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Abstract5

We present in this paper an encoding in an extension with rewriting of the Edimburgh Logical6

Framework (LF) [13] of two common features: universe polymorphism and eta-convertibility. This7

encoding is at the root of the translator between Agda and Dedukti developped by the author.8
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1 Introduction15

With the multiplication of proof assistants, interoperability has became a main obstacle16

preventing the dissemination of formally verified software among industrial companies.17

Indeed, a lot of mathematical results have been formalized, using many different proof18

assistants. Hence, if one want to use two already proved theorems in her development, there19

is a high risk that these two proofs are in different systems.20

To avoid the community the burden of redevelopping the same proofs in each system, the21

Logipedia project aims at building an encyclopedia of formal proofs, agnostic in the system22

they were developped in. To do so, the logics of the proof assistants can be encoded in the23

same Logical Framework: Dedukti, which is based of the λΠ-calculus modulo rewriting.24

Once all the logics are encoded in the same framework, it becomes easier to compare them,25

and so to export to a target system proofs originally made in another system.26

In this article, we present an encoding of two common features, shared by many proof27

assistants.28

The first one is universe polymorphism. Introduced by Harper and Pollack [14], this29

allows the user to declare a symbol only once for all universe levels, and then to instantiate30

it several times with concrete levels.31

The second one is equality modulo η. In set theory, a function is identified with its graph,32

hence two functions outputing the same result when fed with the same data are equal. In33

type theory, it is not the case. η-conversion is a weak form of this principle of extensionality,34

which just states that f is equal to the function associating to any x the result of f applied35

to x.36

Developped for twenty years, Agda is a dependently-typed functional programming37

language based on an extension Martin-Löf’s type theory. Thanks to Curry-Howard corres-38

pondence, it is often used as a proof assistant. Furthermore, it features the two ingredients39

this article focuses on. Hence, the author developed, in collaboration with Jesper Cockx, an40

automatic translator from a fragment of Agda to Dedukti.41
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Outline42

After a brief presentation of the λΠ-calculus modulo rewriting, Section 2 introduces the43

Cousineau-Dowek’s encoding of Pure Type Systems. Section 3 presents a general encoding44

of universe polymorphism and an instantiation of this encoding in the special case of the45

predicative two-ladder universe system behind Agda. The main theorem of this section46

is the preservation of typability of this encoding. Then, Section 4 explains how to encode47

η-conversion using rewriting. Preservation of the conversion is the main result of this section.48

Finally, after a presentation of the implementation in Section 5, Section 6 summarizes our49

result and provides hints on future extensions.50

2 Encoding Pure Type Systems in λΠ-modulo Rewriting51

In [3], Barendregt presents the λ-cube, a classification of eight widely used type systems,52

distinguishing themselves from each other by the possibility they offer (or not) to quantify53

on a type, a term to construct a type, or a term.54

Those constructions of systems in the λ-cube were generalized by Terlouw and Berardi55

[5], giving birth to what they called “generalized type system”, nowadays more often called56

Pure Type Systems (PTS).57

Every PTS shares the same typing rules. The only difference between them are the58

relations A and R. A, called axioms, states inhabitation between sorts and R, called rules,59

controls on which sort one can quantify.60

I Definition 1 (Syntax and typing of PTS). Let X be an infinite set of variables and S be61

the set of sorts.62

t, u ::= s | x | (x : t)→ u | λxt.u | t u with s ∈ S and x ∈ X63

The typing rules include 5 introduction rules related to the syntax, and 2 structural rules.64

6566

(var)
Γ ` A : s

Γ, x : A ` x : A x /∈ dom(Γ)

(ax) ` s1 : s2
(s1, s2) ∈ A (prod)

Γ ` A : s1 Γ, x : A ` B : s2

Γ ` (x : A)→ B : s3
(s1, s2, s3) ∈ R

(app)
Γ ` t : (x : A)→ B Γ ` u : A

Γ ` t u : B [u/x] (abs)
Γ ` (x : A)→ B : s Γ, x : A ` t : B

Γ ` λxA.t : (x : A)→ B

(conv)
Γ ` t : A Γ ` B : s

Γ ` t : B A!∗
β B (weak)

Γ ` A : s Γ ` t : B
Γ, x : A ` t : B x /∈ dom(Γ)

67

I Definition 2 (Functional Pure Type System). A PTS is called functional if axioms and68

rules are functional relations, respectively from S and S × S to S.69

One can be even more restrictive on the class of PTS’s considered, by defining a special70

case of functional PTS, the full PTS.71

I Definition 3 (Full Pure Type System). A PTS is called full if axioms and rules are total72

functions, respectively from S and S × S to S.73

I Example 4 (P∞ and C∞). The predicative and impredicative infinite hierarchies, are two74

full PTS: P∞ is S = {∗i| i ∈ N} ;A = {(∗i, ∗i+1)} ;R = { (∗i, ∗j , ∗k)| k = max(i, j)} whereas75

C∞ is S = {∗i| i ∈ N} ;A = {(∗i, ∗i+1)} ;R = { (∗i, ∗j , ∗k)| j > 1 and k = max(i, j)} ∪76

{(∗i, ∗0, ∗0)}.77
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I Definition 5 (Embedding of PTS). Given P1 = (S1;A1;R1) and P2 = (S2;A2;R2) two78

PTS, f : S1 → S2 is an embedding of P1 in P2 if for all (s, s′) ∈ A1, we have (f(s), f(s′)) ∈ A279

and for all (s, s′, s′′) ∈ R1, we have (f(s), f(s′), f(s′′)) ∈ R2.80

f is extended to terms of P1, by:
f(x) = x, if x ∈ X ; f(λxA.t) = λxf(A).f(t);
f(t u) = f(t) f(u); f((x : A)→ B) = (x : f(A))→ f(B).

81

I Proposition 6 (Soundness of the Embedding). If f is an embedding from a PTS P1 to P2,82

if Γ `P1 t : A, then f(Γ) `P2 f(t) : f(A).83

Proof. By induction on the proof tree. Since f preserves A and R, the (ax) and (prod) cases84

are satisfied. All the other cases are direct, since f does not act on the shape of terms. J85

The Edimburgh Logical Framework [13] (LF), denoted λP in Barendregt’s λ-cube is86

the minimal PTS including dependent types. It has two sorts S = {?,�}, with the axioms87

A = {(?,�)} and the rules R = {(?, ?, ?), (?,�,�)}. It is well-known to be “a framework88

for defining logics”, since it allows to encode most of the proof systems. One can note, LF is89

not a Full PTS, since � is the left-hand side of no axioms.90

The logic behind the Logical Framework Dedukti is the λΠ-calculus modulo rewriting91

[2, 6], an extension of the Edimburg Logical Framework with user-defined rewrite rules92

used not only to define functions, but also types, allowing for shallow embedding of various93

type systems. Indeed, even if one can encode many logics in LF, those encodings are deep,94

meaning that applications, λ-abstractions and variables of the encoded system are not95

translated directly by their equivalent in LF, but by using explicit symbols App, Lam and Var.96

Using rewriting, the introduction of those extra symbols can be avoided, allowing for more97

reasonable size translations.98

I Definition 7 (Signature in λΠ-modulo rewriting). A signature in λΠ-modulo rewriting is99

(Σ,Θ,R) where Σ is a set of symbols, disjoint of X , Θ is a function from Σ to terms and R100

is a set of rewriting rules, i.e. a set of pair of terms of the form f ~l ↪→ r, with f ∈ Σ and all101

li’s are Miller’s pattern [16].102

We say that t rewrites to u, denoted t  u if there is a rule f ~l ↪→ r, a substitution σ103

and a “term with a hole” C[], such that t = C[(f ~l)σ] and u = C[rσ].  is the smallest104

relation containing ↪→ and stable by substitution and context. We denote by ∗ the reflexive105

transitive closure of and by!∗ the convertibility relation, which is the reflexive symmetric106

and transitive closure of  .107

I Definition 8 (Typing rules of λΠ-modulo rewriting). They are the one of LF (those of Def.108

1, instantiated with S = {?,�}, A = {(?,�)} and R = {(?, ?, ?), (?,�,�)}.), but with a rule109

to introduce symbols of Σ and enrichment of the conversion, to include both β-reduction and110

the user-defined rewriting rules.111

(sig)
Γ ` Θ(f) : s f ∈ Σ

Γ ` f : Θ(f) (conv)
Γ ` t : A Γ ` B : s

Γ ` t : B A!∗
β∪R B112

In 2007, Cousineau and Dowek [8] proposed an encoding of any functional PTS in113

Dedukti. Their encoding contained two symbols for each sort, and one symbol for each114

axiom or rule. However, having an infinite number of symbols and rules is not well-suited115

for implementations. Hence, to encode Pure Type Systems with an infinite number of sorts,116

one prefers to have a type Sort for sorts and only one symbol for products [1]. For full Pure117

Type Systems, this extension is quite straightforward. The general encoding of full PTS is:118

First the PTS specificification: a type of sorts and two functions for A and R.119

FSCD 2020
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120
constant Sort : TYPE.121

symbol axiom : Sort ⇒ Sort. symbol rule : Sort ⇒ Sort ⇒ Sort.122123

For each sort s, a type Univ s containing the codes of its elements. Indeed, since the λΠ-124

calculus, does not allow to quantify over types, one needs to declare the type of the logic we125

are encoding, not directly as a type, but as a code, which can be decoded to a type using126

rewriting rules.127

128
constant Univ : (s : Sort) ⇒ TYPE.129130

Then a symbol to decode the elements of Univ s as type of λΠ-modulo rewriting.131

132
symbol Term : (s : Sort) ⇒ Univ s ⇒ TYPE.133134

The encoding of sorts and the rewrite rule to decode it. (Simulates the rule (ax) of a PTS).135

136
constant code : (s : Sort) ⇒ Univ (axiom s).137

Term _ (code s) −→ Univ s.138139

The encoding of products and its decoding rewrite rule. (Simulates the rule (prod) of a PTS).140

141
constant prod : (s1 : Sort) ⇒ (s2 : Sort) ⇒142

(A : Univ s1) ⇒ (Term s1 A ⇒ Univ s2) ⇒ Univ (rule s1 s2).143

Term _ (prod a b A B) −→ (x : Term a A) ⇒ Term b (B x).144145

Then the peculiarity of each PTS is reflected in the encoding of the elements of S as146

terms of Sort, and in the implementation of axiom and rule to encode A and R respectively.147

3 Universe Polymorphism and its Encoding148

It is quite common to enrich PTS with Universe Polymorphism [14], which consists in149

allowing the user to quantify over universe levels, allowing to declare simultaneously a symbol150

for several sorts. For instance, if the sorts are { Seti| i ∈ N}, then one want to declare List151

in ∀`, (A : Set`)→ Set`. Indeed, just like polymorphism was used to avoid declaring a type152

of lists for each type of elements, one want to avoid one declaration of a new type of lists for153

each universe level.154

We present here a definition of universe polymorphism inspired by the one given by Sozeau155

and Tabareau [19] for the proof assistant Coq. In this setting, the context contains three156

lists: a list Σ called signature, a list Θ of level variables, and a list Γ called local context.157

Both Σ and Γ contain pairs of a variable name and a type, but the variables in Γ can contain158

free level variables (those occuring in Θ), whereas all the level variables are bound by a159

prenex quantifier ∀ in the signature Σ. Unlike [19], we do not need to store constraints160

between universe levels, since those constraints are related to cumulativity, a feature we are161

not trying to encode here.162

I Definition 9 (Uniform Universe Polymorphic Full PTS). We consider a set L of levels and a163

finite set H of sort constructors. Then the sorts are {s`}s∈H,`∈L.164

In addition to functionality and totality of A and R, we assume a uniformity in the165

hierarchy. Meaning that for all s ∈ H, there is a s′ ∈ H, such that for all ` ∈ L, there is a166

`′ ∈ L, such that (s`, s′`′) ∈ A and for all s(1), s(2) ∈ H, there is a s(3) ∈ H, such that for all167

`1, `2,∈ L, there is `3 ∈ L such that (s(1)
`1
, s

(2)
`2
, s

(3)
`3

) ∈ R.168

We denote by Ā the function
{

(s, s′) ∈ H2
∣∣∃`, `′, (s`, s′`′) ∈ A

}
and for all s by As the169

function
{

(`, `′) ∈ L2
∣∣∃s′, (s`, s′`′) ∈ A

}
.170
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Analogously R̄ is the function
{

(s(1), s(2), s′) ∈ H3
∣∣∣∃`1, `2, `′, (s(1)

`1
, s

(2)
`2
, s′`′) ∈ R

}
and171

for all (s(1), s(2)), Rs(1),s(2) is the function
{

(`1, `2, `′) ∈ L3
∣∣∣∃s′, (s(1)

`1
, s

(2)
`2
, s′`′) ∈ R

}
.172

The typing rules are:173

174

(lvl) Θ ` ` isLvl ` ∈ L (ax)
Θ ` γ isLvl

[]; Θ; [] ` sγ : s′As(γ)
(s, s′) ∈ Ā

(Lvar) Θ ` i isLvl i ∈ Θ (abs)
Σ; Θ,Γ ` (x : A)→ B : sγ Σ; Θ; Γ, x : A ` t : B

Σ; Θ; Γ ` λ(x : A).t : (x : A)→ B

(LA)
Θ ` ` isLvl

Θ ` As(`) isLvl (app)
Σ; Θ; Γ ` t : (x : A)→ B Σ; Θ; Γ ` u : A

Θ; Γ ` t u : B [u/x]

(LR)
Θ ` `1 isLvl Θ ` `2 isLvl

Θ ` Rss′ (`1, `2) isLvl (conv)
Σ; Θ; Γ ` t : A Σ; Θ; Γ ` B : sγ

Σ; Θ; Γ ` t : B A!∗
β B

(var)
Σ; Θ; Γ ` A : sγ

Σ; Θ; Γ, x : A ` x : A x /∈ Σ,Γ (sig)
Σ; Θ; [] ` A : sγ

Σ, x : ∀Θ.A; Θ′; [] ` x : ∀Θ.A x /∈ Σ,Γ

175

(inst)
Σ; Θ; Γ ` t : ∀[i1, . . . , in], A Θ ` γ1 isLvl . . . Θ ` γn isLvl

Σ; Θ; Γ ` t[γ1, . . . , γn] : A
[
γk/ik

]
k

(prod)
Σ; Θ; Γ ` A : sγ Σ; Θ; Γ, x : A ` B : s′γ′

Σ; Θ; Γ ` (x : A)→ B : s′′Rs,s′ (γ,γ′)
(s, s′, s′′) ∈ R̄

(ctx-weak)
Σ; Θ; Γ ` A : sγ Σ; Θ; Γ ` t : B

Σ; Θ; Γ, x : A ` t : B x /∈ Σ,Γ

(sig-weak)
Σ; Θ; [] ` A : sγ Σ; Θ′; [] ` t : B

Σ, x : ∀Θ.A; Θ′; Γ ` t : B x /∈ Σ,Γ

176

In all those typing rules, s, s′ ∈ H and i, x ∈ X . Furthermore, we allowed ourselves to simply177

write x /∈ Σ,Γ, rather than “for all A, x : A is not in Σ,Γ”.178

One typical case of use, is to have only one hierarchy: H = {Set} and to use natural179

numbers for levels: L = N. But we do not want to restrict ourselves to have only one180

hierarchy, since some proof assistants feature several. For instance, in Agda and Coq, there181

are 2, called Set and Prop, and Type and SProp respectively.182

The two rules modifying the signature Σ, allows to completely change the set Θ of names183

of local variables. Changing this set during the proof is not necessary, however, without this184

renewal of Θ, all the symbols in the signature would have been quantified over the same set185

Θ, no matter which variables occur really in it.186

The universe polymorphism we are interested in is purely prenex. Furthermore, universally187

quantified types are not typed themselves and are only inhabited by variables. This form188

of universe polymorphism only provides ease of use, but it does not allow to prove more,189

meaning that it does not compromise the consistency of the logic.190

To prove this, one can construct a new PTS (SΘ,AΘ,RΘ) simply by adding a brand191

new sort for every expression containing a level variable (such expressions are in L+
Θ). Then192

embedding this newly-constructed PTS in the original one is defined just by interpreting193

level variables. Then using this interpretation of the variables, one can mimic the proofs194

done using universe polymorphism in the original PTS.195

I Proposition 10 (Conservativity of the universe polymorphism). Let P = (L,H,A,R) be a196

uniform universe polymorphic full PTS and Θ be a subset of X .197

FSCD 2020
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Let L+
Θ be the smallest subset such that:198

L+
Θ = Θ ∪

{
As(l)

∣∣ s ∈ H, l ∈ L+
Θ
}
∪
{
Rss′(l1, l2)

∣∣ s, s′ ∈ H, (l1, l2) ∈ (L ∪ L+)2 \ L2} .199

Let X+ = X ∪
{
y[l1, . . . , ln]

∣∣ y ∈ X , n ∈ N, (l1, . . . , ln) ∈ (L ∪ L+
X )n

}
and PΘ be the PTS:200

SΘ =
{
sl
∣∣ s ∈ H, l ∈ L ∪ L+

Θ
}

; AΘ = A ∪
{ (

sl, s
′
As(l))

)∣∣∣ (s, s′) ∈ Ā, l ∈ L+
Θ

}
201

RΘ = R∪
{ (

sl1 , s
′
l2 , s

′′
Rss′ (l1,l2))

)∣∣∣ (s, s′, s′′) ∈ R̄, (l1, l2) ∈ (L ∪ L+)2 \ L2
}

202
203

a. There is an embedding from PΘ to the underlying PTS of P .204

b. If Σ; Θ; Γ ` t : A in P and A is not a universal quantification, then there is a205

Σ̄ ⊂
{
x[l1, . . . , ln] : A′

∣∣∣x : ∀[y1, . . . , yn].A ∈ Σ, A′ = A
[
li/yi

]
i=1...n

and all li ∈ L ∪ L+
Θ

}
206

such that Σ̄,Γ `PΘ t : A using the enriched set of variables X+.207

Proof sketch. a. The embedding consists in just chosing a level for each variable in Θ.208

b. Since A is not a universal quantification, in the proof of Σ; Θ; Γ ` t : A, all the (sig) are209

followed directly by an arbitrary number of weakenings and a (inst). The weakenings210

can be anticipated and to create a proof in PΘ, the (sig) and (inst) are compressed in a211

single introduction of a variable of Σ̄. J212

In a PTS, if Γ ` t : A, then there is a sort s such that A = s or Γ ` A : s. In a full PTS,213

A is a total function, hence, all sorts inhabit a sort, allowing us to refer to s as the sort214

of a A. However, in the presentation of universe polymorphism of Def. 9, this property is215

lost because universally quantified types have no type. To overcome this issue, we assign216

artificially a type to those quantified types, using a brand new sort Sortω, which is not217

typable, is the type of no sort and over which one cannot quantify. Its only purpose is to218

make “the sort of A” well-defined whenever A is inhabited. It must be noted that Sort is not219

in H and ω is not a level.220

To encode Universe Polymorphic Full PTS, one introduce a symbol sortOmega and a221

quantification symbol ∀L which takes as first argument the sort in which the term will live222

once instanciated. The definition of the decoding function Term is enriched with a new rule,223

specifying its behaviour when applied to a ∀L.224

I Definition 11 (Encoding).225

226
constant sortOmega : Sort.227

constant ∀L : (f:(L⇒Sort )) ⇒ ((l:L) ⇒ Univ (f l)) ⇒ Univ sortOmega .228

Term _ (∀L f t) −→ (l : L) ⇒ Term (f l) (t l).229230

For instance, the encoding of ∀`,Set` is ∀L (λ l, axiom (set l)) (λ l, code (set l)),231

if set is a sort constructor in the encoding. And its decoding (when applying Term sortOmega)232

is, as expected, (l:L) ⇒ Univ (set l).233

I Example 12. Consider the system H = {s, σ}, A =
{

(Ai, saxA(i))
∣∣A ∈ H} and R =234 {

(Ai, Bj , Bru(i,j))
∣∣A,B ∈ H}, with axs, axσ and ru three functions remaining abstract here.235

ru could be indexed by two sorts, for ease of readibility, we have chosen not present such a236

general case.237

238
(; one symbol for each sort constructor ;)239

constant s : L ⇒ Sort. constant σ : L ⇒ Sort.240

(; Function axiom ;)241
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symbol axiom : Sort ⇒ Sort.242

symbol ax_s : L ⇒ L. symbol ax_σ : L ⇒ L.243

axiom (s i) −→ s (ax_s i). axiom (σ i) −→ s (ax_σ i).244

(; Function rule ;)245

symbol rule : Sort ⇒ Sort ⇒ Sort. symbol ru : L ⇒ L ⇒ L.246

rule (s i) (s j) −→ s (ru i j). rule (s i) (σ j) −→ σ (ru i j).247

rule (σ i) (s j) −→ s (ru i j). rule (σ i) (σ j) −→ σ (ru i j).248249

I Definition 13 (Translation). We translate well-typed terms in a Universe Polymorphic Full250

Pure Type System by: ‖x‖ = x; ‖s`‖ = code |s`|S; ‖t u‖ = ‖t‖ ‖u‖;251 ∥∥λxA.t∥∥ = λ(x : Term |sA|S ‖A‖).‖t‖;252

‖(x : A)→ B‖ = prod |sA|S |sB |S ‖A‖ (λx : Term |s1|S ‖A‖.‖B‖);253

‖∀[`1, . . . , `n], A‖ = ∀L (λ`1 : L. sortOmega) (λ`1 . . . ∀L (λ`n : L.|sA|S) (λ`n : L.‖A‖). . . );254

‖A[γ1, . . . , γn]‖ = ‖A‖ |γ1|L . . . |γn|L.255

The translation of sorts is |Sortω|S = sortOmega, |sγ |S = s |γ|L.256

And the translation of levels is |i|L = i if i ∈ X ;257

|As(`)|L = ax_s |`|L and |Rss′(`1, `2)|L = ru_ss’ |`1|L |`2|L.258

Wherever they are used, sA and sB are respectively the sorts of A and B.259

It can be noted that the translation |`|L for ` ∈ L is not given, since in general the number260

of level is infinite, hence, we do not want to introduce one new symbol per level. Furthermore,261

with universe polymorphism, universe levels are open terms, hence, convertibility between262

universe levels is now an issue. Fortunately, it is the last one, since once this issue is overcome,263

the encoding has one of the expected properties: we type check at least as much terms as in264

the original system.265

To state this, we start with two useful lemmas:266

I Lemma 14 (Substitution and conversion). a. If x is a free variable in t such that t and267

t [u/x] are well-typed, ‖t [u/x]‖ = ‖t‖
[
‖u‖/x

]
;268

b. If ` is a level variable in t such that t and t [u/`] are well-typed, ‖t [u/x]‖ = ‖t‖
[
|u|L/x

]
;269

c. If t β u, then ‖t‖ β ‖u‖.270

Proof. a and b are proved by induction on the the term t. c is because a β-redex is translated271

as a β-redex. J272

The proof of this property is only sketched, since Section 4 will contain detailled proofs273

on the conversion specifically.274

I Lemma 15 (Shape-preservation of type). a. If s is a sort, Term |A(s)|S ‖s‖ ∗ Univ |s|S,275

b. If (x : A)→ B is of sort s, Term |s|S ‖(x : A)→ B‖ ∗ (x :Term |sA|S ‖A‖)⇒Term |sB |S ‖B‖;276

c. If `1 < · · · < `n, Term sortOmega ‖∀ {`i}i , A‖ ∗ (`1 : L)⇒ . . .⇒(`n : L)⇒‖A‖.277

Proof. The three rules on Term are crafted to ensure those properties. J278

To state properly the Correctness Theorem, one first has to define the translation of279

contexts:280

I Definition 16 (Context Translation). If Σ = x1 : T1, . . . , xl : Tl, Θ = i1, . . . , im and281

Γ = y1 : A1, . . . , yn : An, then the translation is ‖Σ; Θ; Γ‖ = x1 : Term sortOmega ‖T1‖ , . . . ,282

xl : Term sortOmega ‖Tl‖ , i1 : L, . . . , im : L, y1 : Term |sA1 |S ‖A1‖ , . . . , yn : Term |sAn
|S ‖An‖.283
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I Theorem 17 (Correctness). Given a correct criterion for equality of levels (i.e. if two levels284

`1 and `2 are equals, their translations |`i|L are convertible), for a Universe Polymorphic285

Full Pure Type System P , if Σ; Θ; Γ ` t : A, then ‖Σ; Θ; Γ‖ `λΠ/P ‖t‖ : Term |s|S ‖A‖, where286

s is the sort of A.287

Proof. By induction on the derivation. We assume that if Θ ` γ isLvl, then ‖[]; Θ; []‖ `λΠ/P288

|γ|L : L, a property which can be proved by induction on the derivation, with the assumption289

that for all ` ∈ L, `λΠ/P |`|L : L. We then consider the 10 remaining cases:290

(var) By induction hypothesis, ‖Σ; Θ; Γ‖ `λΠ/P ‖A‖ : Univ |sγ |S . Hence ‖Σ; Θ; Γ‖ `λΠ/P Term291

|sγ |S ‖A‖: TYPE, so one can introduce a variable of this type.292

(ax) The translation of sγ is code (s |γ|L) which lives in Univ (s’ (ax_s |γ|L)), which is the293

reduct of the translation as type of s′As(γ).294

(abs) By induction hypothesis, ‖Σ; Θ; Γ‖,x : Term |s|S ‖A‖ `λΠ/P ‖t‖ : Term |s′|S ‖B‖,295

hence, one has that λ(x : Term |s|S ‖A‖).t inhabits (x : Term |s|S ‖A‖)→Term |s′|S ‖B‖,296

which is the reduct of the translation as type of (x : A) → B. The other induction297

hypothesis ‖Σ; Θ; Γ‖ `λΠ/P ‖(x : A)→ B‖ : Univ |sγ |S ensures us that Term |s|S ‖A‖298

lives in TYPE.299

(app) By the induction hypothesis and the Lem. 15, one can apply the translation of t to300

the translation of u. The result lives in the translation of B [u/x] thanks to Lem. 14.301

(conv) This is a direct consequence of Lem. 14 and the induction hypotheses.302

(sig) By induction hypothesis, ‖Σ; Θ; []‖ `λΠ/P ‖A‖ : Univ |sγ |S . Hence, one can use the303

(prod) rule of λΠ-modulo rewriting to move all the i : L from the context to the term.304

By Lem. 15, the product obtained is convertible with ‖∀Θ.A‖, hence one can introduce a305

variable of this type. One must then use the weakening, to Re-invent the variables of306

type L corresponding to the Θ′.307

(inst) Lem. 15 tells us that, after conversion, the induction hypothesis is ‖Σ; Θ; Γ‖ ` ‖A‖ :308

(`1 : L)→ · · · → (`n : L)→ ‖X‖, hence, we can apply the γi’s without type issues.309

(prod) By induction hypothesis, we have ‖Σ; Θ; Γ‖ `λΠ/P ‖A‖ : Univ ‖sγ‖ and also310

‖Σ; Θ; Γ, x : A‖ `λΠ/P ‖B‖ : Univ
∥∥s′γ′

∥∥, so ‖Σ; Θ; Γ‖ , x : Term |sγ |S ‖A‖ `λΠ/P ‖B‖ :311

Univ
∥∥s′γ′

∥∥ and we can conclude by introducing the lambda and applying prod.312

(ctx-weak) As before, we have ‖Σ; Θ; Γ‖ `λΠ/P ‖A‖ : Univ ‖sγ‖, so ‖Σ; Θ; Γ‖ `λΠ/P Term313

|sγ |S ‖A‖: TYPE, so one can weaken with a variable of this type.314

(∀weak) Like for the (sig) rule, one can empty the context of the variables of type L by315

applying the rule (prod) of λΠ-modulo rewriting. Then, one can weaken with a variable316

of this type and variables of type L to translate the Θ′. J317

Now, we will more specifically focus on a specific hierarchy of levels, where L = N and318

all the As are the successor function and all Rss′ are the maximum function. This is the319

predicative hierarchy of P∞ (Expl. 4), used in Agda for instance.320

The grammar of universe level we are interested in is: t, u ∈ L ::= x ∈ X | 0 | s t | max t u:321

322
constant L : TYPE. symbol 0 : L.323

symbol s : L ⇒ L. symbol max : L ⇒ L ⇒ L.324325

The question which arises in the translation is to have a convergent rewrite system such326

that for all t and u in L:327

t↓ = u↓ if and only if ∀σ : X → N, JtKσ = JuKσ328

where J_K_ : L → (X → N)→ N is the obvious interpretation in N:329

J0Kσ = 0N JxKσ = σ(x), if x ∈ X Js tKσ = JtKσ +N 1N Jmax t uKσ = max N(JtKσ, JuKσ)330
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Since max is associative and commutative (AC), we will propose an encoding having a331

weak version of this property: t↓ ≡AC u↓ if and only if ∀σ : X → N, JtKσ = JuKσ.332

Since Js (max t uK = Jmax (s t) (su)K, one can consider having a Max acting on a set of333

terms, which do not contain max.334

Furthermore, we have for all n the equality Jmax (sn x)xK = Jsn xK. To avoid declaring this335

rule infinitely often (once for every n), we add addition to our encoding. However, since this336

addition encodes iteration of the application of s, it is not an addition between two levels, but337

one between a ground natural number and a level. Furthermore, Jmax (sn x) (sm 0)K = Jsn xK,338

if m < n. Hence, the symbol Max will also collect the value of the smallest possible ground339

natural that the result can be.340

Hence, in our encoding, the normal forms are the Max i {jk + xk}k where:341

(1) i, j1, . . . are ground naturals, (2) x1, . . . are distinct variables, (3) for all k, i > jk.342

A separate type N, containing only ground natural numbers, is declared, to avoid confusion343

with levels.344

345
constant N : TYPE. constant 0N : N. constant sN : N ⇒ N.346

definition 1N := sN 0N.347

symbol maxN : N ⇒ N ⇒ N. maxN 0N y −→ y.348

maxN x 0N −→ x. maxN (sN x) (sN y) −→ sN (maxN x y).349

infix +N : N ⇒ N ⇒ N.350

0N +N y −→ y. (sN x) y −→ sN (x +N y).351352

Sets can be empty or singleton or union of sets. This union operator is an associative and353

commutative symbol. Furthermore, since singletons are of the form {i+ x}, the constructor354

of singletons is denoted ⊕.355

356
symbol ∅: LSet. infix ⊕: N⇒L⇒LSet. infix ac ∪: LSet⇒LSet⇒LSet.357

x ∪ ∅ −→ x.358359

Since constraint (1) is guaranteed by typing, we still have to implement the two constraints360

(2) and (3) presented in the description of the normal form:361

The only non-left-linear rule of the encoding eliminates redundancies, ensuring that all362

variables in the normal forms are distinct, in order to satisfy the invariant (2).363

364
(i ⊕ l) ∪ (j ⊕ l) −→ (maxN i j) ⊕ l.365366

Intuitively, to flatten the entanglement of max and plus, we would like to have a rule367

stating that a+ max(b, c) = max(a+ b, a+ c).368

However, to fulfill constraint (3), we added the invariant that the first argument of Max369

is larger than all the first arguments of the ⊕ occuring directly under it. Hence, we370

do not declare the expected computation rule of ⊕, but enforce this computation to be371

performed under a Max.372

Furthermore, for typing distinction between L and LSet, we introduce an auxiliary function373

mapping (i ⊕ _) to all the elements of a set.374

375
symbol mapPlus : N ⇒ LSet ⇒ LSet.376

mapPlus i ∅ −→ ∅. mapPlus i (j ⊕ l) −→ (i +N j) ⊕ l.377

mapPlus i (l1 ∪ l2) −→ ( mapPlus i l1) ∪ ( mapPlus i l2).378

symbol Max : N ⇒ LSet ⇒ L Max 0N (0N ⊕ x) −→ x.379

Max i (j ⊕ Max k l) −→ Max (maxN i (j +N k)) ( mapPlus j l).380

Max i ((j ⊕ Max k l) ∪ tl) −→381

Max (maxN i (j +N k)) (( mapPlus j l) ∪ tl).382383
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And finally we give rewrite rules for the symbols of the syntax:384

385
0 −→ Max 0N ∅. s x −→ Max 1N (1N ⊕ x).386

max x y −→ Max 0N ((0N ⊕ x) ∪ (0N ⊕ y)).387388

This encoding is not confluent, as the following example illustrates:389

390
Max i (j ⊕ (Max k (j2 ⊕ (Max k2 l))))391

 o Max (maxN i (j +N k)) ( mapPlus j (j2 ⊕ (Max k2 l)))392

 Max (maxN i (j +N k)) ((j +N j2) ⊕ (Max k2 l))393

 Max (maxN (maxN i (j +N k)) (j +N j2 +N k2)) ( mapPlus (j +N j2) l)394

 i Max i (j ⊕ (Max (maxN k (j2 +N k2)) ( mapPlus j2 l)))395

 Max (maxN i (j +N (maxN k (j2 +N k2 )))) ( mapPlus j ( mapPlus j2 l))396397

But this is not an issue, since we are only interested in reducts of elements of the syntax,398

meaning that all the variables are of type L.399

I Proposition 18. The absence of variable of type N or LvlSet ensures the uniqueness of400

normal form (modulo AC) property.401

Proof. Since there are no variables of type N and LSet, the function maxN, +N and mapPlus402

are fully defined and cannot occur in the normal forms.403

Hence, normal forms contain only 0N, sN, Max, ∅, ⊕ and ∪. Among it, the only constructor404

of a L is Max, hence every level is either a variable or headed by Max.405

If it contains a Max, there is one at the head. Hence the terms are of the form Max n s406

with n a closed natural and s a LSet. If there are more than one Max, it means that the LSet407

contains a level which is not a variable. This one, is headed by Max, so one of the rewrite408

rule regarding the interaction between Max and ⊕ can be applied.409

Hence all normal forms are either a variable or of the form Max n s, with n closed natural410

and s a LSet where all levels are variable. The non-linear rule ensures us that the variables411

are all distinct.412

One can check that the invariant that every natural which is the first argument of a ⊕ is413

smaller or equal to the first argument of the Max directly above the ⊕ is preserved by every414

rule and verified by the reducts of the syntax.415

So, we can conclude that the normal forms have the shape announced.416

To check that a term cannot have two distinct normal forms, the definition of the417

interpretation is extended to the symbols we introduced and one can verify that all the rules418

preserve the interpretation and that all the terms of the shape we decribed have a different419

interpretation. J420

4 Eta-conversion421

Many proof assistants implement, among other conversion rules, the η rule, which state that422

if f is a function, f ≡η λx.f x.423

At first sight, this conversion might look quite harmless, and one can hope to just add424

the corresponding rewrite rule. However, this conversion is an important issue for translation425

of systems in Dedukti. Indeed, the contraction rule cannot be stated, since λx.f x is not a426

Miller pattern: It requires to match on the fact that f x is an application, which would be427

“meta-matching” and is not in the definition of λΠ-modulo rewriting. Furthermore, we could428

replace it by λx.f [x], but f is not a valid right-hand side anymore, since it is of arity one.429

On the other hand, to preserve typing, the expansion rule has to match on the type of a430

variable, and is not syntax-directed anymore.431
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Another natural solution could be to define λΠ-modulo rewriting as a logical framework432

with η hard-coded in the conversion (just like β is). But this is a path logical frameworks433

want to avoid. Indeed, if η is hard-coded, it is impossible to have a shallow encoding of the434

λ-calculus without η-conversion.435

One could expect that η-expanding every term during the translation phase, could allow436

us to completely ignore η-conversion in the λΠ-calculus modulo rewriting. Indeed, with437

dependent types it might happen than an η-long term has a non-η-long type. A situation438

that often breaks the type preservation of the translation.439

I Example 19. To illustrate this, we start by defining a type, whose number of arrows440

depends on a natural number, with a constructor for this type.441

442
symbol D : (x : N) ⇒ TYPE. constant d : (x : N) ⇒ D x.443

D 0 −→ N. D (s x) −→ N ⇒ D x.444445

We then define a new type depending on the first one and its constructor.446

447
symbol E : (x : N) ⇒ D x ⇒ TYPE. symbol e : (x : N) ⇒ E x (d x).448449

Now, the term e 1 is η-long and has type E 1 (d 1), but not E 1 (λ x, d 1 x) which is450

the η-long form of the type.451

To overcome this issue, we propose to postpone η-expansion, until the type is fully452

instantiated. For this, we introduce in the translation a symbol ηE, which purpose is to453

tag with their types the subterms which may become η-expandable. Then some rewrite454

rules pattern match on this type annotation to decide when and how the expansion can be455

performed.456

I Definition 20 (Eta-expansion rewrite rules). ηE annotates terms with their types, to do so,457

it takes as arguments a sort, a code of type in this sort and the term to annotate. The rules458

state that η-expansion is the identity for inhabitant of sorts (ηS), and genesrates λ’s for459

inhabitants of products (ηP ). Furthermore, a rule state that η-expansion is an idempotent460

operation (ηI).461

462
symbol ηE : (s : Sort) ⇒ (A : Univ s) ⇒ Term s A ⇒ Term s A.463

"ηS" ηE _ (code _) t −→ t.464

"ηP" ηE _ (prod a b A B) t −→465

λ (x : Term a A), ηE b (B (ηE a A x)) (t (ηE a A x)).466

"ηI" ηE _ _ (ηE a A t) −→ ηE a A t.467468

To prove that adding those annotations in the encoding enriches enough the conversion469

to simulate η-equality, we will also add those annotations in the system we are translating,470

just like what is done in [12, 11].471

For sake of readibility, we will study in this section, terms typed in a full PTS embeddable472

in C∞, like P∞ and C∞ defined in Expl. 4, in order to directly reuse the induction principle473

defined in [4].474

Performing η-expansion can be required for variables or if an application instantiated a475

type, allowing it to reduce to a product. Hence, we will add those tags on the variable and476

application rules. Hence, one could imagine having the rules:477

(var’)
Γ ` A : si

Γ, x : A ` xA : A x /∈ dom(Γ) (app’)
Γ ` t : (x : A)→ B Γ ` u : A

Γ ` (t u)B[u/x] : B [u/x]
478
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But those rules, do not have the property that if a term is well-type, its subterms are479

well-typed with a smaller tree, because of the substitution performed on B. Fortunately,480

the induction principle defined by Barthe, Hatcliff and Sørensen [4] ensures us that, if we481

annotate the applications with normal form, this property is verified, leading to:482

(app”)
Γ ` t : (x : A)→ B Γ ` u : A

Γ ` (t u)B[u/x]↓ : B [u/x]
483

One must note here that the same tags can be added to the universe polymorph version484

of the full PTS considered. Indeed, Prop. 10 ensures us that the set of typable terms are the485

same in both systems. However, it would require to annotate the x[l1, . . . , ln], generating an486

overweight in the proof, without introducing technicality.487

I Definition 21 (Translation). Given an annotated well-typed term t in a Full Pure Type488

System, with the rules (var′) and (app′′) and the conversion enriched with η, we translate t489

by:
∥∥xA∥∥ = ηE |sA|S ‖A‖ x; ‖s‖ = code |s|S;

∥∥(t u)A
∥∥ = ηE |sA|S ‖A‖ (‖t‖ ‖u‖);490 ∥∥λxA.t∥∥ = λ(x : Term |sA|S ‖A‖).‖t‖;491

‖(x : A)→ B‖ = prod |sA|S |sB |S ‖A‖ (λx : Term |s1|S ‖A‖.‖B‖);492

sA and sB are respectively the sorts of A and B, and |.|S is the translation of sorts.493

The correctness of our translation relies on the preservation of conversion. This result494

comes from the three following lemmas:495

I Lemma 22 (No ηE on translation). If Γ ` t : A, then ηE |sA|S ‖A↓‖ ‖t‖!∗ ‖t‖.496

I Lemma 23 (Substitution). If t is well-typed in the context Γ, x1 : A1, . . . , xn : An,Γ′ and497

if Γ ` u1 : A1,. . . ,Γ ` un : An then ‖t‖
[
‖ui‖/xi

]
i∈{1,...,n}

!∗
∥∥∥∥t [ui/xi]i∈{1,...,n}

∥∥∥∥.498

I Lemma 24 (Reduction). If Γ ` t : A and t u, then ‖t‖!∗ ‖u‖.499

We prove those three lemmas, in this order, by a mutual induction on the combination of500

the subterm ordering and reduction on a multiset of terms (this multiset is of size at most501

2), called “measure” in the proofs.502

Proof of Lem. 22. We use ⦃t⦄ as the measure. If the normal form of A is a sort, then one503

can conclude using the rule ηS. We proceed by case on t for the remaining cases:504

If t = xB , then ηE |sA|S ‖A↓‖ ‖t‖ = ηE |sA|S ‖A↓‖ (ηE |sB |S ‖B‖ x) ηI ‖t‖.505

If t = (u v)B , then it is again a direct consequence of the rule ηI506

If t = λxB1
1 . . . λxBn

n .u, with u not a λ-abstraction.507

There is a C such that: A↓= (x1 : B1 ↓)→ · · · → (xn : Bn ↓)→ C. We denote by si the508

sort of (xi : Bi ↓)→ · · · → (xn : Bn ↓)→ C. We have:509
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ηE |sA|S ‖A↓‖ ‖t‖510

= ηE |sA|S (prod |sB1 |S |s2|S ‖B1 ↓‖ (λ(x1 : Term |sB1 |S ‖B1 ↓‖).511

prod . . . |sBn
|S |sC |S ‖Bn ↓‖ (λ(xn : Term |sBn

|S ‖Bn ↓‖). ‖C‖) . . . ))512

(λ(x1 : Term |sB1 |S ‖B1‖) . . . λ(xn : Term |sBn
|S ‖Bn‖). ‖u‖)513

 ηP λ(x1 : Term |s1|S ‖B1 ↓‖).ηE |s2|S ((λ . . . ‖C‖)(ηE |s1|S ‖B1 ↓‖ x1))514

((λx1 . . . ‖u‖)(ηE |s1|S ‖B1 ↓‖ x1))515

 2
β λ(x1 : Term |s1|S ‖B1 ↓‖).ηE |s2|S (prod |sB2 |S |s3|S ‖B2 ↓‖ . . . ‖C‖)σ (λx2 . . . ‖u‖)σ516

with σ =
[
ηE |s1|S ‖B1 ↓‖ x1/x1

]
517

( ηP 
2
β)n−1 λ(x1 : Term |s1|S ‖B1 ↓‖) . . . λ(xn : Term |sn|S ‖Bn ↓‖).ηE |sC |S ‖C‖ τ ‖u‖ τ518

with τ =
[
ηE |si|S ‖Bi ↓‖ xi/xi

]
i∈{1,...,n}

519

!∗
Lem.23 λ(x1 : Term |s1|S ‖B1 ↓‖) . . . λ(xn : Term |sn|S ‖Bn ↓‖).ηE |sC |S ‖Cτ

′‖ ‖uτ ′‖520

with τ ′ =
[
xBi↓
i /xi

]
i∈{1,...,n}

521

!∗
IH

∥∥∥λxB1
1 . . . λxBn

n .u
∥∥∥ J522523

Proof of Lem. 23. There, the measure is ⦃t, t
[
ui/xi

]
i∈{1,...,n}

⦄. Depending on the shape524

of t, we have:525

If t is a sort, the substitution does not have any impact.526

If t = xAi
i , ‖t‖ = ηE |sAi

|S ‖Ai‖ xi, so ‖t‖
[
‖ui‖/xi

]
i

= ηE |sAi
|S ‖Ai‖ ‖ui‖. By Lem.527

24, ‖Ai‖!∗ ‖Ai ↓‖ and one can conclude by Lem. 22 that ‖t‖
[
‖ui‖/xi

]
i
!∗ ‖ui‖.528

If t = yB with y /∈ {xi}i, then ‖t‖ = ηE |sB |S ‖B‖ y,so529

‖t‖
[
‖ui‖/xi

]
i

= ηE |sB |S ‖B‖
[
‖ui‖/xi

]
i
y!∗

IH

∥∥∥∥yB[ui/xi]i

∥∥∥∥ =
∥∥∥t [ui/xi]i∥∥∥ .530

If t = λyB .v, then ‖t‖ = λ(y : Term |sB |S ‖B‖). ‖v‖, so531

‖t‖
[
‖ui‖/xi

]
i

= λ(y : Term |sB |S ‖B‖
[
‖ui‖/xi

]
i
). ‖v‖

[
‖ui‖/xi

]
i

532

!∗
IH λ(y : Term |sB |S

∥∥∥B [ui/xi]i∥∥∥).
∥∥∥v [ui/xi]i∥∥∥ =

∥∥∥(λyB .v)
[
ui/xi

]
i

∥∥∥533
534

The other cases are straightforward, just like the previous two. J535

Proof of Lem. 24. We use ⦃t⦄ as the measure. If the reduction is not at the head of t, then536

the result follows by the induction hypothesis.537

Otherwise, the reduction occurs at the head of the term. It can be either η or β reduction.538

(η) Then t = λxA.(uxA)B and u is either a variable, an application or a λ-abstraction. In539

every case ‖t‖ = λ(x : Term |sA|S ‖A‖).ηE |sB |S ‖B‖ (‖u‖ (ηE |sA|S ‖A‖ x)).540

If u = yC , then C ↓= (x : A↓)→ B.541

‖u‖ = ηE |sC |S ‖C‖ y!
∗
IH ηE |sC |S ‖(x : A↓)→ B‖ y542

= ηE |sC |S (prod |sA|S |sB |S ‖A↓‖ (λ(x : Term |sA|S ‖A↓‖). ‖B‖)) y543

 ηP λ(x : Term |sA|S ‖A↓‖).ηE |sB |S ‖B‖ (y (ηE |sA|S ‖A↓‖ x))544
545

When we instantiate ‖t‖ in this case, we get:546
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‖t‖ β λ(x : Term |sA|S ‖A‖).ηE |sB |S ‖B‖547

(ηE |sB |S ‖B‖
[
ηE |sA|S ‖A‖ x/x

]
(y (ηE |sA|S ‖A↓‖ (ηE |sA|S ‖A‖ x))))548

 ηI λ(x : Term |sA|S ‖A‖).ηE |sB |S ‖B‖ (y (ηE |sA|S ‖A↓‖ x))!∗
IH ‖u‖549

550

If u = (v w)(x:A↓)→B .551

‖u‖ = ηE |C|S ‖(x : A↓)→ B‖ (‖v‖ ‖w‖)552

 ηP λ(x : Term |sA|S ‖A↓‖).ηE |sB |S ‖B‖ (‖v‖ ‖w‖ (ηE |sA|S ‖A↓‖ x))553
554

Instantiating ‖t‖ in this case give:555

‖t‖ β λ(x : Term |sA|S ‖A‖).ηE |sB |S ‖B‖ (ηE |sB |S ‖B‖
[
ηE |sA|S ‖A‖ x/x

]
556

(‖v‖ ‖w‖ (ηE |sA|S ‖A↓‖ (ηE |sA|S ‖A‖ x))))557

Since v and w do not contain x free.558

 ηI λ(x : Term |sA|S ‖A‖).ηE |sB |S ‖B‖ (‖v‖ ‖w‖ (ηE |sA|S ‖A↓‖ x))!∗
IH ‖u‖559560

If u = λyC .v, then C ↓= A↓, then ‖u‖ = λ(y : Term |sC |S ‖C‖). ‖v‖. Then,561

‖t‖ β λ(x : Term |sA|S ‖A‖).ηE |sB |S ‖B‖ ‖v‖
[
(ηE |sA|S ‖A‖ x)/y

]
562

!∗
Lem.23 λ(x : Term |sA|S ‖A‖).ηE |sB |S ‖B‖

∥∥∥v [x/y]∥∥∥563

(λy.v)x is a subterm of t.564

!∗
Lem.22 λ(x : Term |sA|S ‖A‖).

∥∥∥v [x/y]∥∥∥ =α ‖u‖565566

(β) Then t = ((λxA.v)w)B and u = v [w/x]. We have :567

‖t‖ = ηE |sB |S ‖B‖ ((λ(x : Term |sA|S ‖A‖). ‖v‖) ‖w‖)568

 β ηE |sB |S ‖B‖ ‖v‖
[
‖w‖/x

]
569

!∗
Lem.23 ηE |sB |S ‖B‖ ‖v [w/x]‖!∗

Lem.22 ‖v [w/x]‖570

v and v [w/x] are respectively subterm and reduct of t, hence Lem. 23 applies. J571572

From those three lemmas, one can conclude that573

I Theorem 25 (Correctness of the translation). If Γ ` t : A and t!∗ u, then ‖t‖!∗ ‖u‖.574

5 Implementation575

Agda [18, 17] is a dependently-typed programming languages, based on an extension of576

Martin-Löf type theory, Luo’s Unifying Theory of dependent Types [15, Chapter 9], which577

features both universe polymorphism and η-conversion. Dedukti [10, 2] is an implementation578

of the λΠ-calculus modulo rewriting, which was recently enriched with conversion modulo579

associativity and commutativity.580

Developping a prototypical translator [7] from Agda to Dedukti allowed the author to581

give a concrete application to the ideas presented in Sections 3 and 4.582

However, Agda offers its users a logic much richer than a universe polymorphic pure type583

system with η-conversion. First of all, Agda permits to declare inductive types and then to584

define functions using dependent pattern-matching on the constructors of this type. This585
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behaviour can easily be replicated in Dedukti, by declaring new symbols for inductive types,586

constructors and functions and rewrite rules for each case of the dependent pattern-matching.587

Just like sorts and products have an encoded and a decoded version, linked by the application588

of the function Term, the type has two translation, one as code and one decoded, linked by a589

rewrite rule enriching the definition of Term. Analogously, one rewrite rule is added to enrich590

the definition of ηE.591

I Example 26. The Agda declaration of the addition of natural numbers:592

593
data Nat : Set where _+_ : Nat → Nat → Nat594

zero : Nat zero + m = m595

suc : (n : Nat) → Nat suc n + m = suc (n + m)596597

is translated in Dedukti by:598

599
constant TYPE__Nat : TYPE. constant Nat : Univ (set 0).600

Term _ Nat −→ TYPE__Nat . ηE _ Nat t −→ t.601

constant Nat__zero: Term (set 0) Nat.602

constant Nat__suc: Term (set 0) (prod (set 0) (set 0) Nat (λ n, Nat )).603

symbol {| _+_ |} : Term (set 0) (prod (set 0) (set 0) Nat604

(λ _0 , prod (set 0) (set 0) Nat (λ _1 , Nat ))).605

{| _+_ |} Nat__zero m −→ m.606

{| _+_ |} ( Nat__suc n) m −→ Nat__suc ({| _+_ |} n m).607608

We can observe, that Nat in Agda became TYPE__Nat and Nat in Dedukti, and two rules609

have been added: one to state that TYPE__Nat is the decoding of Nat and the other to extend610

the definition of ηE.611

Each declaration of a new type consists in adding a new constructor to the type Univ s.612

The new rules on ηE and Term are here to ensure that the pattern-matching on this type613

remains exhaustive, in order to completely get rid of administrative encoding operators on614

the normal forms of values.615

One can note, that the enrichment of the functions Term and ηE are left to the will of616

the author of the translation. This proves to be a good feature, since the η-conversion of617

Agda does not restrict to product types, but also concerns records (η-conversion of records618

is also sometimes called “surjective pairing” and means that if t lives in
∑
x:AB, then t619

and (fst t, snd t) are convertible). This does not require to introduce a new symbol for this620

enrichment of the conversion, but just to define adequate rules on ηE.621

I Example 27. The declaration of this record:622

623
record r : Set1 where constructor cons624

field A : Set field b : A625626

is translated by:627

628
constant TYPE__r : TYPE. constant r : Univ (set (s 0)).629

Term _ r −→ TYPE__r .630

ηE _ r y −→ r__cons (r__A y) (ηE 0 (r__A y) (r__b y)).631

constant r__cons : Term (set (s 0)) (prod (set (s 0)) (set (s 0))632

(code (set 0)) (λ A, prod (set 0) (set (s 0)) A (λ b, r))).633

symbol r__A : Term (set (s 0))634

(prod (set (s 0)) (set (s 0)) r (λ r, code (set 0))).635

symbol r__b : Term (set (s 0))636

(prod (set (s 0)) (set 0) r (λ r, r__A r)).637

r__A ( r__cons A b) −→ A. r__b ( r__cons A b) −→ ηE 0 A b.638639

FSCD 2020
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The rule to define the η-expansion of an element of r states that if y is of type r, then640

y ≡ {a = y.a; b = y.b}.641

This translator is available at https://github.com/Deducteam/Agda2Dedukti, the dir-642

ectory theory/ contains the encoding presented in Sections 3 and 4. It is able to translate643

and type-check 162 files of Agda’s standard library [9].644

6 Conclusion and Future Work645

We presented in this article a correct encoding of universe polymorphism in λΠ-modulo646

rewriting, meaning that every term typable in the original system is translated to a typable647

term. We also presented a rewrite system to decide equality in the max-plus algebra, which648

is a comon universe algebra.649

Furthermore, we proposed an operator ηE to encode shallowly a type-directed rule, like650

η-conversion, since the translation of an application really involves the application of the651

translation of a term to the other one, reducing the interleaving between the computation652

steps coming from the original system and the steps related to the encoding.653

Finally, we applied those results to the practical case of the translation of the proof system654

Agda, which offers, among others, the features we targeted, allowing us to provide Dedukti655

users with more than 500 declarations of types, constructors or functions, originating from656

Agda’s standard library.657

We proved that translation of well-typed terms remain typable in our encoding. However,658

it could be that our encoding is over-permissive and type-checks much more terms than659

the original system. Hence, one could envision a conservativity theorem, stating that if the660

translation of a type is inhabited, then the type is also inhabited in the original system. For661

implementability purposes, we have chosen an encoding with finitely many symbols. Such a662

theorem has only been proved [8, 1], for encodings of PTS with as many symbols as sorts,663

axioms and rules. Extending those theorems to our setting is a short-term goal.664

Regarding the implementation, making the translator more complete is naturally an665

objective, however, it involves more theoretical problems, which are long run research666

programs. For instance, how size types or co-inductive types can be encoded in the λΠ-667

calculus modulo rewriting is not known yet.668

Now that proofs have been translated to the logical framework Dedukti, they can be669

analysed, and (when it is possible) exported to other proof assistants, like what was done670

with proofs originating from the arithmetic library of Matita [20].671
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