and we let (Ωx0 ,B(Ωx0), Px0) the underlying
probability space.

Definition 2.6.13: Almost-Sure Objective

A strategy δ ∈ ∆ is said that it satisfies almost-surely an objective
Θ ∈ B(Ωx0), if Pδ

x0 [Θ ] = 1.

The term “almost-surely” refers to the possible exception of a set of
paths whose probability measure is zero. On the other hand, if the
sample space Ωx0 is finite, there is no difference between the terms
almost-sure and sure. The latter is defined as follows.

Definition 2.6.14: Sure Objective

A strategy δ ∈ ∆ is said that it satisfies surely an objective Θ ∈
B(Ωx0), if for all ω ∈ Ωδ

x0 , ω ∈ Θ.

In other words, the Definition 2.6.14 refers to that δ ensures an objective
Θ against any stochastic behaviour of the paths inM. More precisely,
Θ = Ωδ

x0 in the induced MCMδ.

[ November 20, 2019 at 17:47 – classicthesis ]



38 research background

Example 2.6.15. Consider that the states of the MDP (2.29) rep-
resents the non-controllable part of the total load consumption gener-

ated on the DN-transformer, where the controllable part is assumed to

be the actions. If it is required that the total load consumption at each

time should not exceed the maximal load `max of the DN-transformer,

then the set of all possible values of the total load consumption almost-

never exceed such an upper bound. Mathematically, for a strategy

δ ∈ ∆, it is expressed by:

Pδ
x0 [{ω ∈ Ωx0 | ∃ t ∈ N0 : projXt (ω) + projAt (ω) > `max}] = 0 .

If the sample space is finite, we can write it as “surely”:

∀ω ∈ Ωδ
x0 , projXt (ω) + projAt (ω) ≤ `max 2

A principal objective that we focus on in this work is the stochastic
reachability objective that must be satisfied with probability one. It is
presented in the following.

Definition 2.6.16: Stochastic Reachability Objective

Given a goal set G ⊂ X , the (stochastic) reachability objective
ΘG ∈ B(Ωx0) is defined as:

ΘG := {ω ∈ Ωx0 | ∃ t ∈ N0 : projXt (ω) ∈ G }

and, it is required that Pδ
x0 [ΘG ] = 1.

To satisfy this objective, the scheduling controller must be able to force
visiting a state of G at least once. Note that ΘG can also be defined
with the r.v. reachability time (2.23) by:

ΘG = {ω ∈ Ωx0 | TG(ω) ∈ N0 } .

Pure memoryless strategies suffice for the scheduling controller for
this type of objective, and it can be constructed in polynomial-time

(if it exists), see [16] for instance.
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Example 2.6.17. Consider the following MDP:

x0 x1

P (x0, a0)(x0) = 0.5

P (x0, a0)(x1) = 0.5

with the goal set defined as G = {x1}. The only available action in

the initial state x0 is a0, and there is a transition to G with probabil-

ity 0.5. In that case, for the pure strategy π(x0) = a0, it satisfies the

reachability objective almost-surely because π allows to reach (even-

tually) the goal set with probability one. Note that G is not reached

surely, since there is a path

ω = x0a0x0a0... ∈ ({x0} × {a0})N

that never reaches the goal set, although this one has a zero probabil-

ity. 2

Sometimes, when the size of the set of paths in an MDP is large, ob-
serving all resulting paths may be a very strict assumption and gener-
ally inappropriate from realistic problems. If some risk may be accepted,
it is useful to reason about the risk in probability of an objective over
paths.

Definition 2.6.18: Probability Objective

Given a threshold ε ∈ [0, 1] and an objective Θ ∈ B(Ωx0), a strat-
egy δ ∈ ∆ is said that it satisfies the objective with ε-risk in prob-
ability, if Pδ

x0 [Θ ] ≥ 1− ε.

In other words, this means that one accepts that an event remains under
a certain risk of probability parametrized by a given thresholds. Note
that considering ε = 0, it is the same as the almost-surely objective.

Example 2.6.19. Consider that the states of the MDP (2.29) rep-
resents the DN-transformer temperature. It is natural to think that

exceeding a high temperature might put the DN-transformer in dan-

gerous conditions of shut down. Here, one assumes a risk in probabil-

ity ε ∈ [0, 1] of exceeding the maximum temperature xmax, a strategy

δ ∈ ∆ satisfies it requirement if:

Pδ
x0 [ {ω ∈ Ωx0 | projXt (ω) ≤ xmax , ∀ t ∈ N0} ] ≥ 1− ε 2
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A principal objective that we focus on in this work is the stochastic
shortest path objective to some set of goal states. Here we can accept
some probability risk when satisfying the objective. This is known as
the stochastic shortest path probability objective.

Definition 2.6.20: Probability Shortest Path Objective

Given a goal set G ⊂ X , a threshold ν ∈ R, and a probability
threshold ε ∈ [0, 1]; let TSGj the truncated sum (2.24) for j ∈
{1, ...,J}. The probability (stochastic) shortest path objective is
defined as:

Pδ
x0 [TSGj ≥ ν] ≥ 1− ε

This objective is pspace-hard as shown in [62]. Pure strategies with
exponential memory suffice [101]. A strategy for this objective can be
obtained by a pseudo-polynomial-time algorithm based on the un-
folding method, see Definition 2.6.10.

QUANTITATIVE OBJECTIVES

While qualitative specifications are sufficient to model correct/incorrect
properties, quantitative extensions to model resource constraints such
as power consumption, can be considered. Thus, MDPs with costs come
into play. Under such a context, the expectation operator (2.18) is an
attractive approach for this type of objectives.

Definition 2.6.21: Expected Value Objective

Let M = (X ,A,P , (C)Jj=1) a multi-weighted MDP with J ∈ N,
and x0 ∈ X an initial state. Given a function F : Ωx0 → R∪ {∞}
and a threshold ν ∈ R, a strategy δ ∈ ∆ is said that it satisfies the
expected value objective for F and µ, if Eδ

x0 [F ] < ν.

Note that it is possible that F can be a composed function of the costs
Cj , j = 1, ...,J ; e.g., it can represent the sum of costs from the initial
state. Also, the expected value objective can be written as a constraint
in expectation over transitions for each time-step. For instance, we
consider the following example.

Example 2.6.22. Let C a cost function of an MDP, which gives

the temperature of the DN-transformer at each time-step. Suppose

that we expect that such temperature stays below a maximum pre-

scribed temperature xmax, for which the DN-transformer works in

safety conditions. A constraint in expectation can be written as:

∀ t ∈ N , Eδ
x0 [C(Xt−1,At−1,Xt) ] < xmax .

For instance, exceeding a critical thresholds may cause

DN-transformer accelerated ageing, see, e.g., [M1][19]. 2
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Although this type of objectives is mathematical attractive, it is diffi-
cult to understand the involved risk in choosing a prescribed threshold
as we have seen in the precedent example. Here, we will focus in min-
imizing sum of costs until some goal set in an MDP is reached from
some initial state. Such a quantitative setting is a generalization of the
classical shortest path over graphs (see for example [38] for the graph
setting). It is defined as follows.

Definition 2.6.23: Expected Shortest Path Objective

Given a goal set G ⊂ X and a threshold ν ∈ R, let TSGj the
truncated sum (2.24) for j ∈ {1, ...,J}. The expected (stochastic)
shortest path objective is defined as:

Eδ
x0 [TSGj ] < ν

Pure memoryless strategies suffice, and satisfying the requirement of
the threshold can be solved in polynomial-time via, e.g., linear pro-
gramming [14, 25] or value iteration [47]. Alternatively to the expected
shortest path objective, we can consider probability instead of expec-
tation. In such a case, the requirement is on strategies that maximize
the probability of short paths to a goal set, see Definition 2.6.20.

SYNTHESIS PROBLEM

The principal question is to decide whether the scheduling controller
has a strategy satisfying an objective, e.g., reaching a set of goal states.
For all the objectives considered in this work, see Section 2.6.5, we
are also interested in constructing such strategies (provided of the ex-
istence). This is known as the synthesis problem. Another objec-
tive is to provide efficient implementable strategies. Hence, we favor
strategies that are considered simple to implement and/or using a min-
imal amount of resources, notable the memory requirements over paths,
where memoryless or Markov strategies are preferred, see Section 2.6.3
for details.
All numerical analysis in this thesis is done through MATLAB and

PRISM [4, 78] tools. The latter is a tool for formal modeling and anal-
ysis of systems that exhibit random or probabilistic behavior, as in
MDPs; including multiple efficient engines to describe and verify the
models. It has been used to analyze systems from many different ap-
plication domains, including randomized distributed algorithms, bio-
logical systems, communication and multimedia protocols, and many
others. Here, we use it for the domain of smart grids. This tool is used
in this work when the forecast on the noncontrollable part of the to-
tal load consumption is stochastic, to synthesize an optimal scheduling
strategy. When the decision-making is made in a decentralized way,
we developed an algorithm to execute iteratively and automatically
between MATLAB and PRISM.
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Part II

C E N T R A L I Z E D M O D E L I N G

This part presents the centralized approach of the power
consumption scheduling problem. A single entity controls
and builds the scheduling strategies of consumers.

[ November 20, 2019 at 17:47 – classicthesis ]



[ November 20, 2019 at 17:47 – classicthesis ]



3
CENTRAL IZED POWER CONSUMPTION
SCHEDUL ING PROBLEM

Abstract:

We start this chapter with a general mathematical modeling of the

centralized problem of power consumption scheduling. To solve it,

we describe four sorts of strategies for consumers. First, the strate-

gies are imposed to be rectangular profiles. As a consequence, these

merely consist of choosing the consumption start time. Second, the

consumption are arbitrary and we take into account explicitly the

evolution law of the system state. Under some conditions, the prob-

lem boils down to a standard optimization problem. Third, we re-

place the general problem by a valley-filling algorithm. Therefore,

this relies only on the minimization of the total consumption and

not on any other measure of impact over the network. Fourth, the

stochastic modeling comes into play through Markov Decision pro-

cesses with multi-constrained objectives, to adapt the strategies to

several consumption scenarios.
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LIST OF ABBREVIATIONS AND SYMBOLS

DN Distribution Network HS Hot-Spot (temperature)
EVs Electric Vehicle(s) PaC Plug-and-Charge
SNR Signal-to-Noise Ratio AAF Accelerated Aging Factor
MDP Markov Decision Process ECP Electrical Consumption
SSP Stochastic Shortest Path Payment
min minutes h hour
V Volt kV Kilovolt
kW Kilowatt kWh Kilowatt-hour
kVA Kilovolt-Ampere km Kilometres
dB decibel ¢ cents of Australian dollar
°C Degree Celsius

A finite action space inM
C cost function of the power consumption problem
Cπx1 cost function under a fixed π and x1

Ci cost function, instantaneous energy of consumer i
CI cost function, instantaneous aggregated energy of consumers
C cost function between transitions inMT

∆t time-step duration of each time-slot t
D(S) set of probability distributions over a finite set S
ε` risk in probability of exceeding `max

εx risk in probability of exceeding xmax

ei energy demand of consumer i
eI aggregate energy demand of consumers
et aggregate energy of consumers at t
E aggregate energy space of et
Eπx1 expectation operator under a fixed π and x1

f evolution law of the system state
G set of goal states in an MDP model
i consumer
I number of consumers
I set of consumers
idA identity function on a set A
`min
i minimum power of consumer i
`max
i maximal power of consumer i
`i,t controllable load of consumer i at t
Li,t function representing `i,t
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`t controllable load vector at t of length I
Lt function representing `t at t
`0,t real noncontrollable load at t
`0 real noncontrollable load profile of length T˜̀

0,t deterministic forecast of `0,t at t˜̀
0 deterministic forecast profile of length T
L̃0,t stochastic forecast of `0,t at t
L̃0 stochastic forecast profile of length T
`max maximal power of the DN-transformer
`t total load consumption at t
L̃t function representing the total load under L̃0 at t
L total load consumption space
M MDP model
MT unfolding ofM with depth T
N (µ,σ2) Gaussian (normal) distribution with mean µ and variance σ2

ωt history or path of length t of the system
P transition probability between states inM
PT transition probability between states inMT

P0 probability distribution of L̃0,t

projj projection function on the j-component of a sequence
π centralized strategy profile of length I
πt centralized strategy of consumers at t
πrp a π built by rectangular profile method
πdc a π built by dynamic charging method
πvf a π built by valley-filling method
st state in ST at t
ST augmented space of states inMT

t time-slot
tstart
i time at which the consumption starts for i
tstop
i time at which the consumption ends for i
T finite horizon time
T set of time-slots
xmax upper bound of the system state values
xt system state at t
x̃t system state under ˜̀0,t at t
X̃t function representing the system state under L̃0 at t
X finite set of system states
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3.1 MOTIVATION AND CONTRIBUTIONS

Motivated by our practical results reported in [M1] concerning an
Electric Vehicles (EVs) charging problem, and also by the basic prob-
lem of power consumption mentioned in the Chapter 2, we aim a gen-
eralized mathematical modeling of such a problem, taking into account
constrains of the Distribution Network (DN).

In this chapter, we consider a scenario in which several controllable
consumption entities (also called controllable electric devices or simply
consumers here) have a certain energy demand and want to have this
demand to be fulfilled before a set deadline. A simple instance of such
a scenario is the case of a pool of EVs which have to recharge their
battery to a given state of charge within a given time window set by
the EV owner. Thus, each consumer has to choose at each time the
consumption power so that the accumulated energy reaches a desired
level. This is the problem of power consumption scheduling that we
want to study and generalize in this chapter, taking into account other
constraints, e.g., the maximal admissible power of the DN-transformer.

The consumption operations for this problem are assumed to be cen-
tralized here, i.e., it has to be centralized in the sense that a single
entity (a centralized system operator) controls and builds the power
consumption scheduling strategies of consumers satisfying the require-
ments of the individual energy demands. Additionally, the centralized
system operator needs a certain knowledge about the noncontrollable
part of the total load consumption to schedule the strategies. A typical
scenario considered in this chapter is that a day-head decision has to be
made and some knowledge (imperfect deterministic/stochastic forecast
on the noncontrollable consumption) is available.

3.1.1 STRUCTURE

The main contributions and structure of this chapter can be summa-
rized as follows.

(i) In Section 3.2, we formulate the problem of centralized power con-
sumption scheduling to be solved in a general mathematical form,
where the objective is to minimize the impact of the total load
consumption on the DN, e.g., maximizing the DN-transformer
lifetime or minimizing the electrical consumption payment. Such
an impact is taken into account by an objective function of inter-
est, namely: a linear combination of cost functions that can be
deterministic or stochastic depending of the noncontrollable load
consumption forecast.

(ii) In Section 3.3, a deterministic forecast on the noncontrollable
part of the total load consumption is considered to schedule the
controllable part. In this case, the strategies are reduced to be
parameter vectors in which each component is a consumption
power. Three sorts of strategies are provided.
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First, the consumption strategies are imposed to be rectangular,
i.e., it must be either the minimum or the maximum power at
which a consumer can be consuming. Also, it has to be uninter-
rupted until the energy demand is met. Each strategy thus boils
down to a simple decision, namely: the consumption start time.
This approach was inspired from [20][M4], but the centralized
case was not analyzed there.
Second, the consumption are considered arbitrary here, and the
dynamic of the system state is taken into account explicitly. This
approach was motivated from [19], but here we provide a gen-
eralized method on the dynamic law of the system. Under some
convexity conditions, the problem boils down to a simple (convex)
optimization problem.
Third, the general power consumption scheduling problem is re-
placed by a valley-filling algorithm, which is based mainly on [106].
This methods is presented for purposes of numerical comparison.

(iii) On the other hand, the stochastic forecast case is presented in Sec-
tion 3.4. Here, the strategies are no longer parameter vectors and
they become dynamic. The dynamic structure of the problem is
exploited here in a Markov decision process (see [96] for example).
This allows us to build strategies more robust to forecast noises,
as we have shown in [M1].

(iv) Numerical results are shown in Section 3.5, where the objec-
tive function is exploited as the degradation of the DN. First,
in terms of the DN-transformer lifetime in Section 3.5.1, and sec-
ond, in terms of the total electricity consumption payment in Sec-
tion 3.5.2.
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3.2 PROBLEM FORMULATION

We give here a brief summary of the formulation of the basic prob-
lem presented in Section 2.5, but turning to the general form. The
formulation of the problem can be explained as follows.

LOAD CONSUMPTION

We consider a Distribution Network (DN) comprising one transformer
(referred to here as DN-transformer) to which two groups of electric de-
vices are connected: a set I = {1, ..., I}, I ∈ N, of controllable electric
devices or consumers, e.g., Electric Vehicles (EVs), dishwashers, water-
heaters, etc.; and a set of other electric devices. The latter group of
electrical appliances is assumed to induce a load consumption which is
independent of the loads of the controllable electric devices and there-
fore referred to as the noncontrollable load consumption (e.g., heating,
lighting, cooking, etc.). Assuming that time is slotted and indexed by
t ∈ T = {1, ...,T}, T ∈ N, the corresponding real noncontrollableEach time-slot t

may be of typical

duration of 30 min.
load consumption profile is expressed as:

`0 := (`0,t)t∈T . (3.1)

On a given time-slot, a controllable electric device i ∈ I may be active
or not. The extent to which each one of these is active on time t ∈ T ,
we measure it by the controllable load consumption that i generates,
which is denoted by `i,t ∈ R+

0 . The controllable load vector of the
devices in I at time t is denoted by:

`t := (`i,t)i∈I . (3.2)

The total load consumption on the DN-transformer at time t can be
then expressed by:

`t := `0,t +
∑
i∈I

`i,t . (3.3)

Figure 3.1 illustrates a typical scenario that is encompassed by the con-
sidered model. This figure represents a set of consumers, where each of
them is represented by an household and an EV. Both are connected to
a DN-transformer. A single entity (centralized decision-maker) chooses
the controllable load vectors at each time, see eq. (3.2), to reach the
individual state of charges (energy demand) for the EVs, faces to the
aggregated noncontrollable consumption of the households.

A natural constraint from the DN-transformer is due to its maximal
admissible power (e.g., the maximal power of a typical DN-transformer
in a urban district is 90kW). The consumers are aware of that and
must keep the total load consumption lower then the maximal power
`max ∈ R+. Thus, it is required that:

`t ≤ `max . (3.4)
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Figure 3.1: A centralized decision-maker controls the charging power of EVs
to reach the individual energy demands. The centralized scheduler
have some knowledge about the day-ahead (aggregated) noncon-
trollable part of the total consumption.
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Figure 3.2: Four charging models of an EV: rectangular, continuous and dis-
crete charging. Each model corresponds to a class of electrical uses
far broader than the case of EVs.

It is assumed that Consumer i requires some energy to complete a
corresponding task. That is why i wants to reach the energy demand
ei ∈ R+ before time t = T . The corresponding constraint for the
scheduling problem can be written as:

∆t
∑
t∈T

`i,t ≥ ei , (3.5)

where ∆t is the time step duration (e.g., if each time-slot t represents
30 min, ∆t = 0.5 h). Additionally, the power load of each i at time t,
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is assumed to be at least a minimum power `min
i ∈ R+

0 and cannot
exceed the maximal power `max

i ∈ R+ at which i can be consuming:

`min
i ≤ `i,t ≤ `max

i . (3.6)

For instance, four sorts of charging models of an EV i are representedThe minimum

power refers when,

e.g., i is switched

off but is designed

to draw some load

in standby mode.

in Figure 3.2, namely: rectangular, continuous and discrete charging.
In the first case, the controllable consumption of i at t can only take
two values: either `i,t = `min

i or `i,t = `max
i , and also when `i,t =

`max
i , the consumption is uninterrupted. This method is assumed in
Section 3.3.1. In the second case, `i,t takes any arbitrary value between
`min
i and `max

i , see eq. (3.6). This method of consumption is assumed
in Section 3.3.2 and Section 3.3.3. The last case is a discretization of
the type of previous consumption, which is assumed in Section 3.4.1.

SYSTEM STATE

For the system of interest (the distribution network), the state is de-
noted by xt (e.g., the monetary cost for consuming a given amount
of energy, the DN-transformer temperature, etc.) and it is required to
remain upper bounded by a given threshold xmax ∈ R+ as follows:If e.g., xt

represents the

DN-transformer

temperature, this

must stays be at

most a maximum

prescribed

temperature xmax.

xt ≤ xmax . (3.7)

A general (non-linear) model assumed in this chapter for the evolution
law of the system state is expressed by :

xt+1 = f(xt, `t, `0,t) . (3.8)

for each t = 1, ...,T ; where x1 ∈ R+ is a given initial condition of
the system state. A practical assumption in this chapter to make an
effective calculation of controllable loads and to ensure convergence of
algorithms, is the Assumption 2.5.1, which states that f is a function
depending of the total load consumption (3.3).

SCHEDULING STRATEGIES

Based on all practical considerations, the controllable loads of con-
sumers can be scheduled according to a function called power consump-
tion scheduling strategy or decision rule. These are built and controlled
by a single entity, i.e., a centralized system operator, which takes the
decisions for all consumers at each time t. Once the scheduling strate-
gies are fixed, a cost is incurred at each t and we can therefore compare
the effectiveness of each strategy. The information that the central-
ized system operator takes into account to schedule is the history (also
called path) of the system, represented by the visited states and the
controllable loads chosen previously. More precisely, assume the follow-
ing composed history or path of the system up to t is available to the
centralized decision-maker:

ωt := (x1, `1, x2, `2, . . . , xt−1, `t−1, xt) . (3.9)
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A centralized scheduling strategy to select the controllable loads of
consumers at time t, is defined by:

πt(ωt) = `t ,

and we let π := (πt)t∈T the profile of the latter. Note that this defi-
nition is according to the one of pure strategies seen in Section 2.6.3.
Recall that, in this context, π is memoryless or Markov if for each
t ∈ T ,

πt(ωt) = πt(ω
′
t′) , (3.10)

where ωt = (x1, `1, x2, ..., `t−1, xt) and ω′t′ = (x1, `′1, x′2, ..., `′t′−1, x′t′)
are any finite paths of the system, such that xt = x′t′ . That is, the only
relevant information that a Markov strategy needs is contained in the
current state of the system.

SCHEDULING PROBLEM

The impact of the load consumption operations of consumers on the
distribution network is measured as a composite cost over the whole
time period under consideration. The centralized scheduling problem
of interest can then be formulated as follows:

Centralized Power Consumption Scheduling Problem

min
π

∑
t∈T

Cπx1(xt, `t, `0,t) (3.11)

s.t. (3.3), (3.4), (3.5), (3.6), (3.7), (3.8) .

We aim to solve the scheduling problem (3.11), but at first glance,
it is a difficult task. Indeed, it is known that determining an optimal
solution of a scheduling problem with saturation constraints, e.g., one
as (3.7), is generally difficult especially when the cost function is neither
linear nor quadratic [19]. In addition, the way in which the controllable
loads are chosen is according to a joint form by the centralized system
operator, causing a high degree of information to handle with.

To solve the problem of power consumption scheduling (3.11), a fore-
cast of the real noncontrollable load consumption (3.1) is assumed to
be available, which can be deterministic or stochastic, see Section 2.4
for details. In this way, a strategy π is scheduled offline defining the
controllable loads executed on the time under consideration. Once the
strategy is determined, it can be effectively run online.
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3.3 SOLUTIONMETHODOLOGY IN THE DETERMINISTIC CASE

In this section, a deterministic forecast on the real noncontrollable
load consumption (3.1) is assumed to schedule the controllable loads to
solve the scheduling problem (3.11). Following the description in Sec-
tion 2.4.1, we represent such a deterministic forecast by:

˜̀
0 := ( ˜̀0,t)t∈T . (3.12)

Thus, the problem of power consumption scheduling to solve now can
be rewritten as:

Centralized Deterministic Problem

min
π

∑
t∈T

Cπx1(x̃t, `t ; ˜̀0,t) (3.13)

s.t. (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), (3.12) .

Where, each noncontrollable load consumption at t is now a sim-
ple parameter, i.e., a value of the deterministic forecast. Note that
the system state and the total load consumption are also affected by
the forecast, because these depend on the noncontrollable loads, see
eq. (3.8). Also note that choosing controllable loads, the system state
is completely determined with the dynamics (3.8), and the scheduling
strategy can therefore be found with the deterministic information of
the system at each time. To solve the scheduling problem under the
deterministic forecast assumption, we provide three sorts of strategies
in the next Section.

3.3.1 RECTANGULAR CONSUMPTION PROFILES

In this section, we not only assume that the controllable loads `i,t can
only take two values `min

i or `max
i , but also that when consuming the

load consumption has to be uninterrupted, which leads to rectangular
consumption profiles. This is what Figure 3.3 shows.

Although this assumption seems to be restrictive, it can be strongly
motivated (see e.g., [20]). Here we provide a couple of arguments of
using such load consumption profiles. An important argument is that
rectangular profiles are currently being used by existing electric vehi-
cles. Second, for a given consumption start time, consuming at full
power without interruption minimizes the delay to acquire the desired
quantity of energy. Third, from an optimal control theory perspective,
rectangular profiles may be optimal. This happens for instance when
the state (e.g., the transformer HS temperature) is monotonically in-
creasing with the control (i.e., the consumption power). Fourth, profiles
without interruption are even required in some important practical sce-
narios encountered with home energy management. Last but not least,
imposing the consumption profile to be rectangular makes the power
consumption scheduling strategy robust to forecast errors [20][M4].
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Figure 3.3: Power consumption scheduling strategy as rectangular profile
charging for a consumer i.

Since we consider here rectangular consumption profiles, the power
consumption scheduling strategy boils down to a simple decision namely:
the time at which the consumption effectively starts. We denote the
start time for i by tstart

i ∈ T . Mathematically, rectangular profiles can
be written as:

`i ∈
{
(`i,t)t∈T ∈ {`min

i , `max
i }T

∣∣∣∣ ∀t ∈ {tstart
i , ..., tstop

i } ⊆ T , `i,t = `max
i

∀t ∈ T \ {tstart
i , ..., tstop

i } , `i,t = `min
i

}
(3.14)

In practice, from the constraint of energy demand (3.5), each tstart
i is

limited to being:

tstart
i ≤ T − ei

`max
i

, (3.15)

and tstop
i can be chosen being the minimum stopping time such that:

(tstop
i − tstart

i ) `max
i ≥ ei , (3.16)

where in eqs. (3.15) and (3.16) we do not take into account the load
due to the minimum power `min

i , since it only refers when, e.g., i is
switched off but is designed to draw some load in standby mode.

With a small abuse of notations, we write in the following the rect-
angular profiles strategy by:

πrp =
(
tstart
1 , ..., tstart

I

)
,

which is the vector of starting time at which the load consumption of
each i effectively starts, which is controlled by the centralized system
operator. The scheduling problem (3.13) to solve can be rewritten in
this case as:

Centralized Deterministic Problem - Rectangular Profiles

min
πrp

∑
t∈T

Cπ
rp

x1 (x̃t, `t ; ˜̀0,t) (3.17)

s.t. (3.3), (3.4), (3.7), (3.8), (3.12), (3.14), (3.15), (3.16) .
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Since the state of the system is completely determined under the as-
sumption of the deterministic forecast, the problem (3.17) is reduced to
a simple optimization problem. However, rectangular scheduling strate-
gies are not well suited in presence of saturation constraints, such
as (3.4) and (3.7), e.g., when the maximal power or the maximal tem-
perature of the DN-transformer could be reached [19][M1]. A suitable
scheduling method that can easily integrate this constraints is shown
in the next section.

3.3.2 DYNAMICAL CONSUMPTION STRATEGIES

In contrast with the previous section, the consumption power does
not need to be binary anymore but can take continuous value. Thus,
the consumption profile is no longer rectangular and can be arbitrary.
Therefore, the power consumption scheduling strategy for consumers
does not boil down to a single scalars anymore namely, the time at
which the consumption effectively starts. The motivation for this is to
have a better performance for the consumers but also to be able to
control the system state. In the previous section, the dynamical system
was controlled in a one-shot manner, computing the system state val-
ues at each instant based on the current information. Here, the state
evolution law is taken into account explicitly and the state can be con-
trolled. For instance, it is possible to guarantee that the upper bound
constraint on the system state is not violated, which is not well suited
with the previous approach.

It turns out that in the problem under investigation (3.13), the sys-
tem state can be expressed as a sole function of the initial condition
x1, jointly with the deterministic forecast (3.12) (vector of parameters),
and the sequence (`1, ..., `t) for each t ∈ T . This observation allows us
to convert the scheduling problem into a standard optimization prob-
lem [30], by defining the functions (gt)t∈T such that g1(x1) := x1 and

gt+1(x1, `1, ..., `t ; ˜̀0,1, ..., ˜̀0,t) (3.18)
:= f(gt(x1, `1, ..., `t−1 ; ˜̀0,1, ..., ˜̀0,t−1), `t; ˜̀0,t) .

So that, we will have gt+1(x1, `1, ..., `t ; ˜̀0,1, ..., ˜̀0,t) = x̃t+1. In this way,
the constraint (3.7) can be rewritten as:

gt(x1, `1, ..., `t−1 ; ˜̀0,1, ..., ˜̀0,t−1) ≤ xmax . (3.19)

Writing now the dynamic charging strategy by πdc, the problem of
power consumption scheduling (3.13) is expressed now as a standard
optimization problem:

Centralized Deterministic Problem - Dynamic Charging

min
πdc

∑
t∈T

Cπ
dc

x1

(
gt(x1, `1, ..., `t−1 ; ˜̀0,1, ..., ˜̀0,t−1), `t ; ˜̀0,t

)
(3.20)

s.t. (3.3), (3.4), (3.5), (3.6), (3.12), (3.18), (3.19) .
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Note that formulating the problem as (3.20) has a potential disad-
vantage. If the finite horizon T is large, the dimension of the optimal
scheduling strategy to be found might make any available numerical op-
timization routine impossible to be run, which would then necessitate
to return to the initial problem formulation (3.13). However, for the
numerical applications of interest in Section 3.5, T is typically equals
24 or 48 if the time horizon corresponds to a day and time-slots dura-
tion is respectively an hour or half an hour. Considering up to I = 20
controllable electric devices per distribution transformer is affordable
computationally speaking. Solving the initial scheduling problem for
an arbitrary T appears to be an interesting direction to explore. From
now on, we consider the standard optimization problem formulation.
The following property will be directly exploited in the Section 3.5 for
the numerical applications, where standard convex optimization tools
are used. Since the composition of convex functions is also convex, and
the inequality constraints of the problem above define a convex and
compact set, we simply quote the following proposition.

Proposition 3.3.1

The problem (3.20) is a convex optimization problem if Cx1 , g1, ..., gt,
and f are convex.

Observe that in terms of information, all the system model param-
eters need to be known by the single entity that builds the schedul-
ing strategies of consumers (e.g., a centralized scheduling operator).
If this turns out to be a critical aspect in terms of identification in
practice, e.g., if the distribution network operator (which is not nec-
essarily the centralized scheduling operator) does not want to reveal
physical parameters about its DN-transformer. Other techniques which
only exploit directly measurable quantities such as the aggregated load
consumption can be used. This is one of the purposes of the scheme
proposed next.

3.3.3 VALLEY-FILLING CONSUMPTION STRATEGY

The method presented in this section replaces the minimization prob-
lem (3.13) by the valley-filling charging algorithm. This algorithm is
a quite well-known technique (see e.g., [106]) to allocate a given addi-
tional energy demand (which corresponds here to the one induced by
the consumers) over time, given a primary demand profile (which corre-
sponds here to the noncontrollable load consumption expressed by the
deterministic forecast). The idea is to charge when the noncontrollable
demand is sufficiently low, e.g., filling the overnight valley, see Fig-
ure 3.4 for a graphical representation. This method, is also known as
water-filling algorithm, which is traditionally used in communications
theory (see e.g., [94]), wherein the method solves the problem of maxi-
mizing the mutual information of a communication channel.
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Figure 3.4: Example of filling the overnight valley. We allocate a given ad-
ditional energy demand by the valley-filling algorithm, over the
primary demand profile. The real data was taken from [3].

With a small abuse of notations, this algorithm controls the sequence
of the aggregated load profile of consumers, denoted here by:

πvf =

(∑
i∈I

`i,1, ...,
∑
i∈I

`i,T

)
,

to be allocated over the primary demand profile, i.e., the deterministic
forecast of the noncontrollable load consumption. Since this method
controls at each time the sum of controllable loads, we can write the
energy demand constraint (3.5) here as:

∆t
∑
t∈T

(∑
i∈I

`i,t

)
≥

∑
i∈I

ei . (3.21)

Following the classical definition of this algorithm (see for instance [94,
106]) we write the scheduling problem under this context as follows:

Centralized Deterministic Problem - Valley-Filling

max
πvf

∑
t∈T

Φπvf
( ˜̀

0,t +
∑
i∈I

`i,t

)
(3.22)

s.t. (3.6), (3.12), (3.21) .

where Φ is any strictly convex function. So that, using Lagrange
multipliers method [24, 30], the solution of this problem is given by:

∑
i∈I

`i,t = min
{∑
i∈I

`max
i , max

{∑
i∈I

`min
i , µ − ˜̀

0,t

}}
,
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for each time t, where µ is a threshold chosen to satisfy the energy de-
mand constraint (3.21). Compared with the scheduling strategy of Sec-
tion 3.3.2, an important practical advantage of valley-filling is that
it relies only on the measure of the total load consumption. However,
both solutions are based on continuous power levels. This assumption
may not be met in some real applications. Also, but not least, the
valley-filling algorithm does not take into account the impact (modeled
by a cost function) on the DN that load consumption operations of
consumers generate, this one is based only on the minimization of the
aggregated load of consumers and not on any other measure of impact,
e.g., the lifetime DN-transformer, electrical consumption payment, etc.

3.4 SOLUTION METHODOLOGY IN THE STOCHASTIC CASE

In the previous sections, the effects of forecast noises on the noncon-
trollable load consumption has not been taken into account. Indeed,
the resulting strategies of rectangular profiles, dynamic charging and
valley-filling method, have been designed by assuming a deterministic
forecast, which is a single scenario of the noncontrollable loads. Here,
the knowledge to schedule the controllable load consumption is based
on a stochastic forecast (statistics) on the noncontrollable load con-
sumption. The idea is to take into account forecast errors that have not
been considered in the precedent sections, wherein a perfect/imperfect
forecast (i.e., a single noiseless/noisy vector of) the noncontrollable load
was available to scheduling. The principal motivation of using a stochas-
tic forecast is that it provides a way to model the noncontrollable load
consumption by generating several scenarios, so that a deterministic
forecast can be seen as one of these. The resulting scheduling strategy
can therefore adapt to different noncontrollable load events. Since the
DN experiences an increased amount of variable load consumption de-
pending on the controllable part, introducing this kind of (adaptable)
scheduling strategy allows consumers to reduce their impacts on the
DN [M1]. Otherwise, it could produce new load variations and possibly
causing transformer overloading, power losses, or moreover increasing
the transformer aging [19].

Following the description in Section 2.4.2, we represent the stochas-
tic forecast of the noncontrollable load consumption profile `0 by:

L̃0 := (L̃0,t)t∈T , (3.23)

which is a finite collection of i.i.d. random variables defined by1 de-
scribing a probability distribution P0. Suppose now that (Lt)t∈T is the
sequence taking controllable load profiles `t, see eq. (3.2), and that for

1 Either the original probability measure of a probability space or describing a prob-
ability distribution P0 can be used to compute probabilities of events involving L̃0.
Here, we use w.l.o.g. P0 without needing to refer to a common underlying probability
space.
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a time t fixed, each component of the sequence (a controllable load
vector) is expressed as:

Lt = (Li,t)i∈I ,

where Li,t takes a controllable load value `i,t, i = 1, .., I. In this way,
the total load consumption (3.3) can be expressed (stochastically) now
as:

L̃t = L̃0,t +
∑
i∈I

Li,t . (3.24)

Based on the latter, the induced system state process (X̃t)t∈T , see
Definition 2.6.2 for details, has a stochastic behavior due to the fore-
cast L̃0 and then, under the probability distribution P0, we can get
an explicit representation of the transition probabilities between the
system states. Considering that the system state is x̃t at t and that a
controllable load `t has been selected, the probability that the state of
the system is x̃t+1 at time t+ 1 (following the evolution law f of (3.8)),
can be computed as follows:

P
[
X̃t+1 = x̃t+1

∣∣∣ X̃t = x̃t, Lt = `t
]

(3.25)

= P0

[
L̃0,t ∈ { ˜̀0,t | x̃t+1 = f(x̃t, `t; ˜̀0,t)}

∣∣∣ X̃t = x̃t, Lt = `t
]

.

Note that the deterministic case shown in Section 3.3, can be see as a
particular case of the present one. Indeed, when `t is selected by the
centralized operator, we can make the set { ˜̀0,t | x̃t+1 = f(x̃t, `t; ˜̀0,t)}
to be a singleton at each t (a set with exactly one element) to repre-
sent the deterministic forecast (3.12), thus the next state of xt is fully
determined by making the transition probability to be equal to one for
a (next) state and zero for all other candidate next states.
As we have seen in Section 2.6.5, some constraints under the stochas-

tic forecast assumption have been discussed. Here, we accept that an
event remains under a certain risk of probability that is coded by a given
threshold. Under the same arguments for (3.25), the constraint (3.4)
on the total load consumption, and the one on the system state (3.7),
can be written resp. as (individual) probability constraints as follows:

P0

[
L̃t ≤ `max

∣∣∣ Lt = `t
]

≥ 1 − ε` ,

P
[
X̃t+1 ≤ xmax

∣∣∣ X̃t = x̃t, Lt = `t
]
≥ 1 − εx ,

where (ε`, εx) ∈ [0, 1]2 represents resp. the risk in probability of ex-
ceeding the upper bounds `max and xmax. However, the latter proba-
bility constraints refer to a situation wherein we wish to satisfy each
individual constraint in the stochastic inequalities of the total load con-
sumption and the system state with high enough probability, but we
do not make any request in the system trajectory as a whole over the
whole time period under consideration. For this reason, each of the
above probability constraints is reformulated as one joint probability
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constraint over all the time period T and not considered more individ-
ually on each t as follows:∏

t∈T
P0

[
L̃t ≤ `max

∣∣∣ Lt = `t
]

≥ 1 − ε` (3.26)

∏
t∈T

P
[
X̃t+1 ≤ xmax

∣∣∣ X̃t = x̃t, Lt = `t
]
≥ 1 − εx (3.27)

where we have used the i.i.d. assumption of the stochastic forecast.
To be consistent with the notation, we write the required energy (3.5)

for the controllable electric device i as:

∆t
∑
t∈T

Li,t ≥ ei , (3.28)

with ∆t to be a time step duration. In addition, we express the con-
straint (3.6) of not exceeding the maximal power `max

i ∈ R+ and to be
at least a minimum power `min

i ∈ R+
0 at which i can be charging, by:

`min
i ≤ Li,t ≤ `max

i . (3.29)

Based on all practical considerations, the scheduling problem (3.11)
can be rewritten under this context as follows:

Centralized Stochastic Problem

min
π

∑
t∈T

Eπx1

[
Cπ(X̃t, Lt ; L̃0,t)

]
(3.30)

s.t. (3.23), (3.24), (3.25), (3.26), (3.27), (3.28), (3.29) .

To be computationally tractable solving this problem, a discretiza-
tion over the consumption is considered. This problem can thus be
modeled using finite Markov Decision Processes [96] when (suitable)
statistics are available. This is shown in the next Section.

3.4.1 MARKOV DECISION PROCESS - BASED APPROACH

A suitable model to adapt the scheduling problem (3.30) in a discrete
manner is a multi-weighted Markov Decision Process (MDP) shown in
the Definition 2.6.9. Before to explain the weights or costs considered
in the model, we start the analysis with the ordinary MDP model:

M =
(
X , A, P

)
, (3.31)

where X is a finite set of states, A is a finite space of actions, and P a
transition probability between states.
Based on the latter structure, the problem of power consumption

scheduling can (a priori) be modeled by considering X as the set of
system states, A as the space of controllable loads of consumers, and
P as the transition probability induced by the probability distribution
P0 of the stochastic forecast (3.23). However, it remains to discuss two
things:
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(i) the way in which the actions are chosen, defining the decisions,
the transitions between states, the cost defining the minimization
criterion and also the constraints.

(ii) how the scheduling strategy for consumers are found and con-
structed to solve effectively the scheduling problem under consid-
eration.

Consider for instance that a joint action is chosen for consumers. If
it is chosen by a single entity (centralized controller), the scheduling
problem becomes centralized and no individual decisions are taken into
account. That is what we are looking for in this chapter. In fact, our def-
inition of MDP can be seen as something better known as multi-agent
MDP [75], which generalizes an ordinary MDP in which several agents
exist. However, when we compute an optimal scheduling strategy, this
kind of model is indistinguishable from the MDP defined previously if
a centralized scheduling operator is considered [85].

On the other hand, we can express several requirements on an MDP
according to [M3]. For instance, an upper bound on the total load con-
sumption as a safety condition (that can be encoded as a reachability
condition in our MDP model), a constraint of satisfying the energy de-
mand of consumers as quantitative reachability objectives, and various
optimization criteria (e.g., minimizing the sum of costs between tran-
sitions). In the following, we show how the scheduling problem (3.30)
can be modeled and solved using an MDP with several cost functions,
namely multi-weighted MDP.

MDP MODELING

Consider that a second component is defined on the state space X of the
MDP (3.31) to keep the information of the total load consumption at
each time-step. More specifically, let L be a (finite) set representing the
possible values of the total load (3.24) and define the aggregate space
of states as X ×L. To simplify the analysis, let ε` = εx = 0 from the
constraints (3.26) and (3.27). We can thus define each state at time t,
(x̃t, ˜̀t) ∈ X ×L, as a deadlock-state if x̃t > xmax or ˜̀t > `max, mean-
ing that the evolution of the system is not propagate if the thresholds
xmax or `max are reached for the joint state process (X̃t, L̃t)t∈T , ensur-
ing that the constraints under consideration are satisfied. This can be
easily taken into account by defining, in such a case, the probability:

P [(X̃t+1, L̃t+1) = (x̃t, ˜̀t) | (X̃t, L̃t) = (x̃t, ˜̀t), Lt = `t ] = 1 .

Second, since a constraint on the energy demand of consumers (3.28)
has to be considered, cost functions on the state transitions can be
defined as the energy due by controllable loads, i.e.,

Ci(X̃t, L̃t, Lt, L̃0,t) = ∆t Li,t , (3.32)

so that each one is defined for each i ∈ I, and then a (joint) scheduling
strategy must satisfy the energy demand constraint on each accumu-
lated sum of such cost. In addition, another cost function can be defined

[ November 20, 2019 at 17:47 – classicthesis ]



3.4 solution methodology in the stochastic case 63

as the cost of the scheduling problem (3.30) to minimize. As we will
see in the following, finding an optimal scheduling strategy is reduced
to solve the so-called Stochastic Shortest Path (SSP) problem [25], see
Definition 2.6.23 for details. Thus globally, an MDP with multiple cost
functions can be used to model the scheduling problem under consid-
eration.
While single-weighted MDPs are well-know to be solved in poly-

nomial-time for the SSP problem, see for instance [14, 25], multi-
weighted MDPs subject to constraints imposed on several objectives
(that is the case here, e.g., the energy demand for each consumer),
take polynomial-time in the size of the model and exponential in
the size of the requirements [50]. To reduce the multi-requirements of
energy demand of consumers (3.28) and find an optimal scheduling
strategy, we will do two things. First, we reduce the cost functions to a
single cost function representing the aggregated sum of energy due to
the loads of consumers, so that now the requirement is simplified to sat-
isfy the accumulated energy demand. Thus, the multi-weighted MDP
is simplified to be a doubly-weighted MDP, wherein one cost function
represents the cost of the scheduling problem (3.30) and the second
one the aggregated sum of actions (charge of energy) taken in each
time-step. Second, we build a Markov scheduling strategy solving the
problem, i.e., a strategy that depends only on the current state and not
on the history of the system, see (3.10). This is possible to do by unfold-
ing the doubly-weighted MDP by adding recursively the information
of the second cost function on the states reducing the doubly-weighted
MDP into a simply-weighted MDP, see Definition 2.6.10. Thus, the new
constraint of the aggregated energy demand of consumers is reduced to
be a stochastic reachability objective in such a simply-weighted MDP,
see Definition 2.6.16. Because we compute an optimal strategy in of-
fline mode, and since by Assumption 2.5.1 the law of the system state
depends on the total load consumption, we do not lose any optimality.
In addition, once this problem is solved, the allocation problem of the
sum energy due to the load of consumers can be tackled. The latter
problem is a transportation problem, for which there is an feasible al-
location of resources [19]. Possible flow search techniques will not be
detailed here. More details can be found, e.g., in [58].

From the Definition 2.6.9, the multi-weighted MDP model to use in
our case is of the form:

M =
(
X ×L, (x1, 0), A, P , C, (Ci)i∈I

)
, (3.33)

where we are fixed the initial state to be (x1, 0). In the following, we
simplify the cost functions (Ci)i∈I , defined individually in (3.32), to
be a single cost function between transitions as the aggregated energy
due to the sum of controllable loads (actions):

CI(X̃t, L̃t, Lt, L̃0,t) = ∆t
∑
i∈I

Li,t . (3.34)
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In this way, we can define a doubly-weighted MDP with the cost func-
tions C and CI to reduce the MDP (3.33) to be a doubly-weighted
MDP:

M =
(
X ×L, (x1, 0), A, P , C, CI

)
. (3.35)

Now, we define the unfolding of the latter MDPmodel, to simplify the
constraint of the aggregated energy demand of the consumers to a quan-
titative reachability objective into an MDP with only one cost function.
This is possible by using the unfolding ofM, see Definition 2.6.10.

UNFOLDING THE MDP

The unfolding ofM with depth T used here is the following structure:

MT =
(
ST , s1, A, PT , C

)
, (3.36)

where the space of states is:

ST = X ×L× E × T ,

with E representing the space of the accumulated (and aggregated)
energy of consumers, i.e., the set:

E =
[

0, T
∑
i∈I

`max
i

]
.

The given initial state is s1 = (x1, 0, 0, 1), the set of actions is defined
as the set of sum of loads:

A =
⋃
t∈T

{
`I,t =

∑
i∈I

`i,t
∣∣∣ ∑

i∈I
`min
i ≤ `I,t ≤

∑
i∈I

`max
i

}
.

(3.37)

The state transition probability is PT : ST ×A → D(ST ) is defined as:

PT (st, `I,t)(st+1) = P (proj1(st), `I,t)(proj1(st+1))

if (i) proj1(st+1) = f(proj1(st), `I,t ; ˜̀0,t) ,
(ii) proj2(st+1) = ˜̀

0,t + `I,t ,
(iii) proj3(st+1) = min{ eI , proj3(st) + ∆t `I,t } , with

eI =
∑
i∈I

ei , (3.38)

(iv) proj4(st+1) ≤ T ,

and PT (st, `I,t)(st+1) = 0 otherwise. Note that (i) is implicitly in-
cluded in the definition (3.25) of P . Finally, the cost function C is the
same as C.

Note that we do not have write explicitly the dependence over the
cost CI from the MDP (3.35), because this one represents the ag-
gregated energy due to the sum of controllable loads (actions), see
eq. (3.34). Thus, this can simply be written as ∆t`I,t. On the other
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hand, since we are interested in reaching the accumulated energy de-
mand of consumers, we can naturally define a set of goal states G by:

G :=
{
st ∈ ST | proj3(st) = eI and proj4(st) = T

}
. (3.39)

This set is of our interest and we want to find a scheduling strategy for
which G is reached, that is to say that the aggregated energy demand
eI is achieved. Note that there is a natural one-to-one correspondence
between the “histories or paths” in the doubly-weighted MDP (3.35)
and the unfolding (3.36), and therefore, strategies can equivalently be
seen in both MDPs2.

3.5 NUMERICAL APPLICATION

The numerical analysis will be separated in two main sections. The
first application is based on a technical approach [70], and the second
one on an economical approach [8]. Both are analyzed in the noisy
deterministic and stochastic forecast cases. Other method to schedule
the power consumption based on the deterministic forecast, is called
Plug-and-Charge (PaC), which is one of the most known to schedule
power consumption strategies, which is obtained by assuming that the
consumption of the controllable electric devices start as soon as they
plugin to the grid, minimizing the time needed to reach the cumulative
energy demanded. This method is used in this section to compare the
performance of the others methods.

SYSTEM STATE

From the evolution law of the system state (3.8), we consider a function
parametrized by two values to represent the two approaches jointly. In
this section, the system state evolves with the function f defined with
a single period time-lag in the load consumption, according to:

xt+1 = f(xt, `t, `0,t, `t−1, `0,t−1) ,

where x1 ∈ R+ is the given initial condition for the system state, `t−1

is the zero vector in RI when t = 1 (do not confuse with the real
noncontrollable load profile (3.1)), and `0,0 can be understood as the
noncontrollable load consumption of base at t = 0. Now, for two param-
eters p, q ∈ N, a general representation of the latter function f showing
the two approaches that we are interested, has the form:

f(xt, `t,`0,t, `t−1, `0,t−1) (3.40)

= αxt + β

(
`0,t +

∑
i∈I

`i,t

)p
+ γ

(
`0,t−1 +

∑
i∈I

`i,t−1

)q
+ zt ,

where α,β, γ ∈ R are constants of the (technical or economical) model,
and zt ∈ R+

0 is completely deterministic making always xt positive. In

2 A formal proof is made in Chapter 4.
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particular, the parameters p and q will be of the form p = q = 1 for
the economical model, and p = q = 2 for the technical one.

The simulations are performed over the chosen time (slot) corre-
sponds to 30 min, so that ∆t = 0.5 h, and the DN-transformer is a
20 kV/410 V transformer whose apparent power is 100 kVA and nom-
inal (active) power is 90 kW, which approximately corresponds to a
district of 30 households.

CONTROLLABLE LOAD CONSUMPTION

The controllable load operations occur within the time window from
5 pm to 7 am of the next day, i.e., T = 30. During the rest of the day
(from 7 am to 5 pm of the next day), the total load consumption on the
DN-transformer only consists of the noncontrollable loads. The con-
trolled devices (consumers) are considered here be a set of Electric
Vehicles (EVs), and each i ∈ I represents one of them. Unless specified
otherwise, the minimum and maximum controllable load induced by
one EV i are resp.

`min
i = 0 kW and `max

i = 3 kW . (3.41)

This is a standard assumption for home charging without any additional
connectors to plugin [19, 56]. The arrival and depart time of the EVs
are fixed for the simulations and are chosen randomly to be the closest
integers of realizations of Gaussian random variables N (4, 1.5) and
N (28, 0.75) resp. Additionally, the total energy demand of each EV is
obtained from the distance to be covered for each of them in the next
trip3:

ei = λi
24 kWh
150 km (29.4 + 8) km ,

where 24 kWh is the capacity of a Renault Zoe battery, 150 km is the
corresponding (average) distance covered, (29.4 + 8) km is the average
daily distance covered (29.4 km to commute and 8 km for another trip),
and λi is the taken margin by EV-users to be confident not running out
of energy when driving. The latter is generated randomly once between
{1.5, 2, 2.5, 3}.

NONCONTROLLABLE LOAD CONSUMPTION

To represent the real noncontrollable loads profile (`0,t)t∈T , four sce-
narios are used. First, based on historical data taken from the Ausgrid
Australian DN-operator for Sydney [3], we choose randomly 30 house-
holds representing a district. Second, we use a subtractive clustering
method [40] with an influence range of 0.9 to generate four representa-
tive clusters, where each one stands for a scenario of the real noncontrol-
lable loads profile, e.g., representing a season of the year. The Figure 3.5
shows a graphical representation of the four scenarios.
One important component is how to assess the impact of not being

able to forecast the noncontrollable load consumption perfectly, i.e.,

3 In this way, the energy demand represents approx. the 40%–80% of capacity of a
RENAULT Zoe or Fluence EV, similarly to those in [82].
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the values of the profile (`k0,t)t∈T in each scenario k = 1, ..., 4. Here,
we consider that the forecast can be either deterministic or stochastic,
see Section 2.4 for details. When the forecast is deterministic (resp.
stochastic), it turns into a noise vector (resp. a random variable), one
for each scenario of the noncontrollable loads. In both cases, the noise
of the forecast is assumed to be a zero-mean additive white Gaussian
noise with known variance σ2

k. Thus, the models (2.4) and (2.6) are used
for the numerical purposes. When the stochastic approach is assumed,
a discretization is considered (this will be explained a little further).
Considering k fixed, the variance is obtained on the time under consid-
eration T by Signal-to-Noise Ratio (SNR) expressed in decibel (dB),
which allows one to measure to what extent the noncontrollable load
consumption of the scenario k can be forecasted:

SNR := 10 log10

( 1
Tσ2

k

∑
t∈T

(`k0,t)
2

)
.

For example, fixing a SNR = 7 dB, we compute σ2
k for the scenario k

and then, we obtain

(i) a noisy vector of length T for the deterministic forecast wherein
each component is a single value from N (0,σ2

k), and

(ii) a random variable distributing N (0,σ2
k) to construct a stochastic

forecast.

For computational aspects, a discretization over is made on the latter,
wherein a normalized histogram is used to obtain relative frequencies.
A graphical representation is shown in the Figure 3.6.
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Figure 3.5: Four scenarios of the noncontrollable consumption in a day.
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Figure 3.6: Based on a SNR of 7 dB, a stochastic forecast (area filled) of one
scenario of the noncontrollable consumption for a day (continuous
line), where a discretization is considered (small circles). For a
fixed time-slot, each value forescated (a circle) has an associated
probability.

DYNAMIC CHARGING SETTINGS

To solve the problem (3.20) to find the dynamic charging strategies, we
need the explicit representation of the functions (gt)t∈T of (3.18). It is
straightforward to show that (gt)t∈T with the dynamic law (3.40) for
the parameters p = q = 1 (economical case) and p = q = 2 (technical
case), are of the form: g1(x1) = x1 and

gt+1(x1, `1, ..., `t ; ˜̀0,1, ..., ˜̀0,t)

= αtx1 +
t∑

τ=1

αt−τ
(
β
(˜̀

0,τ +
∑
i∈I

`i,τ
)p

+ γ
(˜̀

0,τ−1 +
∑
i∈I

`i,τ−1

)q
+ zτ

)

Under realistic values of α, β and γ (that we gives in next for the two
cases analyzed here), these functions are convex. In particular when
p = q = 2, the convexity is guaranteed if αβ+ γ ≥ 0, which is the case
here.

MARKOV DECISION PROCESS SETTINGS

Concerning the MDP used to build the scheduling strategy when a
stochastic forecast is considered, we focus on MT defined in (3.36).
Wherein, the aggregated energy demand (3.38) is modeled as a qual-
itative objective, more precisely in reaching a set of goal states G de-
fined in (3.39). On the other hand, the space of actions A defined in
eq. (3.37), is discretized according to the minimum and maximum con-
trollable load induced by EVs (3.41) with a parameter ∆A = 3, so that
this stands as the set A = {0, ∆A, ..., I∆A}. The discretization over the
stochastic forecast is made with ∆b = 0.05 to adjust the bin width for
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the (discrete) probability distribution, wherein normalized histograms
are considered to obtain relative frequencies. See Figure 3.6 for a graphi-
cal representation of the discretization on the stochastic forecast. Under
this practical considerations, the space of states in MT is discrete as
well.

To solve the MDP under consideration, we use PRISM tool [4, 78],
which is a probabilistic model checker, having direct support for MDPs
and incorporates the majority of the techniques from [53] to quantify
properties specified on MDPs. One of the advantages of PRISM is that
it includes multiple efficient engines to describe models that are imprac-
tical for the user to explicitly list every state and transitions. In such
a way, we just need to specify the parameters and the dynamic (3.40),
to generate the MDPMT .

3.5.1 DN-TRANSFORMER LIFETIME

The goal of this section is to quantify the performance of the different
scheduling strategies on the DN-transformer aging. For this, the dy-
namic law (3.40) represents the Hot-Spot (HS) temperature of the DN-
transformer, whose nominal temperature is assumed to be x1 = 98 °C,
and the shut-down HS temperature is xmax = 150 °C. The correspond-
ing values of the parameters in (3.40) are as in [70]: p = q = 2,
α = 0.83, β = 30.91 °C.kW−2, γ = −19.09 °C.kW−2 and,

zt = 0.17 (8.47 + xamb
t ) ,

where xamb
t denotes the ambient temperature at time t. Data corre-

sponding to the latter temperature is obtained from the Australian
Bureau of Meteorology for the New South Wales territory [5].
To model the DN-transformer lifetime (in years), we consider that

when a scheduling strategy π is used, it is given by:

Lifetime := T
Lifetime0∑

t∈T
Cπx1(xt, `t, `0,t)

,

where the noncontrollable loads consumption is normalized so that
without the consumption of the EVs, the DN-transformer lifetime is
Lifetime0 = 40 years. In addition, the cost function in this section
is considered as the instantaneous Accelerated Aging Factor (AAF),
which measures the speed of degradation relatively to the given nomi-
nal transformer temperature. A well admitted model for AAF is [68]:

Cπx1(xt) = exp(a xt + b) , (3.42)

where a = 0.12 °C−1 and b = −11.32.
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PERFORMANCE OF THE SCHEDULING STRATEGIES

The Figure 3.7 shows the performance of the power consumption strate-
gies in function of the DN-transformer lifetime (mean over scenarios)
against the number of EVs, where the forecast of the noncontrollable
part of the total load consumption was assumed to have a noise based on
SNR = 15 dB in each scenario. Although this noise value is a very am-
bitious hypothesis (since it represents an “almost-perfect” forecast, see
Figure 2.3 for instance), the PaC strategy is seen to be non-acceptable.
This strategy induces a significant overload of the transformer, causing
a rapid decline in DN-transformer lifetime. This is mainly because the
AAF model in eq. (3.42) is exponential in the HS temperature. In addi-
tion, under the same scenario for I = 10 EVs, the maximum shut-down
HS temperature at which the transformer can operate in safe conditions
is quickly exceeded as it is shown in the Figure 3.8. The Figure 3.7 also
shows the performances of the other power consumption strategies. All
of them (with the exception of the PaC strategy) have approximately
the same performance in terms of the DN-transformer lifetime, where
the black top dashed line corresponds to the case under the real non-
controllable consumption and without EVs.
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Figure 3.7: DN-transformer lifetime (mean over the scenarios) against the
number of EVs (I), based on a forecast of the noncontrollable con-
sumption with a noise (in each scenario) based on SNR = 15 dB
(centralized case).

We have observed that in the (ambitious hypothesis) of almost-perfect
forecast, the dynamic charging becomes optimal. However, for more re-
alistic cases, the strategy built by the MDPmethod is almost insensitive
to forecast noises compared to the other methods. This is confirmed by
the Figure 3.9, which represents the DN-transformer lifetime (mean
over scenarios) against different values of the forecast noise, under the
assumption of I = 10 EVs. In particular, we observe that from a fore-
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cast noise based on SNR = 6 dB upwards, the strategy of rectangular
profiles and dynamic charging are robust (in average) to noise. This is
also confirmed in detail in each scenario plotted in the Figure 3.10. How-
ever, when the forecast noise is based on values lower than SNR = 6 dB
(i.e., high forecast noises), the performances of these two strategies de-
creased and are considerably “chaotic”. The presence of oscillations on
certain curves is here due to the fact that the scenarios are in them-
selves not to be “smooth curves”, i.e., they are stochastic. Although the
strategy of rectangular profiles in more robust than the one of dynamic
charging (in line with [20]), the strategy built by the MDP method is
globally much more robust and the stability of the performance is re-
markably guaranteed. This is in line with our practical results of [M1].
On the other hand, the strategy built by the valley-filling method is the
more sensitive to amplitude errors. This is caused mainly because the
valley-filling algorithm relies only on the minimization of the total con-
sumption and not on any other measure of impact over the DN, like the
DN-transformer lifetime. Note that when this strategy “filled the val-
leys” of the noncontrollable consumption (forecast), the consumption
tends to be uniform over time.
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Figure 3.8: HS temperature of the DN-transformer (mean over the scenarios)
for I = 10 EVs over time, based on a forecast of the noncon-
trollable consumption with a noise (in each scenario) based on
SNR = 15 dB (centralized case).
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Figure 3.9: DN-transformer lifetime (mean over the scenarios) against fore-
cast noises on the noncontrollable consumption, for I = 10 EVs
(centralized case).
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Figure 3.10: DN-transformer lifetime (in each scenario) against forecast noises
on the noncontrollable consumption, for I = 10 EVs (centralized
case).

We also notice that, since the strategy of rectangular profiles is less
flexible (since the consumption is uninterrupted), it is also possible to
reach the maximum shut-down HS temperature of the DN-transformer
by this method as PaC does. This is shown in particular for the scenario
4, which is plotted in Figure 3.11 for I = 20 EVs and a forecast noise
based on SNR = 6 dB. We do not observe this with the others methods.
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Figure 3.11: HS temperature of the DN-transformer (mean over the scenarios)
for I = 20 EVs over time, based on a forecast of the noncon-
trollable consumption with a noise (in each scenario) based on
SNR = 6 dB (centralized case).
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Figure 3.12: DN-transformer lifetime (in each scenario) against the number of
EVs, for a forecast noise based SNR = 5 dB (centralized case).

Figure 3.12 shows how the DN-transformer lifetime (in each scenario)
decreases when the number of EVs increases. Again, the strategy built
by the MDP method is much more robust than the other ones. How-
ever, in the case where the number of EVs is high the complexity of the
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problem increases considerably, since there is a single decision-maker
to build the strategies for the consumers. Then, all variables and in-
formation are controlled by this centralized controller. To handle this
issue, in the Chapter 6 we develop decentralized strategies.

To conclude with the performance analysis of this section, we ob-
serve in the Figure 3.13 the probability value of satisfying the con-
straint (3.27), here for the shut-down HS temperature of the DN-
transformer against forecast noises on the noncontrollable consump-
tion. These values were computed a posteriori for the verification of
the strategy built by the MDP model. In this case, we have observed
that the constraint of exceeding the upper bound of the maximal power
is satisfied always with probability one. This is due because the value
of the maximal power in the simulations (`max = 90 kW) was sufficient
for all energy demands of EVs. However, the probability of exceeding
the maximum HS temperature of the DN-transformer is only satisfied
with probability one from a forecast noise based on SNR = 7 dB, as
it is shown in Figure 3.13 which is based on I = 10 EVs. This is due
mainly because the variance of the stochastic forecast is very high when
SNR is approaching zero (i.e., when the forecast noise is high). This is
confirmed by the probability values of the dashed line in Figure 3.13,
which represents the the values without any EV, i.e., even when there is
no EVs, the forecast model of the noncontrollable consumption makes
the maximum temperature of the DN-transformer is reached with some
probability. However, adding EVs in the consumption, the loss in terms
of probability of satisfying such a constraint, is minimal as it is shown
in the Figure 3.14.
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Figure 3.13: Probability value (mean over the scenarios) of satisfying the
constraint (3.27) of shut-down HS temperature of the DN-
transformer against forecast noises on the noncontrollable con-
sumption, for I = 10 EVs (centralized case).
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Figure 3.14: Difference between the values of Figure 3.13. It is assumed to
have I = 10 EVs (centralized case).

3.5.2 ELECTRICAL CONSUMPTION PAYMENT

Here, we want to quantify the performance of different scheduling
strategies on the Electricity Consumption Payment (ECP). The dy-
namic of the system state (3.40) represents the EVs total energy mon-
etary cost, whose parameters are [8]: p = q = 1, and the other values
were estimated by solving a data-fitting problem in least-squares sense
from the national electricity market of Australia for New South Wales
territory [6]: α = 1, β = 11.91 ¢.kWh−2, γ = −β and zt = 0. A con-
venient way of measuring the ECP is formulated by the cost function
as [45, 105]:

Cπix1 (xt, `t, `0,t) :=
(
`0,t +

∑
t∈T

`i,t

)η
xt ,

where η = 3 is a coefficient indicating the impact of nonlinearity of the
total load consumption. See [26] for details, and the initial electrical
price is assumed to be x1 = 39.65 ¢ taken from the data.

PERFORMANCE OF THE SCHEDULING STRATEGIES

Here, we start with the analysis of the Figure 3.15 and Figure 3.16.
These figures show that the ratio of the electrical consumption pay-
ment of the different strategies for the EVs, with respect to the case
without EVs and noise, under the assumption of a forecast noise based
on SNR = 5 dB, which is a realistic hypothesis of noise (with high
values of SNR the forecast becomes “perfect”). The Figure 3.15 shows
the performances in average over the four scenarios plotted in the Fig-
ure 3.16. Of course, when the number of EVs increases, the electrical
consumption payment also increases. We observe that the strategy built
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by the MDP method has the best performance (in average and in each
particular scenario) for each pool of EVs considered. Remarkably, the
performance by the valley filling algorithm decreases faster than the
other methods. This could be caused because this strategy tends to
be a uniform consummation when it has already “filled the valleys” of
the noncontrollable consumption (forecast). This is mainly confirmed
by the Figure 3.17 and Figure 3.18, which show the performances resp.
for I = 10 and I = 20 EVs. In both cases, the strategy by valley-filling
becomes independent of the noise, consuming uniformly over time.

We notice that the PaC strategy is seen to be non-acceptable, because
the payment is the worst, as it is shown in the Figure 3.17. Remarkably,
in the Figure 3.17 and Figure 3.18, we observe that the performance
of the strategy built by the MDP method is stable and the strategy
is much more robust than the others. Interesting, when the forecast
noise begins to decrease (high values of the SNR), the dynamic charg-
ing strategy becomes optimal. This is also observed for the strategy pf
rectangular profiles for I = 10 EVs. However, this is not the case when
the number of EVs increases to I = 20. In such a case, the performance
of the strategy by rectangular profiles begins to oscillate and is not
stable. This can occur, e.g., because the scenarios are in themselves
stochastic and not be “smooth curves” to schedule the rectangular pro-
files.
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Figure 3.15: Ratio of the electrical consumption payment (mean over the sce-
narios) against the number of EVs, with respect to the case with-
out EVs and noise, under the assumption of a forecast noise based
on SNR = 5 dB (centralized case).
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Figure 3.16: Ratio of the electrical consumption payment (in each scenario)
against the number of EVs, with respect to the case without EVs
and noise, under the assumption of a forecast noise based on
SNR = 5 dB (centralized case).
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Figure 3.17: Ratio with respect to the case without EVs and noise, of the
electrical consumption payment (mean over the scenarios) against
forecast noises on the noncontrollable consumption, for for I = 10
EVs (centralized case).
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Figure 3.18: Ratio with respect to the case without EVs and noise, of the elec-
trical consumption payment (mean over the scenarios) against
forecast noises on the noncontrollable consumption, for for I = 20
EVs (centralized case).

3.6 DISCUSSION

A useful observation of the dynamic charging scheme in Section 3.3.2
together with the (2.5.1), is that such a problem formulation (3.20)
can be seen as that it only depends on the sequence of the sums of the
controllable loads of consumers, i.e., the sequence:(∑

i∈I
`i,1, ...,

∑
i∈I

`i,T

)
. (3.43)

Then the centralized decision-maker can be equivalently solve the prob-
lem (3.20) in two steps:

(i) Find an optimal sequence of controllable load sum (3.43).

(ii) Allocate each sum of the sequence among the consumers.

The optimization problem associated with the determination of an op-
timal sequence of controllable load sum is directly derived from the
optimization problem (3.20) by introducing for each t ∈ T the vari-
ables:

`I,t =
∑
i∈I

`i,t

and, from the eqs. (3.18), the functions gI,1(x1) = g1(x1) and

gI,t+1(x1, `I,1, ..., `I,t, ; ˜̀0,1, ..., ˜̀0,t) = gt+1(x1, `1, ..., `t, ; ˜̀0,1, ..., ˜̀0,t) .
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Thus, the constraints (3.5) and (3.6) are also replaced resp. by:

∆t
∑
t∈T

`I,t ≥
∑
i∈I

ei

and ∑
i∈I

`min
i ≤ `I,t ≤

∑
i∈I

`max
i .

For the applications studied in Section 3.5, the cost function minimized
in the optimization problem (3.20) is continuous and convex, and the
inequality constraints define a convex and compact set. Thus, there
is an unique solution of the optimization problem associated to the
sequence of controllable load sum.
Note that the controllable variables (sum of loads) for the dynamic

charging problem in this case, are the same as the ones of the valley-
filling algorithm in the Section 3.3.3 and the MDP method in the
Section 3.4.1. Once this problems are solved, the allocation problem
of the sums can be tackled. The latter is a transportation problem
where the “sources” are the T time-slots with `I,t supply units, the
“destinations” are the I consumers with ei units received and each
`i,t represents the “flow” from the time t (the source) to consumer i
(destination), see e.g., [110] for details.

All these resulting schemes developed in the deterministic and stochas-
tic models have a complexity issue due to the degree of information used
to schedule in a centralized way, in particular when the time-horizon
and the number of consumers are large. Remarkably, the decentralized
solutions we propose in the Chapter 6 solve the power consumption
scheduling problem by construction, and transportation theoretic tools
are not necessary.
To end the performance comparison analysis and influence of the

forecast noise, studied in the numerical applications of the Section 3.5,
we can conclude that the strategy built by the MDP model are almost
insensitive to forecast noise. Particularly, when this is high, the per-
formance of the others methods decreased considerably and the MDP
method is globally much more robust. When the forecasting noise is
close to zero, i.e., under a “perfect forecast” (which is a very ambitious
hypothesis), the dynamic charging method becomes optimal.
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4
UNDERLYING GENERAL PROBLEM

Abstract:

In this chapter, we focus on the existence of scheduling strategies

in a multi-weighted Markov decision process, which satisfy both a

probability constraint over a reachability condition, and a quantita-

tive constraint on the expected value of a random variable defined

also using the reachability condition. This problem is inspired by

the modelization of the power consumption scheduling problem of

the previous chapter (typically the problem of charging electric ve-

hicles). Focused on a general version of such a scheduling problem,

we investigate the “cartography” of the problem when one parame-

ter varies (a threshold), i.e., the set of values of such a parameter

for which the problem has or not a solution; and show how a partial

cartography can be obtained via two sequences of optimization prob-

lems. We also discuss completeness and feasibility of the resulting

approach.
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LIST OF ABBREVIATIONS AND SYMBOLS

MDP Markov Decision Process SSP Stochastic Shortest Path
at action at t
A finite action space inM
B(Ωx0) Borel sigma-algebra over Ωx0

Ci ith cost function
Cmin
i minimum Ci cost in the transitions ofM

Cmax
i maximum Ci cost in the transitions ofM

δ randomized strategy
δε randomized strategy for problem Pb(ε)
δ∗γ γ-optimal randomized strategy for J∗α,T

∆ set of randomized strategies
D(S) set of probability distributions over a finite set S
Eδ
x0 expectation operator under a fixed δ and x0

ET set of paths reaching G in at most T -steps
ET complement set ET
Eα,T to be ET for α = 1 and ∅ otherwise
ε non-negative risk in probability (parameter)
G set of goal states in an MDP model
idA identity function on a set A
Jα,T objective function of a minimization problem
J∗α,T optimal value of Jα,T

M MDP model
MT unfolding ofM with depth T
ω history or path of the system
Ωx0 set of histories or paths of a system from an initial state x0

projj projection function on the j-component of a sequence
projXt projection function on X in the t-component of a path
π pure strategy
Π set of pure Markov strategies
P ,PT transition probability between states inM andMT , resp.
Pδ
x0 probability measure on B(Ωx0) under a fixed δ and x0

Pb(ε) general problem in function of ε
ST augmented space of states inMT

st state in ST at t
T finite horizon, or depth
TSGi truncated sum function for G under Ci
xt system state at t
X finite set of states inM
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4.1 MOTIVATION AND CONTRIBUTIONS

The principal motivation of the present chapter is founded on formal
methods, which can help providing algorithmic solutions and guaran-
tees for control designs and applications, as in Smart grids. The con-
trollable electric devices scheduling problem is an example of such an
application area. This problem, usually presented as a control problem
(see for instance [20, 103] for the electric vehicle charging context), can
actually be modeled using Markov Decision Processes (MDP) [M1][49].
In addition, probabilities provide a way to model the non-controllable
part of the total load consumption on the distribution network, i.e.,
the consumption outside the controllable electric devices, for which
large databases exist in order to extract precise statistics (see for ex-
ample [3]). We can then express an upper bound on the peak load
consumption as a safety condition (encoded as a reachability condition
in our finite-horizon model), a constraint on charging all the control-
lable electric devices as a quantitative reachability objective, and vari-
ous optimization criteria (e.g., minimizing the aging of the distribution
network transformer [19], or the electrical consumption payment [74])
as an optimization of random variables (cost functions). However, the
computability of an optimal strategy in such a general context, as well
as the corresponding decision problem, are unexplored.

The general multi-constrained problem, arising from the scheduling
problem of Section 3.4, takes as input a double-weighted MDP, and
requires the existence of a strategy ensuring:

(i) a reachability objective in the MDP, i.e., some set of goal
states is reached,

(ii) a probability constraint on the accumulated sum of the first
cost function (lower bound parametrized by some threshold), and

(iii) an expectation objective on the accumulated sum of the sec-
ond cost function (upper bound parametrized by another thresh-
old).

The initial scheduling problem corresponds to the instance of this prob-
lem when the first threshold in the probability constraint is zero, and
the cost functions for the constraints represent resp. the energy needed
of the controllable electric devices and the impact of the load consump-
tion operation on the distribution network.

Our problem integrates both the “beyond worst-case” paradigm of [34],
and the mixture of probability and expectation constraints as in [37].
While for the latter, linear programs are used for solving the problem,
we need different techniques in our general problem. Here, we develop
a methodology to describe the cartography of the problem, for which
it has a solution. Our approach is based on two sequences of optimiza-
tion problems which, in some cases we characterize, allow us to have
an almost-complete full picture of the solution. We then discuss com-
putability issues.
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4.2 PROBLEM FORMULATION

In this chapter, we focus on doubly-weighted MDPs (see Defini-
tion 2.6.9 taking into account two cost functions) with a combination
of:

(i) a reachability objective to a certain set of goal states, see Defini-
tion 2.6.16,

(ii) a probability constraint on the proportion of paths having a
high accumulated value under the first cost function, see Defi-
nition 2.6.20, and

(iii) a constraint on the expected value of the truncated sum defined
by the second cost function, see Definition 2.6.23.

We aim to design an algorithmic technique to identify when the gen-
eral problem presented in the following has or has not a solution, we
consider then all the variables of the problem as rational numbers, due
to computational problems arising with irrational ones.

Definition 4.2.1: General Problem

Given a doubly-weighted MDPM = (X ,A,P , (Ci)2
i=1), an initial

state x0 ∈ X , goal seta G ⊂ X , and ν1, ν2 ∈ Q two thresholds. For
each ε ∈ [0, 1]∩Q, the general problem Pb(ε) is defined asb: there
exists δε ∈ ∆, such that each ω ∈ Ωδε

x0 reaches G,

Pδε
x0 [TSG1 ≥ ν1 ] ≥ 1− ε and Eδε

x0 [TSG2 ] < ν2

a The goal set G is absorbent by Assumption 2.6.8.
b To be more precise, the problem should be denoted as PbM,ν1,ν2 (ε), because
this one depends on the fixed M, ν1 and ν2. However, to relax the notation,
we simply write Pb(ε).

We aim at computing the values of ε for which Pb(ε) has a solution.
For readability, we present the following example.
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Example 4.2.2. Consider the double-weighted MDP depicted in

the Figure 4.1, and ε = 0.5, ν1 = 1, and ν2 = 4.3. Let δ the

strategy that selects a0 or b0 uniformly at random in x0 and al-

ways selects a1 in x1. Then, the probability of reaching x is one,

i.e., Pδ
x0 [ Tx < +∞ ] = 1, where Tx is the reachability time (2.23),

and

Pδ
x0 [TSG1 ≥ ν1 ] =

1
2 and Eδ

x0 [TSG2 ] =
1
25+ 1

2

+∞∑
t=1

−t
2t =

3
2 < ν2

The latter strategy is Markov, because it does not require any mem-

ory of finite paths. On the contrary, if we consider now the strategy

that makes at least half of the paths reach x (impacting 2.5 over the

expectation of TSG2 ). The other paths have to go to x1, and then take

a1 for some time (provided the path goes back to x1) in order to de-

crease the expectation of TSG2 , before it becomes possible to take b1

and then a2 (so that the strategy is surely winning). This strategy

uses both randomization (at x0) and memory (counting the number

of times a1 is taken before b1 can be taken). 2

x0

xx1

x2

b
0 , 1, 5

P
(x

0 , b
0 )(x) =

1

a 0
, 0,

0

P
(x

0
, a 0
)(
x 1
) =

1

a1, 0,−1

P (x1, a1)(x1) = 0.5

b
1 , 0, 14

P
(x

1 , b
1 )(x

2 ) =
1

a1, 0,−1

P (x1, a1)(x) = 0.5

a 2
, 0,

0

P
(x

2
, a 2
)(
x)
=

1

Figure 4.1: An example of a doubly-weighted MDP, where the initial state is
x0 and the goal set is G = {x}. All the transitions have probability
one, except the transition from x1 using the action a1, which has
a uniform distribution between the two possible next states. On
the edges, the 3-tuple is composed by an action, the first and the
second cost function.

For the rest of this section, we make the following assumption.

Assumption 4.2.3: Feasibility

There exists a strategy π ∈ Π, such that Eπ
x0 [TSG2 ] < ν2.

[ November 20, 2019 at 17:47 – classicthesis ]



86 underlying general problem

Otherwise, the problem Pb(ε) trivially has no solution for each ε. Note
that the latter assumption is reduced to the so-called Stochastic Short-
est Path (SSP) problem, wherein the existence of a pure Markov strat-
egy π ∈ Π can be built in polynomial-time [14].

Definition 4.2.4: Cartography

We call cartography of the problem Pb(ε) the function which
associates to each ε ∈ [0, 1], either true if Pb(ε) has a solution,
or false otherwise.

We will describe an algorithmic technique to map the cartography func-
tion of the problem Pb(ε) on the interval [0, 1]. As we explain below,
our approach partially characterizes such an interval. That is why we
call such a map approximated cartography in what follows.

4.3 APPROXIMATED CARTOGRAPHY

LetM = (X ,A,P , (Ci)2
i=1) be a fixed doubly-weighted MDP, x0 ∈

X an initial state, G ⊂ X be a goal set, and two thresholds ν1, ν2 ∈ Q.
We will introduce two optimization problems related to the problem
Pb(ε), from which we derive information on the values of a parameter
ε, more precisely, for which such a problem has or has not a solution.
As we explain below, our approach partially characterizes the interval
[0, 1], however under certain conditions in the structure ofM, the car-
tography is almost-complete [M3]. In what follows, we use a solution
of the underlying optimization problems, to characterize the solution
of Pb(ε). About a method to find such solutions is mentioned below
and developed in Chapter 5.

4.3.1 OPTIMIZATION PROBLEMS

From the Definition 4.2.1 of Pb(ε), we are looking for an event over
the paths that are reaching the goal set G with a truncated sum on the
first cost function of at least ν1, and satisfying an expected value on the
truncated sum on the second cost function lower than ν2. Moreover, we
want the probability of such an event is be at least 1− ε. To compute
the values of such ε, we consider the induced probability space from
M as (Ωx0 ,B(Ωx0), Px0), see Section 2.6.4 for details. For T ∈ N0 we
define ET ∈ B(Ωx0) by:

ET :=
{
ω ∈ Ωx0 | ∃ t ≤ T : projXt (ω) ∈ G

}
, (4.1)

i.e., ET represents the measurable set of paths reaching the goal set G
in at most T -steps. Additionally, since G is absorbent by assumption,
any path ω ∈ ET also belongs to ET+1. Thus,

E0 ⊆ E1 ⊆ ... ⊆ ET ⊆ ET+1 ⊆ ... (4.2)

If the limit of ET exists as T → +∞, we let:

E∞ := lim
T→+∞

ET .
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On the other hand, since B(Ωx0) is a well-defined sigma-algebra, the
complement set of ET exists within B(Ωx0) and then, it is measurable
under the probability distribution Px0 . We denote the complement of
ET as ET . The latter is understood as the set of paths that are not
reaching G in the first T -steps, i.e.,

ET =
{
ω ∈ Ωx0 | projXt (ω) /∈ G , ∀ t ≤ T

}
. (4.3)

Analogously, if a path ω ∈ ET+1, then it is also not reaching G in the
first T -steps. Thus,

E0 ⊇ E1 ⊇ ... ⊇ ET ⊇ ET+1 ⊇ ... (4.4)

If the limit of ET exists as T → +∞, we let:

E∞ := lim
T→+∞

ET ,

which represents the set of states that never visit the goal set G.

Remark 4.3.1: Reaching the Goal Surely

Note that if there is a strategy δ allows us to reach G surely, see
Definition 2.6.14, then taking the limit of ET as T → +∞ is well
defined. Moreover, in such a case we have E∞ = Ωδ

x0 and E∞ = ∅.

It is straightforward to show that for each T ∈ N, any path ω of
length at least T , is such that1:

ω ∈ (ET ∩ TSG1 ≥ ν1) ∪ (ET ∩ TSG1 < ν1) ∪ ET (4.5)

where for instance, the measurable event (ET ∩ TSG1 < ν1) stands for
all the paths reaching the goal set G in at most T -steps and having
a truncated sum TSG1 < ν1 at the first visit of G. Furthermore, the
following also holds:

Px0 [ET ∩ TSG1 ≥ ν1]

≤ Px0 [E∞ ∩ TSG1 ≥ ν1]

≤ Px0 [(ET ∩ TSG1 ≥ ν1) ∪ ET ]
(4.6)

We are looking to maximize the probability of (E∞ ∩ TSG1 ≥ ν1),
subject to the constraint on the expectation of TSG2 to characterize
the values of ε for which Pb(ε) has or has not a solution. Such an
event represents all the paths that are reaching G at some time-step
(T → +∞) and having a truncated sum TSG1 ≥ ν1 at such a moment.
Mathematically, we are looking for:

sup
δ

Pδ
x0 [ E∞ ∩ TSG1 ≥ ν1 ]

s.t. Eδ
x0 [TSG2 ] < ν2

However, such a probability objective is bounded by the two probabil-
ities in the inequality (4.6). Equivalently, maximizing the probability

1 Well understood that when we write TSG
1 ≥ ν1, we refer to the event on the r.v.

TSG
1 , i.e., to the event {ω ∈ Ωx0 |TSG

1 (ω) ≥ ν1}.
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of (E∞ ∩ TSG1 ≥ ν1) is the same as to minimizing the probability of its
complement2, i.e., (E∞ ∩ TSG1 < ν1) ∪ E∞, see eq. (4.5) for T → +∞.
This event represents all the paths that are either reaching G at some
time-step (T → +∞) and having a truncated sum TSG1 < ν1 at such a
moment (i.e., belonging to E∞ ∩ TSG1 < ν1), or never reaching G (i.e.,
belonging to E∞).

Applying the complement in the inequality (4.6), the following holds:

Px0 [ET ∩TSG1 < ν1]

≤ Px0 [(E∞ ∩TSG1 < ν1) ∪ E∞]
≤ Px0 [(ET ∩TSG1 < ν1) ∪ ET ]

(4.7)

In this way, the two underlying optimization problems come naturally
from the precedent inequality to bound the probability value that we
are looking for, i.e., to solve the problem:

Randomized Strategy Problem

inf
δ

Pδ
x0 [ (E∞ ∩ TSG1 < ν1) ∪ E∞ ]

s.t. Eδ
x0 [TSG2 ] < ν2

by minimizing the left and right side of (4.7) subject to the constraint
in expectation, i.e.,

(i) inf
δ

Pδ
x0 [ET ∩TSG1 < ν1] , (ii) inf

δ
Pδ
x0 [(ET ∩TSG1 < ν1) ∪ ET ]

s.t. Eδ
x0 [TSG2 ] < ν2 s.t. Eδ

x0 [TSG2 ] < ν2

With a small abuse of notations, we represent both problems in a
single one, parametrized by an α ∈ {0, 1} as follows. Let Eα,T ∈ B(Ωx0)

defined as:

Eα,T :=

{
ET if α = 1
∅ if α = 0

(4.8)

For T ∈ N fixed, we call objective function for randomized strategies
δ ∈ ∆ the next function3:For pure strategies

π ∈ Π, the

definition is

equivalent for

Jα,T (π).

Jα,T (δ) := Pδ
x0 [ (ET ∩ TSG1 < ν1) ∪ Eα,T ] , (4.9)

and so, the optimization problems are defined for each α by:

Jointly Randomized Strategy Problem

inf
δ

Jα,T (δ)

s.t. Eδ
x0 [TSG2 ] < ν2

(4.10)

Note that, by

Assumption 4.2.3,

this problem is

feasible.

2 Here, it is possible that E∞ = ∅, see Remark 4.3.1, but we continue to write
(E∞ ∩ TSG

1 < ν1) ∪ E∞ with some abuse, because there is no sense that a path
belongs to such an event if it is the case.

3 To be more precise, this function should be denoted as Jx0,α,T ,ν1 due to the fixed
parameters. However, to relax the notation, we simply write Jα,T .
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We denote the optimal value of the latter problem as:

J∗α,T := inf
δ

{
Jα,T (δ) | Eδ

x0 [TSG2 ] < ν2

}
, (4.11)

and if there exists the limit of J∗α,T as T → +∞, we denote it by:

J∗α,∞ := lim
T→+∞

J∗α,T .

Note that it is possible that there is no strategy reaching the minimum
on the objective function (4.9). Thus, for each γ > 0 we can consider
by definition of infimum a strategy δ∗γ that is γ-optimal for the prob-
lem (4.10), i.e.,

Jα,T (δ
∗
γ) ≤ J∗α,T + γ and E

δ∗γ
x0 [TSG2 ] < ν2 . (4.12)

We mentioned that a technique based on polynomial optimization
problems for solving the optimisation problem (4.10) for each α ∈
{0, 1}, is developed in [M3]. Such a proposed method is in general
hard to solve, and the authors have not been able to exploit the par-
ticular shape of the optimization problems to get efficient specialized
algorithms. A suitable method to find a solution of each optimization
problem is developed in Chapter 5, which is based on duality theory [23,
24].

Coming back to the inequality (4.7), an iterative approach to com-
pute the probability values from the left and the right in such an in-
equality is shown in the following.

Proposition 4.3.2

The sequence (J∗α,T )T∈N is nonincreasing for α = 1 and nonde-
creasing for α = 0. Moreover, J∗0,T ≤ J∗1,T for each T ∈ N.

Proof. See Proof B.1.2 in Appendix B.1.
�

First, we analyse theoretically when the problem Pb(ε) has or not
a solution for each ε ∈ [0, 1]. For that, we use the limit J∗α,∞ for
each α = 0, 1. Thereafter, we construct an iterative approach using
the nonincreasing sequence (J∗1,T )T∈N and the nondecreasing sequence
(J∗0,T )T∈N, to approximate the limit J∗1,T and J∗0,T as T → +∞, resp.
Each iteration is made for each T ∈ N and thus the cartography of
Pb(ε) is mapped on the interval [0, 1] at each iteration-step T .

Theorem 4.3.3

If ε < J∗1,∞ ⇒ the problem Pb(ε) has no solution.

Proof. See Proof B.1.3 in Appendix B.1.
�

Because the inequality J∗0,T ≤ J∗1,T is true for each T ∈ N from the
Proposition 4.3.2, the next corollary holds as a consequence of the
precedent theorem.
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Corollary 4.3.4

If ε < J∗0,∞ ⇒ the problem Pb(ε) has no solution.

Based on the precedent results, the theoretical analysis is shown at
the top of the Figure 4.2. On the other hand, to make an effective
calculation of the limits of the sequences, we analyze the existence of
the solution of Pb(ε) in function of each iteration-step T as follows.

Theorem 4.3.5

For each T ∈ N, the problem Pb(ε) has a solution ∀ ε > J∗1,T , and
has no solution ∀ ε < J∗0,T .

Proof. See Proof B.1.4 in Appendix B.1.
�

0 1... ...J∗0,T J∗0,T+1 J∗1,T+1 J∗1,T

T steps
T + 1 steps

... · · ·

J∗0,∞ J∗1,∞

Theory

Algorithm

Pb(ε) has a solutionPb(ε) has no solution

Figure 4.2: A (partial) cartography of our problem Pb(ε).

4.3.2 SUMMARY

Figure 4.2 summarizes the analysis of the previous section. Theoreti-
cally (Theorem 4.3.3), the picture seems rather complete since the only
status of the problem Pb(ε) that remains uncertain is with ε = J∗1,∞.
However, it remains to discuss two things in a numerical sense (Theo-
rem 4.3.5):

(i) the limits J∗0,∞ and J∗1,∞ are a priori unknown (by numerical cal-
culation) and distinct. Hence the cartography is not effective and
not complete so far.

(ii) the idea is then to use the sequence (J∗α,T )T∈N for each α to ap-
proximate the limits. We will therefore discuss cases where the
two limits coincide (we then say that the approach is almost-complete),
allowing us for a converging scheme and hence an algorithm to al-
most cover the interval [0, 1] with either the red line (where there
are no solutions) or the green line (where there is a solution), i.e.,
to almost compute the full cartography of Pb(ε).
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4.4 ALMOST-COMPLETENESS OF THE APPROACH

In this section, we discuss the almost-completeness of our approach,
and describe situations where one can show that

J∗0,∞ = J∗1,∞ (4.13)

which allows us to reduce the unknown part of the cartography to a
singleton, i.e., ε equal to (4.13). The situations for completeness we
describe below are conditions over cycles in the doubly-weighted MDP
M = (X ,A,P , (Ci)2

i=1), with fixed initial state x0 ∈ X .

Theorem 4.4.1

If all cycles have positive costsa under Ci for some i ∈ {1, 2}, then
J∗0,∞ = J∗1,∞.

a When we assume that cycles have positive costs, we mean it for every cycle,
except for cycles at G, which we assumed are self-loops with costs equal to
zero.

Proof. See Proof B.1.5 in Appendix B.1.
�

x0 x1

a0,α, 0

a′0,β, 0

a1, 0, 0

Figure 4.3: A doubly-weighted MDP parametrized by α and β, with x1 ∈ G.
Over the edges, the first component represents the actions, and
the other two are resp. the values for the costs C1 and C2.

Note that the result does not hold without the assumption on cycles.
Indeed, considering the doubly-weighted MDP depicted in Figure 4.3
with α = 0 and β = −1. If the first threshold is ν1 = 0, we have
that for every T ∈ N, J∗0,T = 0 and J∗1,T = 1, then the limits of the
sequences are different. Also, one could think that assuming negativity
of cycles under the cost function C1 would be a similar result, but this
is not the case as witnessed by the doubly-weighted MDP defined in
the same Figure 4.3 with α = −1 and β = 1. In such a case, for every
T ≥ 2, we have that J∗0,T = 0, while J∗1,T = 1.

4.5 PARTICULAR CASE

While the previous developments cannot give a solution to the prob-
lem Pb(ε) for ε = 0, since it requires not only to show that the limits
of the sequences are J∗0,∞ = J∗1,∞ = 0, but also that there is a solution
to the limit points (which we do not have in general). We dedicate
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special developments to that problem, which has been applied in [M1].
The particular problem Pb(0) can be rephrased as follows.

Definition 4.5.1: Particular Problem

Given a double-weighted MDPM = (X ,A,P , (Ci)2
i=1), an initial

state x0 ∈ X , a goal set G ⊂ X and two thresholds ν1, ν2 ∈ Q. The
particular problem Pb(0) is defined asa: there exists δ0 ∈ ∆, such
that each ω ∈ Ωδ0

x0 reaches G,

Pδ0
x0 [TSG1 ≥ ν1 ] ≥ 1 and Eδ0

x0 [TSG2 ] < ν2

a To be more precise, the problem should be denoted as PbM,ν1,ν2 (0), because
this one depends on the fixed M, ν1 and ν2. However, to relax the notation,
we simply write Pb(0).

Note that this problem is somehow a “beyond worst-case problem”,
as defined in [102], with a strong constraint on all outcomes, and a
stochastic constraint (here defined using expected value). We describe
a solution in the case all cycles ofM have nonnegative cost under C1.
As we explain below, our solution extends to multiple costs with non-
negative cycles and strong constraints, like the one for TSG1 . However,
it is not correct when C1 may have negative cycles as well. In that case,
the status of the problem remains open [M3].

Assumption 4.5.2: Nonnegative Cycles

All cycles inM have nonnegative costs under C1.

UNFOLDING THE MDP

To solve the problem Pb(0), we fix a double-weighted MDP

M =
(
X , A, P , (Ci)2

i=1

)
,

an initial state x0 ∈ X , a goal set G ⊂ X and two thresholds ν1, ν2 ∈ Q.
For a fixed T ∈ N0, we define the unfolding MT of M, see Defini-
tion 2.6.10, explicitly keeping track of the cost C1 in the states ofMT ,
but here, keeping the second cost function C2 on the transitions. More
precisely, the unfolding ofM used to solve Pb(0) is the following struc-
ture:

MT =
(
ST , s0, A, PT , C

)
,

where the space of states is:

ST = X ×
(
[T Cmin

1 , T Cmax
1 ] ∩Q

)
× {0, 1, ..., T} ,

with Cmin
1 ,Cmax

1 ∈ Q to be resp. the (possibly negative) minimum and
maximum cost appearing in the transitions ofM due to C1. The initial
state is s0 = (x0, 0, 0), the set of actions is A fromM, the probability
transition function between states is PT : ST ×A → D(ST ), defined as:

PT (st, at)(st+1) =
(
P ◦ (proj1, idA)(st, at)

)
(st+1)
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if proj2(st+1) = min
{
ν1, proj2(st) + C1(proj1(st), at, proj1(st+1))

}
and proj3(st+1) ≤ T ; and PT (st, at)(st+1) = 0 otherwise. Finally, the
cost function over transitions is C : ST ×A×ST → Q, such that:

C = C2 ◦ (proj1, idA, proj1) .

In particular, if the current state is st = (xt, yt, t) and the action se-
lected is at, then a transition occurs to st+1 = (xt+1, yt+1, t+ 1) with
probability PT (st, at)(st+1) = P (xt, at)(xt+1) if t+ 1 ≤ T and yt+1 =

yt + C1(xt, at,xt+1); and the cost C(st, at, st+1) = C2(xt, at,xt+1) is
incurred.

We also consider each state sT of the form proj3(sT ) = T , as an initial
state of the MDPM. More precisely, we keep a copy ofM below each
leaf, i.e., proj1(sT ) is an initial state, as is shown in the Figure 4.4.
Since we are interested in reaching the goal set G defined fromM, such
that the truncated sum TSG1 be at least ν1, we consider the augmented
goal set in the unfoldingMT , defined as:

Gν1 := G × { ν1 } × {0, 1, ..., T} ⊂ ST . (4.14)

In addition, since G is absorbent, see Assumption 2.6.8, then Gν1 is
absorbent as well. Note that there is a natural one-to-one correspon-
dence between paths inM and its unfolding, and therefore, strategies
inM can equivalently be seen as strategies inMT . Also, since the set
of states X inM is finite and C1 takes rational numbers, there exists
a maximum depth of interest for the unfolding ofM. We denote such
a maximum depth as Tmax ∈ N. Concerning the constraint in expecta-
tion, we denote by TSGν1 the truncated sum due to the cost function
C in the unfolding.

Theorem 4.5.3

There exists a solution to Pb(0) if, and only if, there is a strategy
δ∗ in the unfolding MTmax , such that each ω ∈ Ωδ∗

s0 reaches Gν1

and Eδ∗
s0 [TSGν1 ] < ν2.

Proof. See Proof B.1.6 in Appendix B.1.
�

We can further show that Pb(0) has a solution if, and only if, the
stochastic shortest path problem inMTmax with the cost function C, for
reaching Gν1 from s0 is less than ν2, where a solution can be constructed
in polynomial-time [14]. However, the size of the unfoldingMTmax is
exponential, more precisely it is pseudo-polynomial [M3] in the size
of the initial double-weighted MDPM because of the thresholds.

[ November 20, 2019 at 17:47 – classicthesis ]



94 underlying general problem
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Figure 4.4: UnfoldingMT of the MDPM, where we keep a copy ofM below
each leaf sT .

4.6 DISCUSSION

In this chapter, we have investigated a multi-constrained reachability
problem over Markov decision process (MDP), which originated in the
context of controllable electric devices scheduling problem (e.g., the
electric vehicle charging problem [20][M1]). In Section 4.2, the prob-
lem formulation 4.2.1 consists in finding a strategy that surely reaches
a quantitative goal (e.g., all vehicles are fully charged and the load of
the network remains below a given bound at any time), while satisfy-
ing a condition on the expected value of some random variable (e.g.,
minimizing the accelerated ageing factor of the distribution network
transformer, or the expected monetary cost of charging all electric ve-
hicles). Here, we have developed a partial solution to the general prob-
lem in Section 4.3, by providing a cartography, see Definition 4.2.4, of
the solution to a relaxed version (4.10). In Section 4.4, we identified
realistic conditions on the structure of the double-weighted MDP under
which the cartography is almost-complete. However, the case of MDPs
not satisfying these conditions remains also open, but we believe that
our approximation techniques may give interesting informations which
suffice for practical applications such as the electric vehicle charging
problem.
Our approach for the particular case shown in Section 4.5, which

amounts to explicitly keep track of the worst-case constraint on the first
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cost function, immediately extends to multi-weights with worst-case
constraints (with the same assumptions on cycles for the multidimen-
sional probability constraints problem for truncated sums). Note that
the more general setting could not be solved, which has to be put in
parallel with the undecidability result of [102]. The cartography for the
relaxed problem (4.10) requires solving sequences of intermediary opti-
mization problems, for which a method will be developed in the next
chapter. This work could be extended to several such costs as well,
e.g., by putting an assumption on the cycles under the costs functions.
A nice continuation of our work would consist in computing (approxi-
mations of) Pareto-optimal solutions in such a setting. Improving the
complexity and practicality of our approach is also on our agenda for
future work.
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5
SOLVING THE OPTIMIZAT ION PROBLEMS

Abstract:

In the previous Chapter 4, we have investigated the “cartography”

(set of values of a parameter) for which the general problem (mod-

eled in a multi-weighted Markov decision process) has or has not an

optimal solution. While a partial cartography has been obtained via

two sequences of optimization problems for randomized strategies,

in this chapter we focus on solving them. The key idea is that for

each fixed index of the sequences, we unify the optimization prob-

lems into one and define its mixed strategy counterpart, which is a

more easy problem to solve (the randomization lies on pure strate-

gies and not on local actions at every time-step). Finding an opti-

mal mixed strategy we can define here its randomized counterpart,

solving the unified problem and hence, each optimization problem.

An optimal mixed strategy is built by finding two pure strategies

by Lagrangian-based approach, namely: one strategy satisfying the

constraint and another that does not. The synthesis of an optimal

solution for the general problem can be thus guaranteed.
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LIST OF ABBREVIATIONS AND SYMBOLS

MDP Markov Decision Process
SSP Stochastic Shortest Path
P-PS Pure Strategy Primal Problem
P-MS Mixed Strategy Primal Problem
D-PS Pure Strategy Dual Problem
D-MS Mixed Strategy Dual Problem

at action at t
A finite action space inM
B(Ωx0) Borel sigma-algebra over Ωx0

Conv(S) convex hull of a discrete set S
C cost function inMT

Ci ith cost function
Cmin
i minimum Ci cost in the transitions ofM

Cmax
i maximum Ci cost in the transitions ofM

δ randomized strategy
∆ set of randomized strategies
∆[Πγ ] set of mixed strategies over Πγ

D(S) set of probability distributions over a finite set S
Ex0 expectation operator under a fixed x0

ET set of paths reaching G in at most T -steps
ET set of paths reaching GT in at most T -steps
ET complement set ET
ET complement set ET
Eα,T to be ET for α = 1 and ∅ otherwise
Eα,T to be ET for α = 1 and ∅ otherwise
G set of goal states in an MDP model
GT set of goal states in an unfolded-MDP model
idA identity function on a set A
Jα,T objective function of a minimization problem
J

p∗
α,T optimal value of Jα,T under strategies π

Jm∗
α,T optimal value of Jα,T under strategies σ
K number of pure strategies in Πγ
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λ dual variable
λ∗ optimal dual variable
Lα,T Lagrange function
L

p
α,T Lagrange dual function for pure strategies

L
p∗
α,T optimal dual value of L

p
α,T

Lm
α,T Lagrange dual function for mixed strategies

Lm∗
α,T optimal dual value of Lm

α,T

M MDP model
MT unfolding ofM with depth T
Ωx0 set of histories or paths of a system from an initial state x0

projj projection function on the j-component of a sequence
projXt projection function on X in the t-component of a path
π pure strategy
πγ γ-optimal pure strategy for SP∗st
π pure strategy playing after T -steps as πγ
π∗α optimal pure strategy for J

p∗
α,T

π∗α,λ optimal pure strategy for L
p
α,T for fixed λ

Π set of pure Markov strategies
Πγ subset of strategies π
P transition probability between states inM
PT transition probability between states inMT

Px0 probability measure on B(Ωx0)

σ mixed strategy
σ∗α,κ κ-optimal mixed strategy for Jm∗

α,T

σ∗α,ϑ,λ ϑ-optimal mixed strategy for Lm
α,T for fixed λ

σ∗α,λ optimal mixed strategy for Lm
α,T for fixed λ

σ∗α optimal mixed strategy for Lm
α,T under λ∗

σ?α,ς strategy σ∗α perturbed by a constant ς
SP∗st expected SSP-value from a state st
SPπγ

st expected SSP-value from a state st under πγ
ST augmented space of states inMT

st state in ST at t
sT vector of leafs inMT

T finite horizon, or depth
TSGi truncated sum function for G under Ci
xt system state at t
X finite set of states inM
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5.1 MOTIVATION AND CONTRIBUTIONS

The problem of interest in this chapter, comes from the two sequences
of optimization problems defined in the previous Chapter 4. We focus
on the existence and synthesis of a mixed strategy of the problem, in
which its objective function is a probability and it has a constraint
in expectation bounded above strictly by a fixed threshold. Obtaining
an optimal mixed strategy allows us to define a randomized strategy
solution for the general multi-constrained problem of Chapter 4. This
chapter explains our research reported in [M2] and in a forthcoming
paper [M6].

The optimization problem, arising from the general problem of Sec-
tion 4.2, takes as input a single-weighted unfolded-MDP, and requires
the existence and synthesis of a strategy such that:

(i) it minimizes a probability of a measurable set of paths (defined
with some condition over a finite number of steps),

(ii) it satisfies a constraint (strict inequality) between the expectation
of the accumulated sum of costs with a reachability condition and
a fixed threshold.

Such a problem is defined from the beginning by pure strategies, which
we call Pure Strategy Primal (P-PS) problem, and after we define its
mixed strategy counterpart, which we call Mixed Strategy Primal (P-
MS) problem. The latter is a convexification of the initial P-PS problem.
Finding an optimal mixed strategy can provide optimal values that are
at least as good as the values obtained with pure strategies. Interest-
ingly, it is shown in this section that an optimal mixed strategy solving
the P-MS problem, only needs to mix up to two pure strategies in order
to achieve optimality. These two pure strategies can be built iteratively
by an algorithmic technique provided in this chapter, which solve an
unconstrained problem. Our approach is based on Lagrangian-based
method to convert the problem with the constraint in expectation into
a problem without constraint by adding the constraint in the objec-
tive function, pondered by a parameter so-called dual variable. Since
the objective function (a probability) and the constraint (an expecta-
tion) are different structures, we transform the objective function into
an expectation of an accumulated sum of indicator random variables
to solve (e.g., by dynamic programming) the unconstrained problem.
To find the two pure strategies defining an optimal mixed strategy for
the problem P-MS, we need to find an optimal dual variable, which is
computed here by bisection method. After an optimal mixed strategy
is built, its randomized counterpart can be defined from an interesting
result in game theory, namely: the Kuhn’s theorem.
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5.1.1 STRUCTURE

The main contributions and structure of this section can be summarized
as follows.

(i) In Section 5.2, we revisit the main definitions of the Chapter 4
to place the work of this chapter in the dynamic of research on
the general multi-constrained problem. We focus mainly on the
synthesis of an optimal randomized strategy for each constrained
optimization problem defined in the previous chapter, in which
the objective function is a probability and the constraint is an
expectation strictly upper bounded by a threshold. Here, the two
optimization problems are unified into one.

(ii) In Section 5.3, the key idea is introduced. Since randomized and
mixed strategies are equivalent here (see Section 2.6.3), We focus
on the unified optimization problem for mixed strategies. Because
the latter are merely a convexification of pure strategies, we in-
troduce thus the pure and the mixed strategy (primal) problems.

(iii) in Section 5.4, we present the solution methodology which is
based on dual optimization [23, 24]. We show that there exit two
pure strategies (built by duality), which define an optimal mixed
strategy for the primal (mixed) problem. This strategy gives the
equality in the constraint in expectation (with the upper bound
threshold). Next, we perturb such a mixed strategy to have an-
other one that satisfies the strict inequality and to be near to
the optimum. Finally, we define a randomized strategy solution
of the initial problem through the (perturbed) mixed strategy.
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5.2 BACKGROUND

First, we fix a doubly-weighted MDP M = (X ,A,P , (Ci)2
i=1), an

initial state x0 ∈ X , a goal set G ⊂ X (which is absorbent by As-
sumption 2.6.8), and two thresholds ν1, ν2 ∈ Q. From M, we write
(Ωx0 ,B(Ωx0), Px0) the induced probability space, see Section 2.6.2 for
details.
Let T ∈ N0. From the Section 4.3.1, we consider ET ∈ B(Ωx0) as the

set of paths reaching the goal set G in at most T -steps, which is defined
as:

ET =
{
ω ∈ Ωx0 | ∃ t ≤ T : projXt (ω) ∈ G

}
, (4.1)

and has the property ET ⊆ ET+1 for each T ∈ N0. If the limit of ET
exists as T → +∞, we write it E∞. Since B(Ωx0) is a well-defined
sigma-algebra, the complement of ET is measurable and represents the
set of paths that are not reaching G in the first T -steps, i.e.,

ET =
{
ω ∈ Ωx0 | projXt (ω) /∈ G , ∀ t ≤ T

}
, (4.3)

which has the property ET ⊇ ET+1 for each T ∈ N0. Again, if the limit
of ET exists as T → +∞, we write it E∞. In addition, we have seen
that any path ω of length at least T satisfies the following1:

ω ∈ (ET ∩ TSG1 ≥ ν1) ∪ (ET ∩ TSG1 < ν1) ∪ ET , (4.5)

where for instance, (ET ∩ TSG1 < ν1) stands for all the paths reaching
the goal set G in at most T -steps and having a truncated sum TSG1 < ν1

at the first visit of G. For a precise definition of the TSG1 , see Defini-
tion 2.6.7. On the other hand, using the probability measure Px0 , the
following holds:

Px0 [ET ∩TSG1 < ν1]

≤ Px0 [(E∞ ∩TSG1 < ν1) ∪ E∞]
≤ Px0 [(ET ∩TSG1 < ν1) ∪ ET ]

(4.7)

In this way, the two underlying optimization problems come naturally
from the precedent inequality to bound the probability value that we
are looking for, i.e., to solve the problem under randomized strategies
δ ∈ ∆:

Randomized Strategy Problem

inf
δ

Pδ
x0 [ (E∞ ∩ TSG1 < ν1) ∪ E∞ ]

s.t. Eδ
x0 [TSG2 ] < ν2

1 Well understood that when we write TSG
1 ≥ ν1, we refer to the event on the r.v.

TSG
1 , i.e., to the event {ω ∈ Ωx0 |TSG

1 (ω) ≥ ν1}.
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We minimize the left and right side of (4.7) subject to the constraint
in expectation, i.e.,

(i) inf
δ

Pδ
x0 [ET ∩TSG1 < ν1] , (ii) inf

δ
Pδ
x0 [(ET ∩TSG1 < ν1) ∪ ET ]

s.t. Eδ
x0 [TSG2 ] < ν2 s.t. Eδ

x0 [TSG2 ] < ν2

where Pδ
x0 stands for the probability measure from the induced prob-

ability space (Ωδ
x0 ,B(Ωδ

x0), Pδ
x0) that is induced from the MDPM to

the MC Mδ when δ is fixed, and Eδ
x0 is the respective expectation

operator, see Section 2.6.4 for details.
With a small abuse of notations, we represent both problems in a

single one, which is parametrized by α ∈ {0, 1} as follows. We define
an event Eα,T ∈ B(Ωx0) by:

Eα,T =

{
ET if α = 1
∅ if α = 0

(4.8)

We are interested in solving the following problem for α and T fixed: Note that, by

Assumption 4.2.3,

this problem is

feasible.Jointly Randomized Strategy Problem

inf
δ

Pδ
x0 [ (ET ∩ TSG1 < ν1) ∪ Eα,T ]

s.t. Eδ
x0 [TSG2 ] < ν2

(5.1)

To solve this problem, we construct the unfolding ofM with depth T ,
and keeping a copy ofM in each leaf. The idea is to optimize from the
initial state up to the leafs. Formally, it is explained in the following.

UNFOLDING THE MDP

For T ∈ N fixed, we construct the unfoldingMT of the MDP

M =
(
X , A, P , (Ci)2

i=1

)
,

see Definition 2.6.10, by explicitly keeping track of the cost C1 in the
states ofMT , but here, keeping the cost function C2 on the transitions.
On the contrary to the particular case seen in Section 4.5, we do not
suppose here that all cycles in M under the cost function C1 have
nonnegative costs, see Assumption 4.5.2. Here, we stop at depth T

and we keep a copy ofM below each leaf ofMT . Mathematically, let
x0 ∈ X a fixed initial state ofM. The unfolding ofM used here is the
following structure:

MT =
(
ST , s0, A, PT , C

)
, (5.2)

where the space of states is:

ST = X ×
(
[T Cmin

1 , T Cmax
1 ] ∩Q

)
× {0, 1, ..., T} ,

with Cmin
1 ,Cmax

1 ∈ Q to be resp. the minimum and maximum cost
appearing in the transitions of M due to C1. In the unfolding MT ,
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the initial state is s0 = (x0, 0, 0), the set of actions is A from M, the
probability transition function between states is PT : ST ×A → D(ST ),
defined by:

PT (st, at)(st+1) =
(
P ◦ (proj1, idA)(st, at)

)
(st+1)

if proj2(st+1) = proj2(st)+C1(proj1(st), at, proj1(st+1)) and proj3(st+1) ≤
T ; and PT (st, at)(st+1) = 0 otherwise. Finally, the cost function over
transitions is C : ST ×A×ST → Q, defined by:

C = C2 ◦ (proj1, idA, proj1) . (5.3)

It is easy to see that there is a natural one-to-one correspondence be-
tween paths inM and its unfolding, and therefore, the strategies inM
can equivalently be seen as strategies inMT .

By Assumption 4.2.3, we assume that there exists a strategy allow-
ing us to reach the goal set G inM from each state, and that it satisfies
the expected shortest path objective for the truncated sum TSG2 and
the threshold ν2 from the initial state x0 in M, see Definition 2.6.23
for details. As we have seen in the Section 2.6.5, the existence of such
a strategy is reduced to the so-called SSP problem, where a pure mem-
oryless strategy π ∈ Π can be computed in polynomial-time [14, 25].
Thus, we will consider the following.

From each leaf sT inMT , more precisely, from each state proj1(sT )
inM, we minimize the total expected cost with C2 until G is reached.
Because we are interested in such an accumulated cost and C1 is kept
in the states in the unfoldingMT , we write also C to refer to the cost
C2 to be consistent with the single cost inMT , see eq. (5.3). Also for
readability, we write ν for the threshold ν2, and TSG for the truncated
sum TSG2 . The expected SSP-value from each leaf sT is denoted by:

SP∗sT := inf
π

{
Eπ
xT
[TSG ] | xT = proj1(sT )

}
. (5.4)

When the context is clear, we do not make any difference between xT
and sT . In the following, we say that for γ > 0, a strategy πγ ∈ Π is
γ-optimal for the SSP problem from sT if:

SPπγ
sT

:= Eπγ
sT
[TSG ] ≤ SP∗sT + γ , (5.5)

which is assumed to be such that:

SPπγ
s0 < ν . (5.6)

We consider that each sT is labeled with the corresponding SSP-value.
In this way, we know how much we increase (in expected cost under
C) to reach G from each leaf of the unfolding. We write m ∈ N for the
number of leafs in the unfolding and denote the vector of these as:

sT := (sT ,1, ... , sT ,m) . (5.7)

We are able now to define the optimization problem concerning the
two events ET and Eα,T , see eqs. (4.1) and (4.8) resp., but in this case on
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the unfolding keeping ofM in the leafs. First, so that the problem (5.1)
and the new structureMT are consistent, we let:

ET :=
{
ω ∈ Ωs0 | ∃ t ≤ T : projSTt (ω) ∈ GT

}
, (5.8)

as the set of paths reaching a set GT ⊂ ST in at most T -steps, where
GT is defined as:

GT := G × { y ∈ Q | y < ν1 } × {0, 1, ..., T} . (5.9)

That is, the set of states st such that its first component is in G, i.e.,
proj1(st) ∈ G, and the second one being less than ν1 in such a moment
t ≤ T . Since G is absorbent, then GT is absorbent as well, see Assump-
tion 2.6.8. On the other hand, the event ET in the eq. (4.3), stays the
same but here, in the context of the unfolding, we write it as:

ET :=
{
ω ∈ Ωs0 | (proj1 ◦ projSTt )(ω) /∈ G , ∀ t ≤ T

}
,

so that Eα,T of the eq. (4.8) is considered now as:

Eα,T :=

{
ET if α = 1
∅ if α = 0

(5.10)

Thus, the problem of interest (for randomized strategies) can be ex-
pressed as:

Jointly Randomized Strategy Problem - Unfolding

inf
δ

Pδ
s0 [ET ∪ Eα,T ]

s.t. Eδ
s0 [TSG ] < ν

(5.11)

5.3 PROBLEM FORMULATION

To solve the problem (5.11) under randomized strategies, we will de-
fine the mixed strategy counterpart. Finding an optimal mixed strategy,
we can define the optimal randomized strategy from it. For that, we
define first the pure strategy problem related to (5.11).
For γ > 0 fixed, we suppose that from each leaf in the unfolding
MT , a γ-optimal strategy of the expected SSP problem, πγ , is fixed
and always played, see eq. (5.6). The idea is to optimize from t = 0 up
to the depth T . We let Πγ the set of pure memoryless strategies, such
that π ∈ Πγ plays from t = 0 as a pure strategy π ∈ Π in MT , and
after T -steps as the strategy πγ from each leaf sT . Thus, we represent
the strategies in Πγ as:

π := ππγ ∈ Πγ .
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5.3.1 PURE STRATEGY PROBLEM

We define the optimization problem for pure strategies as follows. We
call objective function for pure strategies π ∈ Πγ , parametrized
by α ∈ {0, 1} and fixed T , the function2:

Jα,T (π) := Pπs0 [ET ∪ Eα,T ] , (5.12)

and so, the pure strategy primal problem related to (5.11) is defined
by:

Pure Strategy Primal Problem

[P-PS]<ν min
π

Jα,T (π)

s.t. Eπs0 [TSG ] < ν
(5.13)

When the context is clear, we write P-PS to refer to the problem (5.13)
without mentioning the inequality and the threshold ν. A pure strategy
π ∈ Πγ is said feasible if it satisfies the constraint in expectation. In
the following, the pure strategy optimal value will be denoted as:

J
p∗
α,T := min

π

{
Jα,T (π) | Eπs0 [TSG ] < ν

}
. (5.14)

Recall that there is a finite number of strategies. We say that a strategy
π∗α ∈ Πγ is optimal for the P-PS problem if π∗α is feasible and

Jα,T (π
∗
α) = J

p∗
α,T .

We represent in the Figure 5.1 the region generated by the values
of the objective function for pure strategies (5.12) and the respective
constraint in expectation. Denoting by K ∈ N the number of pure
strategies, this region is a discrete set of points, each one assigned to
one pure strategy πk ∈ Πγ , k = 1, ...,K. More precisely, it is the set:

K⋃
k=1

{(
Jα,T (πk), Eπk

s0 [TSG ]
)}

⊆ ([0, 1] ∩Q)×Q . (5.15)

Since by hypothesis the set Πγ is discrete, the P-PS problem (5.13)
is non-convex for K > 1. On the other hand, if there is a single strat-
egy in Πγ , i.e., if K = 1, then it is the strategy of the SSP problem
πγ which is played from the initial state s0 and satisfies the constraint
in expectation by Assumption 4.2.3. Thus, the solution of the prob-
lem (5.11) will be πγ in such a case. In the following, we suppose that
K > 1. We introduce the problem under mixed strategies in the next
section, to extend the solution set of the pure strategy problem (5.13).
This can be understood as a convexification of pure strategies.

2 To be more precise, this function should be denoted as Js0,α,T due to the fixed
parameters. However, to relax the notation, we simply write Jα,T .
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π1

π2

π3

π4

ν

Jα,T (π)

Eπ
s0 [TSG ]

Figure 5.1: Points representing the values of the objective function and the
constraint in expectation of the P-PS problem (5.13) under pure
strategies. In this figure, π1 and π2 satisfy the constraint for the
threshold ν, contrary to strategies π3 and π4.

5.3.2 MIXED STRATEGY PROBLEM

As we have seen in Section 2.6.3, a mixed strategy is a function of
the form σ : Π → [0, 1], assigning a probability distribution over pure
strategies. We define the set of mixed strategies over Πγ by:

∆[Πγ ] :=
{
σ : Πγ −→ [0, 1]

∣∣∣ K∑
k=1

σ(πk) = 1
}

. (5.16)

This is also called a simplex in RK , which is compact, convex, and of
dimension K − 1. Considering the region generated by pure strategies,
see eq. (5.15), we can represent graphically the convex combinations of
its points as is shown in the Figure 5.2. Specifically, it is the convex
hull of its K vertices, where each one is generated by a pure strategy
πk ∈ Πγ , k = 1, ...,K; i.e.,

Conv
(

K⋃
k=1

{(
Jα,T (πk), Eπk

s0 [TSG ]
)})

⊆ [0, 1]×R . (5.17)

Each point ( Jα,T (πk), Eπk
s0 [TSG ] ) has assigned a weight, in such a way

that the weights are all non-negative and sum to one. This weights
correspond to the values assigned by a mixed strategy. For each choice
of weights, the resulting convex combination is a point in the convex
hull (either in the interior, or on a vertex, or on an edge), and the whole
convex hull can be formed by choosing weights in all possible ways, i.e.,
choosing mixed strategies from ∆[Πγ ].

Based on this, we can define an extended probability space with a
new probability measure representing the joint probability distribution
due to the mixed strategies and the distribution between states, see
Section 2.6.4 for details. Thus, we can write (Ωσ

s0 ,B(Ωσ
s0), Pσ

s0) the
induced probability space when a mixed strategy σ is fixed. In addition,
from the definition of the expectation operator, see eq. (2.18), it is
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straightforward to verify that for a measurable function F and a mixed
strategy σ ∈ ∆[Πγ ], it holds:

Eσ
s0 [F ] =

K∑
k=1

σ(πk) Eπk
s0 [F ] . (5.18)

Lower Hull

Upper Hull

π1

π2

π3

π4

ν

Jα,T (π)

Eπ
s0 [TSG ]

Figure 5.2: Graphical representation of the Convex Hull (5.17).

Proposition 5.3.1

The expectation Eσ
s0 [TSG ] and Jα,T (σ) are continuous for each

σ ∈ ∆[Πγ ].

Proof. See Proof B.2.1 in Appendix B.2.
�

Note that the convex hull (5.17) can be partitioned into two convex
polygons with the continuous line [0, 1]× {ν}, generating the upper
hull and the lower hull. The upper and lower hulls represent resp. the
strategies that are satisfying and are not satisfying the constraint in the
expectation. Note that the lower hull is not empty by Assumption 4.2.3.

Coming back to the problem under consideration for pure strategies,
specifically the P-PS problem (5.13), we define the mixed strategy
primal problem for P-PS, as:

Mixed Strategy Primal Problem

[P-MS]<ν inf
σ

Jα,T (σ) (5.19)

s.t. Eσ
s0 [TSG ] < ν

where Jα,T (σ) is understood as the objective function (5.12) for
mixed strategies. Again, when the context is clear we write P-MS to
refer to the problem (5.19) without mentioning the inequality and the
threshold ν. A mixed strategy σ ∈ ∆[Πγ ] is said feasible if it satisfies
the constraint in expectation. In the following, the mixed strategy
optimal value will be denoted as:

Jm∗
α,T := inf

σ

{
Jα,T (σ) | Eσs0 [TSG ] < ν

}
, (5.20)
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and, for κ > 0, we say that a mixed strategy σ∗α,κ ∈ ∆[Πγ ] is κ-optimal
for the P-MS problem if σ∗α,κ is feasible and

Jα,T (σ
∗
α,κ) ≤ Jm∗

α,T + κ .

Note that optimizing with mixed strategies σ ∈ ∆[Πγ ] means to find
marginal probabilities σ(πk) assigned to each pure strategy πk ∈ Πγ ,
k = 1, ...,K; while the convex combination of the objective function
of the pure strategies is minimized and the convex combination of the
expected constraint is satisfied. Thus, based on eq. (5.18), the P-MS
problem (5.19) can also be written as3:

inf
σ

K∑
k=1

σ(πk) Jα,T (πk)

s.t.
K∑
k=1

σ(πk) Eπk
s0 [TSG ] < ν

(5.21)

In addition, we have the following proposition relating the optimal
values for mixed and pure strategies.

Proposition 5.3.2

Mixed strategies always provide optimal values that are at least as
good as the values obtained with pure strategies, i.e.,

Jm∗
α,T ≤ J

p∗
α,T

Proof. See Proof B.2.2 in Appendix B.2.
�

5.4 SOLUTION METHODOLOGY

Here, the solution will be obtained by solving a dual optimization
problem, see for instance [23, 24]. Recall that the P-PS problem (5.13)
is not convex under the assumption of K > 1, and using mixed strate-
gies we may enable to obtain an optimal value that is better than under
pure strategies, see Proposition 5.3.2. On the other hand, we will see
that for the P-MS problem (5.19), it is possible to construct an opti-
mal solution by duality theory [24]. Furthermore, we will see that the
optimal dual solution related to the problems P-PS and P-MS are the
same.

5.4.1 LAGRANGIAN-BASED APPROACH

We denote the Lagrange function for pure strategies π ∈ Πγ as
Lα,T (π,λ), and for mixed strategies σ ∈ ∆[Πγ ] as Lα,T (σ,λ), where
λ ∈ R+

0 . Since pure strategies can be seen as a particular case of mixed

3 For a general (continuous) formulation with mixed strategies, see [9].
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strategies (assigning probability one), we only define Lα,T (σ,λ). From
the P-MS problem in eq. (5.19), we define:

Lα,T (σ,λ) := Jα,T (σ) + λ
(

Eσ
s0 [TSG ] − ν

)
. (5.22)

Note that if we take the maximum above with respect to λ ≥ 0, we
recover the primal problem. Indeed, if a strategy is feasible, i.e., if it
satisfies the constraint in the expectation, then the best we can do is to
set λ→ 0, since the expected value in the constraint is strictly less than
ν. Thus, the Lagrange function will be equal to the objective function.
On the other hand, if the constraint is violated, i.e., the expected value
in the constraint is higher than ν for some strategy, then the supremum
on the Lagrange function will be infinite. The latter is obtained by
choosing a very large λ→ +∞. Based on the above, finding an optimal
pure or mixed strategy will be resp. equivalent to finding:

min
π

sup
λ≥0

Lα,T (π,λ) or inf
σ

sup
λ≥0

Lα,T (σ,λ) . (5.23)

However, we have no certainty of finding the solution in a simple way,
because this problem is not easy to solve. On the other hand, if we
reversed the order of the maximization over λ ≥ 0 and the minimization
over the strategies, then the problem is more tractable. Thus, we define
for λ ≥ 0 fixed the Lagrange dual function for pure and mixed
strategies resp. by:

L
p
α,T (λ) := min

π
Lα,T (π,λ)

Lm
α,T (λ) := inf

σ
Lα,T (σ,λ)

(5.24)

Concerning the optimal strategies for the above problems, we say first
that a pure strategy π∗α,λ ∈ Πγ is optimal for L

p
α,T (λ) if:

Lα,T (π
∗
α,λ,λ) = L

p
α,T (λ) ,

and second, for ϑ > 0, we say that a mixed strategy σ∗α,ϑ,λ ∈ ∆[Πγ ] is
ϑ-optimal for Lm

α,T (λ), if:

Lα,T (σ
∗
α,ϑ,λ,λ) ≤ Lm

α,T (λ) + ϑ .

However, as we will see after in the Proposition 5.4.4, the existence of
at least one mixed strategy σ∗α,λ such that Lα,T (σ∗α,λ,λ) = Lm

α,T (λ), is
guaranteed.
In the following, we show the monotonicity of the expected value in

the constraint. This is important, since taking a nondecreasing sequence
of the dual variables, the expected value will descend monotonically to
the constraint value and in such a way, we will construct an optimal
solution.
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Lemma 5.4.1

Suppose that we can obtain π∗α,λ ∈ arg min
π

Lα,T (π,λ) for each

λ ≥ 0. Then, λ 7→ E
π∗α,λ
s0 [TSG ] is nonincreasing.

Proof. See Proof B.2.3 in Appendix B.2.
�

We introduce now the pure strategy dual problem related to the
P-PS problem (5.13), and the mixed strategy dual problem related
to the P-MS problem (5.19) resp. by:

Pure and Mixed Strategy Dual Problems

[D-PS]ν sup
λ≥0

L
p
α,T (λ)

[D-MS]ν sup
λ≥0

Lm
α,T (λ)

(5.25)

When the context is clear we write D-PS and D-MS to refer resp.
to the above problems without mentioning the threshold ν. In the fol-
lowing, the optimal dual value for pure and mixed strategies will be
denoted resp. as:

L
p∗
α,T := sup

λ≥0
L

p
α,T (λ)

Lm∗
α,T := sup

λ≥0
Lm
α,T (λ)

(5.26)

and if there exists λ∗ ≥ 0 optimal for the above problems, we write:

L
p
α,T (λ

∗) = L
p∗
α,T

Lm
α,T (λ

∗) = Lm∗
α,T

We will show that effectively, the optimal dual value λ∗ is the same for
the two dual problems (5.25). It turns out that the dual problems are al-
ways concave, even when the initial problem is not convex [24]. Indeed,
the set {λ ≥ 0} is convex and the minimum of the Lagrange functions
are concave functions of λ. The latter holds because in eq. (5.24), each
function is pointwise minimum of an affine function. Formally, we have
the following.

Proposition 5.4.2

The Lagrange functions λ 7→ Lα,T (π,λ) and λ 7→ Lα,T (σ,λ) are
linear on λ ≥ 0. Moreover, the Lagrange dual functions λ 7→
L

p
α,T (λ) and λ 7→ Lm

α,T (λ) are concave.

Proof. See Proof B.2.4 in Appendix B.2.
�
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In this way, maximizing the Lagrange dual function over the values
of λ ≥ 0 is a more tractable problem than solving (5.23). An impor-
tant result connecting primal and dual problems is the weak duality
theorem, which states the following [23].

Lemma 5.4.3

Let J
p∗
α,T and Jm∗

α,T resp. the optimal values of the P-PS and P-MS
problem, see eq. (5.14) and eq. (5.20). Then,

L
p∗
α,T ≤ J

p∗
α,T and Lm∗

α,T ≤ Jm∗
α,T (5.27)

Proof. See Proof B.2.5 in Appendix B.2.
�

The non-negative difference between the above values (5.27), for the
pure or mixed problem, is known as duality gap; and if it is zero, we
say that there is strong duality, while otherwise, we say that there is
only a weak duality. Strong duality holds if the optimization problem
is convex and a feasible strategy exists (i.e., it satisfies the constraint in
expectation). In that case, the solution of the primal and dual problems
are equivalent, in the sense that an optimal strategy can be constructed
by the (optimal) Lagrange dual function. However, it is not the case
for the D-PS and P-PS problems, but it holds for the problems D-MS
and P-MS as shown in the following.

Proposition 5.4.4

There is strong duality for mixed strategy problems D-MS and
P-MS, i.e.,

Lm∗
α,T = Jm∗

α,T . (5.28)

Moreover, for λ ≥ 0 fixed, there exists σ∗α,λ ∈ ∆[Πγ ] such that:

Lα,T (σ
∗
α,λ,λ) = Lm

α,T (λ) . (5.29)

Proof. See Proof B.2.6 in Appendix B.2.
�

Thus, there is no duality gap for mixed strategies and the existence
of at least one mixed strategy reaching the minimum in the Lagrange
function Lα,T (σ,λ) is guaranteed for λ ≥ 0 fixed. On the other hand,
the optimal dual values of the dual problems for pure and mixed strate-
gies, see eq. (5.26), are the same as shown below.
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Proposition 5.4.5

Consider the dual problems D-PS and D-MS of (5.25). Then,

L
p∗
α,T = Lm∗

α,T (5.30)

Proof. See Proof B.2.8 in Appendix B.2.
�

In the following, we consider a threshold ν ′ ≤ ν to show an equiv-
alence between two problems. More precisely, to show how to find an
optimal solution for each one. The first one is the mixed strategy primal
problem (5.19), but considering the inequality in the constraint in ex-
pectation to be not strict with threshold ν ′, as the one for the [P-MS]<ν
problem with ν. Wherefore, such a problem is denoted by [P-MS]≤ν′ .
The second problem is naturally understood as the underlying mixed
strategy dual problem (5.25), but considering the threshold ν ′. So, this
is denoted as [D-MS]ν′ . The following proposition shows how to find
a solution for the problems [P-MS]≤ν′ and [D-MS]ν′ . Analysing such
problems, we will proceed to show how to find a solution for the original
[P-MS]<ν problem. The feasibility of the [P-MS]≤ν′ problem depends
on the threshold ν ′, which will also be explained a little further.

Proposition 5.4.6

Let σ∗α ∈ ∆[Πγ ], λ∗ ≥ 0 and ν ′ ≤ ν a threshold. The following
statements are equivalent:

(i) σ∗α is an optimal mixed strategy solution of the [P-MS]≤ν′
problem and λ∗ is an optimal dual solution of the underlying
[D-MS]ν′ problem.

(ii) σ∗α ∈ arg min
σ

Lα,T (σ,λ∗), E
σ∗α
s0 [TSG ] ≤ ν ′, and

λ∗
(

Eσ∗α
s0 [TSG ] − ν ′

)
= 0 (5.31)

Proof. See Proof B.2.9 in Appendix B.2.
�

We focus in the sufficient conditions of the previous proposition to
find an optimal solution for the [P-MS]≤ν′ problem. Recall that we
aim to find a mixed strategy such that the constraint in expectation is
satisfies with the strict inequality for the threshold ν. Before relating
such problems, we make some comments.
First, note that if we find a strategy σ∗α ∈ arg minσ Lα,T (σ,λ∗), such

that E
σ∗α
s0 [TSG ] ≤ ν ′ for λ∗ = 0, then σ∗α will be a solution for the

[P-MS]≤ν′ problem. However, this does not provide much information
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to effectively solve such a problem. More precisely, the following holds
under the [P-MS]≤ν′ context:

Jm∗
α,T = inf

σ

{
Jα,T (σ) | Eσs0 [TSG ] ≤ ν ′

}
(by definition (5.20) of the mixed strategy optimal value)

= inf
σ

{
Lα,T (σ, 0) | Eσs0 [TSG ] ≤ ν ′

}
(by definition (5.22) of the Lagrange function)

Thus, when considering a dual variable to be λ∗ = 0, and by using the
fact that a mixed strategy exists for such a dual variable by Proposi-
tion 5.4.4, i.e., a strategy σ∗α,0 such that Lm

α,T (0) = Lm
α,T (σ

∗
α,0, 0), and

satisfying the constraint in expectation, then σ∗α,0 satisfies the suffi-
cient conditions of the Proposition 5.4.6 and thus, σ∗α,0 and λ∗ = 0 are
resp. a solution of the problems [P-MS]≤ν′ and [D-MS]ν′ . However, we
notice that it is the same as solving directly the [P-MS]≤ν′ problem
as is shown above. That is why we will focus in strictly positive dual
variables λ∗ > 0.

Concerning the feasibility of the [P-MS]≤ν′ problem, i.e., the exis-
tence of at least one strategy satisfying the not strict inequality in the
constraint in expectation with the threshold ν ′ ≤ ν, we have the fol-
lowing. First, we know there is at least one feasible strategy for the
[P-MS]<ν problem. More precisely, the strategy πγ of the expected
SSP-problem (5.6), which gives an expected SSP-value from the initial
state s0, denoted here by SPπγ

s0 , less than ν. We can thus consider the
threshold ν ′ = ν − ς, where

0 ≤ ς ≤ ν − SPπγ
s0 . (5.32)

In such a way, the problem [P-MS]≤ν′ is feasible as well.
Based on these observations and on Proposition 5.4.6, a sufficient

condition for optimality under mixed strategies to solve the [P-MS]≤ν′
problem, can be written as follows.

Corollary 5.4.7

Let λ∗ > 0 and ν ′ = ν − ς a threshold, where ς satisfies the
eq. (5.32). Suppose that there is σ∗α ∈ arg min

σ
Lα,T (σ,λ∗) such

that:

Eσ∗α
s0 [TSG ] = ν ′ . (5.33)

Then, σ∗α is an optimal mixed strategy solution of the [P-MS]≤ν′
problem, λ∗ is an optimal dual solution of the underlying [D-MS]ν′
problem, and the following holds:

Lm∗
α,T = Lm

α,T (λ
∗) = L

p∗
α,T = L

p
α,T (λ

∗) = Jm∗
α,T = Jα,T (σ

∗
α) ≤ J

p∗
α,T

Proof. See Proof B.2.10 in Appendix B.2.
�
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The idea is then to find a mixed strategy σ∗α satisfying the hypothesis
of the Corollary 5.4.7 to solve the [P-MS]≤ν′ problem. Note that in such
a case, this strategy gives an expected value in the constraint equal to
ν ′ as is show the Figure 5.3. More precisely, it holds:

Eσ∗α
s0 [TSG ] = ν ′ = ν − ς ≤ ν . (5.34)

We analyze three cases concerning the fixed value of ς to define the
[P-MS]≤ν′ problem:

(1) If ς = ν − SPπγ
s0 above, the expectation is the expected SSP-

value and then, the solution to the [P-MS]≤ν′ problem will be the
pure strategy of πγ , which exists by Assumption 4.2.3. In such
a case, this strategy satisfies the constraint in expectation for ν,
but could not give the optimal value for the [P-MS]<ν problem.

(2) If 0 < ς < ν − SPπγ
s0 , then the expected value under a mixed

strategy that we focus (equal to ν ′ = ν − ς), will be between
the expected SSP-value and ν. Then, such a mixed strategy may
be constructed with another (better) pure strategy than the one
of the expected SSP-problem. In other words, if there is a pure
strategy πα such that:

SPπγ
s0 < Eπα

s0 [TSG ] < ν ,

then we can eventually use πα to construct a solution of the
[P-MS]≤ν′ problem, with ς satisfying the following:

0 < ς ≤ ν − Eπα
s0 [TSG ] .

Note in particular that if ς is fixed to be ς = ν − Eπα
s0 [TSG ],

the solution of the [P-MS]≤ν′ problem could be the pure strategy
πα, provided that πα ∈ arg minσ Lα,T (σ,λ∗) for a dual variable
λ∗ > 0.

(3) If ς = 0, then the [P-MS]≤ν′ problem is the same as the [P-MS]≤ν
problem. By using the Corollary 5.4.7, we could have a mixed
strategy σ∗α such that E

σ∗α
s0 [TSG ] = ν and then, this strategy does

not solve the original [P-MS]<ν problem, since the inequality in
the constraint under σ∗α is not strict. However, as we will see in
next, an optimal strategy can be constructed as a combination of
at most two pure strategies: one satisfying the strict inequality in
the constraint under ν and another one that does not. Combining
them, we will have a mixed strategy σ∗α such that E

σ∗α
s0 [TSG ] =

ν. We can thus “perturb” the solution, defining another mixed
strategy satisfying the strict inequality in the constraint from
such a strategy and to be near to the optimum, more precisely,
to define a κ-optimal strategy, for κ > 0 small enough. We focus
in this approach and we will quantify the perturbation-value in
what follows.
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Proposition 5.4.8

There exist two pure strategies π′α, π′′α ∈ arg minπ Lα,T (π,λ∗) for
a dual variable λ∗ > 0, defining a mixed strategy σ∗α ∈ ∆[ {π′α, π′′α} ]
to be a solution of the [P-MS]≤ν problem.

Proof. See Proof B.2.11 in Appendix B.2.
�

Based on the previous proposition and the Corollary 5.4.7, we claim
that the two pure strategies satisfy E

π′′α
s0 [TSG ] < ν ≤ E

π′α
s0 [TSG ] (see

Proof B.2.11 for details). So that an optimal mixed strategy to solve the
[P-MS]≤ν problem is of the form σ∗α ∈ ∆[ {π′α, π′′α} ] ⊆ ∆[Πγ ], which
combines convexly over π′α and π′′α, i.e., σ∗α(π′α) + σ∗α(π

′′
α) = 1, and

also, by the Corollary 5.4.7, be such that E
σ∗α
s0 [TSG ] = ν. Based on

this and the eq. (5.18), it is easy to see that σ∗α is to be equal to:

σ∗α(π
′
α) =

ν − E
π′′α
s0 [TSG ]

E
π′α
s0 [TSG ] − E

π′′α
s0 [TSG ]

σ∗α(π
′′
α) =

E
π′α
s0 [TSG ] − ν

E
π′α
s0 [TSG ] − E

π′′α
s0 [TSG ]

(5.35)

Note that σ∗α gives an expected value in the constraint to be equal
to ν. However, we want a strategy giving the strict inequality in the
constraint to solve the [P-MS]<ν problem. To do that, we perturb the
mixed strategy σ∗α as it is shown below.
Considering the expected value under the pure strategy π′′α, which is

strictly less than ν, we define ς to be:

0 < ς < ν − Eπ′′α
s0 [TSG ] .

Fixing one on these ς, based on the mixed strategy σ∗α we define σ?α,ς ∈
∆[ {π′α, π′′α} ], as the strategy:

σ?α,ς(π
′
α) := σ∗α(π

′
α) −

ς

E
π′α
s0 [TSG ] − E

π′′α
s0 [TSG ]

σ?α,ς(π
′′
α) := σ∗α(π

′′
α) +

ς

E
π′α
s0 [TSG ] − E

π′′α
s0 [TSG ]

(5.36)

It is straightforward to show that σ?α,ς satisfying the expected value to
be E

σ?α,ς
s0 [TSG ] = ν − ς. The following also holds.

Proposition 5.4.9

For any κ > 0, the mixed strategy σ?α,ς defined in (5.36) is κ-optimal
for the [P-MS]<ν problem, i.e.,

Jα,T (σ
?
α,ς) ≤ Jm∗

α,T + κ .

Proof. See Proof B.2.12 in Appendix B.2.
�
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Eσ∗
s0 [TSG ] = ν

Eσ?
s0 [TSG ] = ν − ς

Jα,T (σ?)− Jα,T (σ∗)

σ∗α

σ?α

π′′α

π′α

Jα,T (π)

Eπ
s0 [TSG ]

Figure 5.3: Expected values of the strategies σ∗α and σ?α. The strategy σ∗α
is built by combining the pure strategies π′α and π′α. The other
strategy σ?α is built by considering σ∗α but perturbed by a constant
ς.

In summary, we have by Proposition 5.4.4 that for mixed strategies,
solving the dual problem is equivalent to solving the primal problem,
i.e., the D-MS and P-MS problems are equivalents. In addition, by the
Proposition 5.4.5, solving the D-MS problem is the same as solving
the D-PS problem of pure strategies, i.e., the primal problem for pure
strategies and the problem for mixed strategies have the same optimal
dual solution λ∗. Thus, to find an optimal mixed strategy strategy
solution for the P-MS problem, we find the dual variable λ∗ from the
dual problem under feasible pure strategies. Using the Corollary 5.4.7
by restricting such a dual variable to be positive, we find two pure
strategies, one satisfying the constraint in the expectation and another
one that does not. In such a way, we combine them to construct the
optimal mixed strategy, which gives the equality in constraint. Since we
need a strategy giving the strict inequality in the constraint, we slightly
perturbed such a mixed strategy to have another one that effectively
satisfies the strict inequality and to be κ-optimal, for κ > 0 small
enough.

5.4.2 ALGORITHMIC APPROACH

In this section, we provide a way to compute a pure strategy reach-
ing the minimum in the Lagrange function for a fixed dual variable,
i.e., how to solve (5.24) for pure strategies. Thus, we can built a mixed
strategy in an iterative way to converge to the optimum shown in Propo-
sition 5.4.8. More precisely, this will help us to compute the strategies:

π∗α,λn
∈ arg min

π
Lα,T (π,λn) and π∗

α,λn
∈ arg min

π
Lα,T (π,λn)

for fixed dual variables, λn and λn, at each iteration n ∈ N, to construct
the mixed strategy of the Proposition 5.4.8, where

λn ↗ λ∗ and λn ↘ λ∗ as n→ +∞ ,
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are constructed, e.g., by the so-called bisection method, to approach
the optimal dual variable for feasible pure strategies:

λ∗ = sup
{
λ ≥ 0 | E

π∗α,λ
s0 [TSG ] ≤ ν , π∗α,λ ∈ arg min

π
Lα,T (π,λ)

}
.

See Proof B.2.11 for details.

Proposition 5.4.10

For λ ≥ 0 fixed, a pure strategy π∗α,λ ∈ arg minπ Lα,T (π,λ) can
be computed by the classical Bellman backward recursion.

Proof. See Proof B.2.13 in Appendix B.2.
�

We can thus built a mixed strategy at each iteration n ∈ N, as is
shown below.

Proposition 5.4.11

Let n ∈ N. For 0 < λn ≤ λn fixed, let σ∗α,n ∈ ∆[{π∗α,λn
,π∗

α,λn
}] a

mixed strategy combining convexly between the pure strategies:

π∗α,λn
∈ arg min

π
Lα,T (π,λn) and π∗

α,λn
∈ arg min

π
Lα,T (π,λn) ,

and defined as:

σ∗α,n(π
∗
α,λn

) =
ν − E

π∗
α,λn
s0 [TSG ]

E
π∗α,λn
s0 [TSG ] − E

π∗
α,λn
s0 [TSG ]

σ∗α,n(π
∗
α,λn

) =
E
π∗α,λn
s0 [TSG ] − ν

E
π∗α,λn
s0 [TSG ] − E

π∗
α,λn
s0 [TSG ]

(5.37)

Then, Jα,T (σ∗α,n) −→ Jm∗
α,T as n → +∞. Moreover, there exists

a constant E ∈ R+, such that the number of iterations needed
n ∈ N to achieve a given tolerance ε > 0, is such that:

n ≥ log2

(
E

(λ0 − λ0)

ε

)

Proof. See Proof B.2.14 in Appendix B.2.
�

The way in which the mixed strategy σ∗α,n is computed, it is shown
in the Algorithm 1.
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Input : α ∈ {0, 1}, T ∈ N, λ+ > 0, ε > 0, πγ .
Output : Mixed strategy σ∗α,n.

1 (λ0,λ0) ← (0,λ+)
2 πλ0

← π∗δ,α ∈ arg min
π

Jα,T (π)

3 if E
πλ0
s0 [TSG ] ≤ ν then

4 return πλ0

5 πλ0
← π∗

α,λ0
∈ arg min

π
Lα,T (π,λ0)

6 while E
π
λ0
s0 [TSG ] ≥ ν do

7 if E
π
λ0
s0 [TSG ] = ν then

8 return πλ0

9 λ0 ← λ+ > λ0

10 πλ0
← π∗

α,λ0
∈ arg min

π
Lα,T (π,λ0)

11 E0 ← ε
(λ0−λ0)

12 n ← 0

13 while log2

(
2En (λ0−λ0)

ε

)
> n do

14 n ← n+ 1

15 λn ←
λn−1+λn−1

2

16 πλn ← π∗α,λn ∈ arg min
π

Lα,T (π,λn)

17 case E
πλn
s0 [TSG ] = ν do

18 return πλn

19 case E
πλn
s0 [TSG ] > ν do

20 (λn,λn) ← (λn,λn−1)

21 (πλn ,πλn) ← (πλn ,πλn−1
)

22 case E
πλn
s0 [TSG ] < ν do

23 (λn,λn) ← (λn−1,λn)
24 (πλn ,πλn) ← (πλn−1

,πλn)

25 En ←

(
E
πλn
s0 [TSG ]− ν

)(
ν−E

π
λn
s0 [TSG ]

)
E
πλn
s0 [TSG ]−E

π
λn
s0 [TSG ]

26
(
σ∗α,n(πλn),σ

∗
α,n(πλn)

)
←
(

En

E
πλn
s0 [TSG ]−ν

, En

ν−E
π
λn
s0 [TSG ]

)
27 return σ∗α,n

Algorithm 1: Algorithmic approach to compute the mixed
strategy σ∗α,n. We initialize with the problem under α ∈ {0, 1},
a depth T of the unfolding MT (which is implicit here), an
initial dual variable λ+, an accuracy level wanted ε for stop-
ping criteria in terms of convergence, and a pure strategy πγ
optimal for the SSP problem.
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5.4.3 FROM MIXED TO RANDOMIZED SOLUTION

To finish this Chapter 5, we define here the randomized counterpart
of the mixed strategy σ?α found above. This can be done by using the
Kuhn’s Theorem 2.6.11 mentioned in the Section 2.6.3.

In our context, the unfolded-MDP can be seen as a game in extensive
form with two players: the scheduling controller and the “Nature”. The
latter is a player who has no strategic interests in the outcome (or paths)
in the system and plays randomly. Thus, the probability transition
between state can be seen as a fixed randomized strategy of the Nature.
Now, noticing that the strategy σ?α is a convex combination of the pure
strategies π′α and π′′α, let xt a fixed state in the unfolded-MDP. An
equivalent randomized strategy for σ?α can be defined for each action
at available at xt, from eq. (2.26), as:

δ(xt)(at) = σ?α(π
′
α)1π′α(xt)(at) + σ?α(π

′′
α)1π′′α(xt)(at) ,

where 1π(ωt)(at) = 1 if π(ωt) = at, and 1π(ωt)(at) = 0 otherwise. Of
course, Kuhn’s theorem is more general since a randomized strategy can
be defined over sets of information. It is straightforward to show that
this strategy satisfies the requirements of the optimization problems
defined in Chapter 4.

5.5 DISCUSSION

In this chapter we have investigated the existence and synthesis of a
solution for an optimization problem under mixed strategies. Particu-
larly, in an optimal mixed strategy solving a problem that comes from
Chapter 4, in which its objective function is a probability and the con-
straint is an expectation upper bounded by a fixed threshold. Obtaining
a mixed strategy here, it allows us to define a randomized strategy so-
lution for the general multi-constrained problem of Chapter 4. An opti-
mal mixed strategy is obtained by solving a dual optimization problem.
This is built by combining up to two pure strategies, namely: one which
satisfies the constraint in the expectation and another that does not.
This mixed strategy gives the equality in the constraint in expectation
(with the upper bound threshold). Since we focus in a strategy with the
strict inequality in the constraint, we perturb such a mixed strategy to
have another one that effectively satisfies the strict inequality and to
be close to the optimum. With this strategy in mind, we use a theorem
from game theory (namely, the Kuhn’s theorem, that can be applied
in this context), to define a randomized strategy solution of the initial
problem.
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Part III

D E C E N T R A L I Z E D M O D E L I N G

This part presents the decentralized approach of the power
consumption scheduling problem. The scheduling strategies
for consumers are controlled and built by several decision-
makers, each of them representing a consumer.
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6
DECENTRAL IZED POWER CONSUMPTION
SCHEDUL ING PROBLEM

Abstract:

In this chapter, we focus on the decentralized modeling of the power

consumption scheduling problem studied in Chapter 3. The con-

sumption strategies are computed in this chapter by several decision-

makers, each of them representing a consumer. The key idea to

build the strategies is to use a technique so-called the sequential

best response dynamics for each approach proposed in Chapter 3.

At each iteration, a decision-maker updates its own strategy based

on some information about the total consumption that is based on a

deterministic or stochastic forecast of the noncontrollable part and

the fixed consumption strategies of the others. To conduct the cor-

responding analysis, a common cost function has to be minimized,

which represents the impact of the consumption operations on the

distribution network.
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LIST OF ABBREVIATIONS AND SYMBOLS

DN Distribution Network HS Hot-Spot (temperature)
EVs Electric Vehicle(s) PaC Plug-and-Charge
SNR Signal-to-Noise Ratio AAF Accelerated Aging Factor
MDP Markov Decision Process SSP Stochastic Shortest Path
ECP Electrical Consumption PoD Price of Decentralization

Payment °C Degree Celsius
min minutes h hour
V Volt kV Kilovolt
kW Kilowatt kWh Kilowatt-hour
kVA Kilovolt-Ampere km Kilometres
dB decibel ¢ cents of Australian dollar

Ai finite action space inMi

C cost function of the power consumption problem
Cπx1 cost function under a fixed π and x1

Ci cost function, instantaneous energy of consumer i
Ci cost function between transitions inMi,T

∆t time-step duration of each time-slot t
D(S) set of probability distributions over a finite set S
ε` risk in probability of exceeding `max

εx risk in probability of exceeding xmax

ei energy demand of consumer i
Ei aggregate energy space of ei
Eπix1 expectation operator under a fixed πi and x1

f evolution law of the system state
Gi set of goal states in an MDP model of i
i consumer
I number of consumers
I set of consumers
idA identity function on a set A
`min
i minimum power of consumer i
`max
i maximal power of consumer i
`i,t controllable load of consumer i at t
Li,t function representing `i,t
`i controllable load profile of i of length T
Li function representing `i
`0,t real noncontrollable load at t
`0 real noncontrollable load profile of length T
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˜̀
0,t deterministic forecast of `0,t at t˜̀
0 deterministic forecast profile of length T
L̃0,t stochastic forecast of `0,t at t
L̃0 stochastic forecast profile of length T
`max maximal power of the DN-transformer
`t total load consumption at t˜̀−i,t total load consumption except i under ˜̀0,t at t
L̃−i,t function representing ˜̀−i,t at t
L̃−i profile of length T where each element is L̃−i,t
L̃t function representing the total load under L̃0 at t
Li total load consumption space from the viewpoint of i
m round or iteration of the BRD
Mi MDP model of i
Mi,T unfolding ofMi with depth T
N (µ,σ2) Gaussian (normal) distribution with mean µ and variance σ2

ωi,t history or path of length t of the system available for i
Pi transition probability between states inMi

Pi,T transition probability between states inMi,T

P0 probability distribution of L̃0,t

P−i probability distribution of L̃−i,t
projj projection function on the j-component of a sequence
π scheduling strategy vector of length I
π−i scheduling strategy vector except the strategy of i
πi scheduling strategy profile of i
πrp
i a πi built by rectangular profile method
πdc
i a πi built by dynamic charging method
πvf
i a πi built by valley-filling method

st state in Si,T at t
St state process inMi,T representing st
Si,T augmented space of states inMi,T

t time-slot
tstart
i time at which the consumption starts for i
tstop
i time at which the consumption ends for i
T finite horizon time
T set of time-slots
xmax upper bound of the system state values
xt system state at t
x̃t system state under ˜̀0,t at t
X̃t function representing the system state under L̃0 at t
X finite set of system states
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6.1 MOTIVATION AND CONTRIBUTIONS

Motivated by Chapter 3, we aim to solve the power consumption
scheduling problem in a decentralized way. Such a problem consists
in a scenario in which several controllable consumption entities (also
called controllable electric devices or simple consumers here) have a
certain energy demand and want to have this demand to be fulfilled
before a set deadline. The simple instance of such a scenario used for
numerical purposes in this chapter, is the case of a pool of Electric
Vehicles (EVs) which have to recharge their battery to a given state of
charge within a given time window set by the EV owner. Thus, each
consumer has to choose at any time-step the consumption power so
that the accumulated energy reaches a desired level.

While in Chapter 3 the power consumption scheduling strategies of
consumers were assumed to be centralized (i.e., a single entity has con-
trolled and built their strategies), we assume here that the operations
must be decentralized. First, each consumer is free to make its own de-
cision in terms of choosing its consumption power. Second, it has to be
decentralized information-wise, i.e., the scheduling algorithm or proce-
dure (when it is implemented by a machine, which is the most common
scenario), only relies on local or scalable information. In this way, each
consumer is treated as a decision-maker in this chapter, and each one
needs a certain information about the total consumption, which is based
on a deterministic or stochastic forecast of the noncontrollable part and
the fixed consumption of the others. A typical scenario considered here
is that a day-head decision has to be made and some knowledge (im-
perfect deterministic/stochastic forecast on the noncontrollable loads)
is available to schedule. To design appropriate decentralized strategies
in each approach, the key idea is to use an iterative technique so-called
sequential Best Response Dynamics (BRD), which can be seen as a
generalization of well-known iterative techniques (see [79] for example).
This technique acts as a coordination mechanism among the decision-
makers to ensure that the scheduled strategies are consistent with the
problem.

6.1.1 STRUCTURE

The main contributions of this chapter explain our work reported in [M4]
and in a forthcoming paper [M5]. This and the structure of this chapter
can be summarized as follows.

(i) In Section 6.2, we recapitulate the general mathematical formula-
tion of the power consumption scheduling problem studied in the
Chapter 3, but in a decentralized point of view. The objective is
to minimize the impact of total load consumption on the Distribu-
tion Network (DN), where the scheduling strategies of consumers
are chosen by several decision-makers (each of them representing
a consumer). Such an impact is taken into account by an objec-
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tive function of interest that can be deterministic or stochastic
depending of the noncontrollable load consumption forecast.

(ii) In Section 6.3, a deterministic forecast of the noncontrollable con-
sumption is assumed for the consumption scheduling procedure.
In this case, the strategies of consumers are reduced to be param-
eter vectors in which each component is a consumption power.
Unlike the Section 3.3, the three sorts of strategies are built here
based on sequential BRD. These can be summarized as follows.
First, the consumption strategies are imposed to be non-interruptible
and correspond to rectangular windows. Therefore, each strategy
boils down to choosing the time instant at which the consumption
operation should start.
Second, each power consumption does not need to be binary any-
more but can be take arbitrary values. In this case, the dynamic
structure of the scheduling problem is taken into account explic-
itly and the state of the system can be thus controlled. For in-
stance, it is possible to satisfy constraints over the system state
that is not very suitable for the previous method (it is less flexible
since the consumption is uninterrupted).
Third, a valley-filling algorithm replaces the scheduling problem
under consideration (see [106] for example), which is based only
on the minimization of the total consumption and not on any
other measure of impact over the DN.

(iii) In Section 6.4, the key idea is to take into account forecast errors.
For this, a stochastic forecast of the noncontrollable consumption
is accounted for, leading to the use of Markov decision processes
(see [96] for example) to schedule the controllable loads. The re-
sulting strategies can therefore be adapted to different noncon-
trollable consumption events, i.e., more robust to forecast noises.

(iv) Numerical results are shown in Section 6.5, where the objective
function of the scheduling problem models the degradation of
the DN. First, in terms of the DN-transformer lifetime, as it is
shown in Section 6.5.1, and second, in terms of the total electricity
consumption payment, as it is shown in Section 6.5.2.
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6.2 PROBLEM FORMULATION

We give here a brief summary of the formulation of the problem
presented in Section 3.2, but turning to the decentralized case. The
formulation of the problem can be explained as follows.

LOAD CONSUMPTION

We start by considering a Distribution Network (DN) comprising one
transformer (referred as DN-transformer here), in which two groups
of electric devices are connected: a set I = {1, ..., I}, I ∈ N, of con-
trollable electric devices (also called consumers), e.g., Electric Vehicles
(EVs), dishwashers, water-heaters, etc.; and a set of other electric de-
vices that are assumed to induce a load consumption which is inde-
pendent of the controllable electric devices and therefore referred to as
the noncontrollable load consumption (e.g., heating, lighting, cooking,
etc.). Time is assumed to be slotted and indexed by t ∈ T = {1, ...,T},
T ∈ N. For example, if the whole time window under consideration is
from 5 pm to 8 am (of the next day), there are thirty time-slots (T = 30)
whose duration is 30 min, on which a consumer may be active or not.
The extent to which a consumer i ∈ I is active on time-slot t ∈ T , it
is measured by the controllable load consumption that it generates,
which is denoted by `i,t ∈ R+

0 . The corresponding noncontrollable
load consumption is denoted by `0,t ∈ R+

0 and its profile over time set
T is expressed by:

`0 = (`0,t)t∈T . (3.1)

The total load consumption generated on the DN-transformer at time t
can be then expressed by:

`t = `0,t +
∑
i∈I

`i,t . (3.3)

A natural constraint on the DN-transformer is due to its maximal ad-
missible power, e.g., the maximal power of a typical DN-transformer in
a urban district is 90 kW. The total load consumption has to be then
lower than the maximal power denoted here by `max ∈ R+, i.e.,

`t ≤ `max . (3.4)

The main difference with Chapter 3 is that here, there is not a central-
ized scheduler choosing the power loads of consumers. In this chapter,
each consumer i ∈ I is understood as an individual decision-maker who
updates its own controllable load profile:

`i := (`i,t)t∈T , (6.1)

so that its energy demand, denoted by ei ∈ R+ (e.g., it is typically
ei = 24 kWh for an EV), to complete a corresponding task has to be
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satisfied before time-horizon t = T . Mathematically, it is required that:

∆t
∑
t∈T

`i,t ≥ ei , (3.5)

where ∆t is the duration of a time-slot, e.g., if each t represents 30 min,
then ∆t = 0.5 h. In addition, it is required that the power load of each
consumer i is at least a minimum power, denoted by `min

i ∈ R+
0 , and The minimum

power refers when,

e.g., i is switched

off but is designed

to draw some load

in standby mode.

that it does not exceed a maximal power, denoted by `max
i ∈ R+, at

which i can be consuming, i.e.,

`min
i ≤ `i,t ≤ `max

i . (3.6)

Figure 6.1 illustrates a typical scenario that is encompassed by the
considered model. This figure represents a set of consumers (each of
them is represented by an EV) which are connected to a DN-transformer.
The household is understood as the noncontrollable part of the total
load consumption. Each EV is a decision-maker who chooses separately
its own controllable load profile, see eq. (6.1), i.e., in a decentralized
manner. For instance, four sorts of consumption (charging models) of
an EV i are represented in Figure 3.2, namely: rectangular, continuous
and discrete charging. In the first case, the controllable load `i,t can
only take two values: either `i,t = `min

i or `i,t = `max
i , and also when

`i,t = `max
i , the consumption operation is uninterrupted. This method

is assumed in Section 6.3.1. In the second case, `i,t takes any arbitrary
value between `min

i and `max
i , see eq. (3.6). This method of consump-

tion is assumed in Section 6.3.2 and Section 6.3.3. The last case is a
discretization of the type of previous consumption, which is assumed
in Section 6.4.1.

Figure 6.1: A typical scenario which is captured by the model analyzed in
this chapter. Each EV controls its charging power profile to reach
its demanded state of charge, for instance for its next trip. The
charging consumption is based on some coordination mechanism
among the EVs and some knowledge about the day-ahead (aggre-
gated) noncontrollable part of the total consumption.
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SYSTEM STATE

For the system of interest (namely, the DN), the state is denoted by
xt (e.g., this can represent the total electricity bill, the DN-transformer
temperature, etc.). In this chapter, it is required to remain the state of
the system upper bounded by a given threshold, which is by xmax ∈ R+,
i.e.,

xt ≤ xmax . (3.7)

A general (nonlinear for instance) model assumed in this chapter for
the evolution law of the system state is expressed by:

xt+1 = f(xt, `1,t, ..., `I,t, `0,t) (6.2)

for each t = 1, ...,T ; where x1 ∈ R+ is a given initial condition of the
system state. The main difference with the evolution law of eq. (3.8),
is that here we express explicitly the dependence of f over the con-
trollable loads of consumers, which are chosen separately by them. A
practical assumption in this chapter to make an effective calculation
of controllable loads and to ensure convergence of algorithms, is the
Assumption 2.5.1, which states that f is a function depending of the
total load consumption (3.3).

SCHEDULING STRATEGIES

The way in which each controllable load profile of each consumer is cho-
sen, see eq. (6.1), it is according to a function called power consumption
scheduling strategy (also called decision rule). As we said earlier, in this
chapter there are I decision-makers, which control their own load pro-
file (6.1) and then, the scheduling strategies are built separately by the
individual decision-makers over time. Once the scheduling strategies are
fixed, a cost is incurred at each time t and we can therefore compare
the effectiveness of each strategy. The information that each decision
maker i ∈ I takes into account to schedule a power consumption strat-
egy is the history (also called path) of the system, represented by the
visited states and the controllable loads chosen previously. More pre-
cisely, assume the following composed history or path of the system
up to t is available for the decision-maker i:

ωi,t := (x1, `i,1, x2, `i,2, . . . , xt−1, `i,t−1, xt) . (6.3)

A scheduling strategy to select the controllable loads of consumer i
at time t is defined by the following function:

πi,t(ωi,t) = `i,t . (6.4)

We denote by πi := (πi,t)t∈T the profile of the latter. Note that this
definition is according to the one of pure strategies seen in Section 2.6.3.
Recall that, in this context, πi is memoryless or Markov if for each
t ∈ T ,

πi,t(ωi,t) = πi,t(ω
′
i,t′) ,
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where ωi,t = (x1, `i,1, ..., `i,t−1, xt) and ω′i,t = (x1, `′i,1, ..., `′i,t−1, x′t)
are any paths of the system such that xt = x′t, that is to say that the
only relevant information that a Markov strategy needs is contained in
the current state of the system.

In this chapter, we are interested in a decentralized version of the
(centralized) scheduling problem (3.11) defined in Chapter 3, wherein
the strategies are scheduled by a single entity, also-called centralized
operator. Here, this is not assumed anymore. Before introducing the
decentralized problem in a deterministic or stochastic context and to
show how the strategies are built, we introduce a general point of view
to understand the decentralization among the decision-makers.
Let π = (πi)i∈I a scheduling strategy vector. For any i ∈ I, we

can represent such a vector as π = (πi,π−i), where π−i denotes the
i-reduced strategy vector, i.e., the vector of all strategies except the
one of i:

π−i = (π1, ..., πi−1, πi+1, ..., πI) . (6.5)

To schedule a strategy πi under information (6.3), the decision-maker
i needs to know the system state values, which depend on all control-
lable loads of consumers and the noncontrollable part of the total load
consumption, see eq. (6.2). First, suppose that π−i is in a certain way
fixed. To represent π under such an assumption, we write:

π = (πi | π−i) . (6.6)

That is, we refer to what we are looking to schedule πi under the fixed
strategies of the other decision-makers, to know effectively the value of
the system state. In this chapter, we aim to build strategies without
revealing the strategies of the decision-makers. Before going into this
detail, we introduce the problem under consideration in the following.

SCHEDULING PROBLEM

Continuing with the general representation of the scheduling strategy
vector (6.6), a decision-maker i ∈ I selects its own power consumption
scheduling strategy from the following arg min set:

Decentralized Power Consumption Scheduling Problem

arg min
πi

∑
t∈T

Cπx1(xt, `1,t, ..., `i,t, ...., `I,t, `0,t) (6.7)

s.t. (3.3), (3.4), (3.5), (3.6), (3.7), (6.2), (6.6) .

So, we are looking at solving such a problem for each i ∈ I, but
at first glance, it needs some coordination mechanism through the
decision-makers to ensure that the scheduling strategies are consistent
with the problem, in particular with the system states values, see for
instance [75]. To handle this problem and make an effective calculation
of the strategies, a forecast on the real noncontrollable load consump-
tion (3.1) is assumed to be available, which can be deterministic or
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stochastic, see Section 2.4 for details. In this way, the strategies are
scheduled in an offline way, defining the controllable loads that are
executed on the time under consideration. Once the strategies are de-
termined, these can be effectively run online. Also, as we have said
before, the evolution law of the system state in eq. (6.2), is assumed to
be dependent of the total load consumption (3.3), see Assumption 2.5.1.
Thus, based the latter and an available forecast, this allows naturally
to build a way to coordinate information among the decision-makers
to determine their “best response behaviors” by considering their “op-
ponents” are part of the noncontrollable load consumption. This will
be explained a little further in the following. Before that, we present
in the next section, the scheduling problem (6.7) under a deterministic
forecast together with a general version of the “best responses” of the
decision-makers.

6.3 SOLUTIONMETHODOLOGY IN THE DETERMINISTIC CASE

In this section, a deterministic forecast of the real noncontrollable
load consumption (3.1) is assumed to schedule the controllable loads.
Following the description in Section 2.4.1, we represent a determinis-
tic forecast by:

˜̀
0 = ( ˜̀0,t)t∈T . (3.12)

In such a case, the decentralized problem of power consumption schedul-
ing to solve for each i ∈ I, can be rewritten as:

Decentralized Deterministic Problem

arg min
πi

∑
t∈T

Cπx1(x̃t, `1,t, ..., `i,t, ...., `I,t ; ˜̀0,t) (6.8)

s.t. (3.3), (3.4), (3.5), (3.6), (3.7), (3.12), (6.2), (6.6) .

Here, each noncontrollable load consumption is a simple parameter,
i.e., a value of the deterministic forecast. Note that the system state
and the total load consumption are also affected by the forecast, be-
cause these depend on the noncontrollable loads, see resp. eq. (6.2) and
eq. (3.3). Thus, choosing the controllable loads, the system state is com-
pletely determined under the dynamic (6.2). A scheduling strategy for
each consumer can therefore be built under the deterministic informa-
tion of the system state and based on some coordination mechanism
among the decision-makers. The algorithms proposed in this chapter,
are all based on an iterative technique from game theory [79, 84]. First,
we will introduce a general version of such a technique under the con-
text of the decentralized deterministic problem (6.8). Second, we show
the type of information to share iteratively among the decision-makers,
without revealing the information about the strategies.
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THE SEQUENTIAL BEST RESPONSE DYNAMICS

Here, we provide three sorts of strategies, all based on the Best Re-
sponse Dynamics (BRD) algorithm, which can be seen as a generaliza-
tion of well-known iterative techniques, often resulting in local optima,
see for instance [33, 79, 81]. In its most used form, the BRD operates
sequentially such that the consumers update their strategies in a round-
robin manner. Within round m ∈ N, a scheduling strategy selected by
decision-maker i ∈ I, is built by choosing:

Deterministic Problem - General Best Response Dynamics

π
(m)
i ∈ arg min

πi

∑
t∈T

Cπ
(m)

x1 (x̃t, `1,t, ..., `i,t, ..., `I,t ; ˜̀0,t) (6.9)

s.t. (3.3), (3.4), (3.5), (3.6), (3.7), (3.12), (6.2), (6.6) .

Note that the cost function in the latter problem follows by the
strategy vector π at iteration m to schedule the strategy of i, i.e.,
selecting πi above, π from eq. (6.6) is written in this context as:

π(m) =
(
πi | π

(m)
−i

)
,

where as before, π(m)
−i represents the i-reduced strategy vector, see

eq. (6.5), but here it is constructed sequentially. At iteration m, this is
of the form:

π
(m)
−i =

(
π
(m)
1 , ..., π(m)

i−1 , π(m−1)
i+1 , ..., π(m−1)

I

)
.

The complete procedure is translated in the pseudo-code of Algorithm 2.

To update the strategies m times from the Algorithm 2, mI iter-
ations are required. The order in which decision-makers update their
strategies does not matter to obtain convergence, see for instance [23].
A simple rule seems to be to update the strategies at each iteration in
a sequential order (line 8-line 11). On the other hand, if the arg min
set is not a singleton (line 9), the scheduling strategy can randomly
draw among the minimum points without affecting the performance. A
variation of Algorithm 2 can be obtained by updating the scheduling
strategies simultaneously. The main reason why we have not considered
the parallel version is that it is known that there is no general analyt-
ical result for guaranteeing convergence [79]. When converging, the
parallel implementation is faster but since the strategies are computed
offline here, convergence time may be seen as a secondary feature. The
way in which this algorithm is used, is according to some information
exchanged between the decision-makers in each round, as it is shown
below.
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Input : ε > 0, x1, T , I, ˜̀0, πinit

Output : Solution of the problem (6.8), built by BRD

1 π(0) ← πinit

2 C0 ←
∑
t∈T

Cπ
(0)

x1 (x̃t, `1,t, ..., `i,t, ..., `I,t ; ˜̀0,t)

3 m ← 0
4 while ‖ Cm −Cm−1 ‖2 > ε or m = 0 do
5 m ← m+ 1
6 π(m) ←

(
π
(m−1)
1 | π(m−1)

−1

)
7 i ← 1
8 while i ≤ I do
9 π

(m)
i ∈
arg min

πi

∑
t∈T

Cπ
(m)

x1 (x̃t, `1,t, ..., `i,t, ..., `I,t; ˜̀0,t)

s.t. (3.3), (3.4), (3.5), (3.6), (3.7), (6.2)
10 i ← i+ 1
11 π(m) ←

(
π
(m)
i | π(m)

−i

)
12 Cm ←

∑
t∈T

Cπ
(m)

x1 (x̃t, `1,t, ..., `i,t, ..., `I,t ; ˜̀0,t)

13 return π(m)

Algorithm 2: The decentralized power consumption schedul-
ing algorithm based on BRD. Here, we initialize with a strat-
egy πinit, an initial condition x1 of the system state, an ac-
curacy level wanted ε for stopping criteria in terms of conver-
gence, a finite horizon time T , a number of consumers I, and a
deterministic forecast of the noncontrollable consumption ˜̀0.

SEQUENTIAL INFORMATION BASED ON THE

DETERMINISTIC TOTAL LOAD CONSUMPTION

We focus here on how to share some information among the decision-
makers, without revealing their strategies when the BRD algorithm is
implemented. Suppose that for i ∈ I and iteration m ∈ N,

`
(m)
i,t = π

(m)
i,t (ωi,t) (6.10)

denotes the controllable load of consumer i at time t, computed by
its scheduling strategy at iteration m. Suppose now that the decision-
makers j = 1, ..., i− 1 have update their strategies (iterationm) and all
the others j = i, ..., I not yet at iteration m− 1 (if m = 1, the iteration
zero for the latter decision-makers represents an initialized scheduling
strategy before to apply the BRD). The total load consumption (3.3)
due to the noncontrollable part (here, the forecast (3.12) to schedule
strategies) and the controllable part (6.10) of consumers, can be written
as:

˜̀(m)
i,t := ˜̀

0,t +
i−1∑
j=1

`
(m)
j,t +

I∑
j=i

`
(m−1)
j,t , (6.11)
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and then, under the same context, the constraint (3.4) is written as:

˜̀(m)
i,t ≤ `max . (6.12)

The idea is then to use the latter for each decision-maker as a “non-
controllable” load consumption at each iteration. More precisely, each
controllable load of i at iteration m, is computed “in response” to the
load consumption of his “opponents”:

˜̀(m)
−i,t := ˜̀(m)

i,t − `
(m−1)
i,t . (6.13)

Therefore, the only sufficient information that the decision-maker i re-
ceives at m, is the profile:(˜̀(m)

i,t

)
t∈T

. (6.14)

Based on all above, a scheduling strategy selected by the decision-
maker i ∈ I within round m ∈ N, can be built by solving (6.9) now as
the following problem:

Deterministic Problem - Best Response Dynamics

π
(m)
i ∈ arg min

πi

∑
t∈T

Cπix1

(
x̃t, `i,t ; ˜̀(m)

−i,t

)
(6.15)

s.t. (3.5), (3.6), (3.7), (3.12), (6.2), (6.11), (6.12), (6.13) .

Following (6.10), the solution of the latter problem, can also be writ-
ten in this chapter as:

π
(m)
i =

(
`
(m)
i,1 , ..., `(m)

i,T

)
,

since the scheduling strategy of a decision-maker defines (offline) a se-
quence of controllable loads. Under the context of the problem (6.15),
the Algorithm Algorithm 2 can be adapted as it is shown in Algo-
rithm 3. In the following, three decentralized power consumption schedul-
ing strategies are differentiated.

6.3.1 ITERATIVE RECTANGULAR PROFILES

Agreeing with Section 3.3.1, the strategies of decision-makers are im-
posed here to be rectangular load profiles. That is, each controllable
load `i,t can take only two values according to the constraint (3.6): ei-
ther `i,t = `min

i or `i,t = `max
i . Also, when such a controllable load takes

the value `max
i , this is imposed to be uninterrupted, i.e., i consumes

`max
i until the energy demand (3.5) is fulfilled. Recall that the moti-
vations to use power consumption scheduling strategies of this form
are [112]: first, each strategy is easy to implement since each strategy
boils down to a simple decision for each scheduler i, namely: the time
tstart
i ∈ T at which the consumption starts. Second, rectangular load
profiles are believed to perform quite well in terms of noise robustness
on the noncontrollable load forecast, see for instance [19, 20].
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Input : ε > 0, x1, T , I, ˜̀0, ` init

Output : Solution of the problem (6.15)

1 ˜̀(1) ← ˜̀
0

2 for i ← 1 to I do
3 `

(0)
i ← ` init

i

4 ˜̀(1) ← ˜̀(1) + `
(0)
i

5 C0 ←
∑
t∈T

Cx1

(
x̃t, ˜̀(1)t )

6 m ← 0
7 while ‖ Cm −Cm−1 ‖2 > ε or m = 0 do
8 m ← m+ 1
9 for i ← 1 to I do

10 ˜̀ (m)
−i ← ˜̀ (m) − `

(m−1)
i

11 π
(m)
i ∈
arg min

πi

∑
t∈T

Cπix1

(
x̃t, `i,t ; ˜̀(m)

−i,t

)
s.t. (3.3), (3.4), (3.5), (3.6), (3.7), (6.2), (6.12)

12 `
(m)
i ← π

(m)
i

13 ˜̀ (m) ← ˜̀ (m)
−i + `

(m)
i

14 Cm ←
∑
t∈T

Cx1

(
x̃t, ˜̀(m)

t

)
15 return π(m)

Algorithm 3: The decentralized power consumption schedul-
ing algorithm based on BRD and the shared information of
the total load consumption (6.14). Here, we initialize with a
strategy or profile of controllable loads `init, an initial condi-
tion x1 of the system state, an accuracy level wanted ε for
stopping criteria in terms of convergence, a finite horizon time
T , a number of consumers I, and a deterministic forecast of
the noncontrollable load consumption ˜̀0.

Mathematically, rectangular profiles can be written for each decision-
maker i ∈ I as follows:

`i ∈
{
(`i,t)t∈T ∈ {`min

i , `max
i }T

∣∣∣∣ ∀t ∈ {tstart
i , ..., tstop

i } ⊆ T , `i,t = `max
i

∀t ∈ T \ {tstart
i , ..., tstop

i } , `i,t = `min
i

}
(3.14)

In practice, from the constraint of energy demand (3.5), each tstart
i is

limited to being:

tstart
i ≤ T − ei

`max
i

, (3.15)

and tstop
i can be chosen being the minimum stopping time such that:

(tstop
i − tstart

i ) `max
i ≥ ei , (3.16)
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where in eq. (3.15) and eq. (3.16) we do not take into account the load
due to the minimum power `min

i , since it only refers when, e.g., the
consumption of i is switched off but is designed to draw some load in
standby mode.

In this case, choosing an optimal scheduling strategy amounts to
choosing an optimal consumption start time tstart

i separately for each
decision-maker i ∈ I, which is chosen “in response” to the consump-
tion (6.13). This redefines the scheduling problem under the BRD (6.15)
as follows:

Deterministic Problem - BRD - Rectangular Profiles

π
(m)
i ∈ arg min

πrp
i

∑
t∈T

C
πrp
i

x1

(
x̃t, `i,t ; ˜̀(m)

−i,t

)
(6.16)

s.t. (3.7), (3.12), (3.14), (3.15), (3.16), (6.2), (6.11), (6.12), (6.13).

This problem redefines the line 11 of the BRD Algorithm 3 for the
rectangular profiles context. On the other hand, since the state of the
system is completely determined under the assumption of the shared
information of the consumption (6.11), this problem (6.16) is reduced to
a simple optimization problem to computing the individual start time
of load consumptions. However, rectangular scheduling strategies of
this form are not well suited in presence of saturation constraints, such
as (3.7) and (6.12), e.g., when the maximal temperature or the maximal
power of the DN-transformer could be reached, see for example [19][M1].
A rectangular profile is less flexible since it is uninterrupted while it is
consuming. In addition, the initial strategy `init in Algorithm 3 has to
satisfy such constraints to be suitable (i.e., feasible for the problem),
but it is not easy to find such an initial strategy if I and/or T are
large to initialize the Algorithm 3. For example, if `init is chosen to be
a plug-and-charge profile (i.e., each i consumes `max

i as soon as it is
plugin to the grid) which is a particular case of rectangular profile, the
constraint of the system state can be quickly not satisfied for I large.
A suitable scheduling method that can easily integrate this constraints
is shown in the next Section.

6.3.2 ITERATIVE DYNAMICAL CHARGING

In contrast with the previous section, each controllable load consump-
tion does not need to be binary anymore but can be take continuous
values. Thus, the consumption profile is no longer rectangular and can
be arbitrary (under the constraint of the minimum and maximum power
consumption). Thus, each scheduling strategy does not boil down to a
single scalar anymore, i.e., the consumption start instant. The moti-
vation for this is to have a better performance for the consumers but
also to be able to control the system state. In the previous section,
the dynamical system was controlled in a one-shot manner. Here, the
state evolution law is taken into account explicitly and the state can be
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controlled. For instance, it is possible to guarantee that that the upper
bound (3.7) on the system state is not violated.

Agreeing with Section 3.3.2, we show the modelling framework that
allows us to integrate dynamical aspects. This analysis is conducted
under the assumption of the sufficient information of the consump-
tion (6.14) that each decision-maker i ∈ I receives at iteration m ∈ N
of the BRD to schedule its strategy. Indeed, the profile (6.14) is a simple
vector of parameters, which allows to know explicitely the value of the
system state. Here, we also handle the dynamic law of the states (6.2).
This observation allows us to convert the scheduling problem (6.15)
under BRD, into a standard optimization problem [30]. Following the
definition of the functions (gt)t∈T in eq. (3.18), we let g1(x1) = x1 as
the initial condition, and

gt+1

(
x1, `i,1, ..., `i,t ; ˜̀(m)

−i,1, ..., ˜̀(m)
−i,t

)
(6.17)

:= f
(
gt
(
x1, `i,1, ..., `i,t−1 ; ˜̀(m)

−i,1, ..., ˜̀(m)
−i,t−1

)
, `i,t; ˜̀(m)

−i,t

)
So that, we will have gt+1

(
x1, `i,1, ..., `i,t ; ˜̀(m)

−i,1, ..., ˜̀(m)
−i,t

)
= x̃t+1. In

this way, the constraint (3.7) can be rewritten as:

gt
(
x1, `i,1, ..., `i,t−1 ; ˜̀(m)

−i,1, ..., ˜̀(m)
−i,t−1

)
≤ xmax . (6.18)

The problem of power consumption scheduling(6.15) under BRD, is
expressed now as a standard optimization problem (which is solved
iteratively for decision-maker i ∈ I by BRD), as follows:

Deterministic Problem-BRD-Dynamical Charging (6.19)

π
(m)
i ∈ arg min

πdc
i

∑
t∈T

C
πdc
i

x1

(
gt
(
x1, `i,1, ..., `i,t−1; ˜̀(m)

−i,1, ..., ˜̀(m)
−i,t−1

)
, `i,t; ˜̀(m)

−i,t

)
s.t. (3.5), (3.6), (3.12), (6.11), (6.12), (6.13), (6.17), (6.18) .

This problem redefines the line 11 of the BRD Algorithm 3 for the
dynamical charging context. Under the following Proposition 6.3.1, con-
vexity on the latter problem can be guaranteed. The sufficient condi-
tions of such a proposition are assumed to hold here. More precisely, it
holds for the models considered in the numerical Section 6.5. Thus, an
element of the arg min set can be obtained by solving the correspond-
ing convex optimization problem by using known numerical techniques,
precisely in line 11 of the BRD Algorithm 3 under this context. Since
the composition of convex functions is also convex, and the inequality
constraints of the problem above define a convex and compact set, we
simply quote the following proposition.
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Proposition 6.3.1

The problem for dynamical charging BRD-based (6.19), is a convex
optimization problem if Cx1 , g1, ..., gt, and f are convex.

Compared to a centralized approach shown in Section 3.3.2, the com-
plexity of this problem (6.19) is reduced, since the sequential BRD is
linear in the number of rounds needed for convergence (say N , which
typically equals 3 or 4) and the number decision-makers I. Therefore,
for a numerical routine whose complexity is cubic in the problem dimen-
sion, the complexity for the centralized implementation is of the order
of I3 T 3, whereas it is of the order of N I T 3 with the decentralized im-
plementation. Observe also that, in terms of information, all the model
parameters of the system, need to be known by each decision-maker
for this decentralized implementation to be run. If this turns out to be
a critical aspect in terms of identification in practice (e.g., if the DN
does not want to reveal physical parameters about its DN-transformer),
other techniques which only exploit directly measurable quantities such
as the sum of load consumption could be used. This is one of the pur-
poses of the following scheme.

6.3.3 ITERATIVE VALLEY-FILLING ALGORITHM

Agreeing with Section 3.3.3, the valley-filling or water-filling algorithm
is a quite well-known technique to allocate a given additional energy
demand (here, the one induced by the controllable loads of consumers)
over time, given a primary demand profile (here, the noncontrollable
part of the total load consumption). The main idea is to consume when
the primary demand is sufficiently low. Contrary to the valler-filling al-
gorithm presented in Section 3.3.3, where the strategy defines the (ag-
gregated) sum of loads in a centralized way, the implementation here
is seen as its iterative version based on BRD, proposed in [19][M4]. For
instance, valley-filling has been used in [106] to design a scheduling al-
gorithm, but the iterative implementation is not explored. An iterative
version is proposed in [56] which relies on a parallel implementation,
where the controllable load profiles are updated simultaneously at each
iteration, and convergence is obtained by adding a “penalty” or “sta-
bilizing term” to the cost function. Note that one of the drawbacks in
the latter approach is that the weight assigned to the added term has
to be tuned properly. Here, the sequential version based on BRD does
not have this drawback and can be seen as the power system coun-
terpart of the iterative water-filling algorithm used in communications
problems [114].

Following the definition of the centralized problem for the valley-
filling method (3.22), its decentralized counterpart (BRD-based) at
iteration m ∈ N, can be written for the decision-maker i ∈ I as follows:
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Deterministic Problem - BRD - Valley-Filling

π
(m)
i ∈ arg min

πvf
i

∑
t∈T

Φπvf
i

(
`i,t + ˜̀(m)

−i,t

)
(6.20)

s.t. (3.5), (3.6), (3.12), (6.11), (6.13) .

In this problem, Φ is any strictly convex function, see [56] for in-
stance. This problem redefines the line 11 of the BRD Algorithm 3 for
the valley-filling context. A solution to the latter problem can be found
by using the Lagrange multipliers method [24, 30], which defines the
optimal load consumption at time t as:

`
(m)
i,t = min

{
`max
i , max

{
`min
i , µi − ˜̀(m)

−i,t

}}
,

where µi is a threshold chosen to satisfy the constraint (3.5) of the
energy demand. Compared to the iterative dynamical charging scheme
of Section 6.3.2, an important practical advantage of the decentralized
valley-filling is that it relies only on the measure of the total load con-
sumption. However, this solution is based on continuous load levels,
which may not be met in some real applications. Additionally, just as
the problem of noise robustness for high-order modulations in digital
communications, this scheme may also be sensitive to uncertainties on
the knowledge of the noncontrollable load demand, e.g., the noise of
the forecast (3.12).

To conclude this section, we provide a result which guarantees the
convergence of the three proposed decentralized strategies for the de-
terministic case.

BRD CONVERGENCE UNDER THE PROPOSED STRATEGIES

Convergence is ensured thanks to the exact potential property of the
associated charging game (see [18][M4] for more details on the definition
of this game). This can be summarized in the following proposition
from [19, 79].

Proposition 6.3.2

The iterative schemes BRD-based: rectangular profiles, dynamical
charging and valley-filling algorithm; always converge.

This result can be proved by identifying each of the described de-
centralized strategies as the sequential BRD of a certain “auxiliary”
strategic-form game. The key observation to be made is that since a
common cost function is considered for the I decision-makers and the
individual strategies are reduced to be vectors in RT , the correspond-
ing problem can be formulated as an exact potential strategic-form
game [79]. The important consequence of this is that the convergence
of dynamics such as the sequential BRD is guaranteed due to the “fi-
nite improvement path” property [89]. Note that although Proposi-
tion 6.3.2 provides the convergence for the described power scheduling
strategies, the efficiency of the point(s) of convergence is not ensured a
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priori. Typically, this efficiency can be measured relatively to the one
obtained by the centralized problem, that is, the solution built by the
central operator which controls all the strategies of consumers under
a perfect knowledge on the noncontrollable load consumption. On the
other hand, in the game-theory literature, this is called “Price of An-
archy”; finding some bounds providing the maximal loss (“anarchy”)
induced by a decentralized implementation is not an easy task in gen-
eral [79]. In the case of the EVs charging problem, [20] presents some
special cases for which explicit bounds are available (even with a zero
loss in the asymptotic case of an infinite number of electric vehicles).
In the setting of this chapter, this question will be addressed numer-
ically in the Section 6.5 to measure the performance of the proposed
strategies.

6.4 SOLUTION METHODOLOGY IN THE STOCHASTIC CASE

In the previous sections, the effect of the forecasting noise on the
noncontrollable loads has been ignored. Indeed, the power consump-
tion scheduling algorithms have been designed by assuming a forecast
completely deterministic, using it as a simple parameter, representing
a single scenario of the noncontrollable loads. If the algorithm is robust
against noise, this approach may be suitable. However, the algorithms
proposed in the previous sections may not be robust when there is
enough noise in the forecast, as shown in [19][M1]. This motivates a
modeling which accounts for the effect of the forecasting noise a priori,
i.e., based on a stochastic forecast (statistics). The principal motiva-
tion of using it is that provide a way to model the noncontrollable load
consumption by generating several scenarios, so that a deterministic
forecast can be seen as one of these. This sort of forecast model can
then be understood as several deterministic forecasts with associated
probabilities of occurrence for which large databases exist in order to
extract precise statistics. The model using for, is based on Markov de-
cision processes [96]. The principal difference with Section 3.4.1 is that
here, we provide an approximation of the Best Response Dynamic [79]
to build suitable power consumption scheduling strategies. Since the
distribution network experiences an increased amount of variable loads
consumption depending on the controllable part, introducing this kind
of (adaptable) scheduling strategies allow consumers to reduce their im-
pacts on the distribution network [M1]. Otherwise, it could produce new
load variations and possibly causing transformer overloading, power
losses, or moreover increasing the transformer ageing [19].

In agreement with Section 2.4.2, we represent a stochastic forecast
of the (real) noncontrollable load consumption profile `0 by:

L̃0 = (L̃0,t)t∈T , (3.23)
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which is a finite collection of i.i.d. random variables defined by1 describ-
ing a probability distribution P0. Suppose now that, for i ∈ I, Li is
the sequence taking controllable load profiles `i, see (6.1). We can then
write:

Li = (Li,t)t∈T ,

where Li,t takes a controllable load value `i,t at time t. In this way, the
total load consumption (3.3) at t, can be expressed now by:

L̃t = L̃0,t +
∑
i∈I

Li,t . (3.24)

Contrary to Section 3.4.1, we are interested here in a decentralized
version of the (centralized) scheduling problem (3.30). This also can
be understood as looking for the stochastic counterpart of the deter-
ministic problem (6.8), where the noncontrollable load consumption
profile (3.23) boils down to a simple vector of parameters and the fore-
cast noise is not taken into account. In this section, the forecast errors
are accounted for, under the sequence (3.23).
Based on the stochastic forecast, the induced system state process

(X̃t)t∈T , see Definition 2.6.2 for details, has of course a stochastic be-
havior and then, from the probability distribution P0, we can get an
explicit representation of the transition probabilities between the sys-
tem states. Consider that the system is at state x̃t at time t ∈ T ,
and that each decision-maker i ∈ I has chosen its controllable load
`i,t. For the moment, this is supposed to be done “locally”, i.e., each
decision-maker i = 1, ..., I chooses its controllable load `i,t in a state x̃t
(according to its scheduling strategy for instance). The probability that
the state of the system is x̃t+1 at time t+ 1 (following the evolution
law f of eq. (6.2)), can be computed as:

P
[
X̃t+1 = x̃t+1

∣∣∣ X̃t = x̃t, L1,t = `1,t, ..., LI,t = `I,t

]
(6.21)

= P0

[
L̃0,t ∈ Lf0,t

∣∣∣ X̃t = x̃t , L1,t = `1,t , ..., LI,t = `I,t

]
,

where

Lf0,t :=
{ ˜̀

0,t | x̃t+1 = f(x̃t , `1,t , ..., `I,t ; ˜̀0,t)
}

.

Note that the deterministic case shown in Section 6.3, can be see as a
particular case of the present one. Indeed, when `1,t, ..., `I,t are selected,
we can make Lf0,t to be a singleton (a set with exactly one element)
at each t to represent the deterministic forecast (3.12), thus the next
state of x̃t is fully determined by making the transition probability to
be equal to one for a (next) state according to the evolution law f , and
zero for all other (candidate) next states.
As we have seen in Section 2.6.5, some constraints under the stochas-

tic forecast assumption have been discussed. Here, we accept that an

1 Either the original probability measure of a probability space or describing a prob-
ability distribution P0 can be used to compute probabilities of events involving L̃0.
Here, we use w.l.o.g. P0 without needing to refer to a common underlying probability
space.
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event remains under a certain risk of probability that is coded by a
given threshold. Under the same arguments of the constraint (3.26) on
the total load consumption, and the one on (3.27) of the system state,
we write resp. these constraints by:∏
t∈T

P0

[
L̃t ≤ `max

∣∣∣ L1,t = `1,t , ... , LI,t = `I,t

]
≥ 1− ε`

(6.22)∏
t∈T

P
[
X̃t+1 ≤ xmax

∣∣∣ X̃t = x̃t,L1,t = `1,t, ...,LI,t = `I,t

]
≥ 1− εx

(6.23)

where (ε`, εx) ∈ [0, 1]2 represents the risk in probability of exceeding
resp. the upper bounds `max and xmax.

To be consistent with the notation, we write the energy demand
constraint (3.5) for consumer i as:

∆t
∑
t∈T

Li,t ≥ ei , (3.28)

with ∆t is the duration of a time-slot, e.g., if each t represents 30 min,
then ∆t = 0.5 h. We also express the constraint (3.6) of not exceeding
the maximal power `max

i ∈ R+ and to be at least a minimum power
`min
i ∈ R+

0 at which i can be charging, by:

`min
i ≤ Li,t ≤ `max

i . (3.29)

Based on all practical considerations, the decentralized problem of
power consumption scheduling (6.7) to be solved for each consumer,
can be introduced. A decision-maker i ∈ I selects its own power con-
sumption scheduling strategy from the following arg min set:

Decentralized Stochastic Problem

arg min
πi

∑
t∈T

Eπx1

[
Cπ(X̃t, L1,t, ..., Li,t, ..., LI,t ; L̃0,t)

]
(6.24)

s.t. (3.23), (3.24), (3.28), (3.29), (6.6), (6.21), (6.22), (6.23).

For be this problem computationally tractable, a discretization over
the consumption is considered. This problem can thus be modeled us-
ing finite Markov Decision Processes [96]. The main difference with
the problem (3.30) in Section 3.4 is that here, we are looking for a
decentralized scheduling strategy, i.e., each decision-maker i builds its
own strategy πi under the fixed strategies of the other decision-makers
(see eq. (6.6)) and observing the value of the system state. Agreeing
with the iterative solution proposed in Section 6.3 (when a determin-
istic forecast is available), we also want here to build the strategies of
the consumers based on a dynamic of best-response. That is why we
present in the next section an approximation of such a dynamic, that
was implemented to find a solution of the problem (6.15), but here it
will be used on the stochastic context of the problem (6.24).
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6.4.1 ITERATIVE MARKOV DECISION PROCESSES - BASED

A suitable model to adapt the scheduling problem (6.24) in a discrete
manner, is based on multi-weighted Markov Decision Process [M3], see
Definition 2.6.9 for more details. Before we explain in detail such a
model, we start with an ordinary Markov Decision Process (MDP)
model:

M =
(
X , A, P

)
, (3.31)

where X is a finite set of states, A is a finite space of actions, and P
a transition probability between states. Based on this structure (3.31),
the problem of power consumption scheduling can (a priori) be modeled
by taking X as the set of the system states, A as the space of control-
lable loads of consumers, and P as the transition probability induced by
the probability distribution P0 of the stochastic forecast, see eq. (6.21).
However, it remains to discuss one thing: the way in which the ac-
tions are chosen separately by the decision-makers. Moreover, how the
scheduling strategy can be found and built in a decentralized manner
(recall that in this chapter, each consumer is free to make its own deci-
sion in terms of choosing its power consumption strategy). Some mod-
els have been proposed when these are chosen separately. Multi-agent
MDP (MMDP) is a first instance, which generalize an MDP describing
sequential decisions in which there are several agents (decision-makers),
where each of them chooses an individual action at every time and
jointly optimize a common cost function. However in such a model, the
cooperative coordination between decision-makers is to communicate
at every time-step, making the complexity increase exponentially in
the number of decision-makers [97]. Moreover, it is generally necessary
to consider a joint information space with a centralized approach to be
optimal, rendering this method impractical in most cases and outside of
what we are looking for: to solve sequentially the decentralized schedul-
ing problem (6.24), without revealing the strategies of the consumers
among them.
In absence of a central controller choosing a joint scheduling strategy,

it is required some coordination mechanism among the decision-makers.
Observability is also a subject that can be taken into account. If the
decision-makers choose their decisions based on an incomplete observa-
tion of the system states, we get into Partially Observable MDP class
(POMDP). The complexity of a POMDP (to find an optimal strat-
egy in a finite horizon time problem) with one decision-maker (or a
central controller) is pspace-complete2 even if the state dynamic is
stationary and the time-horizon T is smaller than the size of the sys-
tem state space [93]. When several decision-makers are considered in
a POMDP, decentralized executions raise severe difficulties during co-
ordination even for a joint full observability particular case, namely
decentralized MDP, which is based on the assumption that the system

2 The pspace class refers to all decision problems that can be solved in polynomial
space (amount of memory space necessary for the computation). The hardest prob-
lems in pspace are the pspace-complete problems, since a solution to any one
such problem could easily be used to solve any other problem of the pspace class.
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state is completely determined from the current (joint) observation of
the decision-makers. However, solving a decentralized MDP (to find
an optimal strategy in a finite horizon time problem) is nexptime-

complete3 to find an optimal scheduling strategy even for I ≥ 3
decision-makers [22].

Using any of the previous models to build an optimal strategy for
each consumer is a challenging problem, causing it to be very difficult
when there are many state in the MDP model and the coordination
among the decision-makers is made at every time-step. Moreover, the
power consumption scheduling problem considered in this chapter, has
constraints (energy demand, upper bound over the system state, etc.),
which are not easy to implement in these types of models. Here, an
iterative technique among the decision-makers based on the sequential
BRD, is performed using “iterative” MDPs.

SEQUENTIAL INFORMATION ON STOCHASTIC

TOTAL LOAD CONSUMPTION

We focus here on introducing the scheduling problem (6.24) but from
a BRD point of view. As we have seen in Section 6.3, the idea is that
for each i ∈ I, the load consumption of the other consumers j ∈ I \ {i}
is part of the noncontrollable load consumption. More precisely, the
loads Lj,t are added to the stochastic forecast (3.23) resp. at each t,
since by Assumption 2.5.1, the law of the system state depends on the
total load consumption, here expressed as in eq. (3.24). Suppose for
the moment that L̃−i,t represents the total load except the load of i.
Roughly speaking (it will be explained a further below), this can be
written as:

L̃−i,t = L̃t − Li,t . (6.25)

Recall that the information to be shared among the decision-makers at
each iteration in Section 6.3, is effectively L̃−i,t but in a deterministic
sense, see eq. (6.13). The idea is then to build here, a random variable
representing the aggregated load consumption of decision-makers ex-
cept i, such as the one of (6.25), so that a sequential algorithm can be
implemented (BRD). Note that in Section 6.3, there is a single value
of the consumption except i to be shared at each time, so the subtrac-
tion (6.13) is simple to perform, here it is not the case.

Without going into the details (for the moment) of the variable L̃−i,t,
we denote by P−i its underlying probability distribution. We can com-
pute now the probability (6.21) from the point of view of the decision-
maker i as follows. Suppose that the action chosen by i is `i,t at the
state x̃t, then the probability to go to x̃t+1 is computed by:

P [ X̃t+1 = x̃t+1 | X̃t = x̃t, Li,t = `i,t ] (6.26)

= P−i[ L̃−i,t ∈ Lf−i,t | X̃t = x̃t , Li,t = `i,t ] ,

3 That is, the set of all decision problems that can be solved in nondeterministic
exponential time. The problems in the nexptime-complete class are the hardest
problems in nexptime. A solution to any one such problem could easily be used to
solve any other problem of the nexptime class.
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where now,

Lf−i,t := { ˜̀−i,t | x̃t+1 = f(x̃t , `i,t ; ˜̀−i,t) } .

Additionally, the constraints (6.22) and (6.23) are relaxed and imposed
to be now:∏

t∈T
P−i[ L̃t ≤ `max | Li,t = `i,t ] ≥ 1− ε` (6.27)

∏
t∈T

P [X̃t+1 ≤ xmax | X̃t = x̃t, Li,t = `i,t ]≥ 1− εx (6.28)

In the following, we construct an iterative technique to develop a
decentralize methodology BRD-based among the decision-makers to
build their scheduling strategies. A decision-maker i ∈ I chooses its
strategy at iteration m ∈ N from the following arg min set:

Decentralized Stochastic Problem - Approximate BRD

π
(m)
i ∈ arg min

πi

∑
t∈T

Eπix1

[
Cπi

(
X̃t, Li,t ; L̃(m)

−i,t

) ]
(6.29)

s.t. (3.23), (3.28), (3.29), (6.26), (6.27), (6.28) .

Note that the latter scheduling problem can be seen as the stochastic
counterpart of the problem (6.15). This problem (6.29) will be modeled
by a doubly-weighted MDP, under the a priori definition of L̃(m)

−i,t at each
iteration m as it is shown in the following.

MDP MODELING

First, we writeMi to refer to the MDP (3.31) that the decision-maker
i must resolve to build its own strategy. We focus in the construction of
such a modelMi to solve the scheduling (6.29). For that, consider that
a second component is defined on the state space X of the MDPMi to
keep the information of the total load consumption at each time-step.
More precisely, let Li be a (finite) set representing the possible values
of the total load (from the point of view of i):

L̃−i,t + Li,t ,

and define thus the aggregate space of states as X ×Li. Second, since
there is a constraint on the energy demand for the decision-maker i,
see eq. (3.28), a cost function on state transitions can be defined as the
energy due by the controllable loads (actions). More precisely a cost is
incurred every time an action is used, that is:

Ci(Li,t) = ∆t Li,t ,

where ∆t is a constant (e.g., if each time-step represents a slot of 30 min
then ∆t = 0.5 h). Thus, a scheduling strategy for i must satisfy the en-
ergy demand constraint (3.28) on the accumulated sum of such costs. In
addition, another cost function over the state transitions can be defined
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as the cost C of the scheduling problem (6.29) to minimize. As we will
see in the following, finding an optimal scheduling strategy is reduced
to solve the so-called Stochastic Shortest Path (SSP) problem [25], see
Definition 2.6.23 for details. Thus globally, an MDP with two cost func-
tions can be used to model the scheduling problem under consideration
and to find a solution. This model is called doubly-weighted MDP.

While SSP problem for a single-weighted MDPs is well-know to be
solved in polynomial-time [14, 25], multi-weighted MDPs subject to
constraints imposed on several objectives (that is the case here, e.g.,
the energy demand for a consumer), take polynomial-time in the
size of the MDP model and exponential-time in the size of the re-
quirements [50]. To reduce the requirement of the energy demand and
find an optimal scheduling strategy for i, we build the unfolding of
the doubly-weighted MDP by adding recursively the information of
the accumulated cost function Ci on the states at each time to reduce
the doubly-weighted MDP into a simply-weighted MDP, see Defini-
tion 2.6.10 for details. Thus, the new constraint of the energy demand
is reduced to be a stochastic reachability objective in such a simply-
weighted MDP, see Definition 2.6.16. Contrary to Section 3.4.1, here
we do not need any allocation problem, because an optimal scheduling
strategy will be found for each consumer i individually by an iterative
(BRD) technique between MDPs, and aggregated energy is not relevant
here.
The doubly-weighted MDP model to use in our case is of the form:

Mi =
(
X ×Li, (x1, 0), Ai, Pi, C, Ci

)
, (6.30)

where we are fixed the initial state to be (x1, 0). We define in the follow-
ing the unfolding of the latter MDP model, to simplify the constraint
of the energy demand to a quantitative reachability objective into an
MDP with only one cost function, see Definition 2.6.10.

UNFOLDING THE MDP

The unfolding ofMi with depth T used here is the following structure:

Mi,T =
(
Si,T , s1, Ai, Pi,T , Ci

)
, (6.31)

where the space of states is:

Si,T := X ×Li ×Ei ×T , (6.32)

with Ei representing the space of the accumulated energy of the con-
sumer i, i.e.,

Ei = [ 0, T `max
i ] .

The given initial state is s1 = (x1, 0, 0, 1), the set of actions is defined
as the set controllable loads of i:

Ai =
⋃
t∈T

{
`i,t

∣∣∣ `min
i ≤ `i,t ≤ `max

i

}
. (6.33)
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The transition probability between states is Pi,T : Si,T ×Ai → D(Si,T )
and defined as:

Pi,T (st, `i,t)(st+1) = Pi(proj1(st), `i,t)(proj1(st+1))

if (i) proj1(st+1) = f(proj1(st), `i,t ; ˜̀−i,t) ,
(ii) proj2(st+1) = ˜̀−i,t + `i,t ,
(iii) proj3(st+1) = min{ ei, proj3(st) + Ci(`i,t) },
(iv) proj4(st+1) ≤ T ,

and Pi,T (st, `i,t)(st+1) = 0 otherwise. Note that (i) above is implic-
itly included in the definition of Pi. Finally, the cost function Ci is the
same as C. Additionally, from the Definition 2.6.2, we denote by

S̃t = (X̃t, L̃t, Et, Tt)

the state process in the unfolding (6.31).
Since we are interested in reaching the accumulated energy demand

ei of each consumer i, we can naturally define a set of goal states Gi
by:

Gi :=
{
st ∈ Si,T | proj3(st) = ei and proj4(st) = T

}
. (6.34)

This set is of our interest and we want to find a scheduling strategy for
which Gi is reached, that is to say that the energy demand ei is achieved.
Thus, the problem of interest is reduced to the expected SSP problem,
see Definition 2.6.23 for details. Note that there is a natural one-to-one
correspondence between the “histories or paths” in the doubly-weighted
MDP (6.30) and the unfolding (6.31), and therefore, strategies can
equivalently be seen in both MDPs4.

The only thing that we need is the definition of the variable L̃−i,t,
which represents the aggregated load consumption “exogenous” to the
consumer i, see eq. (6.25). Such a variable will be constructed by means
of an iterative BRD approach. More precisely, this will evolve in each
round m ∈ N of an iterative technique based on BRD, by solving
sequentially each (unfolding) MDP model of consumers. This can be
understood as a multiple-sequential learning method, where each con-
sumer i learns the environment in each MDP to determine its “best
response” considering that the other consumers are part of such an en-
vironment, i.e., to be part of the noncontrollable load of from the point
of view of i, allowing often results in local optima [33]. We detail this
dynamics in the following.

ITERATIVE MDP METHODOLOGY

As we said earlier, since decentralized models (e.g., MMDP, POMDP,
etc.) distributing explicit state information at each time-step among
the decision-makers are computationally costly, we present here an ap-
proximated version of BRD between the (unfolding of the) MDPs of
consumers, without updating the information of the controllable loads
(i.e., the actions of decision-makers) at each state of the model. Here,

4 A formal proof is made in Chapter 4.
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we update for each i ∈ I and each round m ∈ N the amount of the
variable L̃−i,t, which can be seen as an update of a matrix representing
the total loads consumption starting from the stochastic forecast (3.23)
and so, adding sequentially the load consumption of consumers. To de-
velop the dynamic that we propose, we define first a correspondence
between two MDPs already resolved5. For the following, we denote by
M(m)

i,T the unfolded-MDP of consumer i when the round is m.

Definition 6.4.1: Correspondence between two MDPs

Let M(m)
i,T and M(n)

j,T two unfolded-MDPs already resolved in the
roundsm,n ∈ N0 resp. for the consumers i, j ∈ I. Suppose that we
extract the values of the total load consumption ˜̀(n)t = proj2(st)
from the states st in M(n)

j,T for each t ∈ T . Fixing one ˜̀(n)t , we
define by going through the states from the initial state inM(m)

i,T ,
the probability that L̃(m)

t is the value ˜̀(n)t by:

P
π
(m)
i

s1

[
L̃
(m)
t = ˜̀(n)

t

]
= P

π
(m)
i

s1

[
S̃
(m)
t ∈ [ ˜̀(n)t ]

m

i

]
, (6.35)

where [ ˜̀(n)t ]
m

i is the equivalence class of states in M(m)
i,T , defined

by:

[ ˜̀(n)t ]
m

i =

{
st ∈ S

(m)
i,T | proj2(st) ∈ arg min˜̀t∈L(m)

i

∣∣∣ ˜̀(n)t − ˜̀t ∣∣∣ } .

In the latter definition, the probability Pπ
(m)
i

i,T is the one in the model
M(m)

i,T when we fix the optimal strategy π(m)
i computed by the SSP

problem on M(m)
i,T . See Section 2.6.4 for details about the induced

probability by fixing strategies. Moreover, the probability (6.35) can
be computed explicitly from the one shown in the eq. (2.17) when we
fix the strategy π(m)

i , i.e., by means of:

P
π
(m)
i

s1

[
L̃
(m)
t = ˜̀(n)

t

]
=

∑
s1,...,st−1

∑
st∈[ ˜̀(n)t ]

m

i

t∏
τ=1

P
π
(m)
i

i,T (sτ−1)(sτ ) ,

(6.36)

where the summation is over all tuples s1, ..., st inM(m)
i,T , such that the

state st belongs to the equivalence class [ ˜̀(n)t ]
m

i . See Figure 6.2 for a
graphical representation.

Suppose now that the MDPs will be resolved sequentially for each
consumer i = 1, ..., I. We define the following profile:

L̃
(m)
−i =

(
L̃
(m)
−i,t

)
t∈T

(6.37)

of the aggregated total load consumption except i at round m, which
plays the role of the stochastic environment in the model M(m)

i,T , and

5 We say that an MDP is resolved if we have already computed an optimal scheduling
strategy for it (taking an optimal action at each state of the MDP), i.e., we have
resolve the nondeterministic choice in the MDP in an optimal way.
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M(m)
i,T

s1 · · · s′t = (x′t, ˜̀′t(n), e′i,t, t) ∈ [ ˜̀′t(n) ]miP
π
(m)
i

s1 [S̃t = s′t] = 0.2

· · ·

st = (xt, ˜̀(n)t , ei,t, t) ∈ [ ˜̀(n)t ]
m

i

P
π
(m

)

i
s1
[S̃ t

=
s t]

=
0.3

· · ·

s′′t = (x′′t , ˜̀(n)t , e′′i,t, t) ∈ [ ˜̀(n)t ]
m

i

P π (m
)is1 [S̃
t =

s ′′
t ] = 0.5

Figure 6.2: Unfolded-MDPM(m)
i,T of the decision-maker i at iteration m. The

probability (6.36) for ˜̀(n)t and ˜̀′
t
(n) are resp. P

π
(m)
i

s1

[
L̃
(m)
t =˜̀(n)

t

]
= 0.8, and P

π
(m)
i

s1

[
L̃
(m)
t = ˜̀′

t
(n)
]
= 0.2.

defines the probability distribution P
(m)
i,T (more precisely, it defines

P
(m)
−i in eq. (6.26)). We proceed to explain the sequential construc-

tion in function of a consumer i ∈ I and a round m ∈ N0. First, a
round m = 0 is considered to initialize the scheduling strategies of the
decision-makers.

Round m = 0 for i = 1: in the beginning, L̃(m)
−i in (6.37) is ex-

actly the same as the stochastic forecast L̃0 of the noncontrollable load
consumption (3.23), because there is no other load on the DN to sched-
ule an optimal strategy for i. Thus, the transition probability between
the states in the (not yet resolved) unfolded-MDP M(m)

i,T is given by
the known probability distribution of such a forecast L̃0. Once such a
model is built, we can define the set G(m)

i of states that satisfy the en-
ergy constraint for i, see eq. (6.34). Solving the expected SSP problem
with the goal set G(m)

i , we can compute an optimal strategy for i, and
the model for the next decision-maker can be built.

Round m = 0 for i > 1: suppose that M(m)
i−1,T has already been

resolved. To build M(m)
i,T and then to find a scheduling strategy for i,

first we need the information of the aggregated load consumption L̃(m)
−i

of (6.37) due to the noncontrollable loads (the stochastic forecast) and
the load consumption of the consumers 1, . . . , i− 1. Second, after the
construction of the modelM(m)

i,T is done, we can define a goal set G(m)
i of

states that satisfy the energy constraint for i, see eq. (6.34) for details,
to find an optimal strategy for him.
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To build M(m)
i,T , the necessary information of L̃(m)

−i is entirely deter-
mined by the previously resolved modelM(m)

i−1,T , since the aggregated
load except i is contained at each time t in the random variable L̃(m)

t

withinM(m)
i−1,T . More precisely, for a fixed t, each possible value of L̃(m)

t

is extracted by going through the states ofM(m)
i−1,T from the initial state,

and identifying the values of the total load consumption ˜̀(m)
t and so

building equivalence classes of the form [ ˜̀(m)
t ]

m

i−1
in the same model

M(m)
i−1,T to define the respective probability distribution of L̃(m)

t . In
other words, we use the Definition 6.4.1 to compute probabilities of the

form P
π
(m)
i−1

s1 [ L̃(m)
t = ˜̀(m)

t ] from the modelM(m)
i−1,T . Thus, each possible

value of the “exogenous” variable (from the point of view of i) L̃(m)
−i,t

at t in (6.37) is ˜̀(m)
t from the (already resolved) M(m)

i−1,T , since L̃
(m)
−i,t

is the variable L̃(m)
t in the modelM(m)

i−1,T . The probability distribution
of L̃(m)

t can be obtained by the correspondence ofM(m)
i−1,T with himself

(see Definition 6.4.1 with n = m and the consumers i− 1 and j = i− 1).
This defines thus the stochastic environment for the transition proba-
bility P (m)

i,T between the states in the not yet resolved modelM(m)
i,T for

the consumer i. Once that the latter model is built, an optimal strategy
for i can be computed by defining the expected SSP problem under the
set G(m)

i in (6.34).
When a strategy for the consumer i = I is already computed, we

proceed with the sequential technique based on an approximate BRD
for the rounds m > 0 as follows.

Roundm > 0 for i ≥ 1: as we have said above, all the information
to built the modelM(m)

i,T is contained in the previous resolved model6

M(m)
i−1 . The main difference with the previous case is that each total

load consumption expressed by the variable L̃(m)
t in the modelM(m)

i−1,T ,
it contains the controllable loads of the consumer imade in the previous
round m− 1. The idea is to do something like in eq. (6.13), but here
we should do a priori:

L̃
(m)
−i,t = L̃

(m)
t − L

(m−1)
i,t , (6.38)

since L̃(m)
−i,t will act as the stochastic environment for the modelM(m)

i,T .
However, in the previous equation, the elements are different:

(i) L̃
(m)
t is the variable of total load consumption in the modelM(m)

i−1,T

of the consumer i− 1 at round m.

(ii) L
(m−1)
i,t is the variable representing the controllable loads in the

modelM(m−1)
i,T of the consumer i at round m− 1.

6 Well understood that if i = 1, the information is inM(m)
I,T .
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The problem is the following: suppose that we take a value of L̃(m)
t , let

say ˜̀(m)
t , then:

Which controllable load `
(m−1)
i,t could we use to do

the subtraction ˜̀(m)
t − `(m−1)

i,t ?
(6.39)

Of course, there could be many choices when we are trying to identify˜̀(m)
t in the states of the model M(m−1)

i,T . Indeed, since the states in
the latter model are of the form st ∈ S

(m−1)
i,T , see eq. (6.32), then it is

possible that there are several states st having the second component to
be ˜̀(m)

t , i.e., there could be many states st ∈ [ ˜̀(m)
t ]

m−1

i . The question
is now:

Which action was selected by the decision-maker i at

time t− 1 to get to the states st ∈ [ ˜̀(m)
t ]

m−1

i ?

Of course, there could be several. Even if
∣∣∣ [ ˜̀(m)

t ]
m−1

i

∣∣∣ = 1, there could
not be a single choice. Indeed, since the second component of a state
st ∈ S

(m−1)
i,T are of the form proj2(st) = ˜̀(m−1)

−i,t−1 + `
(m−1)
i,t−1 , we could have

several combinations to get the sum:

˜̀(m−1)
−i,t−1 + `

(m−1)
i,t−1 = ˜̀(m)

t ,

because this depends on the “exogenous” load ˜̀(m−1)
−i,t−1 and the action

`
(m−1)
i,t−1 selected by i. Moreover, if `(m−1)

i,t−1 is unique,

From which state st−1 was the action `
(m−1)
i,t−1 selected ?

Again, there could be many states st−1 ∈ S
(m−1)
i,T having a positive

probability P (m−1)
i,T (st−1, `(m−1)

i,t−1 )(st) > 0 for st ∈ [ ˜̀(m)
t ]

m−1

i .
For all these reasons, we propose a method to make an effective calcu-

lation of the eq. (6.38). More precisely, we answer the question (6.39).
For that, we will define in the following an “expected action” (con-
trollable load) from the modelM(m−1)

i,T to do the subtraction of loads
under consideration. Let ˜̀(m)

t a fixed value of the variable L̃(m)
t in the

modelM(m)
i−1,T . Recall that in the modelM(m−1)

i,T we have computed an
optimal scheduling strategy π(m−1)

i from the SSP problem. We define
fromM(m−1)

i,T the set:

S(m−1)
i,t−1

(
[ ˜̀(m)
t ]

m−1

i

)
:=

⋃
st∈[˜̀(m)

t ]
m−1
i

{ st−1 ∈ S
(m−1)
i,T | Pπ

(m−1)
i

i,T (st−1)(st) > 0}

of the precedent states of each st ∈ [ ˜̀(m)
t ]

m−1

i by applying π(m−1)
i ,

see Figure 6.3 for a graphical representation.

[ November 20, 2019 at 17:47 – classicthesis ]



6.4 solution methodology in the stochastic case 153

M(m−1)
i,T

˜̀(m)
t from

M(m)
i−1,T

st−1 st ∈ [ ˜̀(m)
t ]

m−1

i

P
π

(m−1)
i

i,T (st−1)(st) > 0

· · ·

· · ·

s′t−1 s′t ∈ [ ˜̀(m)
t ]

m−1

i

P
π

(m−1)
i

i,T (s′t−1)(s
′
t) > 0

· · ·

· · ·

S(m−1)
i,t−1

(
[ ˜̀(m)
t ]

m−1

i

)
=
{
st−1, s′t−1

}

Figure 6.3: In the unfolded-MDPM(m−1)
i,T of the decision-maker i at iteration

m− 1, we build the equivalence class of each ˜̀(m)
t extracted from

the unfolded-MDP M(m)
i−1,T of the decision-maker i− 1 at itera-

tion m, and we identify the previous states to go to the states of
[˜̀(m)
t ]m−1

i .

Thus, we define the expectation on the controllable load (action)
selected by i at iteration m − 1 at time t, L(m−1)

i,t , according to the
scheduling strategy π(m−1)

i applied over all the states belonging to the
set S(m−1)

i,t−1

(
[ ˜̀(m)
t ]

m−1

i

)
, by:

E
π
(m−1)
i

s1

[
L
(m−1)
i,t−1 | S̃t−1 ∈ S

(m−1)
i,t−1

(
[ ˜̀(m)
t ]

m−1

i

) ]

=

∑
s1,...,st−2

∑
st−1∈S

(m−1)
i,t−1 ([ ˜̀(m)

t ]m−1

i )

∑
st∈[ ˜̀(m)

t ]m−1

i

π
(m−1)
i,t−1 (st−1)

t∏
τ=1

P
π
(m)
i

i,T (sτ−1)(sτ )

P
π
(m−1)
i

s1 [ L̃(m−1)
t = ˜̀(m)

t ]

where π(m−1)
i,t−1 (st−1) = `

(m−1)
i,t−1 is the action selected at the state st−1.

This is a possible value of the random variable L(m−1)
i,t−1 according to

the strategy π(m−1)
i . Note that the denominator represents a normal-

ization, which can be computed by means of the Definition (6.4.1) by
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considering resp. the models M(m−1)
i,T and M(m)

i−1,T . See Figure 6.4 for
a graphical representation, where the expectation above gives:

E
π
(m−1)
i

s1

[
L
(m−1)
i,t−1 | S̃t−1 ∈ {st−1, s′t−1}

]
=

0.2× 2× (0.3 + 0.5) + 0.1× 3× 0.6
0.2× (0.3 + 0.5) + 0.1× 0.6 = 2.27

Note that such an expectation can be understood as the value

“E
π
(m−1)
i

s1

[
π
(m−1)
i,t

(
{st−1, s′t−1}

)]
.” .

M(m−1)
i,T

˜̀(m)
t from

M(m)
i,T

s1 · · ·
s′t ∈ [ ˜̀(m)

t ]
m−1

i

st ∈ [ ˜̀(m)
t ]

m−1

i

· · ·

st−1

· · ·

π
(m−1)
i,t−1 (st−1) = 2

P
π
(m
−1)

i
s1

[̃S t−
1
=
s t−

1
] =

0.2

· · ·

s′t−1 π
(m−1)
i,t−1 (s′t−1) = 3

· · ·

P π (m−1)is1 [S̃
t−1 =

s ′
t−1 ] = 0.1

P
π
(m
−1)

i

i,T

(s
′
t−1

)(s
′
t
) =

0.6

P
π
(m−1)

i

i,T
(st−1)(st

) = 0.3

P π (m−1)
ii,T
(s
t−1 )(s ′

t ) = 0.5

Figure 6.4: Expected action (controllable load) selected by the decision-maker
i at iteration m− 1 at time t− 1, in the unfolded-MDPM(m−1)

i,T .

Finally, the aggregated total load consumption at t except i, i.e.,
L̃

(m)
−i,t , to build the modelM(m)

i,T , can be defined by means the following
equation:

L̃
(m)
−i,t = L̃

(m)
t − E

π
(m−1)
i

s1

[
L
(m−1)
i,t−1 | S̃(m−1)

t−1 ∈ S(m−1)
i,t−1

(
[ L̃ (m)

t ]
m−1

i

) ]
.
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6.5 NUMERICAL APPLICATION

The numerical applications are based on the same conditions of those
in Section 3.5, we briefly explain the scenarios and the value of param-
eters.

First, this section is separated in two main parts. The first one is
based on a technical approach [70], and the second one on an econom-
ical approach [8]. Both are analyzed in the noisy deterministic and
stochastic forecast cases. Before introducing the numerical application,
we introduce three other techniques which we will use to compare the
performance of the proposed strategies to solve the decentralized power
consumption scheduling problem presented in this chapter.

OTHER METHODS TO COMPARE THE PERFORMANCES

To compare the performance of the proposed scheduling strategies
based on a sequential best response dynamic (rectangular profiles, dy-
namical charging, valley filling and Markov decision process), three
other methods to schedule power consumption strategies are consid-
ered in this section, all are based on the deterministic forecast case:

(i) Plug-and-Charge (PaC): this method is one of the best known
to schedule strategies, which is obtained by assuming that the
consumption of the controllable electric devices starts as soon as
they plugin to the grid, minimizing the time needed to reach the
cumulative energy demand.

(ii) Gan et al. [56]: this algorithm aims at minimizing a cost which
results of two terms: a valley-filling solution and a penalty to stabi-
lize the parallel implementation-based algorithm (the I charging
vectors (`i)i∈I are update simultaneously over the algorithm it-
erations). Convergence to this algorithm is obtained by adding a
penalty (or stabilizing) term to the cost. The weight put on the
penalty term here is 0.5 according to [18, 56]. If this weight is not
tuned properly, the implementation of Gan et al. algorithm may
lead to significant performance losses [113].

(iii) Shinwari et al. [106]: this method considers that the energy
demand of each consumer, as the one in (3.5), is spread by filling
the “holes” of the noncontrollable load consumption as a valley-
filling method. However with this algorithm, for each consumer i,
a proportion of the energy demand is allocated to a given time-
slot t proportionally to:

− `0,t + max
t∈T

`0,t∑
t∈T
− `0,t + max

t∈T
`0,t

,

and the remainder is uniformly allocated.
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SYSTEM STATE

From the evolution law of the system state (6.2), we consider a function
parametrized by two values to represent the two approaches jointly (one
technical and one economical). In this section, the system state evolves
with the function f defined with a single period time-lag in the load
consumption, according to:

xt+1 = f(xt, `1,t, ..., `I,t, `0,t, `1,t−1, ..., `I,t−1, `0,t−1) ,

where x1 ∈ R+ is the given initial condition for the system state,
(`i,t−1)i∈I is the zero vector in RI when t = 1 (do not confuse with the
real noncontrollable load profile (3.1)), and `0,0 can be understood as
the noncontrollable load consumption of base at t = 0. Now, for two
parameters p, q ∈ N, a general representation of the function f showing
the two approaches that we are interested, has the form:

f(xt, `1,t, ..., `I,t, `0,t, `1,t−1, ..., `I,t−1, `0,t−1) (6.40)

= αxt + β

(
`0,t +

∑
i∈I

`i,t

)p
+ γ

(
`0,t−1 +

∑
i∈I

`i,t−1

)q
+ zt ,

where α,β, γ ∈ R are constants of the (technical or economical) model,
and zt ∈ R+

0 is completely deterministic making always xt positive. In
particular, the parameters p and q are of the form p = q = 1 for the
economical model, and p = q = 2 for the technical one.
The simulations are performed over the chosen time (slot) corre-

sponds to 30 min, so that ∆t = 0.5 h, and the DN-transformer is a
20 kV/410 V transformer whose apparent power is 100 kVA and nom-
inal (active) power is 90 kW, which approximately corresponds to a
district of 30 households.

CONTROLLABLE LOAD CONSUMPTION

The controllable load operations occur within the time window from
5 pm to 7 am of the next day, i.e., T = 30. During the rest of the day
(from 7 am to 5 pm of the next day), the total load consumption on the
DN-transformer only consists of the noncontrollable loads. The con-
trolled devices (consumers) are considered here be a set of Electric
Vehicles (EVs), and each i ∈ I represents one of them. Unless specified
otherwise, the minimum and maximum controllable load induced by
one EV i are resp.

`min
i = 0 kW and `max

i = 3 kW . (6.41)

This is a standard assumption for home charging without any additional
connectors to plugin [19, 56]. The arrival and depart time of the EVs
are fixed for the simulations and are chosen randomly to be the closest
integers of realizations of Gaussian random variables N (4, 1.5) and
N (28, 0.75) resp. Additionally, the total energy demand of each EV is
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obtained from the distance to be covered for each of them in the next
trip7:

ei = λi
24 kWh
150 km (29.4 + 8) km ,

where 24 kWh is the capacity of a Renault Zoe battery, 150 km is the
corresponding (average) distance covered, (29.4 + 8) km is the average
daily distance covered (29.4 km to commute and 8 km for another trip),
and λi is the taken margin by EV-users to be confident not running out
of energy when driving. The latter is generated randomly once between
{1.5, 2, 2.5, 3}.

NONCONTROLLABLE LOAD CONSUMPTION

To represent the real noncontrollable loads profile (`0,t)t∈T , four sce-
narios are used. First, based on historical data taken from the Ausgrid
Australian DN-operator for Sydney [3], we choose randomly 30 house-
holds representing a district. Second, we use a subtractive clustering
method [40] with an influence range of 0.9 to generate four representa-
tive clusters, where each one stands for a scenario of the real noncon-
trollable load profile, e.g., representing a season of the year. Figure 3.5
shows a graphical representation of the four scenarios.
One important component is how to assess the impact of not being

able to forecast the noncontrollable load consumption perfectly, i.e.,
the values of the profile (`k0,t)t∈T in each scenario k = 1, ..., 4. Here,
we consider that the forecast can be either deterministic or stochastic,
see Section 2.4 for details. When the forecast is deterministic (resp.
stochastic), it turns into a noise vector (resp. a random variable), one
for each scenario of the noncontrollable loads. In both cases, the noise
of the forecast is assumed to be a zero-mean additive white Gaussian
noise with known variance σ2

k. Thus, the models (2.4) and (2.6) are used
for the numerical purposes. When the stochastic approach is assumed,
a discretization is considered (this will be explained a little further).
Considering k fixed, the variance is obtained on the time under consid-
eration T by Signal-to-Noise Ratio (SNR) expressed in decibel (dB),
which allows one to measure to what extent the noncontrollable load
consumption of the scenario k can be forecasted:

SNR := 10 log10

( 1
Tσ2

k

∑
t∈T

(`k0,t)
2

)
.

For example, fixing a SNR = 7 dB, we compute σ2
k for the scenario k

and then, we obtain

(i) a noisy vector of length T for the deterministic forecast wherein
each component is a single value from N (0,σ2

k), and

(ii) a random variable distributing N (0,σ2
k) to construct a stochastic

forecast.

7 In this way, the energy demand represents approx. the 40%–80% of capacity of a
RENAULT Zoe or Fluence EV, similarly that those in [82].
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For computational aspects, a discretization over is made on the latter,
wherein a normalized histogram is used to obtain relative frequencies.
A graphical representation is shown in the Figure 3.6.

DYNAMICAL CHARGING SETTINGS

To solve the problem for dynamical charging BRD-based (6.19) for each
decision-maker i ∈ I, we need an explicit representation of the functions
(gt)t∈T in (6.17). In this case, it is straightforward to show that (gt)t∈T
under the dynamic law (6.40) for the parameters p = q = 1 (economical
case) and p = q = 2 (technical case), are of the form: g1(x1) = x1 and

gt+1

(
x1, `i,1, . . . , `i,t ; ˜̀(m)

−i,1, . . . , ˜̀(m)
−i,t

)
= αtx1 +

t∑
τ=1

αt−τ
(
β
(˜̀(m)
−i,τ + `i,τ

)p
+ γ

(˜̀(m)
−i,τ−1 + `i,τ−1

)q
+ zτ

)
.

Under realistic values of α, β and γ (that we gives in next for the two
cases analyzed here), these functions are convex. In particular when
p = q = 2, the convexity is guaranteed if αβ+ γ ≥ 0, which is the case
here.

MARKOV DECISION PROCESS SETTINGS

Concerning the MDP used to built the scheduling strategy when a
stochastic forecast is considered, we focus on Mi,t for each i ∈ I de-
fined in (6.31). Wherein, the energy demand of each EV (3.28) defines
a qualitative objective, more precisely it defines a set of goal states Gi to
be reached, see eq. (6.34). On the other hand, the space of actions Ai of
each EV i defined in eq. (6.33), is discretized according to the minimum
and maximum controllable load induced by EVs (6.41) with a fixed pa-
rameter ∆A = `max

i , so that this stands as the set Ai = {0, `max
i }. The

discretization over the stochastic forecast is made with ∆b = 0.05 to
adjust the bin width for the (discrete) probability distribution, wherein
normalized histograms are considered to obtain relative frequencies.
See Figure 3.6 for a graphical representation of the discretization on
the stochastic forecast. Under this practical considerations, the space
of states in eachMi,T is discrete as well.
To solve the MDPs under consideration, we use PRISM tool [4, 78],

which is a probabilistic model checker, having direct support for MDPs
and incorporates the majority of the techniques from [53] to quantify
properties specified on MDPs. With this practical tool„ we only need to
specify the dynamic (6.40) and the parameters of the model to generate
each unfolded-MDPM(m)

i,T . In addition, we use MATLAB and PRISM
iteratively to coordinate the information of the consumption among
the decision-makers i at each iteration m. So that, PRISM solves the
MDPs and MATLAB builds and distributes the sequential information
for the BRD-approach.
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PRICE OF DECENTRALIZATION

In the game-theory literature (see e.g., [79, 84]), to compute maximal
losses induced by a decentralized implementation (typically by “Price of
Anarchy” based on Nash equilibrium) is not an easy task in general [46,
51, 90]. Here, we present a new notion to interpret the loss of efficiency
due to decentralized decision-making for the simulations. Intuitively,
we propose to call it the Price of Decentralization (PoD), and it is
defined as follows.

Consider that `0 is the real noncontrollable load consumption pro-
file (3.1). We define PoD to be the ratio between the optimal value of
the objective function under an optimal scheduling strategy (computed
by solving its respective deterministic or stochastic power consump-
tion problem), and the optimal value of the objective function under
a “perfect forecast”, i.e., knowing perfectly `0 without noise. The lat-
ter assumption means that the problem is completely deterministic
and since there is no forecast noise on the noncontrollable load con-
sumption, the centralized dynamical consumption strategy introduced
in Section 3.3.2 is optimal for the two cases studied here. Denoting the
respective optimal scheduling strategy by π∗, the PoD can be written
as:

PoD(π) :=

∑
t∈T

Cπx1(xt, `1,t, . . . , `I,t, `0,t)∑
t∈T

Cπ
∗

x1

(
gt(x1, `1, . . . , `t−1 ; `0,1, ..., `0,t−1), `t ; `0,t

) , (6.42)

where, π can be the strategy πrp, πdc, πvf or πmdp, computed resp.
in Section 6.3.1, Section 6.3.2, Section 6.3.3, and Section 6.4.1. Note
that the performance of the strategies are computed “a posteriori”, i.e.,
forecast errors on data are simulated and the strategies are scheduled
over a noisy (deterministic or stochastic) scenario of the environment
to observe after their performances over a “perfect forecast”, i.e., over
the real profile `0, which is a simple sequence of values.

6.5.1 DN-TRANSFORMER LIFETIME

The goal of this section is to quantify the performance of the different
scheduling strategies on the DN-transformer aging. For this, the dy-
namic law (6.40) represents the Hot-Spot (HS) temperature of the DN-
transformer, whose nominal temperature is assumed to be x1 = 98 °C,
and the shut-down HS temperature is xmax = 150 °C. The correspond-
ing values of the parameters in (6.40) are as in [70]: p = q = 2,
α = 0.83, β = 30.91 °C.kW−2, γ = −19.09 °C.kW−2 and,

zt = 0.17 (8.47 + xamb
t ) ,

where xamb
t denotes the ambient temperature at time t. Data corre-

sponding to the latter temperature is obtained from the Australian
Bureau of Meteorology for the New South Wales territory [5].
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To model the DN-transformer lifetime (in years), we consider that
when a scheduling strategy πi for each EV i = 1, . . . , I is fixed, then
writing π = (πi)i∈I , the lifetime is given by:

Lifetime := T
Lifetime0∑

t∈T
Cπx1(xt)

,

where the noncontrollable loads consumption is normalized so that
without the consumption of the EVs, the DN-transformer lifetime is
Lifetime0 = 40 years. In addition, the cost function to be used by each
decision-maker i in the scheduling problem (deterministic or stochastic),
is considered as the instantaneous Accelerated Ageing Factor (AAF),
which measures the speed of degradation relatively to the given nominal
transformer temperature. A well admitted model for AAF is [68]:

Cπix1 (xt) = exp(axt + b) ,

where a = 0.12 °C−1 and b = −11.32.

PERFORMANCE OF THE SCHEDULING STRATEGIES

The Figure 6.5 shows the performance of the different strategies pro-
posed in this work, with addition of the method of PaC and the charging
strategies of Gan et al. [56] and of Shinwari et al. [106], in function
of the lifetime of the DN-transformer (mean over scenarios) against
the number of EVs, where the forecast of the noncontrollable load con-
sumption is assumed to have a noise based on SNR = 15 dB in each
scenario. The black top dashed line corresponds to the case under the
real noncontrollable consumption and without EVs. The performances
are similar to those of Figure 3.7 for the centralized strategies coun-
terpart. In particular, the decentralized version of rectangular profiles
has little better performance here, about 5 years in terms of lifetime for
I = 20 EVs. This can be explained because of rectangular profiles in the
centralized case, places the rectangular profiles in a one-shot manner
for the consumers, making the method less flexible that in the decen-
tralized case, because here it “learns” at each iteration to find a best
response until convergence. On the other hand, in the same case for
I = 20 EVs, the strategy built by the iterative MDP-based approach
has an insignificant loss of performance (about 2 years in terms of life-
time), that can be explained because of the discretization of the MDPs
at each iteration. However it is still the same for all other amounts I
of EVs.
As before, the PaC strategy is seen to be non-acceptable, and have

the same performance in Figure 6.5 as in the centralized case of Fig-
ure 3.7. This is evident since the method is the same (the consumption
starts as soon as an EV is plugged in to the grid). The methods of of
Gan et al. and Shinwari et al. are not better than the proposed meth-
ods here, as it is shown in Figure 6.5. First, the strategy built by the
method of Gan et al., which is valley-filling-based, has almost the same
performance that other proposed methods in terms of DN-transformer
lifetime up to I = 10 EVs. However, this is not better than the oth-
ers after I = 12 EVs. This can be explained because this method has
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a “penalty” to stabilize the parallel implementation, which is a very
sensible parameter affecting the efficiency [113]. Second, the method
of Shinwari et al. has the worst performance compared to the other
methods (with exception of PaC). This one is also valley-filling-based
but the energy demanded is allocated in a different way, impacting
considerably its performance in terms of DN-transformer lifetime.
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Figure 6.5: DN-transformer lifetime (mean over the scenarios) against the
number of EVs (I), based on a forecast of the noncontrollable con-
sumption with a noise (in each scenario) based on SNR = 15 dB
(decentralized case).

Figure 6.6 represents the DN-transformer lifetime against different
values of forecast noise for I = 15 EVs. For small noise values (i.e.,
when the SNR is high), all methods proposed in this work have good
performances. The only strategy which is robust, it is the one built by
the iterative MDP-based approach. Its performance in terms of DN-
transformer lifetime remains proportional to the performances of the
centralized case shown in Figure 3.9 (which is based on I = 10 EVs),
and it is almost insensitive to forecast noises compared to the other
methods. Again, the methods (BRD-based) rectangular profiles, dy-
namical charging and valley-filling lose performance considerably up
to a noise based on SNR = 7 dB. The strategy built by the method
of Gan et al. has a performance close to valley-filling, since this is a
parallelization valley-filling-based. The method of Shinwari et al.. looks
more stable but it has the worst performance. The particular efficiency
over each scenario confirms all these observations in Figure 6.7. Note
the behavior of the methods for SNR values below 7 dB. The only strat-
egy that gives an stable efficiency is the one built by the iterative MDP
method. The others methods are considerably “chaotic”. The presence
of oscillations on certain curves could be explained by the fact that the
four scenarios of the noncontrollable consumption used in this work,
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they are in themselves not to be “smooth curves” (they are stochastic),
compared to the inputs of others works (see e.g., [20, 56, 82]). By the
fact that the scenarios are stochastic, adding a high forecast noise, in
some cases this “helps” to the performance of some algorithms. This
is shown for example for SNR values below 7 dB in Figure 6.6 and
Figure 6.7.
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Figure 6.6: DN-transformer lifetime (mean over scenarios) against forecast
noises of the noncontrollable consumption, for I = 15 EVs (decen-
tralized case).
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Figure 6.7: DN-transformer lifetime (in each scenario) against forecast noises
on the noncontrollable consumption, for I = 15 EVs (decentralized
case).

We turn now to the verification of the strategy built by the iter-
ative MDPs approach. The probability constraints (6.27) and (6.28)
are computed a posteriori, i.e., after that the strategy has been built,
we compute the probabilities of satisfying the constraints in the MDPs.
In this case, we have observed that the constraint of exceeding the up-
per bound of the maximal power is satisfied always with probability
one. This is due because the value of the maximal power in the sim-
ulations (`max = 90 kW) was sufficient for all energy demands of EVs.
However, the probability of exceeding the maximum HS temperature
of the DN-transformer is only satisfied with probability one from a fore-
cast noise based on SNR = 7 dB and up, as it is shown in Figure 6.8
which is based on the assumption of I = 15 EVs. This is due mainly
because the variance of the stochastic forecast is very high when SNR
is approaching zero (i.e., when the forecast noise is high). This is con-
firmed by the probability values of the dashed line in Figure 6.8, which
represents the the values without any EV, i.e., even when there is no
EVs, the forecast model of the noncontrollable consumption makes the
maximum temperature of the DN-transformer is reached with some
probability. This result is in line with the values shown in Figure 3.13.

To conclude this section, the convergence of the iterative MDPs is
only analyzed numerically for stopping criteria. This is shown in Fig-
ure 6.9, in which the expected value for I = 4 EVs in plotted in func-
tion of the iterations between the MDPs. Since we have not used formal
methods to analyze and formalize a convergence criterion, this problem
remains open.
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Figure 6.8: Probability value of satisfying (6.28) against forecast noises of the
noncontrollable consumption, for I = 15 EVs (decentralized case).

Figure 6.9: Expectation values from the iterative MDPs-based approach for
I = 4 EVs, based on a forecast of the noncontrollable consumption
with a noise based on SNR = 4 dB.

6.5.2 ELECTRICAL CONSUMPTION PAYMENT

Here, we want to quantify the performance of different scheduling
strategies on the Electricity Consumption Payment (ECP). The dy-
namic of the system state (6.40) represents the EVs total electricity
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bill corresponding to the total load consumption, whose parameters
are [8]: p = q = 1, and the other values were estimated by solving
a data-fitting problem in least-squares sense from the national elec-
tricity market of Australia for New South Wales territory [6]: α = 1,
β = 11.91 ¢.kWh−2, γ = −β and zt = 0. A convenient way of measur-
ing the ECP is formulated by the cost function as in [45, 105], which is
used by each decision-maker i in the scheduling problem (deterministic
or stochastic):

Cπix1 (xt, `i,t, `−i,t) := ( `−i,t + `i,t )
η xt ,

where η = 3 is a coefficient indicating the impact of nonlinearity of the
total load consumption. See [26] for details, and the initial electrical
price is assumed to be x1 = 39.65 ¢ taken from the data.
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PERFORMANCE OF THE SCHEDULING STRATEGIES

In this section, we focus in the PoD defined in eq. (6.42) to measure
the performance of the scheduling strategies. First, Figure 6.10 shows
the PoD against the number of EVs, for a forecast noise based on
SNR = 5 dB, which is an acceptable assumption of noise. The strat-
egy built by the MDP methodology has the best efficiency with re-
spect to the optimal case (compared with the centralized dynamical
consumption strategy under a perfect forecast of the noncontrollable
load consumption). Plug-and-Charge and the strategy of Gan et al.

are not acceptable, they have the worst performance in terms of price
of decentralization. Figure 6.11 shows the same results as those of Fig-
ure 6.10 but without these two strategies. The strategies of the iterative
MDP, rectangular profiles and dynamic charging; seem to have a uni-
form behavior in term of price of decentralization as the number of EVs
increases (they are stable) as it is shown in Figure 6.11. The method
of valley-filling loses some performance up to I = 10 EVs and gains
some efficiency after I = 12 EVs. Recall that this method tends to
be a uniform consummation when it has already “filled the valleys” of
the noncontrollable consumption (forecast). This is mainly confirmed
by the Figure 6.12, which shows the PoD for I = 15 EVs. In such a
case, the strategy by valley-filling becomes “independent of the noise”,
consuming uniformly over time for this number of EVs. In Figure 6.11,
we observe that the PoD of the strategy from Shinwari et al., is better
as the number of EVs increases, but it is not better that the strategies
of dynamic charging, rectangular profiles and MDPs-based.
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Figure 6.10: Price of decentralization (mean over scenarios) against the num-
ber of EVs (I), based on a forecast of the noncontrollable con-
sumption with a noise based on SNR = 5 dB (decentralized case).
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Figure 6.11: Price of decentralization (mean over scenarios) against the num-
ber of EVs (I), based on a forecast of the noncontrollable con-
sumption with a noise based on SNR = 5 dB (decentralized case).
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Figure 6.12: Price of decentralization (mean over scenarios) against forecast
noises of the noncontrollable consumption, for I = 15 EVs (de-
centralized case).

Figure 6.12 shows the PoD against different forecast noises for I = 15
EVs. Note that when the forecast noise is small (for high values of
SNR), the (decentralized) dynamic charging tens to be its centralized
counterpart. The strategy of rectangular profiles has a better efficiency
that dynamic charging and it is more robust to the noise. However,
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this not better than the strategy from the MDP-approach for high
noise values. The approach of the iterative MDPs is more adaptable to
the noise. Conversely, when the noise is small, the strategy MDP-based
loss efficiency. This can be explained by the discretization made in all
the variables.

6.6 DISCUSSION

In this Chapter 6, we have described the decentralized approach of
the power consumption scheduling problem of Chapter 3. Here, each
consumer is seen as a decision-maker and some information has to be
coordinated among consumers to build appropriate power consumption
strategies. The main reason for decentralization is to reduce the com-
plexity of the problem in terms of information. In the centralized case,
there is a single decision-maker that controls and builds all strategies
of consumers. In this chapter, we have proposed decentralized strate-
gies, making the procedure to be only relied on local information. The
main idea was to use a technique so-called sequential best response dy-
namic among consumers to find the “best responses” in terms of power
consumption strategies faces to the information of the total load con-
sumption at each iteration. When the forecast of the noncontrollable
load is stochastic, it is not yet clear how to make a proper algorithm.
Here, we have proposed a promising technique based on iterative MDPs,
having good performances in the numerical applications studied in this
chapter. The formalization of the stochastic method through formal
methods and the study of the respective convergence, remain open so
far.
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Part IV

C O N C L U S I O N

This part presents the conclusions we have drawn from our
research in this work and the suggestions of several ideas,
computational challenges, approaches, and so on; for related
future works.
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7
DISCUSS ION AND PERSPECTIVES

Abstract:

We first give a brief summary of our research in this chapter. We

discuss the main models developed and results obtained in this work

and how these fit in formal methods. In particular, from control

designs and applications (as those based on smart grids), toward

multi-constrained quantitative models (as those based on Markov

decision processes). We examine some limitations of our work and

how they could be addressed. We also review questions left open in

this document. We close the thesis with a general vision of promis-

ing research directions linked to this work for short and long term

prospects.
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7.1 SUMMARY AND CONTRIBUTIONS

This work is well-justified by the need to construct system controllers
(strategies) that are not only functionally correct but also efficient. Syn-
thesizing appropriate strategies is not easy and classical development
techniques based on testing (or trial-and-error) are largely inadequate.
Through the use of formal methods, we have essentially provided mathe-
matical formal models, algorithmic solutions and appropriate strategies
to guarantee correctness in control designs and applications, mainly
from the domain of smart grids. The power consumption scheduling
problem studied in this work is an example of such an application area,
and its design required a formal mathematical approach to ensure that
it behaves correctly and in an optimal way (or at least with good perfor-
mances). In simple terms, this is a scenario in which the consumers have
a certain energy demand and want to have this demand to be fulfilled
before a set deadline. Therefore, each consumer has to choose at each
time the consumption power so that the accumulated energy reaches
a desired level, adapting their decision-making to the constraints of
the system, e.g, to those of the electricity Distribution Network (DN).
For the purposes of numerical analysis, this scenario was considered a
pool of Electric Vehicles (EVs), where we have examined technical and
economic interactions between the EVs and the DN.

The paradigm of multi-constrained objectives in stochastic systems
in general, and in Markov Decision Processes (MDPs) in particular,
has recently arisen. It allows us to express various (quantitative or
qualitative) objectives over a model and to synthesize strategies ac-
cordingly. In practice, the performance of reactive systems is impacted
by interplays and trade-offs between several criteria, see for instance
[15, 101] for some overviews. This new field of research is very rich and
ambitious, with various types of objective combinations. For recent
developments, one can cite for example: probability of conjunctions of
objectives [62], trade-offs between expected value and variance [31, 83],
percentile-query problem for various quantitative payoff functions [102],
mean-payoff and energy games [36], conditional values-at-risk [76], and
so on. The contributions of this thesis also participate in this new field
of multi-criteria objective models, and it is shown through this work
that the use of formal methods allows efficiency and robustness accu-
racy in the synthesis of strategies, in particular for the area of smart
grids. This is mainly confirmed in the numerical applications made in
this work.

7.1.1 PART I: BACKGROUND

A brief introduction of the core concepts of the research field and gen-
eral context of this work was presented in the Part I. This part contains
the following two chapters.
We have started the first part with the Chapter 1, which explains the

three connected fields that were mainly covered in this thesis: reactive
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systems, formal methods and game theory. Formal methods were of
particular interest in this work, since these are essential to assert the
correctness and efficiency of strategies or controllers of systems that
can be founded from a control, game or reactive modeling. MDPs are
standard models in such fields and these were used mainly in this the-
sis for the modeling of a problem coming from smart grids, namely:
the power consumption scheduling problem. Such a problem is
a generalization of the EVs charging problem that was inspired first,
from the modeling made in a deterministic setting reported in [19], and
second, from the practical results of our work reported in [M1] in the
stochastic setting.

The basic representation of the problem mentioned above, for a sce-
nario in which several consumers have an energy requirement and the
system state evolves with a dynamic law, was introduced in the Chap-
ter 2. Precisely, we have first placed the context of the work of this thesis
in the dynamic of research of smart grids, and second, introduced both
important and relevant mathematical tools used mainly through this
work. In particular, the background of stochastic methods represented
on directed graphs and also, the type of strategies employed through
this thesis, namely: pure, mixed and randomized strategies. In this
work, we have settled two forms of decision-making through strategies
for consumers:

(i) Centralized: in which there is a single decision-maker for all
consumers, or

(ii) Decentralized: in which there are several decision-makers, each
of them representing a consumer.

This gave rise to the next two parts of this document, which resp.
cover the centralized and decentralized setting for the problem of power
consumption scheduling.

7.1.2 PART II: CENTRALIZED MODELING

The Part II of this work has explored the centralized approach of the
scheduling problem, in the sense that the strategies were assumed to
be controlled and built by a single entity, which was responsible for
satisfying individual requirements. This part begins with the Chapter 3
that generalizes our interesting practical results reported in [M1].
In the Chapter 3, we have settled the (centralized) modeling for the

power consumption scheduling problem in a general mathematical form,
to reduce the impact of consumption operations on the DN. From an
application view, the centralization was understood as a centralized
system operator of the DN, which controls and builds the strategies
of consumers satisfying the requirements of the individual energy de-
mands. This single decision-maker was attributed certain knowledge
about the noncontrollable part of the total consumption to schedule
the strategies. The scenario considered in this chapter was that a day-
head decision has to be made and a deterministic or stochastic forecast
on the noncontrollable consumption was available.
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First, when the forecast was deterministic, the strategies are reduced
to be parameter vectors in which each component is a consumption
power. Three sorts of strategies were provided in this case:

(i) Rectangular profiles: for the first approach, the strategies were
imposed to be rectangular profiles, that is to say that we not only
assume that each controllable consumption can only take two val-
ues (namely, the minimum and maximum power at which a con-
sumer can be consuming), but also that when it is consuming, the
consumption has to be uninterrupted. This approach was inspired
from [20], but the centralized case was not analyzed there1. Here,
we have modeled the centralized problem with such consumption
methodology and used it for the numerical applications. Since
the strategies were rectangular profiles here, each one boils down
to a simple decision (namely, the time at which the consump-
tion effectively starts), reducing the amount of variables in the
making-decision, since the centralized controller chooses here a
single parameter for each consumer (the consumption start time)
and not the complete vectors of power consumption.

(ii) Dynamical consumption: in contrast with the previous method,
the consumption profile was no longer rectangular and was arbi-
trary. The motivation for this was to have a better performance
on the impact of consumption operations, but also to be able to
control the system dynamic state. With rectangular profiles, the
system was controlled in a one-shot manner computing the sys-
tem values at each instant based on the current information. Here,
the state dynamic was taken into account explicitly and the state
was controlled. For instance, it was possible to guarantee the up-
per bound on the system state considered in the problem, which
is not well suited with rectangular profiles (since it is less flexi-
ble). This approach was motivated from [19], but here we have
provided a generalized method on the dynamic law of the system,
and then to the one of [19] was a particular case. Under some
conditions of such a dynamic (more precisely, convexity condi-
tions), the problem boils down to a simple (convex) optimization
problem.

(iii) Valley-Filling: The last approach was presented only for pur-
poses of numerical comparison. This method replaces the power
consumption problem by a valley-filling algorithm. This algorithm
is a quite well-known technique (see e.g., [106]) to allocate a given
additional energy demand over time (the one induced by the con-
sumers here), given a primary demand (the noncontrollable con-
sumption expressed here by the deterministic forecast). The idea
is to consume when the noncontrollable demand is sufficiently
low, and therefore it relies only on the minimization of the total

1 Among the possible reasons, may be the relative complexity of solving centralized
problems. Since all variables and information are controlled by a single decision-
maker. We have also observed it in the numerical applications at the end of this
Chapter 3.
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consumption and not on any other measure of impact over the
DN.

Contrary to the previous methods, in which the effects of forecast-
ing noises on the noncontrollable consumption has not been taken into
account (since the forecast was a simple noisy vector of parameters),
a stochastic forecast was then assumed. This provides a way to model
the noncontrollable consumption by generating several scenarios, for
which large databases exist (and precise statistics can be extracted).
The resulting strategies can therefore adapt to different noncontrol-
lable consumption events. After the general mathematical form of the
(centralized) problem in a stochastic setting was presented, a discretiza-
tion over has been considered leading to use of an MDP model (namely,
a multi-weighted MDP). More precisely, an MDP with several re-
quirements (as the one presented in our work reported in [M3]). After,
inspired from [34], we have developed a method (namely, the unfold-
ing of the MDP) to reduce the number of requirements in the model.
Since it is very unrealistic and considerably harder to cover a priori all
constraints of the model, the two constraints in probability were consid-
ered to be verified a posteriori by model checking method. Taking into
account a priori the other constraints, the multi-constrained scheduling
problem was then reduced to the well-known stochastic shortest path
problem (see e.g., [14, 25]).

At the end of this chapter, a numerical analysis came into play to
measure the performance of the provided strategies (namely, the impact
of the consumption operations), where the scenario of consumers was
considered a pool of EVs. We have examined here the technical and
economic interactions between EVs and the DN. In particular, first
to maximize the DN-transformer lifetime and second, to reduce the
total electrical consumption payment. Each application was made in-
dependently and no trade-off was analyzed. In outline, the numerical
applications showed that the strategy built by the MDP modeling was
almost insensitive to forecasting noise. This is in line with our practi-
cal results of [M1]. Particularly, when the forecasting noise was high,
the performance of the other methods decreased considerably and the
MDP method is globally much more robust. When the forecasting noise
is close to zero, i.e., under a “perfect forecast” (which is a very ambi-
tious hypothesis), the dynamic charging method became optimal.

Note that all these resulting schemes developed in the deterministic
and stochastic setting, have a high computational complexity due to
the degree of information used to schedule (since, it was in a centralized
way), in particular when the time-horizon and the number of consumers
are large. This is the main purpose of Chapter 6 to overcome this
problem “without losing performances”.
While correctness and optimality are in the core of formal methods,

applications domains like in smart grids (in particular, the power con-
sumption scheduling problem of this work) have only seldomly been at-
tacked through formal models. Formal methods come into play mainly
in this Chapter 4 covering the research related to the existence of strate-
gies for the general multi-constrained problem defined in this thesis.
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This problem was inspired from the previous Chapter 3 and integrates
both the “beyond worst-case” paradigm of [34], and the mix of prob-
abilities and expectations as in [37]. This chapter has explained our
theoretical results reported in [M3].

We have focused here on multi-weighted MDPs, particularly in
those with a probability constraint over a weighted reachability condi-
tion, and a quantitative constraint on the expected value of a random
variable defined using a weighted reachability condition. We have inves-
tigated the “cartography” of the problem when one parameter varies (a
threshold), namely: the set of values of such a parameter for which the
problem has or has not a solution. A partial cartography was obtained
via an algorithmic approach based on two sequences of optimization
problems, in which their solutions were assumed under randomized
strategies (a method to obtain the synthesis was developed in [M3]
and in the next Chapter 5). We have also discussed feasibility of the
resulting approach to guarantee existence of appropriate strategies, in
particular for the decision-making of a central controller of a system
against the (stochastic) behavior of its environment (e.g., systems com-
ing from control designs and applications in smart grids).
While in the previous Chapter 4, we have focused on the existence

of a randomized strategy solution for the general multi-constrained
problem, in this Chapter 5 we have investigated the synthesis of a solu-
tion for such a problem under mixed strategies. Particularly, in the
existence and construction of a solution for each element in the two
sequences of optimization problems (each element is an optimization
problem), in which its objective function was a probability and the con-
straint was an expectation upper bounded by a threshold. Obtaining a
mixed strategy here, it also allows us to define a randomized strategy so-
lution for the general multi-constrained problem. This chapter explains
our research reported in [M2] and in a forthcoming paper [M5].

The idea was first to fix an index in the two sequences (the same in-
dex for both), and define a general problem representing together the
two problems taken from each sequence. In the previous chapter, such
problems were defined for randomized strategies and the existence of
a solution was analyzed. Here, we have defined a joint problem and
we have analyzed its counterpart for mixed strategies. The idea was to
find an optimal mixed strategy and then, to define an optimal random-
ized strategy for the initial problem. An optimal mixed strategy was
obtained by solving a dual optimization problem.

Since mixed strategies can be understood as a convexification of pure
strategies, we have also defined the pure strategy problem (that is the
same, but the only difference is the sort of strategy to be used). We
have identified then two primal problems: one for mixed strategies and
another for pure strategies. In addition, we have defined their problem
counterpart from duality optimization, that is, resp. the mixed and pure
dual problems. Having these four problems in mind (pure/mixed primal
problems and pure/mixed dual problems), we have shown that to solve
the primal mixed problem, it is equivalent to solve the dual pure prob-
lem. An optimal mixed solution (for the primal mixed problem) was
built by combining two pure strategies: one satisfying the constraint
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in the expectation and another one that does not. This mixed strat-
egy gave the equality in the constraint in expectation (with the upper
bound parameter). Since we focus in a strategy with the strict inequal-
ity in the constraint, we perturb such a mixed strategy to have another
one that effectively satisfies the strict inequality and to be near to the
optimum. With this strategy in mind, we use a theorem from game the-
ory (namely, the Kuhn’s theorem that can be applied in this context),
to define a randomized strategy solution of the initial problem.

7.1.3 PART III: DECENTRALIZED MODELING

The Part III of this work has discussed the decentralized approach of the
main problem of interest: the problem of power consumption scheduling.
Contrary to the Part II, the strategies for consumers are controlled
and built here by several decision-makers, each of them representing a
consumer. This part has explained our work reported in [M4], the one
of a forthcoming paper [M5], and also it is in line with our practical
results of [M1]. This part contains the following chapter.
The Chapter 6 has described the general mathematical modeling of

the power consumption scheduling problem, assuming that the con-
sumption operations had been decentralized, in the sense that:

(i) each consumer was seen as a decision-maker, so that each of them
was free to make its own decision in terms of choosing its con-
sumption power (i.e., controlling and building its own strategy),
and

(ii) it had to be decentralized information-wise, i.e., the scheduling
algorithm or procedure (implemented by a machine, which is the
most common scenario), only relied on local information.

The main idea was then to use a technique so-called sequential Best Re-
sponse Dynamic (BRD) among consumers. BRD acted as a coordina-
tion mechanism through decision-makers to ensure that the scheduled
strategies were consistent with the problem. To handle the decentral-
ized problem and to make an effective calculation of the strategies, the
scenario considered in this chapter was that a day-head decision has
to be made and a deterministic or stochastic forecast on the noncon-
trollable consumption was available as in the Chapter 3. To schedule
a strategy for a consumer, it was attributed certain knowledge about
the total consumption, so that a consumer updated its strategy in a
round-robin manner by solving the problem from “its point of view”.
Precisely, this allowed to built a way to coordinate information among
the decision-makers to determine their “best response behaviours”, by
considering their “opponents” are part of the noncontrollable consump-
tion. This was the sequential BRD used in this work.
When the forecast was deterministic, the strategies were reduced

to be parameter vectors in which each component is a consumption
power and the iterative information among consumers was a simple
vector known. In such a case, the three sorts of strategies provided
in the Chapter 3 are used to solve the problem. However, these were
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built here by sequential BRD. On the other hand, when the forecast
was stochastic, an iterative MDP method was developed, based on the
MDP technique of the Chapter 3. The iterative information among
consumers was a known vector of random variables. Note that solving
problems in which several decision-makers must operate collaboratively
in sequential (stochastic) environments is an important challenge. Here
we have developed an iterative technique based on MDPs and BRD.
However, there is no formal proof of optimality, contrary to what we
usually want in formal methods. This remains an open problem.

At the end of this chapter, a numerical analysis came into play to
measure the performance of the provided decentralized strategies based
on BRD. The scenario of consumers was considered a pool of EVs. We
have examined here the technical and economic interactions between
EVs and the DN. In particular, first to maximize the DN-transformer
lifetime and second, to reduce the total electrical consumption pay-
ment. Each application was made independently and no trade-off was
analyzed. In line with the Chapter 3, numerical applications showed
that the MDP method is almost insensitive to noise and this is glob-
ally much more robust than the other methods. Other decentralized
techniques were also used to compare the performances of our work.
These are: Gan et al. [56] and Shinwari et al. [106]. However, our MDP
methodology remained more robust.

7.2 FUTURE RESEARCH DIRECTIONS

First, in the numerical applications in the Chapter 3 and Chapter 6,
we have assumed to have an available forecast on the noncontrollable
part of the total load consumption to schedule strategies. A potentially
interesting extension could be the study of suitable methods to per-
form a “correct” forecast of such an environment. This can be based,
e.g., on reinforcement learning (see e.g, [108]). For instance, in [91] the
probability transitions of the Markov model is not assumed known a
priori and the centralized controller learns continuously to adapt the
individual consumer preferences and pricing variations over time. Con-
cerning several decision-makers, some overviews of “multi-agent” re-
inforcement learning algorithms (fully cooperative, fully competitive,
etc.) have been reviewed in [35]. However, (as in smart grid) formal
methods have only seldomly been attacked in such a field. Some ap-
proximations have been studied for example in [55], but only safety
guarantees from formal verification have been given.

Second, the main thing to discuss from the decentralized application
of the Chapter 6, is the guarantee of the convergence of the method
based on iterative MDPs. Even if we have observed such behavior nu-
merically, an interesting extension should be to study a formalism of
such a proposed method. This method can be seen as if each decision-
maker has its own learning process. Then, they determine their best-
response behaviors considering their opponents are part of the environ-
ment. From a game theory view, this often results in local optima [33,
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66, 81], but (to our knowledge) no formal methods have been devel-
oped.
Third, in Chapter 4 we have identified realistic conditions on the

structure of the multi-weighted MDP under which our algorithmic tech-
nique was almost-complete. The case of MDPs not satisfying these con-
ditions remain open, but we believe that our approximation techniques
gives interesting information which suffice for practical applications
such as in smart grids. In addition, under one of these conditions men-
tioned there, we can immediately extend to multi-weights with worst-
case constraints. However, in a more general setting where the costs can
take any value, this could not be solved, which has to be put in par-
allel with the undecidability result of [102]. A nice continuation of our
work would consist in computing (approximations of) Pareto-optimal
solutions in the multi-weighted MDP setting. Improving the complex-
ity and practicality of our approach is also on our agenda for future
work.

Fourth, some studies/applications in the area of smart grid (in par-
ticular in the EVs-charging problem) that we can focus on the use
formal methods in future works, could be included, e.g., to consider
that the departure time of EVs is stochastic [87], to assume that the
stochastic environment is the wind power generation [67, 80], to de-
fine a stochastic game taking into account the dynamics of electrical
systems (heating, air conditioning, etc.) and to analyze optimal equi-
libria [54], to design a model with uncertain energy demands [104], to
consider a large population of EVs in a energy game [82], and so on. In
addition, it is also possible to focus on learning methods over stochastic
environments, as in [39] for the EVs-charging problem with forecasted
prices, or as in [13] in which a learning algorithm about the real-time
energy price was proposed, etc. Where again, formal methods need to
be applied to guarantee correctness.
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Part V

A P P E N D I X

This Part includes the synthesis in French of this work and
the mathematical proofs of our research.
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1.1 INTRODUCTION

Au sein de la communauté scientifique, l’étude des réseaux d’énergie
ou « smart grids » suscite un vif intérêt puisque ces infrastructures de-
viennent de plus en plus importantes dans notre monde moderne [88].
Des outils mathématiques avancés et complexes sont nécessaires afin
de bien concevoir et mettre en œuvre ces réseaux, dont la précision
et l’optimalité sont deux caractéristiques essentielles pour leur concep-
tion [65]. Cela motive fortement le travail développé dans cette thèse.

a.1.1 INSPIRATION ET CONTEXTE

Dans cette thèse, nous étudions le problème général de planification de
consommation d’énergie. En termes simples, il s’agit d’un scénario dans
lequel les consommateurs ont besoin d’une certaine quantité d’énergie
et souhaitent que cette demande soit satisfaite dans une période spé-
cifique (e.g., un Véhicule Électrique (VE) doit être rechargé dans une
fenêtre de temps définie par son propriétaire). Par conséquent, chaque
consommateur doit choisir (par un système informatisé) une puissance
de consommation à chaque instant afin que l’énergie finale accumulée
atteigne un niveau souhaité. La manière dont les puissances de consom-
mation sont choisies est obtenue par l’application d’une « stratégie » qui
prend en compte à chaque instant les informations pertinentes d’un
consommateur (e.g., l’énergie accumulée pour recharge le VE) afin de
choisir un niveau de consommation approprié.

Nous nous concentrons principalement sur la synthèses des straté-
gies appropriées et optimales pour réduire l’impact des consomma-
teurs sur le réseau d’énergie et qui sont confrontés aux incertitudes de
l’environnement du système électrique, à savoir: la part non-contrôlable
de la consommation électrique totale (e.g., la consommation hors VEs
dans le quartier résidentiel). Nous étudions les cas où cette consom-
mation non-contrôlable est déterministe ou stochastique. En synthéti-
sant des stratégies fonctionnellement correctes, nous pouvons donner
de garanties de précision du système. En particulier, la consommation
contrôlable peut s’adapter aux contraintes du réseau d’énergie (e.g.,
pour ne pas dépasser la température maximale d’arrêt du transforma-
teur électrique) et aux objectifs des consommateurs (e.g., tous les VEs
soient rechargés en minimisant le coût total de la consommation). Dans
ce chapitre, nous analysons une procédure informatique pour concevoir
des stratégies selon une approche centralisée (dans laquelle il n’y a
qu’un seul décideur qui contrôle toutes les stratégies des consomma-
teurs)1 en utilisant des méthodes formelles [48], la théorie des jeux [84]
et l’optimisation [30].

1 Pour le cas décentralisé (dans laquelle il y a plusieurs contrôleurs, chacun représen-
tant un consommateur) voir le Chapitre 6.
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Nous étudions aussi la généralisation théorique de ce problème d’énergie,
qui peut être vu comme un système stochastique avec des multi-objectifs
sous contraintes. En particulier, nous pouvons exprimer une limite
supérieure de la consommation totale sur le réseau (codée comme une
condition d’accessibilité dans notre modèle), une contrainte imposée
à la demande d’énergie des consommateurs en tant qu’objectif quan-
titatif d’accessibilité, et divers critères d’optimisation des coûts (e.g.,
minimiser le vieillissement du transformateur électrique). Nous carac-
térisons l’existence d’une stratégie à travers des problèmes d’optimisation
sous-jacents qui sont résolus à l’aide des problèmes duales associés, et
montrons comment construire une telle stratégie. Comme les valeurs
optimales des problèmes initial et dual sont différentes pour des straté-
gies pures (écart de dualité), nous étendons ces problèmes aux straté-
gies mixtes et prouvons qu’il n’y a pas d’écart de dualité dans un
tel contexte. Nous montrons enfin qu’on peut construire une solution
(stratégie) mixte à travers d’au plus deux stratégies pures et dévelop-
pons an algorithme pour telle construction.
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1.2 PROBLÈME D’ÉNERGIE

Nous considérons un Réseau de Distribution (RD) comprenant un
transformateur auquel deux groupes sont connectés : un ensemble d’appareils
électriques contrôlables ou de consommateurs (e.g., des Véhicules Élec-
triques (VEs)), dénoté par I := {1, . . . , I}, I ∈ N, et un ensemble
d’autres appareils électriques. Ce dernier groupe est supposé induire
une consommation indépendante de I et est donc appelée consomma-
tion non-contrôlable. En supposant que le temps est discrétisé avec
un pas de temps ∆t et indexé par t ∈ T := {0, 1, . . . ,T}, T ∈ N, laE.g., si chaque t

représente un

créneau de 30 min,
alors ∆t = 0.5 h

consommation totale à t peut s’écrire de la manière suivante :

`t := `0,t +
∑
i∈I

`i,t ≤ `max , (A.1)

où `max ∈ R+
0 est la puissance maximale admissible du transformateur

du RD, `0,t ∈ R+
0 est la consommation non-contrôlable réelle

(inconnue à priori) et `i,t ∈ R+
0 est la consommation contrôlable duLa puissance

minimale fait

référence, e.g.,

lorsque i

consomme en

mode veille

consommateur i ∈ I, telle que :

`min
i ≤ `i,t ≤ `max

i , (A.2)

où `min
i , `max

i ∈ R+
0 sont resp. la puissance de consommation mini-

male et maximale. Une contrainte de besoin d’énergie ei ∈ R+
0 est

considérée pour chaque i ∈ I :E.g., ei = 24 kWh
correspond à une

charge complète

d’un VE i
∆t
∑
t∈T

`i,t ≥ ei . (A.3)

Pour le système d’intérêt (le RD), l’état est dénoté à t ∈ T par
xt ∈ R, et il est requis de maintenir xt borné supérieurement par un
seuil donné xmax ∈ R+

0 , c.-à-d.,E.g., si xt
représente la

température du

transformateur du

RD, xt doit rester

au plus égale à la

température

maximale xmax

xt ≤ xmax . (A.4)

Un modèle général (non linéaire) est supposé pour la dynamique de
l’état du système. Il est exprimé par :

xt+1 = f(xt, `t, `0,t) (A.5)

pour chaque t ∈ T , où x1 ∈ R+
0 est une condition initiale donnée de

l’état du système et f est une fonction connue. Une hypothèse pratique
pour les algorithmes étudiés dans cette thèse, est la suivante.

Hypothèse A.2.1

La fonction f de la dynamique de l’état du système (A.5), est une
fonction qui dépend de la consommation totale (A.1).
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STRATÉGIES

La manière dont la consommation contrôlable d’un consommateur est
choisie, est obtenue par l’application d’une stratégie à chaque instant
t. Les stratégies sont conçues dans cet Appendix A selon une approche
centralisée, c.-à-d., qu’il n’y a qu’un seul décideur (système informa-
tisé centralisé) qui contrôle toutes les stratégies des consommateurs.
L’information qu’il prend en compte pour définir les stratégies est
l’historique (également appelé chemin) du système. Un chemin du
système est représenté à t par :

ωt := (x1, `1, x2, `2, . . . , xt−1, `t−1, xt) , (A.6)

où `t := (`i,t)i∈I est le vecteur de consommation contrôlable des
consommateurs à t. Une stratégie (centralisée) pour les consomma-
teurs est définie à l’instant t par :

πt(ωt) = `t ,

et nous dénotons un profil des stratégies par π := (πt)t∈T . Notez que
cette définition de stratégie est conforme à celle d’une stratégie pure
vue dans la Section 2.6.3. Rappelons que, dans ce contexte, π est sans
mémoire ou de Markov si pour chaque t ∈ T ,

πt(ωt) = πt(ω
′
t′) , (A.7)

où ωt = (x1, `1, x2, ..., `t−1, xt) et ω′t′ = (x1, `′1, x′2, ..., `′t′−1, x′t′) sont
des chemins finis du système, tels que xt = x′t′ . Autrement dit, la seule
information pertinente qu’une stratégie de Markov a besoin est contenu
dans l’état actuel du système.

PROBLÈME D’ÉNERGIE

Le problème d’intérêt de planification de la consommation d’énergie
pour les consommateurs est formulé comme suit :

Problème de Planification de Consommation d’Énergie

min
π

∑
t∈T

Cπx1(xt, `t, `0,t) (A.8)

s.t. (A.1), (A.2), (A.3), (A.4), (A.5) .

Pour résoudre ce problème, nous supposons qu’une prévision de la
consommation non-contrôlable réelle (`0,t)t∈T est disponible, qui peut
être déterministe ou stochastique (voir Section 2.4 pour plus de détails).
De cette manière, un profil des stratégies optimales π∗ est construit
hors-ligne pour définir la consommation contrôlable optimale qui sera
exécutée. Une fois que π∗ est définie, il peut être mise en ligne.
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a.2.1 MÉTHODOLOGIE POUR LE CAS DÉTERMINISTE

Dans cette section, une prévision déterministe de la consomma-
tion non-contrôlable réelle sera disponible, laquelle intervient en tant
qu’un profil de paramètres dans le problème (A.8). Cette prévision
sera dénotée par ( ˜̀0,t)t∈T . Tout le problème est donc de choisir la suite
des niveaux de puissances de consommation (`i,t)t∈T pour chaque con-
sommateur i ∈ I en résolvant (A.8). Nous proposons trois types de
stratégies de consommation dans ce qui suit.

PROFILS DE CONSOMMATION RECTANGULAIRES

Pour chaque consommateur i ∈ I, nous supposons, premièrement, que
la consommation `i,t à t ∈ T ne peut que prendre les valeurs `min

i ou
`max
i , et, deuxièmement, que lorsque `i,t = `max

i , la consommation doit
être ininterrompue jusqu’à ce que la contrainte de besoin d’énergie (A.3)
soit satisfaite. Cela conduit à des profils de consommation rectangu-E.g., si pour i,

ei = 6 kWh,
`min
i = 0 kW,

`max
i = 3 kW,

T = 5 et ∆t = 1,
alors

`i = (0, 0, 3, 3, 0)
est un profil

rectangulaire

pour i

laires que nous dénotons par :

`i ∈
{
(`i,t)t∈T ∈ {`min

i , `max
i }T

∣∣∣∣ ∀t ∈ {tstart
i , ..., tstop

i } ⊆ T , `i,t = `max
i

∀t ∈ T \ {tstart
i , ..., tstop

i } , `i,t = `min
i

}
(A.9)

où tstart
i , tstop

i ∈ T représentent resp. le temps de début et d’arrêt de la
consommation, tels que tstart

i ≤ tstop
i . Par conséquent, une stratégie de

planification de la consommation d’énergie est réduite à choisir tstart
i .

En pratique, à partir de la contrainte de besoin d’énergie (A.3), chaqueIci, nous ne

prendrons pas en

compte la

consommation due

à la puissance

minimale `min
i

tstart
i ∈ T est limité à être :

tstart
i ≤ T − ei

`max
i

, (A.10)

où tstop
i peut être choisi comme le temps minimum tel que :

(tstop
i − tstart

i ) `max
i ≥ ei . (A.11)

Avec un petit abus de notations, nous écrivons une stratégie de profils
rectangulaires par πrp = ( tstart

1 , ..., tstart
I ). Ainsi, le problème (A.8)

peut s’écrire dans ce contexte comme :

Problème d’Énergie - Profils Rectangulaires

min
πrp

∑
t∈T

Cπ
rp

x1 (x̃t, `t ; ˜̀0,t) (A.12)

s.t. (A.1), (A.4), (A.5), (A.9), (A.10), (A.11) .

Puisque l’état du système est complètement déterminé sous l’hypothèse
d’une prévision déterministe, le problème (A.12) est réduit à un prob-
lème d’optimisation.
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CONSOMMATION DYNAMIQUE

Cette méthode prend explicitement l’évolution de l’état du système (A.5),
laquelle peut être exprimée comme une seule fonction dépendant de
la condition initiale x1, la prévision déterministe ( ˜̀0,t)t∈T et la suite
(`1, ..., `t) pour chaque t ∈ T . Cette observation nous permet de con-
vertir le problème (A.8) en un problème d’optimisation standard [30]
en définissant des fonctions (gt)t∈T , telles que g1(x1) := x1 et

gt+1(x1, `1, ..., `t ; ˜̀0,1, ..., ˜̀0,t) (A.13)
:= f(gt(x1, `1, ..., `t−1 ; ˜̀0,1, ..., ˜̀0,t−1), `t; ˜̀0,t) .

De cette façon, la contrainte (A.4) peut s’écrire dans ce contexte comme :

gt(x1, `1, ..., `t−1 ; ˜̀0,1, ..., ˜̀0,t−1) ≤ xmax . (A.14)

Tout le problème est donc de trouver une stratégie de consomma-
tion dynamique (dénotée ici par πdc) en résolvant le problème suivant
d’optimisation standard :

Ce problème est un

problème

d’optimisation

convexe si

Cx1 , g1, ..., gt et f
sont convexes

Problème d’Énergie - Consommation Dynamique

min
πdc

∑
t∈T

Cπ
dc

x1

(
gt(x1, `1, ..., `t−1 ; ˜̀0,1, ..., ˜̀0,t−1), `t ; ˜̀0,t

)
s.t. (A.1), (A.2), (A.3), (A.13), (A.14) . (A.15)

MÉTHODE DE VALLEY-FILLING

L’idée de l’algorithme de valley-filling est de positionner le vecteur de
la consommation contrôlable agrégée, dénoté par :

πvf =

(∑
i∈I

`i,1, ...,
∑
i∈I

`i,T

)
,

afin de remplir les vallées de la courbe dessinée par la consommation
non-contrôlable ( ˜̀0,t)t∈T . Puisque cette méthode contrôle à chaque in-
stant t la somme des consommations contrôlables, nous pouvons réécrire
la contrainte de la demande d’énergie (A.3) par :

∆t
∑
t∈T

(∑
i∈I

`i,t

)
≥

∑
i∈I

ei . (A.16)

En suivant la définition classique de cet algorithme (voir par exem-
ple [94, 106]), nous écrivons le problème (A.8) dans ce contexte par :

Ici, Φ est une

fonction

strictement

convexe

Problème d’Énergie - Valley-Filling

max
πvf

∑
t∈T

Φπvf
( ˜̀

0,t +
∑
i∈I

`i,t

)
(A.17)

s.t. (A.2), (A.16) .
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La solution de ce problème est donnée explicitement en utilisant la
méthode des multiplicateurs de Lagrange [24, 30] :

∑
i∈I

`i,t = min
{∑
i∈I

`max
i , max

{∑
i∈I

`min
i , µ − ˜̀

0,t

}}
,

où µ ∈ R+
0 est un seuil (le niveau de remplissage par « l’eau ») à définir

pour que la contrainte de besoin d’énergie (A.16) soit vérifiée.

a.2.2 MÉTHODOLOGIE POUR LE CAS STOCHASTIQUE

Les méthodes précédentes ont été conçues en supposant une prévision
déterministe de la consommation non-contrôlable, (laquelle représente
un simple scénario donné par un vecteur de paramètres). Dans cette
section, une prévision stochastique est disponible pour résoudre le
problème (A.8). Cette prévision sera dénotée par (L̃0,t)t∈T , qui est
une collection finie de variables aléatoires i.i.d. définies à travers d’une
distribution de probabilité P0.

Supposons que Lt = (Li,t)i∈I est la sequence qui prend le vecteur
de consommation contrôlable `t = (`i,t)i∈I à t ∈ T . Nous écrivons (de
manière stochastique) la consommation totale (A.1) comme suit :

L̃t = L̃0,t +
∑
i∈I

Li,t . (A.18)

Ainsi, le comportement de l’état du système est également stochastique
et nous le dénotons par X̃t. Supposons maintenant que l’état du sys-
tème à t est xt et qu’un vecteur de consommation contrôlable `t est
sélectionné. La probabilité que l’état du système soit xt+1 à l’instant
t+ 1 (suivant l’évolution f dans (A.5)) est calculée comme :

P
[
X̃t+1 = x̃t+1

∣∣∣ X̃t = x̃t, Lt = `t
]

(A.19)

= P0

[
L̃0,t ∈ { ˜̀0,t | x̃t+1 = f(x̃t, `t; ˜̀0,t)}

∣∣∣ X̃t = x̃t, Lt = `t
]

.

La contrainte de la puissance maximale `max admissible du transfor-
mateur du RD et de la borne supérieur xmax de la valeur de l’état du
système, peuvent s’écrire maintenant sur T comme suit :∏

t∈T
P0

[
L̃t ≤ `max

∣∣∣ Lt = `t
]

≥ 1 − ε` (A.20)

∏
t∈T

P
[
X̃t+1 ≤ xmax

∣∣∣ X̃t = x̃t, Lt = `t
]
≥ 1 − εx (A.21)

où (ε`, εx) ∈ [0, 1]2 représente le risque en probabilité de dépasser resp.
les valeurs `max et xmax. En réécrivant la contrainte de la demande
d’énergie (A.3) sous la forme :

∆t
∑
t∈T

Li,t ≥ ei , (A.22)

et la contrainte sur la consommation contrôlable (A.2) par :

`min
i ≤ Li,t ≤ `max

i , (A.23)
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le problème (A.8) peut être réécrit dans ce contexte comme suit :

Problème d’Énergie - Cas Stochastique

min
π

∑
t∈T

Eπx1

[
Cπ(X̃t, Lt ; L̃0,t)

]
(A.24)

s.t. (A.18), (A.19), (A.20), (A.21), (A.22), (A.23) .

Pour résoudre ce problème et faire un calcul effectif, une discrétisa-
tion sur la consommation sera considérée. Ce problème peut donc être
modélisé à l’aide d’un processus de décision de Markov [96] lorsque des
statistiques (appropriées) sont disponibles.

APPROCHE PAR UN PROCESSUS DE DÉCISION DE MARKOV

D’après la Définition 2.6.9, nous utilisons un Processus de Décision de
Markov (MDP) double-pondéré dans ce contexte. Il est de la forme :

M =
(
X ×L, (x1, 0), A, P , C, CI

)
.

où X × L définit l’espace des états, X est l’ensemble fini d’états du
système du RD, L est l’ensemble (fini) représentant les valeurs de la
consommation totale (A.18), (x1, 0) est l’état initial, A est l’espace fini
d’actions (c.-à-d., de la consommation contrôlable des consommateurs),
P est la probabilité de transition entre les états, C es une fonction de
coût entre les transitions des états (celle du problème (A.24)), et CI
est une autre fonction de coût définie comme l’énergie agrégée :

CI(Lt ) = ∆t
∑
i∈I

Li,t .

Dans ce qui suit, nous déplionsM afin de simplifier la contrainte de
la demande d’énergie des consommateurs dans un objectif quantitatif
d’accessibilité. D’après la Définition 2.6.10, le dépliage de M est la
structure suivante :

MT =
(
ST , s1, A, PT , C

)
, (A.25)

où ST = X ×L×E ×T est l’espace des états, où E représente l’espace
de l’énergie accumulée des consommateurs :

E =

[
0, T

∑
i∈I

`max
i

]
,

s1 = (x1, 0, 0, 1) est l’état initial, A est l’espace des actions défini par :

A =
⋃
t∈T

{
`I,t =

∑
i∈I

`i,t
∣∣∣ ∑

i∈I
`min
i ≤ `I,t ≤

∑
i∈I

`max
i

}
,

PT : ST ×A → D(ST ) est la probabilité de transition définie par :

PT (st, `I,t)(st+1) = P (proj1(st), `I,t)(proj1(st+1))
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si (i) proj1(st+1) = f(proj1(st), `I,t ; ˜̀0,t) ,Ici, projj est la

jème-projection
sur les états,

j = 1, 2, 3, 4

(ii) proj2(st+1) = ˜̀
0,t + `I,t ,

(iii) proj3(st+1) = min{ eI , proj3(st) + ∆t `I,t } , où

eI =
∑
i∈I

ei , (A.26)

(iv) proj4(st+1) ≤ T ,

et PT (st, `I,t)(st+1) = 0 dans le cas contraire. Notez que (i) est im-
plicitement inclus dans (A.19). Enfin, la fonction de coût C dansMT

est la même que C deM.
Puisque nous sommes intéressés à atteindre la énergie accumulée (A.26)

pour satisfaire la demande des consommateurs, nous définissons un en-
semble objectif G ⊂ ST comme suit :

G :=
{
st ∈ ST | proj3(st) = eI and proj4(st) = T

}
.

Nous voudrons trouver une stratégie de sorte que G est atteint. Cela
est réduit au problème du plus court chemin, pour lequel l’existence
et la construction d’une stratégie optimale peut être décidée en temps
polynomial, voir par exemple [14, 25].

a.2.3 APPLICATION NUMÉRIQUE

Nous nous plaçons dans un RD alimenté par un transformateur moyenne-
tension/basse-tension 20 kV/400 V de puissance maximale `max = 90 kW
dans un quartier résidentielle qui contient une trentaine de foyers. Nous
assumons que l’état du RD (A.5) évolue avec la dynamique suivante :

xt+1 = αxt + β

(
`0,t +

∑
i∈I

`i,t

)2

+ γ

(
`0,t−1 +

∑
i∈I

`i,t−1

)2

+ zt .

L’état du système représente la température du point chaud du trans-
formateur du RD, dont la température nominale est x1 = 98 °C (tem-
pérature de référence) et la température maximale d’arrêt (shut-down)
est xmax = 150 °C. Les paramètres du modèle précédent sont [70] :
α = 0.83, β = 30.91 °C.kW−2, γ = −19.09 °C.kW−2 et zt est définieDes données

correspondant à

(xamb
t )t∈T sont

obtenues de [5]

par zt = 0.17 (8.47 + xamb
t ), où xamb

t est la température ambiante à t.

DURÉE DE VIE DU TRANSFORMATEUR

Le transformateur a été dimensionné de telle sorte qu’il vive 40 ans sans
la consommation contrôlable. Le temps de vie du transformateur est
défini inversement proportionnel au vieillissement total :

Lifetime := T
40∑

t∈T
Cπx1(xt, `t, `0,t)

,

où la fonction de coût C est considérée comme le modèle du vieillisse-
ment instantané. Un modèle bien admis qui mesure la vitesse de dégra-
dation par rapport à la température nominale du transformateur est le
suivant [68] : Cπx1(xt) = exp(a xt+ b), où a = 0.12 °C−1 et b = −11.32.
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CONSOMMATION CONTRÔLABLE

Les simulations sont effectuées sur un temps discrétisé, où chaque t cor-
respond un créneau de 30 min, de sorte que ∆t = 0.5 h. Les opérations
de la consommation contrôlable ont lieu dans une fenêtre de temps de
17 h à 7 h du lendemain matin. Le reste de la journée (de 7 h à 17 h
du lendemain matin), la consommation totale sur le RD est constitué
uniquement de la consommation non-contrôlable. Ainsi, T = 48. Les
consommateurs sont considérés ici comme un ensemble de Véhicules
Électriques (VEs), de sorte que chaque i ∈ I représente un VE. Les
puissances de charge minimale et maximale induites par un VE i sont Ceci correspond à

une charge

résidentielle

typique

resp. `min
i = 0 kW et `max

i = 3 kW. Les temps d’arrivée et de départ
des VEs sont choisis de manière aléatoire selon une distribution nor-
mal N (4, 1.5) et N (28, 0.75) respectivement. La demande d’énergie de
chaque VE est obtenue à partir de la distance à parcourir pour chacun
d’eux lors du prochain voyage : De cette manière,

ei représente entre

un 40 % à 80 % de

la capacité d’un

Renault Zoe,

comme dans [82]

ei = λi
24 kWh
150 km (29.4 + 8) km ,

où 24 kWh correspond à une charge complète de la batterie d’un VE
(e.g., d’un Renault Zoe), 150 km est la distance parcourue (en moyenne),
(29.4 + 8) km est la distance journalière moyenne parcourue (29.4 km
pour faire un aller-retour au travail par exemple, et 8 km pour un autre
voyage), et λi est une marge prise par les consommateurs pour être sûr
de ne pas manquer d’énergie lors de la conduite. Ce dernier est généré
aléatoirement entre {1.5, 2, 2.5, 3}.
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Figure A.1: Quatre scénarios de la consommation non-contrôlable sur un jour.
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CONSOMMATION NON-CONTRÔLABLE

Pour représenter le profil de la consommation non-contrôlable réelle
(`0,t)t∈T , quatre scénarios sont générés. Premièrement, nous utilisons
une base de données de consommation historique extraite de l’opérateur
du réseau d’électricité australien « Ausgrid » de la ville de Sydney [3],
dans laquelle nous avons choisi au hasard 30 ménages pour représenter
un district. Deuxièmement, nous utilisons une méthode de classifica-
tion soustractive [40] avec une plage d’influence de 0.9 pour générer
quatre classes représentatives, où chacune représentant un scénario
de (`0,t)t∈T , e.g., pour une saison de l’année. La Figure A.1 montre
une représentation graphique des quatre scénarios générés. Un élément
important est de savoir comment évaluer l’impact de prévision de la
consommation non-contrôlable réelle, ici sur chaque scénario (`k0,t)t∈T ,
k = 1, 2, 3, 4. Dans cette section, nous considérons qu’une prévision sur
un scénario peut être soit déterministe soit stochastique. Lorsqu’elle
est déterministe (resp. stochastique), elle est un vecteur avec un bruit
(resp. une variable aléatoire). Dans les deux cas, le bruit de la prévision
est supposé être un bruit additif N (0,σ2

k), où la variance σ2
k est con-

nue. Ainsi, les modèles (2.4) et (2.6) seront utilisés. Considérant qu’un
scénario k est fixé, la variance du bruit est obtenue via le « forecasting
signal-to-noise ratio » (SNR) exprimé en décibel (dB), ce qui permet
de mesurer dans quelle mesure la consommation non-contrôlable réelle
du scénario k peut être prédite. Un SNR est défini par :

SNRk := 10 log10

(
1
Tσ2

k

∑
t∈T

(`k0,t)
2

)
.

Lorsque l’approche stochastique est adoptée, une discrétisation est con-
sidérée pour modéliser le problème dans un MDP MT (A.25), où un
histogramme normalisé est utilisé avec un paramètre b = 0.05 pour
ajuster la largeur des classes générés. L’espace des actions A de MT

est discrétisé selon les puissances de charge minimale et maximale, de
sorte que A = {0, ∆A, ..., I∆A}, où ∆A = 3.

PERFORMANCE DES STRATÉGIES DE CONSOMMATION

Nous présentons dans la Figure A.2 et la Figure A.3 les performances
des différents stratégies de consommation d’énergie pour la recharge
des VEs, obtenus sur du vieillissement du transformateur (équipement
coûteux du RD). Premièrement, la Figure A.2 montre que la méthode
classique de Brancher-et-Charger a un impact très significatif sur le
transformateur. Cette stratégie n’est donc pas acceptable. Dans cette
Figure A.2, la prévision sur la consommation hors VEs est supposée
avoir un bruit basé sur un SNR = 15 dB (hypothèse ambitieuse de
prévision presque-parfaite). La stratégie construite à l’aide d’un MDP
a une performance similaire à celle de consommation dynamique, cette
dernière est optimale lorsque le bruit de prévision est proche de zero
(SNR grand). Les autres deux stratégies ont de performances proches à
celle du MDP, cependant puisque la stratégie des profils rectangulaires
est moins flexible (car la consommation est ininterrompue), elle perd
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un peu en performance. Deuxièmement, pour des cas plus réalistes de
prévision, nous observons dans la Figure A.3 que la stratégie construite
par la méthode MDP est beaucoup plus robuste que les autres méth-
odes considérées et presque insensible aux bruits de prévision. Bien que
les autres stratégies s’améliorent lorsque la prévisions est de meilleure
qualité (SNR augmente), leurs performances diminuent et sont consid-
érablement « chaotiques» pour des valeurs inférieures à SNR = 6 dB.
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Figure A.2: Temps de vie du transformateur du RD en fonction du nombre
de Véhicules Électriques (I), sous l’hypothèse d’une prévision im-
parfaite sur la consommation non-contrôlable réelle (dans chaque
scénario) basée sur un SNR = 15 dB. (Cas centralisé).
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Figure A.3: Temps de vie du transformateur du RD en fonction des bruits
de prévision sur le la consommation non-contrôlable réelle (dans
chaque scénario), pour I = 10 VEs. (Cas centralisé).
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1.3 PROBLÈME GÉNÉRAL SOUS-JACENT

Dans cette section, nous nous intéressons à l’existence et la synthèse
des stratégies dans les MDPs doublement pondérés, qui satisfont à
la fois une contrainte en probabilité sur une condition d’accessibilité
pondérée, et une contrainte quantitative sur la valeur espérée d’une
variable aléatoire définie à l’aide d’une autre condition d’accessibilité.
Cette étude généralise le problème d’énergie vu dans la Section A.2 (tel
que la recharge de VEs). Nous étudions ici l’ensemble des valeurs d’un
paramètre (un seuil) pour lequel le problème général a une solution, et
montrons comment une caractérisation partielle de cet ensemble peut
être obtenue via deux séquences de problèmes d’optimisation.

POSITION DU PROBLÈME

Le problème (centralisé) de la planification de consommation d’énergie
(e.g., la recharge des VEs) consiste en l’ordonnancement de la consom-
mation contrôlable dans un intervalle de temps en présence d’une con-
sommation non-contrôlable incertaine de manière à minimiser l’impact
de la consommation totale sur le RD, voir (A.8). Une première con-
trainte sur le transformateur du RD est donnée par sa puissance maxi-
male admissible à chaque instant (A.1), et une deuxième peut représen-
ter le besoin d’énergie (A.3). La consommation contrôlable peut donc
être aussi considérée comme une première fonction de coût. En util-
isant un modèle standard pour le vieillissement du transformateur (e.g.,
voir [M1]), nous pouvons exprimer ce dernier sous la forme d’une deux-
ième fonction de coût. Ainsi, un MDP doublement pondéré peut être
construit, voir Définition 2.6.9. Dans ce contexte, nous combinons (voir
Définition A.3.1) une condition d’accessibilité sûre vers un ensemble
cible (en représentant, e.g., la recharge des VEs), une contrainte en
probabilité sur la proportion de chemins ayant une valeur supérieure
à certain seuil avec la première fonction de coût (e.g., contraint sur la
consommation totale sur le RD), et une contrainte sur la valeur espérée
d’une fonction du deuxième coût (e.g., le vieillissement du transforma-
teur).

Ici, ∆[Π] est
l’ensemble des

stratégies mixtes,

voir Section 2.6.3,

Ωσε
x0 est l’ensemble

des chemins à

partir de x0 selon

σε fixée, voir

Section 2.6.4, et

TS est la fonction

de la somme

tronquée, voir

Définition 2.6.7

Définition A.3.1 : Problème Général

Étant donné un MDP double pondéréM = (X ,A,P , (Ci)2
i=1), un

état initial x0 ∈ X , un ensemble objectifa G ⊂ X , et deux seuils
ν1, ν2 ∈ Q. Pour chaque ε ∈ [0, 1] ∩Q, le problème général Pb(ε)
est défini parb : il existe σε ∈ ∆[Π], telle que chaque ω ∈ Ωσε

x0

atteint G,

Pσε
x0 [TSG1 ≥ ν1 ] ≥ 1− ε et Eσε

x0 [TSG2 ] ≤ ν2

a L’ensemble goal G est absorbant par Hypothèse 2.6.8.
b Pour être plus précis, le problème devrait être noté comme PbM,ν1,ν2 (ε), car
il dépend sur M, ν1 and ν2 fixés. Pour relâcher la notation, nous écrivons
simplement Pb(ε).
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Notre objectif est de calculer les valeurs de ε pour lequel Pb(ε) a une
solution. Nous supposons qu’il existe une stratégie satisfaisant la con-
trainte de l’espérance. Sinon, Pb(ε) n’a aucune solution quel que soit ε.
Ce dernier problème est réduit au problème du « plus court chemin »,
où l’existence d’une stratégie γ-optimale, pure et sans mémoire (c.-à-d.,
de Markov (A.7)) πγ , telle que Eπγx0 [TSG2 ] ≤ ν2 + γ, où γ > 0, peut être
décidée en temps polynomial, voir par exemple [14, 25]. Dans ce qui
suit, nous définissons la fonction suivante pour caractériser le problème
Pb(ε).

Définition A.3.2 : Cartography

Nous appellerons cartographie de Pb(ε) à la fonction qui associe
à chaque ε ∈ [0, 1], soit vrai si Pb(ε) a une solution, soit faux

sinon.

Nous décrivons maintenant un algorithme pour cartographier approxi-
mativement Pb(ε) sur l’intervalle [0, 1].

a.3.1 CARTOGRAPHIE APPROXIMÉE

Nous introduisons deux problèmes d’optimisation liés à Pb(ε), à par-
tir desquels nous obtenons des informations sur les valeurs de ε. Notre
approche caractérise partiellement l’intervalle [0, 1], cependant sous cer-
taines conditions dans la structure de M, la cartographie est presque
complète [M3]. Nous dénotons l’espace de probabilité induit à partir
de M par (Ωx0 ,B(Ωx0), Px0), voir Section 2.6.2 pour plus de détails.
Pour T ∈ N0, nous définissons deux événements sur les chemins : projXt est la

tème-projection
d’un chemin sur

les états dans X
ET :=

{
ω ∈ Ωx0 | ∃ t ≤ T : projXt (ω) ∈ G

}
,

c.-à-d., ET représente l’ensemble mesurable de chemins qui atteignent
G dans au plus T -pas. Nous dénotons aussi le complement de ET par
ET . Ce dernier est l’ensemble mesurable de chemins qui n’atteignent
pas G dans les premiers T -pas, c.-à-d.,

ET =
{
ω ∈ Ωx0 | projXt (ω) /∈ G , ∀ t ≤ T

}
.

Nous écrivons aussi l’ensemble suivant :

Eα,T :=

{
ET if α = 1
∅ if α = 0

PROBLÈMES D’OPTIMISATION

Nous considérons une fonction objective pour T ∈ N fixé. Pour une
stratégie pure π ∈ Π, elle est définie par : Pour des stratégies

mixtes σ ∈ ∆[Π],
la définition est

équivalente pour

Jα,T (σ).

Jα,T (π) := Pπ
x0 [ (ET ∩ TSG1 < ν1) ∪ Eα,T ] , (A.27)

Ainsi, les deux problèmes d’optimisation peuvent être regroupés sous
le paramètre α ∈ {0, 1} comme suit :

[ November 20, 2019 at 17:47 – classicthesis ]



198 synthesis in french

Problème Primal - Stratégies Pures

[P-PS] min
π

Jα,T (π) (A.28)

s.t. Eπ
x0 [TSG2 ] ≤ ν2

Notez que par

l’hypothèse de

l’existence de πγ ,

ce problème est

faisable

Puisque les stratégies mixtes sont vues comme des combinaisons con-
vexes des stratégies pures, il est facile de voir que le problème (A.28)
peut être écrit pour des stratégies mixtes comme suit :

Problème Primal - Stratégies Mixtes

[P-MS] min
σ

∑
π

σ(π) Jα,T (π) (A.29)

s.t.
∑
π

σ(π) Eπ
x0 [TSG2 ] ≤ ν2

Nous écrivons la valeur optimale de (A.28) (resp. de (A.29)) comme
J

p∗
α,T (resp. Jm∗

α,T ). Notez que Jm∗
α,T ≤ J

p∗
α,T , car des stratégies mixtes nous

permettent d’obtenir une valeur optimale qui pourrait être meilleure
que sous des stratégies pures. Pour les deux contextes des stratégies,
nous notons simplement J∗α,T . Il n’est pas difficile de voir que pour
chaque T ∈ N, J∗0,T ≤ J∗1,T ; et que la séquence (J∗α,T )T∈N est crois-
sante pour α = 0 et décroissante pour α = 1. Puisque cette dernière
est bornée, elle est donc convergente [M3]. Nous écrivons sa limite par
J∗α,∞ := limT→+∞ J∗α,T .

APPROCHE PRESQUE COMPLÈTE

Les deux théorèmes suivants caractérisent la cartographie approxima-
tive du problème Pb(ε).

Théorème A.3.3

Si ε < J∗1,∞ ⇒ le problème Pb(ε) n’a pas de solution.

Preuve : Voir la Preuve B.1.3 dans l’Appendice B.1.
�

Théorème A.3.4

Pour chaque T ∈ N, le problème Pb(ε) a une solution ∀ ε > J∗1,T ,
et n’a pas de solution ∀ ε < J∗0,T .

Preuve : Voir la Preuve B.1.4 dans l’Appendice B.1.
�

La Figure A.4 résume l’analyse des lemmes précédents. Théorique-
ment (Théorème A.3.3), elle est presque-complète, puisque le seul statut
de ε = J∗1,∞ reste incertain. Cependant, il reste à discuter une chose
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pour faire un calcul effectif (Theorem A.3.4) : les limites J∗0,∞ et J∗1,∞
sont à priori inconnues par calcul, d’où la cartographie n’est pas efficace.
L’idée est alors d’utiliser la séquence (J∗α,T )T∈N pour chaque α, pour
se rapprocher aux limites. Cependant, si les deux limites coïncident,
nous aurions une approche presque complète et donc un algorithme
couvrant presque l’intervalle [0, 1] avec soit la ligne rouge (où il n’y a
pas de solution), soit la ligne verte (où il y a une solution). Il existe
des situations (relatives aux cycles dans M) dans lesquelles on peut
montrer que J∗0,∞ = J∗1,∞, ce qui permet de réduire la partie inconnue
de la cartographie à un seul singleton, c.-à.-d., ε = J∗0,∞ = J∗1,∞.

0 1... ...J∗0,T J∗0,T+1 J∗1,T+1 J∗1,T

T pas
T + 1 pas

... · · ·

J∗0,∞ J∗1,∞

Théorie

Algorithme

Pb(ε) a une solutionPb(ε) n’a pas de solution

Figure A.4: Cartographie partielle du problème Pb(ε).

Lorsque nous

supposons que les

cycles ont des

coûts positifs, nous

le pensons pour

chaque cycle dans

le MDPM

Théorème A.3.5

Si tous les cycles ont des coûts positifs sous Ci, pour au moins un
i ∈ {1, 2} ; alors J∗0,∞ = J∗1,∞.

Preuve : Voir la Preuve B.1.5 dans l’Appendice B.1.
�

1.4 PROBLÈMES D’OPTIMISATION SOUS-JACENTS

Dans cette section, nous nous concentrons sur la solution aux prob-
lèmes d’optimisation de la Section A.3. Pour cela, nous fixons T ∈ N
et déplions le MDP double pondéréM du problème Pb(ε) (voir Défi-
nition A.3.1) jusqu’à la profondeur T comme un arbre en gardant une
copie deM sous chaque feuille. Cette nouvelle structure sera dénotée
MT . À partir de chaque feuille, nous utiliseront toujours la stratégie
du plus court chemin πγ , de sorte que les problèmes d’optimisation sont
réduits à trouver une solution ∀ t < T . Nous notons π := ππγ pour une
stratégie qui joue depuis t = 0 jusqu’à t = T − 1 comme une stratégie
pure π ∈ surMT , et comme πγ pour chaque t ≥ T . L’ensemble de ce
type des stratégies π est dénoté par Πγ ⊂ Π.

Les solutions des problèmes d’optimisation sont obtenues en résolvant
des problèmes duales sous-jacents comme illustré ci-dessous.
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a.4.1 APPROCHE LAGRANGIENNE

Nous définissons la fonction Lagrangienne pour des stratégies pures
π ∈ Πγ et pour un paramètre λ ∈ R+

0 (appelé variable duale), par :

Lα,T (π,λ) := Jα,T (π) + λ
(

Eπ
x0 [TSG2 ] − ν2

)
. (A.30)

Comme dans (A.29), il n’est pas difficile de voir que la version de (A.30)
pour des stratégies mixtes σ ∈ ∆[Πγ ], peut être exprimée par :

Lα,T (σ,λ) =
∑
π

σ(π) Lα,T (π,λ) . (A.31)

En prenant le minimum sur des stratégies pures (resp. mixtes) dans (A.30)
(resp. dans (A.31)), nous dénotons la fonction Lagrangienne dual
pour des stratégies pures et mixtes, resp. comme :

L
p
α,T (λ) := min

π
Lα,T (π,λ)

Lm
α,T (λ) := min

σ
Lα,T (σ,λ)

(A.32)

Il se trouve que les fonctions (A.30) et (A.31) sont toujours con-
caves en λ, et ainsi, les fonctions dans (A.32) aussi. Nous définissons
le problème dual pour des stratégies pures et mixtes, resp. par :

Problème Dual - Stratégies Pures et Mixtes

[D-PS] sup
λ≥0

L
p
α,T (λ)

[D-MS] sup
λ≥0

Lm
α,T (λ)

(A.33)

Dans ce qui suit, la valeur dual optimale pour les problèmes
dans (A.33) pour des stratégies pures et mixtes sera notée resp. par
L

p∗
α,T et Lm∗

α,T . Dans ce contexte, le « théorème de dualité faible » peut
s’appliquer [23], montrant que :

J
p∗
α,T − L

p∗
α,T ≥ 0 et Jm∗

α,T − Lm∗
α,T ≥ 0 .

Quand l’inégalité est stricte nous disons qu’il n’existe qu’une dualité
faible, et s’il y a l’égalité nous disons qu’il y a une dualité forte.
On peut montrer qu’il y a une dualité faible sous des stratégies pures
et une dualité forte sous des stratégies mixtes. Dans le dernier cas, le
problème primal et dual sont équivalentes, dans le sens qu’une stratégie
optimale peut être construite à l’aide d’une solution au problème dual.
Il est également possible de montrer que les valeurs duales optimales des
problèmes duales pour des stratégies pures et mixtes sont égales. Ainsi,
nous pouvons résoudre (A.33) pour des stratégies pures (problème sans
contrainte) et donc, la variable dual optimale λ∗ sera aussi une solution
au problème dual pour des stratégies mixtes.
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Proposition A.4.1

Soit σ∗α ∈ ∆[Πγ ], λ∗ ≥ 0 et ν2 ∈ R un seuil. Les affirmations
suivantes sont équivalentes:

(i) σ∗α est une (stratégie mixte) solution au problème P-MS et
λ∗ est une (variable dual) solution au problème D-MS.

(ii) σ∗α ∈ arg min
σ

Lα,T (σ,λ∗), E
σ∗α
x0 [TSG2 ] ≤ ν2, et

λ∗
(

Eσ∗α
x0 [TSG2 ] − ν2

)
= 0 (A.34)

Preuve : Voir la Preuve B.2.9 dans l’Appendice B.2, avec ν2 = ν ′.
�

En plus de la proposition précédente, nous pouvons montrer ce qui
suit :

Lm∗
α,T = Lm

α,T (λ
∗) = L

p∗
α,T = L

p
α,T (λ

∗) = Jm∗
α,T = Jm

α,T (σ
∗
α)

≤ J
p∗
α,T

Nous nous concentrons sur les conditions suffisantes de la Proposi-
tion A.4.1 pour trouver une solution optimale au problème P-MS. Notez
que si nous trouvons une stratégie σ∗α ∈ arg minσ Lα,T (σ,λ∗), telle que
E
σ∗α
x0 [TSG2 ] ≤ ν2 avec λ∗ = 0, alors σ∗α est une solution au problème

P-MS. Dans ce cas, nous aurons Jm∗
α,T = L

p
α,T (0) et donc, la stratégie

σ∗α choisira une stratégie pure avec une probabilité égale à un, c.-à.-d.,
une stratégie pure résoudre le problème P-PS et aussi P-MS, voir Fig-
ure A.5. Dans le cas contraire, quand λ∗ > 0, nous montrons qu’une
stratégie mixte solution au problème P-MS peut être construite à l’aide
d’au plus deux stratégies pures.

Proposition A.4.2

Il existe deux stratégies pures π′α, π′′α ∈ arg minπ Lα,T (π,λ∗) pour
une variable duale λ∗ > 0, définissant une stratégie mixte σ∗α ∈
∆[ {π′α, π′′α} ] solution au problème P-MS.

Preuve : Voir la Preuve B.2.11 dans l’Appendice B.2.
�

La Figure A.5 montre une représentation graphique de la Proposi-
tion A.4.2.
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π′α
π′′′′α

π′′′α

π′′α

π∗α π′α

π′′α

π′′′α

ν2

σ∗α

Jα,T (π)

Eπ
x0 [TSG2 ]

Figure A.5: Sur la gauche, σ∗α est optimale, combinant les stratégies pures π′α
et π′′α. Sur la droite, π∗α est optimale (solution du problème sans
contrainte).

APPROCHE ALGORITHMIQUE

Nous examinons l’Algorithme 1 pour expliquer la Proposition A.4.2.
Tout d’abord, nous résolvons le problème P-PS de (A.28) sans con-
trainte (cas λ∗ = 0) et calculons la valeur de l’espérance dans la con-
trainte. Si elle est inférieure ou égale à ν2, alors une stratégie pure est
une solution (cas à droite de la Figure A.5). En supposant maintenant
que cette stratégie, qui résolve le problème P-PS sans contrainte, ne
satisfait pas la contrainte, on sera donc dans le cas λ∗ > 0. Dans ce cas,
on s’approche vers λ∗ à travers la méthode de dichotomie, en générant
deux suites (λn)n∈N et (λn)n∈N, telles que λn ↗ λ∗ et λn ↘ λ∗. Nous
initialisons les suites comme λ0 := 0 et λ0 := λ+ > 0. Si λ+ n’est pas
assez grande, nous cherchons une autre λ+ jusqu’à avoir une stratégie
pure qui satisfasse la contrainte. Ainsi, on aura πλ0

qui satisfait laPar hypothèse, il

existe au moins

une stratégie

satisfaisant la

contrainte

contrainte et πλ0
qui ne la satisfait pas. Ensuite, on passe à la con-

struction d’une stratégie mixte σ∗α. Pour chaque λn et λn fixés, on
calcule πλn et πλn à travers de la récursion classique de Bellman [21],
en minimisant (A.30), qui est un problème (pour des stratégies pures)
sans contrainte et avec un horizon fini. Cette approche générera deux
séquences de valeurs espérées de la contrainte. Ces dernières sont des
séquences monotones, comme on le montre ci-dessous.

Lemma 1.4.3

Supposons que nous pouvons obtenir π∗α,λ ∈ arg minπ Lα,T (π,λ)

pour chaque λ ≥ 0. Alors, λ 7→ E
π∗α,λ
x0 [TSG2 ] est non-croissant.

Preuve : Voir la Preuve B.2.3 dans l’Appendice B.2.
�
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Puisque par la méthode de dichotomie, λn = (λn−1 + λn−1)/2 est le
point médian de l’intervalle [λn−1,λn−1] à l’itération n, on peut montrer
que |λn − λ∗| ≤ (λ0 − λ0)/2n−1, et alors que

∣∣∣ Jm
α,T (σ

∗
α) − Jm∗

α,T

∣∣∣ ≤ En
λ0 − λ0

2n−1
,

où En ∈ Q est en fonction des valeurs espérées avec πλn et πλn à
l’itération n. Nous itérons jusqu’à ce que la dernière inégalité soit in-
férieure à un erreur ε > 0. Ainsi, nous aurons πλn et πλn pour effectuer
une combinaison convexe entre elles, en résolvant (A.34) avec λ∗ > 0.
Dans ce cas,

E
π
λn
x0 [STG2 ] ≤ ν2 ≤ E

πλn
x0 [STG2 ]

et, puisque l’espérance sous des stratégies mixtes est continue, il exis-
tera une σ∗α telle que σ∗α(πλn) + σ∗α(πλn) = 1, et

σ∗α(πλn)E
πλn
x0 [STG2 ] + σ∗α(πλn)E

π
λn
x0 [STG2 ] = ν2 .

Ce dernier est un système de deux équations à deux inconnues (σ∗α(πλn)
et σ∗α(πλn)).
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1.5 CONCLUSION

Dans cette thèse, un accent particulier a été placé sur le problème
général de planification de la consommation d’énergie. Nous avons es-
sentiellement fourni des modèles formels mathématiques, des solutions
algorithmiques et des stratégies appropriées pour garantir l’exactitude
et l’optimalité pour ce problème. En particulier, afin d’assurer que les
puissances de consommation optimales des consommateurs répondent
à leur objectifs et s’adaptent aux contraintes du réseau d’énergie. La
conception des stratégies de consommation a été conçues selon une ap-
proche centralisée (dans laquelle il n’y a qu’un seul décideur qui contrôle
toutes les stratégies des consommateurs) et une approche décentralisée
(dans laquelle il y a plusieurs contrôleurs, chacun représentant un con-
sommateur). Nous avons analysé ces deux scénarios en utilisant des
méthodes formelles, la théorie des jeux et l’optimisation. Nous avons
aussi étudié les cas où le comportement du système du réseau d’énergie
est stochastique et déterministe.

Le problème de planification de la consommation d’énergie a inspiré
la formulation d’un problème théorique très intéressant et riche en
information. Cela a été vu comme un système stochastique avec des
multi-objectifs sous contraintes. Ce problème a été modélisé à l’aide
des MDPs et des jeux stochastiques, pour lequel nous avons étudié
l’existence et la synthèses d’une stratégie optimale. Par conséquent,
cette thèse concerne également une contribution aux modèles avec des
objectives multicritères, ce qui a permit une conception des stratégies
fonctionnellement correctes et robustes aux changements stochastiques
de l’environnement du système, et en particulier dans le domaine des
réseaux d’énergies. Ceci est principalement confirmé par les applica-
tions numériques réalisées dans ce travail.

Dans l’analyse numérique, nous avons mesuré la performance des
stratégies fournies dans cette thèse (à savoir, l’impact des opérations
de la consommation d’énergie) pour un scénario où les consommateurs
étaient représentés comme un pool de VEs dans un quartier résiden-
tielle. Nous avons examiné leur interactions (techniques et économiques)
avec le réseau d’énergie, dans lequel l’environnement du système (à
savoir, la partie non contrôlable de la consommation totale) représente
la consommation hors VEs. Cette dernière était représentée par un
modèle de prévision (premièrement, déterministe et, deuxièmement,
stochastique) construite à travers une large base de données de la
consommation d’un quartier résidentielle. Nous avons synthétisé des
stratégies de consommation optimales pour, premièrement, maximiser
la durée de vie du transformateur du réseau d’énergie et, deuxième-
ment, pour minimiser le paiement de la consommation électrique to-
tale. Les résultats numériques montrent d’une part que la méthode de
brancher-et-charger a un impact très significatif sur le réseau d’énergie.
D’autre part, en analysant les performances sur différents bruits de
prévision, lorsque le bruit est proche de zéro (c’est-à-dire, dans le cadre
d’une « prévision parfaite ») la méthode de charge dynamique devient
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optimale. Dans le cas plus réaliste (c’est-à-dire, dans le cadre d’une
« prévision imparfaite »), les stratégies construites à l’aide des MDPs
étaient presque insensibles au bruit et sont globalement beaucoup plus
robustes que les autres méthodes de consommation considérées.
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B
MATHEMATICAL PROOFS

In this Appendix B, we provide the main proofs of the Chapter 4 and
Chapter 5.

2.1 PROOF OF CHAPTER 4

In this Section B.1, we provide the main proofs of the Chapter 4.

Proof B.1.1: [ Proposition 2.6.6 ]

Let C = (X ,P , (Cj)Jj=1) be a multi-weighted MC, with J ∈ N. For
a fixed j ∈ {1, ...,J} and any state x0 ∈ X , the following holds:

(i) for T ∈ N fixed, TSj,T (x0) can be computed iteratively
through:

TSj,T (x0) = Cj(x0) +
∑
x1∈X

P (x0)(x1)TSj,T−1(x1) ,

where TSj,0(x0) := 0 for each x0 ∈ X .

(ii) if TSj,∞(x0) exists, then it satisfies the system of linear eqs.:

TSj,∞(x0) = Cj(x0) +
∑
x1∈X

P (x0)(x1)TSj,∞(x1) .

207
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Proof. First, for any x0 ∈ X , we have that:

TSj,T (x0) = Ex0 [TSj,T ]

= Ex0

[
T∑
t=1

Cj(Xt−1, Xt)

]
(by definition (2.21) of the truncated sum)

=
∑

x1,...,xT

(
T∑
t=1

Cj(xt−1, xt)
)

T∏
t=1

P (xt−1)(xt)

(by definition (2.18) of expectation)

=
∑
x1

P (x0)(x1)

(
Cj(x0, x1)

∑
x2,...,xT

T∏
t=2

P (xt−1)(xt)

+
∑

x2,...,xT

(
T∑
t=2

Cj(xt−1, xt)
)

T∏
t=2

P (xt−1)(xt)

)

=
∑
x1

P (x0)(x1) Cj(x0, x1)
∑

x2,...,xT

T∏
t=2

P (xt−1)(xt) +

∑
x1

P (x0)(x1)
∑

x2,...,xT

(
T∑
t=2

Cj(xt−1, xt)
)

T∏
t=2

P (xt−1)(xt) .

Now, by eq. (2.20), it holds
∑
x1
P (x0)(x1)Cj(x0, x1) = Cj(x0), and for

each x1 ∈ X ,

∑
x2,...,xT

T∏
t=2

P (xt−1)(xt) = 1 ,

and

∑
x2,...,xT

(
T∑
t=2

Cj(xt−1, xt)
)

T∏
t=2

P (xt−1)(xt) = Ex1

[
T∑
t=2

Cj(Xt−1, Xt)

]
= Ex1 [TSj,T−1 ]

= TSj,T−1(x1) .

Thus, it follows that

TSj,T (x0) = Cj(x0) +
∑
x1∈X

P (x0)(x1)TSj,T−1(x1) .

Finally, if TSj,∞(x0) exists for each x0 ∈ X , then taking limit as T →
∞ in the latter equality, the second statement follows. �

Proof B.1.2: [ Proposition 4.3.2 ]

The sequence (J∗α,T )T∈N is nonincreasing for α = 1 and nonde-
creasing for α = 0. Moreover, J∗0,T ≤ J∗1,T for each T ∈ N.

Proof. First, J∗0,T ≤ J∗1,T is clear for each T ∈ N from the inequal-
ity (4.7). Second, we need to prove that for each T ∈ N, the inequalities
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J0,T (δ) ≤ J0,T+1(δ) and J1,T+1(δ) ≤ J1,T (δ) hold for every δ ∈ ∆. From
the relation (4.2) of the sets {ET }T∈N, we have for each T ∈ N,

ET ∩ TSG1 < ν1 ⊆ ET+1 ∩ TSG1 < ν1 . (B.1)

Thus, applying the probability distribution Pδ
x0 above,

Pδ
x0 [ ET ∩ TSG1 < ν1 ] ≤ Pδ

x0 [ ET+1 ∩ TSG1 < ν1 ] .

Then J0,T (δ) ≤ J0,T+1(δ). On the other hand, by the same argument
as for (B.1), we have that:

ET ∩ TSG1 ≥ ν1 ⊆ ET+1 ∩ TSG1 ≥ ν1 .

Using the complement of sets, see eq. (4.5), it holds:

(ET ∩ TSG1 < ν1) ∪ ET ⊇ (ET+1 ∩ TSG1 < ν1) ∪ ET+1 .

Applying the probability distribution of the Pδ
x0 above,

Pδ
x0 [ (ET ∩ TSG1 < ν1) ∪ ET ] ≥ Pδ

x0 [ (ET+1 ∩ TSG1 < ν1) ∪ ET+1 ] .

Then J1,T+1(δ) ≤ J1,T (δ). Finally, taking the infimum on the inequal-
ities J0,T (δ) ≤ J0,T+1(δ) and J1,T+1(δ) ≤ J1,T (δ), over the strategies
δ satisfying the constraint in expectation, see eq. (4.11), we conclude
that J∗0,T ≤ J∗1,T+1 and J∗1,T+1 ≤ J∗1,T , resp. �

Proof B.1.3: [ Theorem 4.3.3 ]

If ε < J∗1,∞ ⇒ the problem Pb(ε) has no solution.

Proof. By Proposition 4.3.2, we know that the sequence (J∗1,T )T∈N is
nonincreasing, hence convergent in [0, 1]. Thus, we can suppose that
J∗1,∞ ∈ [0, 1].
First, it is straightforward to show that if J∗1,∞ = 0, then the proof

is trivial. We will suppose that J∗1,∞ > 0 and ε < J∗1,∞. Now, by the
nonincreasing behavior of the sequence, the following holds for each
T ∈ N:

ε < J∗1,∞ ≤ J∗1,T . (B.2)

Towards a contradiction, suppose that there exists a strategy δε opti-
mal solution of Pb(ε) for an ε satisfying (B.2). Thus, from the Defini-
tion 4.2.1 of Pb(ε), we have that

Pδε
x0 [TSG1 ≥ ν1 ] ≥ 1− ε .

In this way, from the Definition (2.6.7) of the truncated sum TSG1 , we
infer that the reachability time (2.23) TG for which the goal set G is
reached, is such that Pδε

x0 [ TG < +∞ ] = 1. Thus,

1− ε ≤ Pδε
x0 [TSG1 ≥ ν1 ]

= Pδε
x0 [TSG1 ≥ ν1 | TG < +∞ ]Pδε

x0 [ TG < +∞ ] +

Pδε
x0 [TSG1 ≥ ν1 | TG = +∞ ]Pδε

x0 [ TG = +∞ ]

(by splitting w.r.t. the complementary events of TG )
= Pδε

x0 [TSG1 ≥ ν1 ∩ TG < +∞ ]

(since the second term in the precedent equation is zero)
≤ Pδε

x0 [TSG1 ≥ ν1 ∩ E∞ ]
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where the latter inequality holds by considering the event E∞ that rep-
resents all paths reaching G at some time-step (T → +∞), see eq. (4.1).
Thus, the following holds from the latter inequalities by applying com-
plements, see eq. (4.5):

ε ≥ Pδε
x0 [ (E∞ ∩ TSG1 < ν1) ∪ E∞] ≥ J∗1,∞ > ε .

which is a contradiction. Therefore, Pb(ε) has no solution. �

Proof B.1.4: [ Theorem 4.3.5 ]

For each T ∈ N, the problem Pb(ε) has a solution ∀ ε > J∗1,T , and
has no solution ∀ ε < J∗0,T .

Proof. Let T ∈ N and ε > J∗1,T . Since J∗1,T is the optimal value of the
optimization problem (4.11) with α = 1, let γ > 0 such that

γ < ε − J∗1,T .

For such a γ, let δ∗γ be a γ-optimal strategy, see eq. (4.12), for the
problem (4.10) with α = 1. Thus, the following holds:

P
δ∗γ
x0 [ (ET ∩ TSG1 < ν1) ∪ ET ] < ε and E

δ∗γ
x0 [TSG2 ] < ν2 .

Let TS sp
2 a positive upper-bound of the truncated sum with the cost

function C2 when the strategy of the shortest path problem is applied
from any state inM to reach G. The latter strategy is denoted by πsp.
For τ > T , we define a non-stationary strategy δγ,τ as: play δ∗γ for the
first τ -steps, and if the goal set G is not reached, then play πsp. We
show that we can find τ large enough such that δγ,τ is a solution to the
problem Pb(ε).

The first condition of Pb(ε) is satisfied, see Definition 4.2.1, since
either the goal set is reached during the first T -steps, i.e., while playing
δ∗γ , or it will be surely reached by playing πsp. Thus, the reachability
time (2.23) TG for which the goal set G is reached, is such that

Pδγ,τ
x0 [ TG < +∞ ] = 1 .

Second, since

Pδγ,τ
x0 [ ET ∩ TSG1 ≥ ν1 ] = 1 − Pδγ,τ

x0 [ (ET ∩ TSG1 < ν1) ∪ ET ] ,

and, by the relation of sets (4.2), it holds:

Pδγ,τ
x0 [ E∞ ∩ TSG1 ≥ ν1 ] ≥ Pδγ,τ

x0 [ ET ∩ TSG1 ≥ ν1 ] .

Then, we conclude that:

Pδε,τ
x0 [ E∞ ∩ TSG1 ≥ ν1 ] ≥ 1− ε ,
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which is the second condition of Pb(ε), see Definition 4.2.1. Finally, we
have that:

Eδγ,τ
x0 [TSG2 ] = Eδγ,τ

x0 [TSG2 | TG ≤ τ ] Pδγ,τ
x0 [TG ≤ τ ] +

Eδγ,τ
x0 [TSG2 | TG > τ ] Pδγ,τ

x0 [TG > τ ]

(by splitting w.r.t. the complementary events of TG)

= Eδγ,τ
x0

[ τ∑
t=0

C2(Xt,At,Xt+1) | TG ≤ τ
]

Pδγ,τ
x0 [TG ≤ τ ] +

Eδγ,τ
x0

[ τ∑
t=0

C2(Xt,At,Xt+1) | TG > τ

]
Pδγ,τ
x0 [TG > τ ] +

Eδγ,τ
x0

[ TG∑
t=τ+1

C2(Xt,At,Xt+1) | TG > τ

]
Pδγ,τ
x0 [TG > τ ]

(by splitting TSG2 in the second expectation)

= Eδγ,τ
x0

[ τ∑
t=0

C2(Xt,At,Xt+1)

]
+

Eδγ,τ
x0

[ TG∑
t=τ+1

C2(Xt,At,Xt+1) | TG > τ

]
Pδγ,τ
x0 [TG > τ ]

(by combining the first two terms)

≤ E
δ∗γ
x0

[ τ∑
t=0

C2(Xt,At,Xt+1)

]
+ TS sp

2

E
δγ,τ
x0 [ TG ]

τ + 1

where the latter inequality holds since δγ,τ plays as δ∗γ up to τ and,
bounding the second term with TS sp

2 and using the Markov’s inequal-
ity1. In summary, it holds from the precedent inequalities:

Eδγ,τ
x0 [TSG2 ] ≤ E

δ∗γ
x0

[ τ∑
t=0

C2(Xt,At,Xt+1)

]
+ TS sp

2

E
δγ,τ
x0 [ TG ]

τ + 1 .

Note that the expectation of TG is finite, then E
δγ,τ
x0 [TSG2 ] is upper-

bounded by a finite value. Moreover, the second term on the right side
of the precedent inequality is decreasing to zero as τ → +∞. Thus, one
can choose τ large enough such that:

TS sp
2

E
δγ,τ
x0 [TG ]

τ + 1 <
ν2

2 − E
δ∗γ
x0 [TSG2 ] ,

and ∣∣∣∣∣ E
δ∗γ
x0

[ τ∑
t=0

C2(Xt,At,Xt+1)

]
− E

δ∗γ
x0 [TSG2 ]

∣∣∣∣∣ <
ν2

2 .

In such a way, we conclude that E
δγ,τ
x0 [TSG2 ] < ν2, and then the strategy

δγ,τ is a solution for the problem Pb(ε).
For the second statement of the Theorem 4.3.5 under consideration,

suppose that for each T ∈ N, ε < J∗0,T . We prove that Pb(ε) has no

1 That is, for a nonnegative r.v, here TG , and a positive parameter, here τ + 1; then
the probability that TG is at least τ + 1, is at most the expectation of TG divided
by τ + 1.
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solution. If ε < J∗0,T , then by Proposition 4.3.2, we have that J∗0,T ≤ J∗1,T

for each T ∈ N. Thus, ε < J∗1,T for each T ∈ N and so ε < J∗1,∞. By
Theorem 4.3.3, we conclude that Pb(ε) has no solution. �

Proof B.1.5: [ Theorem 4.4.1 ]

If all cycles have positive costsa under Cj for some j ∈ {1, 2}, then
J∗0,∞ = J∗1,∞.

a When we assume that cycles have positive costs, we mean it for every cycle,
except for cycles at G, which we assumed are self-loops with costs equal to
zero.

Proof. We prove the theorem for each j independently.

j = 1| Suppose that all cycles have positive costs under C1. In such case,
it is straightforward to show that there exists T0 ∈ N, such that
if

ω ∈
+∞⋃
t=T0

E t ∪ E∞ ⇒ TSG1 (ω) ≥ ν1 .

Let T0 as before. Since the goal set G is absorbent, then for any
T ≥ T0 and every ω of length larger than T , the following holds:

ω ∈ ET ∩TSG1 < ν1 ⇔ω ∈ ET0 ∩TSG1 < ν1 (B.3)

ω ∈ ET ∩TSG1 ≥ ν1 ⇔ω ∈ (ET0 ∩TSG1 ≥ ν1) ∪
T⋃

t=T0+1

Et ∩ ET0 (B.4)

First, we infer that for every T ≥ T0,

J∗0,T = inf
δ

{
J0,T (δ) | Eδ

x0 [TSG2 ] < ν2

}
= inf

δ

{
Pδ
x0 [ ET ∩ TSG1 < ν1 ] | Eδ

x0 [TSG2 ] < ν2

}
(by definition of J0,T (δ) )

= inf
δ

{
Pδ
x0 [ ET0 ∩ TSG1 < ν1 ] | Eδ

x0 [TSG2 ] < ν2

}
(by the equivalence (B.3))

= inf
δ

{
J0,T0(δ) | Eδ

x0 [TSG2 ] < ν2

}
(by definition of J0,T0(δ) )

= J∗0,T0

From the latter, taking T → +∞, we have:

J∗0,∞ = J∗0,T0 . (B.5)

To relax the notation, we write ∆ν2 the set of randomized strate-
gies that satisfy the constraint in expectation, i.e.,

∆ν2 = { δ ∈ ∆ | Eδ
x0 [TSG2 ] < ν2 } ,
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this set is not empty by Assumption 4.2.3. Now, from the equiva-
lence of the eq. (B.4), we can write for every T ≥ T0, the following:

J∗1,T = inf
δ∈∆ν2

J1,T (δ)

= inf
δ∈∆ν2

Pδ
x0 [ (ET ∩ TSG1 < ν1) ∪ ET ]

(by definition of J1,T (δ) )
= 1− sup

δ∈∆ν2

Pδ
x0 [ ET ∩ TSG1 ≥ ν1 ]

= 1− sup
δ∈∆ν2

Pδ
x0

[
(ET0 ∩TSG1 ≥ ν1) ∪

( T⋃
t=T0+1

Et ∩ ET0

)]
(by the equivalence (B.4))

Thus, taking the limit as T → +∞ on the above, we have that:

J∗1,∞ = 1− lim
T→+∞

sup
δ∈∆ν2

Pδ
x0

[
(ET0 ∩TSG1 ≥ ν1)∪

( T⋃
t=T0+1

Et ∩ET0

)]
(B.6)

However, we can show that:

lim
T→+∞

sup
δ∈∆ν2

Pδ
x0

[
(ET0 ∩TSG1 ≥ ν1) ∪

( T⋃
t=T0+1

Et ∩ ET0

)]
(B.7)

= sup
δ∈∆ν2

Pδ
x0

[
(ET0 ∩TSG1 ≥ ν1) ∪

( +∞⋃
t=T0+1

Et ∩ ET0

)]
.

Indeed, from the relation (4.2) of the sets {ET }T∈N, it holds:

T⋃
t=T0+1

Et ∩ ET0 ⊆
+∞⋃

t=T0+1

Et ∩ ET0 ,

then, making the union with the event ET0 ∩TSG1 ≥ ν1 and com-
puting the probability distribution, the following holds:

Pδ
x0

[
(ET0 ∩TSG1 ≥ ν1) ∪

( T⋃
t=T0+1

Et ∩ ET0

)]

≤ Pδ
x0

[
(ET0 ∩TSG1 ≥ ν1) ∪

( +∞⋃
t=T0+1

Et ∩ ET0

)]
,

and then, taking now the supremum on all strategies δ ∈ ∆ν2 ,
and after the limit as T → +∞, it holds:

lim
T→+∞

sup
δ∈∆ν2

Pδ
x0

[
(ET0 ∩TSG1 ≥ ν1) ∪

( T⋃
t=T0+1

Et ∩ ET0

)]
(B.8)

≤ sup
δ∈∆ν2

Pδ
x0

[
(ET0 ∩TSG1 ≥ ν1) ∪

( +∞⋃
t=T0+1

Et ∩ ET0

)]
.
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Now, we prove the converse inequality to conclude (B.7). By def-
inition of supremum, for every ϑ > 0 there is δϑ ∈ ∆ν2 , such
that:

sup
δ∈∆ν2

Pδ
x0

[
(ET0 ∩TSG1 ≥ ν1) ∪

( +∞⋃
t=T0+1

Et ∩ ET0

)]
− ϑ

< Pδϑ
x0

[
(ET0 ∩TSG1 ≥ ν1) ∪

( +∞⋃
t=T0+1

Et ∩ ET0

)]
.

Thus, we fix ϑ > 0 and then a strategy δϑ ∈ ∆ν2 , we have that the
goal set G is reached by using δϑ (because it belongs to ∆ν2 and
by definition of the truncated sum with the cost function C2, see
Definition. 2.6.7), there exists Tϑ ∈ N, such that for each T ≥ Tϑ,
it holds:

sup
δ∈∆ν2

Pδ
x0

[
(ET0 ∩TSG1 ≥ ν1) ∪

( +∞⋃
t=T0+1

Et ∩ ET0

)]
− ϑ

< Pδϑ
x0

[
(ET0 ∩TSG1 ≥ ν1) ∪

( T⋃
t=T0+1

Et ∩ ET0

)]
.

Thus, taking the supremum on all strategies δϑ ∈ ∆ν2 , and after
the limit at T → +∞, the following holds:

sup
δ∈∆ν2

Pδ
x0

[
(ET0 ∩TSG1 ≥ ν1) ∪

( +∞⋃
t=T0+1

Et ∩ ET0

)]
− ϑ

≤ lim
T→+∞

sup
δϑ∈∆ν2

Pδϑ
x0

[
(ET0 ∩TSG1 ≥ ν1) ∪

( T⋃
t=T0+1

Et ∩ ET0

)]
.

As the latter inequality holds for every ϑ > 0, the inequality of
Eq. (B.8) holds and thus, the Eq. (B.7) as well. Coming back to
the equality (B.6), we have:

J∗1,∞ = 1− lim
T→+∞

sup
δ∈∆ν2

Pδ
x0

[
(ET0 ∩TSG1 ≥ ν1) ∪

( T⋃
t=T0+1

Et ∩ ET0

)]

= 1− sup
δ∈∆ν2

Pδ
x0

[
(ET0 ∩TSG1 ≥ ν1) ∪

( +∞⋃
t=T0+1

Et ∩ ET0

)]
(by using the eq. (B.7))

= inf
δ∈∆ν2

Pδ
x0 [ (ET0 ∩TSG1 < ν1) ∪ E∞ ] (B.9)

Note that if a path

ω /∈
(
ET0 ∩ TSG1 ≥ ν1

)
∪
( +∞⋃
t=T0+1

Et ∩ ET0

)
then ω ∈ (ET0 ∩ TSG1 < ν1) ∪ E∞. Thus, coming back to the
eq. (B.9), the following holds:

J∗1,∞ = inf
δ∈∆ν2

Pδ
x0 [ (ET0 ∩TSG1 < ν1) ∪ E∞ ]

= inf
δ∈∆ν2

Pδ
x0 [ ET0 ∩TSG1 < ν1 ]

(since Pδ
x0 [ E∞ ] = 0 if δ ∈ ∆ν2 , because Eδ

x0 [TSG2 ] < ν2 )
= J∗0,T0

[ November 20, 2019 at 17:47 – classicthesis ]



B.1 chapter 4 215

Thus, J∗1,∞ = J∗0,T0
. Finally, by the equality (B.5), we conclude

that J∗1,∞ = J∗0,∞, where both limits are reached after finitely
many steps.

j = 2| First, by Proposition 4.3.2, we deduce that for each T ∈ N, it
holds:

0 ≤ J∗1,T − J∗0,T . (B.10)

In the following, we will find an sequence, upper-bound for the
eq. (B.10) and converging to zero. First, the following holds for
any strategy δ ∈ ∆ such that Eδ

x0 [TSG2 ] < ν2:

J∗1,T = inf
δ

{
J1,T (δ) | Eσ

x0 [TSG2 ] < ν2

}
≤ J1,T (δ)

= Pδ
x0 [ (ET ∩ TSG1 < ν1) ∪ ET ]

(by definition of J1,T (δ) )
= Pδ

x0 [ ET ∩ TSG1 < ν1 ] + Pδ
x0 [ ET ]

Thus, for any strategy δ such that Eδ
x0 [TSG2 ] < ν2, it holds:

J∗1,T − Pδ
x0 [ ET ∩ TSG1 < ν1 ] ≤ Pδ

x0 [ ET ] . (B.11)

Now, we will find an upper-bound of Pδ
x0 [ ET ], because otherwise,

the impact of all paths belonging to ET would be too large for the
constraint of the expectation on TSG2 . Applying the law of total
expectation, we can write for every T >| X |, where X is the set
of the states of the MDP M, and for any strategy δ satisfying
Eδ
x0 [TSG2 ] < ν2, the following equality:

Eδ
x0 [TSG2 ] = Eδ

x0 [TSG2 | ET ] Pδ
x0 [ET ] + (B.12)

Eδ
x0 [TSG2 | ET ] Pδ

x0 [ ET ]

Let Cmin
2 the minimal (possibly negative) cost appearing in the

transitions of M due to the cost function C2, and let Cmin
2 the

minimal (positive by hypothesis) cost of cycles in M under C2.
Noticing that along any path, at most | X | edges may be outside
any cycle, we get:

Eδ
x0 [TSG2 | ET ] ≥ | X | Cmin

2 , (B.13)

and

Eδ
x0 [TSG2 | ET ] ≥ | X | Cmin

2 +
T− | X |
| X |

Cmin
2 . (B.14)
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Thus, coming back to the eq. (B.12), the following holds:

Eδ
x0 [TSG2 ] = Eδ

x0 [TSG2 | ET ] Pδ
x0 [ET ] + Eδ

x0 [TSG2 | ET ] Pδ
x0 [ET ]

≥ | X | Cmin
2 Pδ

x0 [ET ] +(
| X | Cmin

2 +
T− | X |
| X |

Cmin
2

)
Pδ
x0 [ET ]

(by using the eqs. (B.13) and (B.14))

= | X | Cmin
2

(
Pδ
x0 [ET ] + Pδ

x0 [ET ]
)
+

T− | X |
| X |

Cmin
2 Pδ

x0 [ET ]

(by distributing the probability into the parenthesis)

= | X | Cmin
2 +

T− | X |
| X |

Cmin
2 Pδ

x0 [ET ]

(since Pδ
x0 [ET ] + Pδ

x0 [ET ] = 1 )

Thus, from the latter, it holds in summary:

Eδ
x0 [TSG2 ] ≥ | X | Cmin

2 +
T− | X |
| X |

Cmin
2 Pδ

x0 [ET ]

Then,

Cmin
2 Pδ

x0 [ET ] ≤
(

Eδ
x0 [TSG2 ] − | X | Cmin

2

) | X |
T− | X |

.

In addition, because by hypothesis δ is such that Eδ
x0 [TSG2 ] < ν2,

we have that for every T >| X |,

Pδ
x0 [ ET ] <

⌈
ν2− | X | Cmin

2

Cmin
2

⌉
| X |

T− | X |
.

Thus, coming back to the eq. (B.11), the following holds:

J∗1,T − Pδ
x0 [ ET ∩ TSG1 < ν1 ] <

⌈
ν2− | X | Cmin

2

Cmin
2

⌉
| X |

T− | X |
.

Taking above the minimum on all the strategies δ such that
Eδs0 [TSG2 ] < ν2 and noticing that the right side is converging to
zero as T → +∞, we conclude that J∗1,∞ = J∗0,∞.

�

Proof B.1.6: [ Theorem 4.5.3 ]

There exists a solution to Pb(0) if, and only if, there is a strategy
δ∗ in the unfolding MTmax , such that each ω ∈ Ωδ∗

s0 reaches Gν1

and Eδ∗
s0 [TSGν1 ] < ν2.

Proof. ⇒| Assume that there exists a strategy δ∗0 solution of the prob-
lem Pb(0). We will construct a strategy inMTmax satisfying the reach-
ability condition and the constraint in the expectation of the theorem.
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Let ωt = s0a0s1...st a finite path of length t ∈ N0 in the unfolding
MTmax . By definition, there exists a unique correspondence of ωt with
a path inM. We express the latter path as:

ωt = proj1(s0) idA(a0) proj1(s1) ... proj1(st) .

Let now xt+1 ∈ X be a state in M, such that a transition from the
state proj1(st) to xt+1 takes place using the strategy δ∗0 , i.e., from the
definition of eq. (2.28),

0 <
∑
at∈A

δ∗0(ωt)(at)P (proj1(st), at)(xt+1) . (B.15)

For each possible action at ∈ A, that can be selected in the current
state, we define the strategy δ∗ inMTmax as following:

δ∗(ωt)(at) := δ∗0(ωt)(at)

Note that the strategy δ∗ is well-defined as δ∗0 is. In the following, we
show that the strategy δ∗ satisfies the reachability condition and the
constraint in the expectation of the theorem.
Let ω ∈ Ωδ∗

s0 be an infinite path inMTmax . Towards a contradiction,
suppose that ω is not reaching the goal set Gν1 . Thus, writing such a
path by ω = s0a0s1..., it follows that each state st belonging to ω is
such that st /∈ Gν1 for each t ∈ N0. From the definition of Gν1 , see
eq. (4.14), it is the same as saying for each t ∈ N0,

proj1(st) /∈ G or proj2(st) < ν1 . (B.16)

On the other hand, by the definition of δ∗ and the correspondence
between paths ofM andMTmax , the path

ω = proj1(s0) idA(a0) proj1(s1) ... (B.17)

is such that ω ∈ Ωδ∗0
x0 , where x0 = proj1(s0). On the other hand, since

by hypothesis δ∗0 is a solution of the problem Pb(0) in M, then each
path reaches G,

P
δ∗0
x0 [TSG1 ≥ ν1 ] ≥ 1 and E

δ∗0
x0 [TSG2 ] < ν2 ,

but it holds for each path Ωδ∗0
x0 , in particular for the path ω of (B.17).

But, it is an immediate contradiction with (B.16). Thus, we conclude
that each ω ∈ Ωδ∗

s0 reaches Gν1 .
The constraint in expectation is verified analogously, because the

expectation of a path ω inM is the same (by definition) as the one of
ω in the unfoldingMTmax .
⇐| Assume that there exists a strategy δ∗ inMTmax , such that each

path ω ∈ Ωδ∗
s0 reaches the goal set Gν1 and Eδ∗s0 [TSGν1 ] < ν2. We will

construct a strategy in M satisfying the reachability condition to G,
and the constraints on the thresholds ν1 and ν2 for the problem Pb(0).

Let ωt = x0a0x1...xt be a finite path of length t ∈ N in M. By
definition, there exists a unique correspondence of ωt with a path in
MTmax . We express the latter path as:

ωt = s0 a0 a1 ... st
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where sτ = (xτ , yτ , τ ) for each τ = 0, ..., t; whit y0 = 0 and for τ =

1, ..., t,

yτ = min
{
ν1, yτ−1 + C1(xτ−1, aτ−1,xτ )

}
.

Let now st+1 ∈ STmax a state in MTmax such that a transition from
the state st to st+1 takes place using the strategy δ∗, i.e., from the
definition of eq. (2.28),

0 <
∑
at∈A

δ∗(ωt)(at)P (st, at)(st+1) . (B.18)

For each possible action at ∈ A, that can be selected in the current
state, we define the strategy δ∗0 inM as following:

δ∗0(ωt)(at) := δ∗(ωt)(at) .

Note that the strategy δ∗0 is well-defined as δ∗ is. In the following, we
show that the strategy δ∗0 satisfies the reachability condition to G, and
the constraints on the thresholds ν1 and ν2 for the problem Pb(0).

Let ω ∈ Ωδ∗0
x0 an infinite path inM. Towards a contradiction, suppose

that ω is not reaching the goal set G. Thus, writing such a path by
ω = x0a0x1..., it follows that each state xt belonging to the path ω is
such that

xt /∈ G , (B.19)

for each t ∈ N0. On the other hand, by the definition of δ∗0 and the
correspondence between paths ofMTmax andM, the path

ω = s0 a0 a1 ... (B.20)

where st = (xt, yt, t) for each t ∈ N0; whit y0 = 0 and,

yt = min
{
ν1, yt−1 + C1(xt−1, at−1,xt)

}
;

is such that ω ∈ Ωδ∗
s0 . On the other hand, since by hypothesis δ∗ is such

that each path in Ωδ∗
s0 reaches the goal set Gν1 and Eδ∗s0 [TSGν1 ] < ν2,

then in particular for the path (B.20), the reachability time TG is finite,
see eq. (2.23), for which the path ω reaches some x ∈ G. Thus, for such
time-step, T = TG(ω), it follows that the state sT ∈ Gν1 . But, the latter
is the same as saying that

xT ∈ G and yT = ν1 . (B.21)

But first, it is a contradiction with (B.19). Then, ω reaches G. Second,
because the the second component of the states of ω can be written for
each t ∈ N:

yt =
t∑
t=0

C1(xt−1, at−1,xt) ,

thus we conclude, by the second equation in (B.21), that P
δ∗0
x0 [TSG1 ≥

ν1] ≥ 1. Finally, the constraint in expectation is verified analogously,
because the expectation of a path ω in M is the same (by definition)
as the one of ω in the unfoldingMTmax , and here Eδ∗s0 [TSGν1 ] < ν2. �
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2.2 PROOF OF CHAPTER 5

In this Section B.2, we provide the main proofs of the Chapter 5.

Proof B.2.1: [ Proposition 5.3.1 ]

The expectation Eσ
s0 [TSG ] and Jα,T (σ) are continuous for each

σ ∈ ∆[Πγ ].

Proof. Let σ ∈ ∆[Πγ ] a mixed strategy. By eqs. (5.18) and (5.21), the
expectation Eσ

s0 [TSG ] can be written as a convex combination of the
expectation of pure strategies, i.e., as:

Eσ
s0 [TSG ] =

K∑
k=1

σ(πk) Eπk
s0 [TSG ]

Then, the expectation is clearly linear in σ, and therefore continuous
in any one. For Jα,T (σ), it is similar. This can be written as:

Jα,T (σ) =
K∑
k=1

σ(πk) Jα,T (πk)

and the reasoning is the same. �

Proof B.2.2: [ Proposition 5.3.2 ]

Mixed strategies always provide optimal values that are at least as
good as the values obtained with pure strategies, i.e.,

Jm∗
α,T ≤ J

p∗
α,T

Proof. The proof follows from the following inequality:

Jm∗
α,T = inf

σ

{
Jα,T (σ) | Eσs0 [TSG ] < ν

}
≤ Jα,T (σ)

But the latter is true for every mixed strategy σ such that the constraint
Eσs0 [TSG ] < ν is satisfied, in particular for the strategies assigning prob-
ability one to pure strategies π ∈ Πγ . In this way, we can write:

Jm∗
α,T ≤ Jα,T (π) ,

such that Eπs0 [TSG ] < ν. Taking now the minimum on all pure strategies
that satisfy the latter constraint in expectation, it holds:

Jm∗
α,T ≤ min

π

{
Jα,T (π) | Eπs0 [TSG ] < ν

}
= J

p∗
α,T

�
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Proof B.2.3: [ Lemma 5.4.1 ]

Suppose that we can obtain π∗α,λ ∈ arg min
π

Lα,T (π,λ) for each

λ ≥ 0. Then, λ 7→ E
π∗α,λ
s0 [TSG ] is nonincreasing.

Proof. Using ideas from [27], it follows that for λ1 ≥ 0 and λ2 > λ1,

Lα,T (π
∗
α,λ1+λ2 ,λ1 +λ2) = min

π
Lα,T (π,λ1 +λ2) ≤ Lα,T (π,λ1 +λ2)

where the last inequality holds ∀π ∈ Πγ , in particular for π∗α,λ1
, then

Lα,T (π
∗
α,λ1+λ2 ,λ1 + λ2) ≤ Lα,T (π

∗
α,λ1 ,λ1 + λ2) . (B.22)

On the other hand, it follows that:

Lα,T (π
∗
α,λ1 ,λ1) = min

π
Lα,T (π,λ1) ≤ Lα,T (π,λ1) .

Again, the last inequality holds ∀π ∈ Πγ , in particular for π∗α,λ1+λ2
,

then:

Lα,T (π
∗
α,λ1 ,λ1) ≤ Lα,T (π

∗
α,λ1+λ2 ,λ1) . (B.23)

Thus, we have by taking difference of (B.22) and (B.23) that:

Lα,T (π
∗
α,λ1 ,λ1 + λ2) − Lα,T (π

∗
α,λ1 ,λ1)

≥ Lα,T (π
∗
α,λ1+λ2 ,λ1 + λ2) − Lα,T (π

∗
α,λ1+λ2 ,λ1) .

Now, by the definition of the Lagrange function, see eq. (5.22), it is
easy to see that the above inequalities are the same as:

λ2

(
E
π∗α,λ1
s0 [TSG ] − ν

)
≥ λ2

(
E
π∗α,λ1+λ2
s0 [TSG ] − ν

)
.

Hence,

E
π∗α,λ1
s0 [TSG ] ≥ E

π∗α,λ1+λ2
s0 [TSG ]

for any λ2 > λ1 ≥ 0. Thus, λ 7→ E
π∗α,λ
s0 [TSG ] is nonincreasing. �

Proof B.2.4: [ Proposition 5.4.2 ]

The Lagrange functions λ 7→ Lα,T (π,λ) and λ 7→ Lα,T (σ,λ) are
linear on λ ≥ 0. Moreover, the Lagrange dual functions λ 7→
L

p
α,T (λ) and λ 7→ Lm

α,T (λ) are concave.

Proof. The proof is similar for the two cases. So, we prove the propo-
sition for mixed strategies. Let λ1,λ2 ≥ 0, θ ∈ [0, 1] and σ ∈ ∆[Πγ ].
The following holds:

Lα,T (σ, θλ1 + (1− θ)λ2) = Jα,T (σ) + (θλ1 + (1− θ)λ2)(E
σ
s0 [TSG ]− ν)

(it holds by definition, see eq. (5.22))

= θ
(

Jα,T (σ) + λ1(E
σ
s0 [TSG ]− ν)

)
+ (1− θ)

(
Jα,T (σ) + λ2(E

σ
s0 [TSG ]− ν)

)
(by adding a convenient zero)

= θLα,T (σ,λ1) + (1− θ)Lα,T (σ,λ2)

(again by definition of Lα,T (σ,λ) )
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Thus, in summary, it holds:

Lα,T (σ, θλ1 + (1− θ)λ2) = θLα,T (σ,λ1) + (1− θ)Lα,T (σ,λ2) .
(B.24)

Based on the latter, the Lagrange function is therefore affine on λ ≥ 0
and then, concave and convex on λ ≥ 0. Now, applying the infimum
on (B.24) over all mixed strategies, we have that:

inf
σ

Lα,T (σ, θλ1 + (1− θ)λ2) = inf
σ

{
θLα,T (σ,λ1) + (1− θ)Lα,T (σ,λ2)

}
≥ θ inf

σ
Lα,T (σ,λ1) + (1− θ) inf

σ
Lα,T (σ,λ2)

(by a property of the infimum)
= θLm

α,T (λ1) + (1− θ)Lm
α,T (λ2)

(by definition, see eq. (5.24))

Noticing that the left side above is the definition of the Lagrange dual
function (5.24) for mixed strategies with λ = θλ1 + (1− θ)λ2, we con-
clude that:

Lm
α,T (θλ1 + (1− θ)λ2) ≥ θLm

α,T (λ1) + (1− θ)Lm
α,T (λ2)

Thus, the Lagrange dual function is concave. Note that this is also true
for pure strategies. �

Proof B.2.5: [ Lemma 5.4.3 ]

Let J
p∗
α,T and Jm∗

α,T resp. the optimal values of the P-PS and P-MS
problem, see eq. (5.14) and eq. (5.20). Then,

L
p∗
α,T ≤ J

p∗
α,T and Lm∗

α,T ≤ Jm∗
α,T (5.27)

Proof. From the definition of the Lagrange dual functions (5.24), we
have that for every λ ≥ 0,

L
p
α,T (λ) = min

π
Lα,T (π,λ)

= min
π

{
Jα,T (π) + λ(Eπ

s0 [TSG ] − ν)
}

(by definition (5.22) of the Lagrange function)

≤ min
π

{
Jα,T (π) + λ(Eπ

s0 [TSG ] − ν) | Eπ
s0 [TSG ] < ν

}
≤ min

π

{
Jα,T (π) | Eπ

s0 [TSG ] < ν
}

(because λ(Eπ
s0 [TSG ]− ν) ≤ 0 )

= J
p∗
α,T

(by definition (5.14) of the pure strategy optimal value)

applying now the supremum over all λ ≥ 0, we have the first inequality,
i.e., L

p∗
α,T ≤ J

p∗
α,T . The proof for Lm∗

α,T ≤ Jm∗
α,T is completely analogous.

�
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Proof B.2.6: [ Proposition 5.4.4 ]

There is strong duality for mixed strategy problems D-MS and
P-MS, i.e.,

Lm∗
α,T = Jm∗

α,T . (5.28)

Moreover, for λ ≥ 0 fixed, there exists σ∗α,λ ∈ ∆[Πγ ] such that:

Lα,T (σ
∗
α,λ,λ) = Lm

α,T (λ) . (5.29)

Proof. To prove this proposition, we use the following theorem [9].
First, we prove the eq. (5.28).

Remark 2.2.7: MinMax Theorem

Let X and Y be convex subsets of linear topological spaces, with
X compact. Let f a function, such that f : X × Y −→ R and

• ∀ y ∈ Y , x 7→ f(x, y) is convex and lower semi-continuous.

• ∀x ∈ X, y 7→ f(x, y) is concave.

Then, ∃x∗ ∈ X such that:

inf
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

f(x∗, y) = sup
y∈Y

inf
x∈X

f(x, y)

Considering the theorem for the problems D-MS and P-MS of mixed
strategies, we have:

• The set X stands for the set ∆[Πγ ], which is convex and compact,
see eq. (5.16).

• The set Y stands for the convex set R+
0 .

• f stands for the Lagrange function Lα,T : ∆[Πγ ]×R+
0 → R for

mixed strategies, see eq. (5.22).

• ∀λ ∈ R+
0 , σ 7→ Lα,T (σ,λ) is continuous and linear in σ, be-

cause by Proposition 5.3.1 and the P-MS problem (5.21), the
expectation and Jα,T (σ) are continuous and linear in σ. Thus,
σ 7→ Lα,T (σ,λ) is also convex on σ.

• ∀σ ∈ ∆[Πγ ], λ 7→ Lα,T (σ,λ) is affine in λ and then concave in
λ ∈ R+

0 , see Proposition 5.4.2.
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Thus, applying the MinMax Theorem in such a context, there exists a
mixed strategy σ∗α,λ ∈ ∆[Πγ ], such that the following holds:

Lm∗
α,T = sup

λ≥0
Lm
α,T (λ)

(by definition (5.26) of the dual optimal value)
= sup

λ≥0
inf
σ

Lα,T (σ,λ)

(by definition (5.24) of the Lagrange dual function)
= sup

λ≥0
Lα,T (σ

∗
α,λ,λ)

(by the existence of σ∗α,λ from the MinMax Theorem)

= sup
λ≥0

{
Jα,T (σ

∗
α,λ) + λ

(
E
σ∗α,λ
s0 [TSG ] − ν

)}
(by definition (5.22) of the Lagrange function)

=

Jα,T (σ∗α,λ) if E
σ∗α,λ
s0 [TSG ] < ν

+∞ otherwise
≥ Jα,T (σ

∗
α,λ)

≥ Jm∗
α,T

(by definition (5.20) of the mixed strategy optimal value)

In this way, we have that Lm∗
α,T ≥ Jm∗

α,T . On the other hand, since the
weak duality holds, see Lemma 5.4.3, we conclude that Lm∗

α,T = Jm∗
α,T .

Second, we prove the eq. (5.29) of the proposition. Let λ ≥ 0 and
(σn)n∈N a sequence of mixed strategies in ∆[Πγ ], such that:

lim
n→+∞

Lα,T (σn,λ) = Lm
α,T (λ) . (B.25)

Now, because ∆[Πγ ] is compact, there is a subsequence (σnj )j∈N of
(σn)n∈N converging to some σ0 ∈ ∆[Πγ ]. Since σ 7→ Lα,T (σ,λ) is
lower semi-continuous, in particular for σ0, the following holds:

Lα,T (σ0,λ) ≤ lim
j→+∞

Lα,T (σnj ,λ) .

By eq. (B.25), we also have that:

lim
j→+∞

Lα,T (σnj ,λ) = Lm
α,T (λ) .

Thus,

Lα,T (σ0,λ) ≤ Lm
α,T (λ) .

But by definition, Lm
α,T (λ) = inf

σ
Lα,T (σ,λ). Hence,

Lα,T (σ0,λ) = inf
σ

Lα,T (σ,λ) ,

which proves the existence of a mixed strategy for the eq. (5.29). �
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Proof B.2.8: [ Proposition 5.4.5 ]

Consider the dual problems D-PS and D-MS of (5.25). Then,

L
p∗
α,T = Lm∗

α,T

Proof. Since mixed strategies extend the solution set, as we have seen
in Proposition 5.3.2, then we have that for λ ≥ 0 fixed:

inf
σ

Lα,T (σ,λ) ≤ min
π

Lα,T (π,λ) .

Noticing that each side above corresponds to the Lagrange dual func-
tion of eq. (5.24) and so, applying supremum on λ ≥ 0, it follows that:

sup
λ≥0

Lm
α,T (λ) ≤ sup

λ≥0
L

p
α,T (λ) . (B.26)

On the other hand, for σ ∈ ∆[Πγ ] and λ ≥ 0 fixed, the Lagrange
function Lα,T (σ,λ) can be rewritten based on eq. (5.18) as:

Lα,T (σ,λ) = Jα,T (σ) + λ(Eσ
s0 [TSG ] − ν )

=
K∑
k=1

σ(πk)
(

Jα,T (πk) + λ
(

Eπk
s0 [TSG ] − ν

))

=
K∑
k=1

σ(πk) Lα,T (πk,λ) (B.27)

Since σ(π1), ...,σ(πK) are marginal probabilities of the pure strategies
π1, ...,πK resp., the above equality allows us to infer that:

Lα,T (σ,λ) ≥ min
π

Lα,T (π,λ) = L
p
α,T (λ) . (B.28)

Applying now the infimum on the strategies σ ∈ ∆[Πγ ], we obtain
Lm
α,T (λ) on the left side of the above inequality, and then applying

supremum on λ ≥ 0, we have that:

sup
λ≥0

Lm
α,T (λ) ≥ sup

λ≥0
L

p
α,T (λ) . (B.29)

Thus, by eqs. (B.26) and (B.29), the equality L
p∗
α,T = Lm∗

α,T holds. �

Proof B.2.9: [ Proposition 5.4.6 ]

Let σ∗α ∈ ∆[Πγ ], λ∗ ≥ 0 and ν ′ ≤ ν a threshold. The following
statements are equivalent:

(i) σ∗α is an optimal mixed strategy solution of the [P-MS]≤ν′
problem and λ∗ is an optimal dual solution of the underlying
[D-MS]ν′ problem.

(ii) σ∗α ∈ arg minσ Lα,T (σ,λ∗), E
σ∗α
s0 [TSG ] ≤ ν ′, and

λ∗
(

Eσ∗α
s0 [TSG ] − ν ′

)
= 0 . (5.31)
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Proof. (i)⇒ (ii)| It follows that:

Jm∗
α,T = Lm∗

α,T

(by Proposition 5.4.4, which is also true in this context)
= Lm

α,T (λ
∗)

(because λ∗ is an optimal dual solution)
= inf

σ
Lα,T (σ,λ∗)

(by definition (5.24) of the Lagrange dual function)
≤ Lα,T (σ

∗
α,λ∗)

(by optimality and using the strategy σ∗α )
= Jα,T (σ

∗
α) + λ∗(Eσ∗α

s0 [TSG ] − ν ′ )

(by definition (5.22) of the Lagrange function)
≤ Jα,T (σ

∗
α)

(because λ∗(Eσ∗α
s0 [TSG ] − ν ′ ) ≤ 0 )

More precisely, the latter inequality follows because σ∗α is an optimal
solution of the [P-MS]≤ν′ problem by hypothesis, then E

σ∗α
s0 [TSG ] ≤ ν ′.

Since σ∗α is an optimal solution of the problem [P-MS]≤ν′ , the equality
holds in the above inequalities and then, it follows that:

σ∗α ∈ arg min
σ

Lα,T (σ,λ∗) ,

and also, λ∗(E
σ∗α
s0 [TSG ] − ν ′ ) = 0 holds.

(ii)⇒ (i)| Conversely, we need to show that σ∗α and λ∗ are resp. an
optimal solution of [P-MS]≤ν′ and [D-MS]ν′ . It follows that:

Jα,T (σ
∗
α) = Jα,T (σ

∗
α) + λ∗(Eσ∗α

s0 [TSG ] − ν ′ )

(since the second term is zero by hypothesis)
= Lα,T (σ

∗
α,λ∗)

(by definition (5.22) of the Lagrange function)
= inf

σ
Lα,T (σ,λ∗)

(by the hypotheses over σ∗α )
= Lm

α,T (λ
∗)

(by definition (5.24) of the Lagrange dual function)
≤ Lm∗

α,T

(by optimality of the optimal dual value (5.26))
= Jm∗

α,T

(by Proposition 5.4.4, which is also true in this context)
≤ Jα,T (σ

∗
α)

(since σ∗α is feasible by hypothesis)

Thus, the equality holds throughout above and then, σ∗α and λ∗ are resp.
optimal solutions of the [P-MS]≤ν′ and [D-MS]ν′ problems. Moreover,

Lm∗ = Lm
α,T (λ

∗) = Jm∗
α,T = Jm

α,T (σ
∗
α) .

�
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Proof B.2.10: [ Corollary 5.4.7 ]

Let λ∗ > 0 and ν ′ = ν − ς a threshold, where ς satisfies the
eq. (5.32). Suppose that there is σ∗α ∈ arg min

σ
Lα,T (σ,λ∗) such

that:

Eσ∗α
s0 [TSG ] = ν ′ .

Then, σ∗α is an optimal mixed strategy solution of the [P-MS]≤ν′
problem, λ∗ is an optimal dual solution of the underlying [D-MS]ν′
problem, and the following holds:

Lm∗
α,T = Lm

α,T (λ
∗) = L

p∗
α,T = L

p
α,T (λ

∗) = Jm∗
α,T = Jα,T (σ

∗
α) ≤ J

p∗
α,T

Proof. The proof follows from the particular case in the Proposition 5.4.6,
with λ∗ > 0. The equalities hold resp. because λ∗ is an optimal dual
solution for mixed strategies, i.e., for the problem [D-MS]ν′ , then

Lm∗
α,T = Lm

α,T (λ
∗) .

Next, by Proposition 5.4.5, we have that

Lm∗
α,T = L

p∗
α,T

and then, λ∗ is also the optimal dual solution for pure strategies, i.e.,
for the problem [D-PS]ν′ , thus

L
p∗
α,T = L

p
α,T (λ

∗) .

The equality

Jm∗
α,T = Lm∗

α,T

holds by Proposition 5.4.4. In addition, since σ∗α is an optimal mixed
strategy for the problem [P-MS]≤ν′ , we have that:

Jm∗
α,T = Jm

α,T (σ
∗
α) .

Finally, the inequality

Jα,T (σ
∗
α) ≤ J

p∗
α,T

follows by Proposition 5.3.2. �

Proof B.2.11: [ Proposition 5.4.8 ]

There exist two pure strategies π′α, π′′α ∈ arg minπ Lα,T (π,λ∗) for
a dual variable λ∗ > 0, defining a mixed strategy σ∗α ∈ ∆[ {π′α, π′′α} ]
to be a solution of the [P-MS]≤ν problem.

Proof. We are interested here in solving the [P-MS]≤ν problem by us-
ing the Corollary 5.4.7. For that, we need to define a dual variable
λ∗ > 0 and a mixed strategy σ∗α ∈ arg minσ Lα,T (σ,λ∗) such that
E
σ∗α
s0 [TSG ] = ν.
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First, we focus in feasible pure strategies, i.e., strategies satisfying
the constraint in expectation, to define a finite dual variable λ∗. Such a
variable must be consistent with the hypothesis of the Corollary 5.4.7
and the optimal dual value (5.26). So, since there is at least one feasible
pure strategy by Assumption 4.2.3, more precisely the strategy πγ of
the expected SSP-problem (5.6), we have the following:

L
p∗
α,T ≤ J

p∗
α,T

(by Lemma 5.4.3)
≤ Jα,T (πγ)

(by the existence of the feasible pure strategy πγ )
≤ 1

(since the objective function (5.12) is a probability)

In this way, the optimal dual value L
p∗
α,T is finite for feasible pure strate-

gies. Now, by definition (5.26) of L
p∗
α,T , we can focus in the latter re-

stricted to be:

sup
λ≥0

{
L

p
α,T (λ) | E

π∗α,λ
s0 [TSG ] ≤ ν , π∗α,λ ∈ arg min

π
Lα,T (π,λ)

}
.

Based on this, the dual variable that we are interested is the next one:

λ∗ = sup
{
λ ≥ 0 | E

π∗α,λ
s0 [TSG ] ≤ ν , π∗α,λ ∈ arg min

π
Lα,T (π,λ)

}
.

Note that for the moment, we have not restricted λ∗ to be strictly
positive. Moreover, such a dual variable is finite, as shown below.

Towards a contradiction, suppose that λ∗ = +∞. Then, we can de-
duce that E

π∗α,λ
s0 [TSG ] > ν for any λ, where π∗α,λ ∈ arg minπ Lα,T (π,λ).

In addition, because there exists πγ satisfying the (strict) inequality in
the constraint in expectation for ν, i.e., E

πγ
s0 [TSG ] < ν, then it is clear

that the following holds for any λ > 0:

0 ≤ Jα,T (π
∗
α,λ) + λ

(
E
π∗α,λ
s0 [TSG ] − ν

)
(because E

π∗α,λ
s0 [TSG ] > ν by hypothesis)

≤ Jα,T (πγ) + λ
(

Eπγ
s0 [TSG ] − ν

)
(because π∗α,λ gives the minimum, and by using πγ )

≤ 1
(since λ(Eπγ

s0 [TSG ]− ν) ≤ 0 and Jα,T (πγ) ≤ 1 )

In this way, for any λ > 0, it holds:

0 ≤ Jα,T (πγ) + λ
(

Eπγ
s0 [TSG ] − ν

)
≤ 1 ,

which is a contradiction. For example, consider for any J > 0,

λ =
J + Jα,T (πγ)

ν −E
πγ
s0 [TSG ]

.

Now, the idea is to show that two pure strategies are sufficient so
that by combining them we can construct an optimal mixed strategy
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solving the [P-MS]≤ν problem. First, we let two values λ0 = 0 and
λ0 = λ+, where λ+ > 0 is taken large enough until to find a strategy:

π∗α,λ+ ∈ arg min
π

Lα,T (π,λ+) ,

such that the constraint in expectation is satisfied with the strict in-
equality for ν, in which there is at least one by Assumption 4.2.3, i.e.,
the strategy πγ . On the other hand, λ0 = 0 is used to find an optimal
pure strategy in the unconstrained problem:

π∗α,0 ∈ arg min
π

Lα,T (π, 0) = arg min
π

Jα,T (π) . (B.30)

Note that if this strategy is such that the constraint in expectation
for ν is satisfied, then such a constraint is not relevant for the (primal
mixed strategy) problem, because we only need to minimize Jα,T (π)

under pure strategies and then a solution will be the strategy π∗α,0.
Otherwise, then we assume that the constraint is not satisfied for such
a strategy. Thus, it is clear that λ0 ≤ λ∗ < λ0 and

E
π∗
α,λ0
s0 [TSG ] < ν < E

π∗α,λ0
s0 [TSG ] .

Since λ∗ is finite and non-negative, we can consider two monotone
nonnegative sequences to approach this value, a nondecreasing one
(λn)n∈N0 and another nonincreasing (λn)n∈N0 , such that:

λn ↗ λ∗ and λn ↘ λ∗ as n→ +∞ .

This sequences can be constructed, e.g., by the so-called bisection method.
In this way, the following holds for each n ∈ N0:

λ∗ ∈
n⋂

m=0

[
λm , λm

]
=

[
λn , λn

]
. (B.31)

Note that (λn)n∈N0 may be a zero sequence (this may occur when
λ∗ = 0, which is not yet a case analysed for the moment). Now, since
for each n ∈ N fixed, the values λn and λn are fixed as well, we can
obtain resp. two strategies:

π∗α,λn
∈ arg min

π
Lα,T (π,λn) and π∗

α,λn
∈ arg min

π
Lα,T (π,λn) .

In addition, because the sequences (λn)n∈N0 and (λn)n∈N0 are mono-
tones, we have by Lemma 5.4.1 that:

λn 7→ E
π∗α,λn
s0 [TSG ] and λn 7→ E

π∗
α,λn
s0 [TSG ]

are resp. nonincreasing and nondecreasing. Based on this, the following
inequality holds for each n ∈ N:

E
π∗
α,λn
s0 [TSG ] ≤ ν ≤ E

π∗α,λn
s0 [TSG ] . (B.32)

On the other hand, since we assume that there are a finite number of
pure strategies, then the set Πγ is compact. We can therefore consider
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two monotone convergent subsequences of pure strategies, one for each
of the following sequences:(

π∗α,λn

)
n∈N0

and
(
π∗
α,λn

)
n∈N0

.

More precisely, we can assume resp. that(
π∗α,λnj

)
j∈N0

and
(
π∗
α,λnj

)
j∈N0

(B.33)

are infinitely constant from some index and then convergent in Πγ .
It is clear that under the above subsequences, the inequality (B.32)
also holds. We fix λn0 = λ0 and λn0 = λ0 as the initial values of
the subsequences. In the following, we pay particular attention to the
subsequence on the right side in (B.33), because at this point, we can
define a pure strategy giving the strict inequality in the constraint in
expectation, i.e., less than ν. Without loss of generality, the following
holds for each j ∈ N:

E
π∗
α,λ0
s0 [TSG ] < E

π∗
α,λnj
s0 [TSG ] ≤ ν ,

where λnj 7→ E

π∗
α,λnj
s0 [TSG ] is nondecreasing. Then, since the subse-

quences in (B.33) are infinitely constant from some index, we infer that
there must be j∗ ∈ N0 for which the previous inequality on the right
side is strict, i.e.,

E

π∗
α,λnj∗
s0 [TSG ] < ν

Taking into account such an index, we can redefine (with a small abuse
of notation) the subsequence on the right side in (B.33) as:

π∗
α,λnj

:=


π∗
α,λnj

if j ≤ j∗

π∗
α,λnj∗

otherwise

As we have said above, the subsequences are convergent in Πγ , in
particular the subsequence redefined above. Then, there exist two pure
strategies, let say π′α, π′′α ∈ Πγ , such that:

π∗α,λnj
→ π′α and π∗

α,λnj
→ π′′α as j → +∞ .

Note that π′′α corresponds to the strategy π∗
α,λnj∗

. In addition, the fol-
lowing inequality holds:

Eπ′′α
s0 [TSG ] < ν ≤ Eπ′α

s0 [TSG ] . (B.34)

We notice in particular that if λ∗ = 0, then the sequence (λn)n∈N0

will be the zero sequence and then, also the convergent subsequence
(λnj )j∈N0 . In such a case, the strategy π′α is thus the strategy π∗α,0,
see eq. (B.30), that is assumed not satisfying the constraint (otherwise,
the constraint is not relevant for the problem). Then, we only use the
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sequence (λn)n∈N0 to find the strategy π′′α, which will be a solution of
the problem [P-MS]≤ν . Indeed, for any pure strategy π,

Lα,T

(
π∗
α,λnj

,λnj
)
≤ Lα,T

(
π,λnj

)
,

in particular for the strategies satisfying the constraint in expectation.
Then, from the definition (5.22) of the Lagrange function, it holds:

Jα,T

(
π∗
α,λnj

)
− Jα,T (π) ≤ λnj

(
Eπ
s0 [TSG ] − E

π∗
α,λnj
s0 [TSG ]

)
.

Taking j → +∞, we have that Jα,T (π′′α) ≤ Jα,T (π) and it satisfies the
constraint in expectation, see eq (B.34). We conclude that π′′α is optimal
for the problem [P-MS]≤ν , and mixed strategies are not necessary for
this case. From now, we consider that λ∗ is restricted to be positive.

As we have said in the beginning, to solve the [P-MS]<ν problem, we
solve the [P-MS]≤ν problem by using the Corollary 5.4.7. The idea is to
combine the strategies π′α and π′′α. First, we show that these strategies
are such that:

π′α, π′′α ∈ arg min
π

Lα,T (π,λ∗) . (B.35)

Indeed,

Lα,T

(
π∗α,λnj

,λnj
)

= min
π

Lα,T (π,λnj ) ≤ Lα,T (π,λnj ) , ∀π

Lα,T

(
π∗
α,λnj

,λnj
)

= min
π

Lα,T (π,λnj ) ≤ Lα,T (π,λnj ) , ∀π

Thus, taking j → +∞ on the two inequalities, the following holds:

Lα,T (π
′
α,λ∗) ≤ Lα,T (π,λ∗) , ∀π

Lα,T (π
′′
α,λ∗) ≤ Lα,T (π,λ∗) , ∀π

which shows that π′α and π′′α satisfy (B.35). In the following, the proof
continues based mainly on eqs. (B.34) and (B.35). On the other hand,
we notice from the eq. (B.34) that E

π′α
s0 [TSG ] could be equal to ν. In

such a case, since the strategy π′α satisfies (B.35), we can infer that π′α
is a solution of the [P-MS]≤ν problem by applying the Corollary 5.4.7.
Thus, mixed strategies are not necessary to solve the [P-MS]≤ν problem,
in other words, π′α is chosen with probability one. On the contrary, we
can in fact combine π′α and π′′α, as it is shown below.

Let ∆[ {π′α, π′′α} ] ⊆ ∆[Πγ ] be the set of mixed strategies combining
convexly only over π′α and π′′α, i.e., a mixed strategy σ ∈ ∆[ {π′α,π′′α} ]
is such that:

σ(π′α) + σ(π′′α) = 1 . (B.36)

Now, for any of these mixed strategies, we have by Proposition 5.3.1
that Eσ

s0 [TSG ] is continuous for any σ, in particular for the strategies
in ∆[ {π′α,π′′α} ]. Thus, from the inequality (B.34), we use the eq. (5.18)
and the so-called intermediate value theorem, to conclude that there
exists a value within [0, 1], let say σ∗α(π′α) for π′α and σ∗α(π

′′
α) for π′′α,

such that:

σ∗α(π
′
α)Eπ′α

s0 [TSG ] + σ∗α(π
′′
α)Eπ′′α

s0 [TSG ] = ν (B.37)
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which proves the existence of a mixed strategy σ∗α constructed by com-
bining at most two pure strategies. Moreover, this strategy is explicitly
defined from the eqs. (B.36) and (B.37) by:

σ∗α(π
′
α) :=

ν − E
π′′α
s0 [TSG ]

E
π′α
s0 [TSG ] − E

π′′α
s0 [TSG ]

σ∗α(π
′′
α) :=

E
π′α
s0 [TSG ] − ν

E
π′α
s0 [TSG ] − E

π′′α
s0 [TSG ]

(B.38)

To apply the Corollary 5.4.7 and conclude that σ∗α is an optimal
mixed strategy solution of the [P-MS]≤ν problem, we show that:

σ∗α ∈ arg min
σ

Lα,T (σ,λ∗) . (B.39)

First, if σ∗α(π′α) = 1, so the strategy to play is π′α, and this one is such
that (B.35) is satisfied, i.e., satisfying (B.39) above. In the following,
we suppose that σ∗α(π′α) 6= 1. Note also that σ∗α(π′α) 6= 0, because on
the contrary, σ∗α(π′′α) = 1 and π′′α is such that the inequality in the
constraint in expectation is strict, see eq. (B.34). Thus, we consider
that σ∗α(π′α),σ∗α(π′′α) ∈ (0, 1). Now, since σ 7→ Lα,T (σ,λ∗) is linear
over mixed strategies σ, and each one assigns marginal probabilities
over pure strategies, the following holds for any σ:

Lα,T (σ,λ∗) ≥ min
π

Lα,T (π,λ∗) .

In addition, since the strategies π′α and π′′α are such that (B.35) holds,
we have that for any σ,

Lα,T (σ,λ∗) ≥ Lα,T (π
′
α,λ∗) and Lα,T (σ,λ∗) ≥ Lα,T (π

′′
α,λ∗) .

Multiplying now by σ∗α(π′α) the first inequality and by σ∗α(π′′α) the sec-
ond one, and adding after, it holds:

Lα,T (σ,λ∗) = σ∗α(π
′
α)Lα,T (σ,λ∗) + σ∗α(π

′′
α)Lα,T (σ,λ∗)

(because σ∗α(π
′
α) + σ∗α(π

′′
α) = 1 )

≥ σ∗α(π
′
α)Lα,T (π

′
α,λ∗) + σ∗α(π

′′
α)Lα,T (π

′′
α,λ∗)

= Lα,T (σ
∗
α,λ∗)

Thus, σ∗α is such that (B.39) holds. We conclude that by Corollary 5.4.7,
σ∗α is solution of the [P-MS]≤ν problem. �

Proof B.2.12: [ Proposition 5.4.9 ]

For any κ > 0, the mixed strategy σ?α,ς defined in (5.36) is κ-optimal
for the [P-MS]<ν problem, i.e.,

Jα,T (σ
?
α,ς) ≤ Jm∗

α,T + κ .

Proof. From Proposition 5.4.8, there exist π′α,π′′α ∈ arg minπ Lα,T (π,λ∗)
for a dual variable λ∗ > 0, defining the mixed strategy σ?α,ς in (5.36).
On the other hand, the following holds:
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0 ≤ Jα,T (σ
?
α,ς) − Jm∗

α,T

= σ?α,ς(π
′
α)Jα,T (π

′
α) + σ?α,ς(π

′′
α)Jα,T (π

′′
α) − Jm∗

α,T

(because σ 7→ Jα,T (σ) is linear on mixed strategies)
= σ?α,ς(π

′
α) (Jα,T (π

′
α) − Jm∗

α,T ) + σ?α,ς(π
′′
α) (Jα,T (π

′′
α) − Jm∗

α,T )

(arranging terms and because σ?α,ς(π
′
α) + σ?α,ς(π

′′
α) = 1)

= σ∗α(π
′
α) (Jα,T (π

′
α) − Jm∗

α,T ) + σ∗α(π
′′
α) (Jα,T (π

′′
α) − Jm∗

α,T )

+ ς
Jα,T (π′′α) − Jα,T (π′α)

E
π′α
s0 [TSG ] − E

π′′α
s0 [TSG ]

(by using the definition (5.36) of the strategy σ?α,ς )

≤ σ∗α(π
′
α) λ

∗ (ν − Eπ′α
s0 [TSG ]) + σ∗α(π

′′
α) λ

∗ (ν − Eπ′′α
s0 [TSG ])

+ ς
Jα,T (π′′α) − Jα,T (π′α)

E
π′α
s0 [TSG ] − E

π′′α
s0 [TSG ]

(since Lα,T (π
′
α,λ∗) , Lα,T (π

′′
α,λ∗) ≤ Jm∗

α,T and using (5.22) )

= ς
Jα,T (π′′α) − Jα,T (π′α)

E
π′α
s0 [TSG ] − E

π′′α
s0 [TSG ]

(by using the definition (5.35) of the strategy σ∗α )

Then, because ς > 0 can be small enough,

κ := ς
Jα,T (π′′α) − Jα,T (π′α)

E
π′α
s0 [TSG ] − E

π′′α
s0 [TSG ]

> 0

can be small enough as well. Thus, Jα,T (σ?α,ς) ≤ Jm∗
α,T + κ. �

Proof B.2.13: [ Proposition 5.4.10 ]

For λ ≥ 0 fixed, a pure strategy π∗α,λ ∈ arg minπ Lα,T (π,λ) can
be computed by the classical Bellman backward recursion.

Proof. First, from the unfoldingMT , defined in eq. (5.2),

MT =
(
ST , s0, A, PT , C

)
, (5.2)

wherein each leaf has a copy of the original MDPM, we “collapse” each
copy in a fresh state, denoted as sT+1, and we connect each leaf sT with
each corresponding fresh state sT+1 and add the expected shortest path
cost to the goal set G. More precisely, from each sT at level T inMT

(corresponding to the state proj1(sT ) in M), we add a single edge to
the respective fresh state sT+1 and we label such a transition by the
SSP-value (5.5) computed from proj1(sT ) to G by using the strategy
πγ , i.e., the value SPπγ

sT
. We will assume that each fresh states is to

be zero-cost with a self-loop. We denote such a new structure asMT .
Note that the latter is as the unfoldingMT up to the level T , with the
addition of a state after each leaf in MT . We say so that MT has a
depth T + 1.

On the other hand, from definition (5.22) of the Lagrange function,

Lα,T (π,λ) = Jα,T (π) + λ (Eπ
s0 [TSG ] − ν ) . (5.22)
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The idea is then to compute a pure strategy π giving the minimum on
Lα,T (π,λ) for a fixed dual variable λ ≥ 0 in the structureMT . It this
context, the Lagrange function can be written as:

Lα,T (π,λ) = Jα,T (π) + λ (Eπ
s0 [TST+1] − ν ) , (B.40)

where Eπ
s0 [TST+1] is the expected truncated sum (2.22) up to T + 1.

Now, we prove that the objective function for pure strategies Jα,T (π),
see eq. (5.12), can be written as the following expectation:

Jα,T (π) = Eπ
s0

[
T∑
t=1

t−1∏
τ=0

(1− 1GT (sτ ))1GT (st) + α
T∏
t=1

1G(proj1(st))
]

.

Indeed, Jα,T (π) = Pπs0 [ET ∪ Eα,T ] by definition (5.12). Now, based
on the definitions of ET and Eα,T in eq. (5.8) and eq. (5.10) resp., we
prove separately that the probability of each event can be written as a
expected function. Let ω ∈ Ωs0 a path. We have thatthe following is
true by considering α = 1:

Pπ
s0 [ω ∈ E1,T ] = 1 · Pπ

s0 [ω ∈ E1,T ] + 0 · Pπ
s0 [ω ∈ ET ]

= Eπ
s0 [1E1,T

(ω) ]

But, from the definition (5.10) of Eα,T for α = 1, it holds:

ω ∈ E1,T ⇔
T∧
t=0

(proj1 ◦ projSTt )(ω) /∈ G

Thus, we can write:

Pπ
s0 [ω ∈ Eα,T ] = αEπ

s0

[
T∏
t=0

1G((proj1 ◦ projSTt )(ω))

]
. (B.41)

On the other hand, from the definition ET in eq. (5.8), it holds:

ω ∈ ET ⇔
{

projST0 (ω) ∈ GT
} T∨
t=1

{
projSTt (ω) ∈ GT

t−1∧
τ=0

projSTτ (ω) /∈ GT
}

Then, assuming that projST0 (ω) /∈ GT , we have the following:

Pπ
s0 [ω ∈ ET ] = Eπ

s0

[
T∑
t=1

t−1∏
τ=0

(
1− 1GT (projSTτ (ω))

)
1GT (projSTt (ω))

]

Because Pπ
s0 [ET ∪ Eα,T ] = Pπ

s0 [ET ] + Pπ
s0 [Eα,T ], so Jα,T (π) can be

written as an expectation as we wanted.
Coming back to (B.40), we expand the space of states in MT with

two new components. With a small abuse of notation, we write

ST+1 = X ×
(
[T Cmin

1 , T Cmax
1 ]∩Q

)
×{0, 1, ...,T + 1}×{0, 1}×{0, 1}

so that, a state st ∈ ST+1 is such that proj4(st) = proj5(st) = 1 for
t = 0, and for t = 1, ...,T this is such that:

proj4(st) := ( 1 − 1GT (st−1)) proj4(st−1)

proj5(st) := 1G(proj1(st−1)) proj5(st−1)
(B.42)
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Without loss of generality, because at level T + 1 there is a fresh state
sT+1 for each leaf sT , we can consider that such a state is of the form
sT+1 = sT , where the cost function between the transition from sT
to sT+1 is C ′(sT , sT+1) = SPπγ

sT
, i.e., the SSP-value (5.5) computed

from proj1(sT ) to G by using the strategy πγ . Associated with such an
expanded space of states, we add another cost function inMT , defined
for each t = 0, ...,T − 1 by:

C ′(st) := 1GT (st) proj4(st) ,

and at level t = T , by:

C ′(sT ) := 1GT (sT ) proj4(sT ) + α1G(proj1(sT )) proj5(sT ) .

Based on the fact that the objective function Jα,T (π) can be written
as an expectation, Lα,T (π,λ) can be so rewritten as:

Lα,T (π,λ) = Eπ
s0

[
T∑
t=0

C ′(st)

]
+ λ

(
Eπ
s0 [TST+1]− ν

)

= Eπ
s0

[
T∑
t=0

C ′(st) + λC(st, at) + λ
(
C ′(sT , sT+1)− ν

)]

Thus, from each state sT+1, we can compute recursively the minimum
value at each step for the Lagrange function by the classical Bellman
dynamic equation [21]. �

Proof B.2.14: [ Proposition 5.4.11 ]

Let n ∈ N. For 0 < λn ≤ λn fixed, let σ∗α,n ∈ ∆[{π∗α,λn
,π∗

α,λn
}] a

mixed strategy combining convexly between the pure strategies:

π∗α,λn
∈ arg min

π
Lα,T (π,λn) and π∗

α,λn
∈ arg min

π
Lα,T (π,λn) ,

and defined as:

σ∗α,n(π
∗
α,λn

) =
ν − E

π∗
α,λn
s0 [TSG ]

E
π∗α,λn
s0 [TSG ] − E

π∗
α,λn
s0 [TSG ]

σ∗α,n(π
∗
α,λn

) =
E
π∗α,λn
s0 [TSG ] − ν

E
π∗α,λn
s0 [TSG ] − E

π∗
α,λn
s0 [TSG ]

(5.37)

Then, Jα,T (σ∗α,n) −→ Jm∗
α,T as n → +∞. Moreover, there exists

a constant E ∈ R+, such that the number of iterations needed
n ∈ N to achieve a given tolerance ε > 0, is such that:

n ≥ log2

(
E

(λ0 − λ0)

ε

)
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Proof. First, we have the following:

0 ≤ Jα,T (σ
∗
α,n) − Jm∗

α,T (B.43)
(by the definition (5.20) of the mixed strategy optimal value)

= σ∗α,n(π
∗
α,λn

) Jα,T (π
∗
α,λn

) + σ∗α,n(π
∗
α,λn

) Jα,T (π
∗
α,λn

) − Jm∗
α,T

(because σ 7→ Jα,T (σ) is linear on mixed strategies)
= σ∗α,n(π

∗
α,λn

)(Jα,T (π
∗
α,λn

)− Jm∗
α,T ) + σ∗α,n(π

∗
α,λn

)(Jα,T (π
∗
α,λn

)− Jm∗
α,T )

(arranging terms and because σ∗α,n(π
∗
α,λn

) + σ∗α,n(π
∗
α,λn

) = 1)

On the other hand, it also holds:

Jm∗
α,T = L

p∗
α,T

(by Propositions 5.4.4 and 5.4.5 )
= sup

λ≥0
L

p
α,T (λ)

(by definition (5.26) of the optimal dual value)
≥ L

p
α,T (λ)

(for any λ ≥ 0 )

= Jα,T

(
π∗α,λ

)
+ λ

(
E
π∗α,λ
s0 [TSG ] − ν

)
(by definition (5.24) of the Lagrange dual function)

The latter inequality is true ∀λ ≥ 0, in particular for the dual variables
λn and λn. Thus, the two following inequalities hold:

Jα,T (π
∗
α,λn

) − Jm∗
α,T ≤ λn

(
ν − E

π∗α,λn
s0 [TSG ]

)
Jα,T (π

∗
α,λn

) − Jm∗
α,T ≤ λn

(
ν − E

π∗
α,λn
s0 [TSG ]

) (B.44)

Using the last two inequalities, it follows that:

Jm
α,T (σ

∗
α,n) − Jm∗

α,T = σ∗α,n(π
∗
α,λn

)(Jα,T (π
∗
α,λn

) − Jm∗
α,T ) +

σ∗α,n(π
∗
α,λn

)
(Jα,T

(
π∗
α,λn

) − Jm∗
α,T )

(by equality (B.43) )

≤σ∗α,n(π
∗
α,λn

) λn
(
ν −E

π∗α,λn
s0 [TSG ]

)
+

σ∗α,n(π
∗
α,λn

) λn
(
ν −E

π∗
α,λn
s0 [TSG ]

)
(B.45)

(by using the inequalities (B.44) )

=

(
E
π∗α,λn
s0 [TSG ]− ν

)(
ν −E

π∗
α,λn
s0 [TSG ]

)
E
π∗α,λn
s0 [TSG ]−E

π∗
α,λn
s0 [TSG ]

(λn − λn)

(by using the definition (5.37) of σ∗α,n )

Now, by using the so-called bisection method, we can consider the
midpoint of the interval [ λn, λn ] 3 λ∗ at the iteration n+ 1, i.e., the
point:

λn+1 :=
λn + λn

2
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and thus, the difference between λn and λ∗ is bounded by:

| λn+1 − λ∗ | ≤
λ0 − λ0

2n+1
. (B.46)

On the other hand, we define

En :=

(
E
π∗α,λn
s0 [TSG ] − ν

)(
ν2 − E

π∗
α,λn
s0 [TSG ]

)
E
π∗α,λn
s0 [TSG ] − E

π∗
α,λn
s0 [TSGT ]

to show that the sequence (En)n∈N is nondecreasing. First, because

E
π∗
α,λn
s0 [TSG ] ≤ ν ≤ E

π∗α,λn
s0 [TSGT ]

for each n ∈ N and second, since the sequences (λn)n∈N0 and (λn)n∈N0

are resp. nondecreasing and nonincreasing, then by Lemma 5.4.1,

λn 7→ E
π∗α,λn
s0 [TSG ] and λn 7→ E

π∗
α,λn
s0 [TSG ]

are resp. nonincreasing and nondecreasing. Thus, we infer that:(
E
π∗α,λn+1
s0 [TSG ]− ν

)(
ν −E

π∗
α,λn+1
s0 [TSG ]

)
≥

(
E
π∗α,λn
s0 [TSG ]− ν

)(
ν −E

π∗
α,λn
s0 [TSG ]

)
and that:

1

E
π∗α,λn+1
s0 [TSG ]−E

π∗
α,λn+1
s0 [TSG ]

≥ 1

E
π∗α,λn
s0 [TSG ]−E

π∗
α,λn
s0 [TSG ]

.

Thus, it holds:

En+1 =

(
E
π∗α,λn+1
s0 [TSG ] − ν

)(
ν − E

π∗
α,λn+1
s0 [TSG ]

)
E
π∗α,λn+1
s0 [TSG ] − E

π∗
α,λn+1
s0 [TSG ]

≥

(
E
π∗α,λn
s0 [TSG ] − ν

)(
ν − E

π∗
α,λn
s0 [TSG ]

)
E
π∗α,λn
s0 [TSG ] − E

π∗
α,λn
s0 [TSG ]

= En .

Then, the sequence (En)n∈N is nondecreasing. In addition, because
there is a finite number of pure strategies, there exists E ∈ R+, such
that:

En ≤ E , ∀n ∈ N (B.47)

Coming back to (B.45), the following holds:

Jm
α,T (σ

∗
α,n)− Jm∗

α,T ≤

(
E
π∗α,λn
s0 [TSG ]− ν

)(
ν −E

π∗
α,λn
s0 [TSG ]

)
E
π∗α,λn
s0 [TSG ]−E

π∗
α,λn
s0 [TSG ]

(λn − λn)

(by inequality (B.45) )

≤ E

(
λ0 − λ0

)
2n

(by using the inequality (B.46) )
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Thus, taking n → +∞ above, we have the first affirmation of the
Proposition. For the second one, let ε > 0 such that for a n ∈ N large
enough,

E

(
λ0 − λ0

)
2n ≤ ε .

Applying log2 on both sides on the previous inequality, it holds:

n ≥ log2

(
E

(λ0 − λ0)

ε

)
�
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[76] J. Křetínskỳ and T. Meggendorfer. “Conditional value-at-risk

for reachability and mean payoff in Markov decision processes.”
In: Proceedings of the 33rd Annual ACM/IEEE Symposium on

Logic in Computer Science. ACM. 2018, pp. 609–618.
[77] H. Kuhn. “Extensive games and the problem of information.” In:

InH. KuhnandA. Tucker, editors, Contributions to the Theory

of Games (1953), pp. 193–216.
[78] M. Kwiatkowska, G. Norman, and D. Parker. “PRISM 4.0: Veri-

fication of probabilistic real-time systems.” In: International con-
ference on computer aided verification. Springer. 2011, pp. 585–
591.

[79] S. Lasaulce and H. Tembine. Game theory and learning for wire-

less networks: fundamentals and applications. Academic Press,
2011.

[80] W. Leterme, F. Ruelens, B. Claessens, and R. Belmans. “A flex-
ible stochastic optimization method for wind power balancing
with PHEVs.” In: IEEE Transactions on Smart Grid 5.3 (2014),
pp. 1238–1245.

[81] M. L. Littman. “Markov games as a framework for multi-agent
reinforcement learning.” In: Machine learning proceedings 1994.
Elsevier, 1994, pp. 157–163.

[82] Z. Ma, D. S Callaway, and I. A. Hiskens. “Decentralized charg-
ing control of large populations of plug-in electric vehicles.” In:
IEEE Transactions on Control Systems Technology 21.1 (2011),
pp. 67–78.

[83] S. Mannor and J. Tsitsiklis. “Mean-variance optimization in
Markov decision processes.” In: arXiv preprint arXiv:1104.5601

(2011).
[84] M. Maschler, E. Solan, and S. Zamir. Game theory. 2013.
[85] F. S Melo and M. Veloso. “Decentralized MDPs with sparse

interactions.” In: Artificial Intelligence 175.11 (2011), pp. 1757–
1789.

[86] H. Mohsenian-Rad and A. Leon-Garcia. “Optimal residential
load control with price prediction in real-time electricity pricing
environments.” In: IEEE Transaction on Smart Grid 1.2 (2010),
pp. 120–133.

[87] H. Mohsenian-Rad et al. “Optimal charging of electric vehi-
cles with uncertain departure times: A closed-form solution.”
In: IEEE Transactions on Smart Grid 6.2 (2014), pp. 940–942.

[88] J. A. Momoh. Smart grid: fundamentals of design and analysis.
Vol. 63. John Wiley & Sons, 2012.

[ November 20, 2019 at 17:47 – classicthesis ]



bibliography 245

[89] D. Monderer and L. S. Shapley. “Potential games.” In: Games

and economic behavior 14.1 (1996), pp. 124–143.
[90] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Al-

gorithmic game theory. Cambridge university press, 2007.
[91] D. O’Neill, M. Levorato, A. Goldsmith, and U. Mitra. “Residen-

tial demand response using reinforcement learning.” In: 2010

First IEEE International Conference on Smart Grid Communi-

cations. IEEE. 2010, pp. 409–414.
[92] C. Pang, P. Dutta, and M. Kezunovic. “BEVs/PHEVs as dis-

persed energy storage for V2B uses in the smart grid.” In: IEEE
Transactions on Smart Grid 3.1 (2011), pp. 473–482.

[93] C. H. Papadimitriou and J. N. Tsitsiklis. “The complexity of
Markov decision processes.” In: Mathematics of operations re-

search 12.3 (1987), pp. 441–450.
[94] D. Pérez Palomar and J. Rodríguez Fonollosa. “Practical algo-

rithms for a family of waterfilling solutions.” In: (2005).
[95] A. Pnueli and R. Rosner. “On the synthesis of a reactive mod-

ule.” In: Proceedings of the 16th ACM SIGPLAN-SIGACT sym-

posium on Principles of programming languages. ACM. 1989,
pp. 179–190.

[96] M. L. Puterman. Markov decision processes: discrete stochastic

dynamic programming. John Wiley & Sons, 2014.
[97] D. V. Pynadath and M. Tambe. “Multiagent teamwork: Analyz-

ing the optimality and complexity of key theories and models.”
In: Proceedings of the first international joint conference on Au-

tonomous agents and multiagent systems: part 2. ACM. 2002,
pp. 873–880.

[98] F. Rahimi and A. Ipakchi. “Demand response as a market re-
source under the smart grid paradigm.” In: IEEE Transactions

on smart grid 1.1 (2010), pp. 82–88.
[99] S. Rajakaruna, F. Shahnia, and A. Ghosh. Plug in electric ve-

hicles in smart grids: charging strategies. Springer, 2014.
[100] P. J. Ramadge and W. M. Wonham. “Supervisory control of a

class of discrete event processes.” In: SIAM journal on control

and optimization 25.1 (1987), pp. 206–230.
[101] M. Randour, J.-F. Raskin, and O. Sankur. “Variations on the

stochastic shortest path problem.” In: International Workshop

on Verification, Model Checking, and Abstract Interpretation.
Springer. 2015, pp. 1–18.

[102] M. Randour, J.-F. Raskin, and O. Sankur. “Percentile queries in
multi-dimensional Markov decision processes.” In: Formal Meth-

ods in System Design 50.2-3 (2017), pp. 207–248.
[103] P. Samadi, H. Mohsenian-Rad, V. W. Wong, and R. Schober.

“Tackling the load uncertainty challenges for energy consump-
tion scheduling in smart grid.” In: IEEE Transactions on Smart

Grid 4.2 (2013), pp. 1007–1016.

[ November 20, 2019 at 17:47 – classicthesis ]



246 bibliography

[104] P. Samadi, H. Mohsenian-Rad, V. Wong, and R. Schober. “Adap-
tive energy consumption scheduling with load uncertainty for
the smart grid.” In: 2013 IEEE International Conference on

Communications (ICC). IEEE. 2013, pp. 4244–4249.
[105] A. Sheikhi, Sh. Bahrami, AM. Ranjbar, and H. Oraee. “Strategic

charging method for plugged in hybrid electric vehicles in smart
grids; a game theoretic approach.” In: International Journal of
Electrical Power & Energy Systems 53 (2013), pp. 499–506.

[106] M. Shinwari, A. Youssef, and W. Hamouda. “A water-filling
based scheduling algorithm for the smart grid.” In: IEEE Trans-

actions on Smart Grid 3.2 (2012), pp. 710–719.
[107] A. Subramanian, M. Garcia, A. Domínguez-García, D. Callaway,

K. Poolla, and P. Varaiya. “Real-time scheduling of deferrable
electric loads.” In: 2012 American Control Conference (ACC).
IEEE. 2012, pp. 3643–3650.

[108] R. S. Sutton and A. G. Barto. Reinforcement learning: An in-

troduction. MIT press, 2018.
[109] M. Y. Vardi and P. Wolper. “An automata-theoretic approach

to automatic program verification.” In: Proceedings of the First

Symposium on Logic in Computer Science. IEEE Computer So-
ciety. 1986, pp. 322–331.

[110] C. Villani. Optimal transport: old and new. Vol. 338. Springer
Science & Business Media, 2008.

[111] J. Von Neumann and O. Morgenstern. Theory of games and eco-

nomic behavior (commemorative edition). Princeton university
press, 2007.

[112] T. Wu, Q. Yang, Z. Bao, and W. Yan. “Coordinated energy
dispatching in microgrid with wind power generation and plug-
in electric vehicles.” In: IEEE Transactions on Smart Grid 4.3
(2013), pp. 1453–1463.

[113] X. Xi and R. Sioshansi. “Using price-based signals to control
plug-in electric vehicle fleet charging.” In: IEEE Transactions

on Smart Grid 5.3 (2014), pp. 1451–1464.
[114] W. Yu, G. Ginis, and J. M. Cioffi. “Distributed multiuser power

control for digital subscriber lines.” In: IEEE Journal on Selected

areas in Communications 20.5 (2002), pp. 1105–1115.

[ November 20, 2019 at 17:47 – classicthesis ]



[ November 20, 2019 at 17:47 – classicthesis ]



Titre : Jeux Stochastiques sur des Graphes avec des Applications à l’Optimisation des Smart-Grids
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Optimisation stochastique, Smart grids.

Résumé : Au sein de la communauté scientifique,

l’étude des nombreuses applications des réseaux

d’énergie suscite un vif intérêt puisqu’elles devien-

nent de plus en plus importantes dans notre monde

moderne. Des outils mathématiques avancés et com-

plexes sont nécessaires afin de bien concevoir et met-

tre en œuvre ces réseaux. La précision et l’optimalité

sont deux caractéristiques essentielles pour la concep-

tion de tels réseaux. Bien que ces deux aspects sont

dans le cœur des méthodes formelles, leur applica-

tion effective reste largement inexplorée aux réseaux

d’énergie. Cela motive fortement le travail développé

dans cette thèse. Un accent particulier est placé sur

le problème général de planification de la consom-

mation d’énergie. Il s’agit d’un scénario dans lequel

les consommateurs ont besoin d’une certaine quan-

tité d’énergie et souhaitent que cette demande soit

satisfaite dans un délai de temps spécifique (e.g., un

Véhicule Électrique (VE) doit être rechargé dans une

fenêtre de temps définie par son propriétaire). Par con-

séquent, chaque consommateur doit choisir une puis-

sance de consommation à chaque instant, afin que

l’énergie finale accumulée atteigne un niveau souhaité.

La manière dont les puissances sont choisies est en

fonction d’une « stratégie »qui prend en compte à

chaque instant les informations pertinentes d’un con-

sommateur afin de choisir un niveau de consommation

approprié (e.g., l’énergie accumulée pour recharge le

VE). Les stratégies peuvent être conçues selon une ap-

proche centralisée (dans laquelle il n’y a qu’un seul dé-

cideur qui contrôle toutes les stratégies des consomma-

teurs) ou décentralisée (dans laquelle il y a plusieurs

contrôleurs, chacun représentant un consommateur).

Nous analysons ces deux scénarios dans cette thèse

en utilisant des méthodes formelles, la théorie des

jeux et l’optimisation. Plus précisément, nous mod-

élisons le problème de planification de la consom-

mation d’énergie à l’aide des processus de décision

de Markov et des jeux stochastiques. Par exemple,

l’environnement du système électrique, à savoir : la

partie non contrôlable de la consommation totale (e.g.,

la consommation hors VEs), peut être représentée via

un modèle stochastique. La partie contrôlable de la

consommation totale peut s’adapter aux contraintes

du réseau de distribution (e.g., pour ne pas dépasser la

température maximale d’arrêt du transformateur élec-

trique) et à leurs objectifs (e.g., tous les VEs soient

rechargés). À première vue, cela peut être vu comme

un système stochastique avec des multi-objectifs sous

contraintes. Par conséquent, cette thèse concerne

également une contribution aux modèles avec des ob-

jectives multicritères, ce qui permet de poursuivre

plusieurs objectifs à la fois et une conception des

stratégies qui sont fonctionnellement correctes et ro-

bustes aux changements de l’environnement.

Title: Stochastic games on graphs with applications to smart-grids optimization

Keywords: Formal methods, Markov decision processes, Quantitative analysis, Game theory, Stochastic opti-

mization, Smart grids.

Abstract: Within the research community, there is a

great interest in exploring many applications of energy

networks since these become more and more impor-

tant in our modern world. To properly design and im-

plement these networks, advanced and complex math-

ematical tools are necessary. Two key features for their

design are correctness and optimality. While these last

two properties are in the core of formal methods,

their effective application to energy networks remains

largely unexploited. This constitutes one strong moti-

vation for the work developed in this thesis. A special

emphasis is made on the generic problem of power con-

sumption scheduling. This is a scenario in which the

consumers have a certain energy demand and want to

have this demand to be fulfilled before a set deadline

(e.g., an Electric Vehicle (EV) has to be recharged

within a given time window set by the EV owner).

Therefore, each consumer has to choose at each time

the consumption power so that the final accumulated

energy reaches a desired level. The way in which the

power levels are chosen is according to a “strategy”

mapping at any time the relevant information of a

consumer (e.g., the current accumulated energy for

EV-charging) to a suitable power consumption level.

The design of such strategies may be either central-

ized (in which there is a single decision-maker control-

ling all strategies of consumers), or decentralized (in

which there are several decision-makers, each of them

representing a consumer). We analyze both scenarios

by exploiting the theory from formal methods, game

theory and optimization. More specifically, the power

consumption scheduling problem can be modelled us-

ing Markov decision processes and stochastic games.

For instance, probabilities provide a way to model the

environment of the electrical system, namely: the non-

controllable part of the total consumption (e.g., the

non-EV consumption). The controllable consumption

can be adapted to the constraints of the distribution

network (e.g., to the maximum shutdown tempera-

ture of the electrical transformer), and to their ob-

jectives (e.g., all EVs are recharged). At first glance,

this can be seen as a stochastic system with multi-

constraints objectives. Therefore, the contributions of

this thesis also concern the area of multi-criteria ob-

jective models, which allows one to pursue several ob-

jectives at the time such as having strategy designs

functionally correct and robust against changes of the

environment.
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