Correctness of \mathcal{A}_{φ}

Proposition: $\mathcal{L}(\varphi) \subseteq \mathcal{L}(\mathcal{A}_{\varphi})$

Lemma:

Let $\rho = Y_0 \xrightarrow{a_0} Y_1 \xrightarrow{a_1} Y_2 \cdots$ be an accepting run of \mathcal{A}_{φ} on $u = a_0 a_1 a_2 \cdots \in \Sigma^{\omega}$.

Then, for all $\psi \in \operatorname{sub}(\varphi)$ and $n \ge 0$, for all reduction path $Y_n \xrightarrow{\varepsilon} Y \xrightarrow{\varepsilon} Z$ with $a_n \in \Sigma_Z$ and $Y_{n+1} = \operatorname{next}(Z)$,

 $\psi \in Y \implies u, n \models \psi$

Corollary: $\mathcal{L}(\mathcal{A}_{\varphi}) \subseteq \mathcal{L}(\varphi)$

◆□ ▶ ◆ ● ▶ ◆ ■ ▶ ◆ ■ ◆ ○ Q ○ 73/113

$\mathcal{L}(\mathcal{A}_{\varphi}) \subseteq \mathcal{L}(\varphi)$

Lemma:

Let $\rho = Y_0 \xrightarrow{a_0} Y_1 \xrightarrow{a_1} Y_2 \cdots$ be an accepting run of \mathcal{A}_{φ} on $u = a_0 a_1 a_2 \cdots \in \Sigma^{\omega}$.

Then, for all $\psi \in \operatorname{sub}(\varphi)$ and $n \ge 0$, for all reduction path $Y_n \xrightarrow{\varepsilon} Y \xrightarrow{\varepsilon} Z$ with $a_n \in \Sigma_Z$ and $Y_{n+1} = \operatorname{next}(Z)$,

 $\psi \in Y \implies u, n \models \psi$

Proof: by induction on ψ

• $\psi = \top$. The result is trivial.

• $\psi = p \in AP(\varphi)$. Since p is reduced, we have $p \in Z$ and it follows $\Sigma_Z \subseteq \Sigma_p$. Therefore, $p \in a_n$ and $u, n \models p$. The proof is similar if $\psi = \neg p$ for some $p \in AP(\varphi)$. • $\psi = X \psi_1$. Then $\psi \in Z$ and $\psi_1 \in Y_{n+1}$. By induction we obtain $u, n+1 \models \psi_1$ and we deduce $u, n \models X \psi_1 = \psi$.

• $\psi = \psi_1 \wedge \psi_2$. Along the path $Y \xrightarrow{\varepsilon} Z$ the formula ψ must be reduced so $Y \xrightarrow{\varepsilon} Y' \xrightarrow{\varepsilon} Z$ with $\psi_1, \psi_2 \in Y'$. By induction, we obtain $u, n \models \psi_1$ and $u, n \models \psi_2$. Hence, $u, n \models \psi$. The proof is similar for $\psi = \psi_1 \lor \psi_2$.

$$\mathcal{L}(\varphi) \subseteq \mathcal{L}(\mathcal{A}_{\varphi})$$

Proof:

Let $u = a_0 a_1 a_2 \dots \in \Sigma^{\omega}$ be such that $u, 0 \models \varphi$. By induction, we build a run

$$\rho = Y_0 \xrightarrow{a_0} Y_1 \xrightarrow{a_1} Y_2 \cdots$$

We start with $Y_0 = \{\varphi\}$. Assume that $u, n \models \bigwedge Y_n$ for some $n \ge 0$. By Lemma [Soundness], there is $Z_n \in \operatorname{Red}(Y_n)$ such that $u, n \models \bigwedge Z_n$ and for all until subformulae $\alpha = \alpha_1 \cup \alpha_2 \in \bigcup(\varphi)$, if $u, n \models \alpha_2$ then $Z_n \in \operatorname{Red}_{\alpha}(Y_n)$. Then we define $Y_{n+1} = \operatorname{next}(Z_n)$. Since $u, n \models \bigwedge Z_n$, Lemma [Next Step] implies $a_n \in \Sigma_{Z_n}$ and $u, n+1 \models \bigwedge Y_{n+1}$. Therefore, ρ is a run for u in \mathcal{A}_{φ} .

It remains to show that ρ is successful. By definition, it starts from the initial state $\{\varphi\}$. Now let $\alpha = \alpha_1 \cup \alpha_2 \in \cup(\varphi)$. Assume there exists $N \ge 0$ such that $Y_n \xrightarrow{a_n} Y_{n+1} \notin T_\alpha$ for all $n \ge N$. Then $Z_n \notin \operatorname{Red}_\alpha(Y_n)$ for all $n \ge N$ and we deduce that $u, n \not\models \alpha_2$ for all $n \ge N$. But, since $Z_N \notin \operatorname{Red}_\alpha(Y_N)$, the formula α has been reduced using an ε -transition marked ! α along the path from Y_N to Z_N . Therefore, $X \alpha \in Z_N$ and $\alpha \in Y_{N+1}$. By construction of the run we have $u, N+1 \models \bigwedge Y_{N+1}$. Hence, $u, N+1 \models \alpha$, a contradiction with $u, n \not\models \alpha_2$ for all $n \ge N$. Consequently, the run ρ is successful and u is accepted by \mathcal{A}_{φ} .

$\mathcal{L}(\mathcal{A}_{\varphi}) \subseteq \mathcal{L}(\varphi)$

Proof:

• $\psi = \psi_1 \cup \psi_2$. Along the path $Y \stackrel{\varepsilon}{\xrightarrow{\ast}} Z$ the formula ψ must be reduced so $Y \stackrel{\varepsilon}{\xrightarrow{\ast}} Y' \stackrel{\varepsilon}{\longrightarrow} Y'' \stackrel{\varepsilon}{\xrightarrow{\ast}} Z$ with either $Y'' = Y' \setminus \{\psi\} \cup \{\psi_2\}$ or $Y'' = Y' \setminus \{\psi\} \cup \{\psi_1, X\psi\}$. In the first case, we obtain by induction $u, n \models \psi_2$ and therefore $u, n \models \psi$. In the second case, we obtain by induction $u, n \models \psi_1$. Since $X\psi$ is reduced we get $X\psi \in Z$ and $\psi \in next(Z) = Y_{n+1}$.

Let k > n be minimal such that $Y_k \xrightarrow{a_k} Y_{k+1} \in T_{\psi}$ (such a value k exists since ρ is accepting). We first show by induction that $u, i \models \psi_1$ and $\psi \in Y_{i+1}$ for all $n \leq i < k$. Recall that $u, n \models \psi_1$ and $\psi \in Y_{n+1}$. So let n < i < k be such that $\psi \in Y_i$. Let $Z' \in \operatorname{Red}(Y_i)$ be such that $a_i \in \Sigma_{Z'}$ and $Y_{i+1} = \operatorname{next}(Z')$. Since k is minimal we know that $Z' \notin \operatorname{Red}_{\psi}(Y_i)$. Hence, along any reduction path from Y_i to Z' we must use a step $Y' \stackrel{\varepsilon}{\models \psi} Y' \setminus \{\psi\} \cup \{\psi_1, X\psi\}$. By induction on the formula we obtain $u, i \models \psi_1$. Also, since $X\psi$ is reduced, we have $X\psi \in Z'$ and $\psi \in \operatorname{next}(Z') = Y_{i+1}$.

Second, we show that $u, k \models \psi_2$. Since $Y_k \xrightarrow{a_k} Y_{k+1} \in T_{\psi}$, we find some $Z' \in \operatorname{Red}_{\psi}(Y_k)$ such that $a_k \in \Sigma_{Z'}$ and $Y_{k+1} = \operatorname{next}(Z')$. Since $\psi \in Y_k$, along some reduction path from Y_k to Z' we use a step $Y' \xrightarrow{\varepsilon} Y' \setminus \{\psi\} \cup \{\psi_2\}$. By induction we obtain $u, k \models \psi_2$. Finally, we have shown $u, n \models \psi_1 \cup \{\psi_2 = \psi$.

$\mathcal{L}(\mathcal{A}_{\varphi}) \subseteq \mathcal{L}(\varphi)$

Proof:

• $\psi = \psi_1 \operatorname{R} \psi_2$. Along the path $Y \stackrel{\varepsilon}{*} Z$ the formula ψ must be reduced so $Y \stackrel{\varepsilon}{*} Z$ $Y' \stackrel{\varepsilon}{\to} Y'' \stackrel{\varepsilon}{*} Z$ with either $Y'' = Y' \setminus \{\psi\} \cup \{\psi_1, \psi_2\}$ or $Y'' = Y' \setminus \{\psi\} \cup \{\psi_2, X\psi\}$. In the first case, we obtain by induction $u, n \models \psi_1$ and $u, n \models \psi_2$. Hence, $u, n \models \psi$ and we are done. In the second case, we obtain by induction $u, n \models \psi_2$ and we get also $\psi \in Y_{n+1}$. Continuing with the same reasoning, we deduce easily that either $u, n \models G \psi_2$ or $u, n \models \psi_2 \cup (\psi_1 \land \psi_2)$.

Satisfiability and Model Checking

Corollary: PSPACE upper bound for satisfiability and model checking

- Let $\varphi \in LTL$, we can check whether φ is satisfiable (or valid) in space polynomial in $|\varphi|$.
- Let $\varphi \in LTL$ and $M = (S, T, I, AP, \ell)$ be a Kripke structure. We can check whether $M \models_{\forall} \varphi$ (or $M \models_{\exists} \varphi$) in space polynomial in $|\varphi| + \log |M|$.

Proof:

For $M \models_{\forall} \varphi$ we construct a synchronized product $M \otimes \mathcal{A}_{\neg \varphi}$:

Transitions:
$$\frac{s \to s' \in M \quad \land \quad Y \xrightarrow{\ell(s)} Y' \in \mathcal{A}_{\neg \varsigma}}{(s,Y) \xrightarrow{\ell(s)} (s',Y')}$$

Initial states: $I \times \{\{\neg\varphi\}\}$.

Acceptance conditions: inherited from $\mathcal{A}_{\neg \varphi}$.

Check $M \otimes \mathcal{A}_{\neg \varphi}$ for emptiness.

Example with two until sub-formulae

Example: Nested until: $\varphi = p \cup \psi$ with $\psi = q \cup r$

◆□ → ◆ ● → ◆ ■ → ● ● ⑦ Q ○ 78/113

On the fly simplifications \mathcal{A}_{φ}

Built-in: reduction of a maximal formula.

Definition: Additional reduction rules

If $\bigwedge Y \equiv \bigwedge Y'$ then we may use $Y \xrightarrow{\varepsilon} Y'$.

Remark: checking equivalence is as hard as building the automaton. Hence we only use syntactic equivalences.

If $\psi = \psi_1 \lor \psi_2$ and $\psi_1 \in Y$ or $\psi_2 \in Y$:	Y	$\xrightarrow{\varepsilon}$	$Y\setminus\{\psi\}$
If $\psi = \psi_1 \cup \psi_2$ and $\psi_2 \in Y$:	Y	$\xrightarrow{\varepsilon}$	$Y\setminus\{\psi\}$
If $\psi = \psi_1 R \psi_2$ and $\psi_1 \in Y$:	Y	$\xrightarrow{\varepsilon}$	$Y \setminus \{\psi\} \cup \{\psi_2\}$

On the fly simplifications \mathcal{A}_{φ}

Definition: Merging equivalent states

Let $A = (Q, \Sigma, I, T, T_1, \dots, T_n)$ and $s_1, s_2 \in Q$. We can merge s_1 and s_2 if they have the same outgoing transitions: $\forall a \in \Sigma, \forall s \in Q$,

$$\begin{split} (s_1,a,s) \in T &\Longleftrightarrow (s_2,a,s) \in T \\ \text{and} \qquad (s_1,a,s) \in T_i &\Longleftrightarrow (s_2,a,s) \in T_i \qquad \text{for all } 1 \leq i \leq n. \end{split}$$

Remark: Sufficient condition

Two states Y,Y' of \mathcal{A}_{φ} have the same outgoing transition if

$$\begin{split} &\operatorname{Red}(Y)=\operatorname{Red}(Y')\\ \text{and} &\operatorname{Red}_\alpha(Y)=\operatorname{Red}_\alpha(Y') \qquad \text{for all }\alpha\in\mathsf{U}(\varphi). \end{split}$$

Example: Let $\varphi = \mathsf{G} \mathsf{F} p \land \mathsf{G} \mathsf{F} q$.

Without merging states \mathcal{A}_{φ} has 4 states. These 4 states have the same outgoing transitions. The simplified automaton has only one state.

$MC^{\exists}(X, U) \leq_P SAT(X, U)$ [11, Sistla & Clarke 85]

Let $M=(S,T,I,\mathrm{AP},\ell)$ be a Kripke structure and $\varphi\in\mathrm{LTL}(\mathrm{AP},\mathsf{X},\mathsf{U})$

 $\begin{array}{l} \mbox{Introduce new atomic propositions: } {\rm AP}_S = \{ {\rm at}_s \mid s \in S \} \\ \mbox{Define } {\rm AP}' = {\rm AP} \uplus {\rm AP}_S \qquad \Sigma' = 2^{{\rm AP}'} \qquad \pi : \Sigma'^\omega \to \Sigma^\omega \mbox{ by } \pi(a) = a \cap {\rm AP}. \end{array}$

Let $w \in \Sigma'^{\omega}$. We have $w \models \varphi$ iff $\pi(w) \models \varphi$

Define $\psi_M \in LTL(AP', X, F)$ of size $\mathcal{O}(|M|^2)$ by

$$\psi_M = \left(\bigvee_{s \in I} \operatorname{at}_s\right) \wedge \mathsf{G}\left(\bigvee_{s \in S} \left(\operatorname{at}_s \wedge \bigwedge_{t \neq s} \neg \operatorname{at}_t \wedge \bigwedge_{p \in \ell(s)} p \wedge \bigwedge_{p \notin \ell(s)} \neg p \wedge \bigvee_{t \in T(s)} \mathsf{X}\operatorname{at}_t\right)\right)$$

Let $w = a_0 a_1 a_2 \cdots \in \Sigma'^{\omega}$. Then, $w \models \psi_M$ iff there exists an initial infinite run σ of M such that $\pi(w) = \ell(\sigma)$ and $a_i \cap AP_S = \{at_{s_i}\}$ for all $i \ge 0$.

 $\begin{array}{lll} \mbox{Therefore,} & M \models_\exists \varphi & \mbox{iff} & \psi_M \land \varphi \mbox{ is satisfiable} \\ & M \models_\forall \varphi & \mbox{iff} & \psi_M \land \neg \varphi \mbox{ is not satisfiable} \end{array}$

Remark: we also have $MC^{\exists}(X, F) \leq_P SAT(X, F)$.

<ロト<

通ト<

ミト

ミト

ミト

ミーク

ペー 83/113

We write v[i] for the prefix of length i.

Let $V \subseteq \{0,1\}^n$ be a set of assignments.

- V is valid (for γ') if $v \models \gamma'$ for all $v \in V$,
- ▶ V is closed (for γ) if $\forall v \in V$, $\forall 1 \leq i \leq n$ s.t. $Q_i = \forall$,
 - $\exists v' \in V \text{ s.t. } v[i-1] = v'[i-1] \text{ and } \{v_i, v'_i\} = \{0, 1\}.$

Proposition:

 γ is valid iff $\exists V \subseteq \{0,1\}^n$ s.t. V is nonempty valid and closed

QBF $\leq_P MC^{\exists}(U)$ [11, Sistla & Clarke 85]

Proof: If γ is valid then $M \models_\exists \psi \land \varphi$ Let $V \subseteq \{0, 1\}^n$ be nonempty, valid and closed.

First ingredient: extension of a run. Assume $\tau = e_0 \xrightarrow{*} f_m$ satisfies $v^{\tau} \in V$ and $\tau, 0 \models \psi$. Let $1 \leq i \leq n$ with $Q_i = \forall$. Let $v' \in V$ s.t. v'[i-1] = v[i-1] and $\{v_i, v'_i\} = \{0, 1\}$. We can extend τ in $\tau' = \tau \rightarrow s_i \xrightarrow{*} e_n \rightarrow f_0 \xrightarrow{*} f_m$ with $v^{\tau'} = v'$ and $\tau', 0 \models \psi$. We say that τ' is an extension of τ wrt. i

Second step: the sequence of indices for the extensions. Let $1 \leq i_{\ell} < \cdots < i_1 \leq n$ be the indices of universal quantifications $(Q_{i_j} = \forall)$. Define by induction $w_1 = i_1$ and if $k < \ell$, $w_{k+1} = w_k i_{k+1} w_k$. Let $w = (w_\ell 1)^{\omega}$.

Final step: the infinite run.

Let $v \in V \neq \emptyset$ and let $\tau = e_0 \xrightarrow{*} f_m$ with $v^{\tau} \in V$ and $\tau, 0 \models \psi$. We build an infinite run σ by extending τ inductively wrt. the sequence of indices defined by w.

Claim: $\sigma, 0 \models \psi \land \varphi$.

QBF $\leq_P MC^{\exists}(U)$ [11, Sistla & Clarke 85]

Proof: If $M \models_\exists \psi \land \varphi$ then γ is valid

Each finite path $\tau = e_0 \xrightarrow{*} f_m$ in M defines a valuation v^{τ} by:

 $v_k^{\tau} = \begin{cases} 1 & \text{if } \tau, |\tau| \models \neg s_k \, \mathsf{S} \, x_k^t \\ 0 & \text{if } \tau, |\tau| \models \neg s_k \, \mathsf{S} \, x_k^f \end{cases}$

Let σ be an initial infinite path of M s.t. $\sigma, 0 \models \psi \land \varphi$. Let $V = \{v^{\tau} \mid \tau = e_0 \xrightarrow{*} f_m \text{ is a prefix of } \sigma\}.$

Claim: V is nonempty, valid and closed.

◆□ ▶ ◆ ● ▶ ◆ ■ ▶ ◆ ■ • つへで 86/113

Complexity of LTL

◆□ → < □ → < Ξ → < Ξ → Ξ の Q → 87/113</p>