
34/85

Channels

Example: Leader election

We have n processes on a directed ring, each having a unique id ∈ {1, . . . , n}.

send(id)
loop forever

receive(x)
if (x = id) then STOP fi
if (x > id) then send(x)

35/85

Channels

Definition: Channels
! Declaration:

c : channel [k] of bool size k
c : channel [∞] of int unbounded
c : channel [0] of colors Rendez-vous

! Primitives:
empty(c)
c!e add the value of expression e to channel c
c?x read a value from c and assign it to variable x

! Domain: Let Dm be the domain for a single message.

Dc = Dk
m size k

Dc = D∗
m unbounded

Dc = {ε} Rendez-vous
! Politics: FIFO, LIFO, BAG, . . .

36/85

Channels

Semantics: (lossy) FIFO

Send
si

c!e
−−→ s′i ∧ ν′(c) = ν(e) · ν(c)

(s̄, ν)
c!e
−−→ (s̄′, ν′)

Receive
si

c?x
−−→ s′i ∧ ν(c) = ν′(c) · ν′(x)

(s̄, ν)
c?e
−−→ (s̄′, ν′)

Lossy send
si

c!e
−−→ s′i

(s̄, ν)
c!e
−−→ (s̄′, ν)

Implicit assumption: all variables that do not occur in the premise are not modified.

Exercises:
1. Implement a FIFO channel using rendez-vous with an intermediary process.

2. Give the semantics of a LIFO channel.

3. Model the alternating bit protocol (ABP) using a lossy FIFO channel.
Fairness assumption: For each channel, if infinitely many messages are sent,
then infinitely many messages are delivered.

37/85

High-level descriptions

Summary
! Sequential program = transition system with variables

! Concurrent program with shared variables

! Concurrent program with Rendez-vous

! Concurrent program with FIFO communication

! Petri net

! . . .

38/85

Models: expressivity versus decidability

Definition: (Un)decidability
! Automata with 2 integer variables = Turing powerful

Restriction to variables taking values in finite sets

! Asynchronous communication: unbounded fifo channels = Turing powerful
Restriction to bounded channels

Definition: Some infinite state models are decidable
! Petri nets. Several unbounded integer variables but no zero-test.

! Pushdown automata. Model for recursive procedure calls.

! Timed automata.

! . . .

39/85

Outline

Introduction

Models

3 Specifications

Linear Time Specifications

Branching Time Specifications

40/85

Static and dynamic properties

Definition: Static properties
Example: Mutual exclusion

Safety properties are often static.

They can be reduced to reachability.

Definition: Dynamic properties
Example: Every request should be eventually granted.

∧

i

∀t, (Calli(t) −→ ∃t′ ≥ t, (atLeveli(t
′) ∧ openDoori(t

′)))

The elevator should not cross a level for which a call is pending without stopping.

∧

i

∀t∀t′, (Calli(t) ∧ t ≤ t′ ∧ atLeveli(t
′)) −→

∃t ≤ t′′ ≤ t′, (atLeveli(t′′) ∧ openDoori(t
′′)))

41/85

First Order specifications

First order logic
! These specifications can be written in FO(<).

! FO(<) has a good expressive power.
. . . but FO(<)-formulae are not easy to write and to understand.

! FO(<) is decidable.
. . . but satisfiability and model checking are non elementary.

Definition: Temporal logics
! no variables: time is implicit.

! quantifications and variables are replaced by modalities.

! Usual specifications are easy to write and read.

! Good complexity for satisfiability and model checking problems.

42/85

Linear versus Branching
Let M = (S, T, I,AP, #) be a Kripke structure.

Definition: Linear specifications
Example: The printer manager is fair.
On each run, whenever some process requests the printer, it eventually gets it.

Execution sequences (runs): σ = s0 → s1 → s2 → · · · with si → si+1 ∈ T

Two Kripke structures having the same execution sequences satisfy the same linear
specifications.

Actually, linear specifications only depend on the label of the execution sequence

#(σ) = #(s0) → #(s1) → #(s2) → · · ·

Models are words in Σω with Σ = 2AP.

Definition: Branching specifications
Example: Each process has the possibility to print first.

Such properties depend on the execution tree.

Execution tree = unfolding of the transition system

43/85

References

Bibliography

[6] S. Demri and P. Gastin.
Specification and Verification using Temporal Logics.
In Modern applications of automata theory, IISc Research Monographs 2.
World Scientific, To appear.
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

A large list of references is given in this paper.

Bibliography

[7] V. Diekert and P. Gastin.
First-order definable languages.
In Logic and Automata: History and Perspectives, vol. 2, Texts in Logic and
Games, pp. 261–306. Amsterdam University Press, (2008).
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

A large overview of formalisms expressively equivalent to First-Order.

44/85

Some original References

[8] J. Kamp.
Tense Logic and the Theory of Linear Order.
PhD thesis, UCLA, USA, (1968).

[10] P. Gastin and D. Oddoux.
Fast LTL to Büchi automata translation.
In CAV’01, vol. 2102, Lecture Notes in Computer Science, pp. 53–65.
Springer, (2001).
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

[9] P. Wolper.
The tableau method for temporal logic: An overview,
Logique et Analyse. 110–111, 119–136, (1985).

[11] A. Sistla and E. Clarke.
The complexity of propositional linear temporal logic.
Journal of the Association for Computing Machinery. 32 (3), 733–749, (1985).

45/85

Some original References

[12] O. Lichtenstein and A. Pnueli.
Checking that finite state concurrent programs satisfy their linear specification.
In ACM Symposium PoPL’85, 97–107.

[13] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi.
On the temporal analysis of fairness.
In 7th Annual ACM Symposium PoPL’80, 163–173. ACM Press.

[14] D. Gabbay.
The declarative past and imperative future: Executable temporal logics for
interactive systems.
In Temporal Logics in Specifications, April 87. LNCS 398, 409–448, 1989.

46/85

Outline

Introduction

Models

Specifications

4 Linear Time Specifications

Definitions

Main results

Büchi automata

From LTL to BA

Hardness results

Branching Time Specifications

47/85

Linear Temporal Logic (Pnueli 1977)

Definition: Syntax: LTL(AP,X,U)

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ

Definition: Semantics: w = a0a1a2 · · · ∈ Σω with Σ = 2AP and i ∈ N

w, i |= p if p ∈ ai
w, i |= ¬ϕ if w, i ,|= ϕ

w, i |= ϕ ∨ ψ if w, i |= ϕ or w, i |= ψ

w, i |= Xϕ if w, i + 1 |= ϕ

w, i |= ϕ U ψ if ∃k. i ≤ k and w, k |= ψ and ∀j. (i ≤ j < k) → w, j |= ϕ

Example:

p ∅ p, q p q ∅ p, r q, r q
· · ·

47/85

Linear Temporal Logic (Pnueli 1977)

Definition: Syntax: LTL(AP,X,U)

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ

Definition: Semantics: w = a0a1a2 · · · ∈ Σω with Σ = 2AP and i ∈ N

w, i |= p if p ∈ ai
w, i |= ¬ϕ if w, i ,|= ϕ

w, i |= ϕ ∨ ψ if w, i |= ϕ or w, i |= ψ

w, i |= Xϕ if w, i + 1 |= ϕ

w, i |= ϕ U ψ if ∃k. i ≤ k and w, k |= ψ and ∀j. (i ≤ j < k) → w, j |= ϕ

Example:
Xϕ

ϕ
· · ·

47/85

Linear Temporal Logic (Pnueli 1977)

Definition: Syntax: LTL(AP,X,U)

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ

Definition: Semantics: w = a0a1a2 · · · ∈ Σω with Σ = 2AP and i ∈ N

w, i |= p if p ∈ ai
w, i |= ¬ϕ if w, i ,|= ϕ

w, i |= ϕ ∨ ψ if w, i |= ϕ or w, i |= ψ

w, i |= Xϕ if w, i + 1 |= ϕ

w, i |= ϕ U ψ if ∃k. i ≤ k and w, k |= ψ and ∀j. (i ≤ j < k) → w, j |= ϕ

Example:
ϕ U ψ

ϕ ϕ
· · ·

ϕ ψ
· · ·

48/85

Linear Temporal Logic (Pnueli 1977)
Definition: Macros

! Eventually: Fϕ = . U ϕ

Fϕ
· · ·

ϕ
· · ·

! Always: Gϕ = ¬F¬ϕ

Gϕ

ϕ ϕ
· · ·

ϕ ϕ ϕ
· · ·

! Weak until: ϕW ψ = Gϕ ∨ ϕ U ψ

! ¬(ϕ U ψ) = (G¬ψ) ∨ (¬ψ U (¬ϕ ∧ ¬ψ)) = ¬ψ W (¬ϕ ∧ ¬ψ)

! Release: ϕ R ψ = ψ W (ϕ ∧ ψ) = ¬(¬ϕ U ¬ψ)

! Next until: ϕ XU ψ = X(ϕ U ψ)

ϕ XU ψ

ϕ
· · ·

ϕ ψ
· · ·

! Xψ = ⊥ XU ψ and ϕ U ψ = ψ ∨ (ϕ ∧ ϕ XU ψ).
49/85

Linear Temporal Logic (Pnueli 1977)

Definition: Specifications:
! Safety: G good

! MutEx: ¬F(crit1 ∧ crit2)

! Liveness: G F active

! Response: G(request → F grant)

! Response’: G(request → X(¬request U grant))

! Release: reset R alarm

! Strong fairness: G F request → GF grant

! Weak fairness: FG request → GF grant

50/85

Linear Temporal Logic (Pnueli 1977)

Examples:
Every elevator request should be eventually satisfied.

∧

i

G(Calli → F(atLeveli ∧ openDoori))

The elevator should not cross a level for which a call is pending without stopping.

∧

i

G(Calli → ¬atLeveli W (atLeveli ∧ openDoori)

51/85

Past LTL

Definition: Semantics: w = a0a1a2 · · · ∈ Σω with Σ = 2AP and i ∈ N

w, i |= Yϕ if i > 0 and w, i − 1 |= ϕ

w, i |= ϕ S ψ if ∃k. k ≤ i and w, k |= ψ and ∀j. (k < j ≤ i) → w, y |= ϕ

Example:

ψ ϕ
· · ·

ϕ

ϕ S ψ

ϕ
· · ·

Example: LTL versus PLTL

G(grant → Y(¬grant S request))

Theorem (Laroussinie & Markey & Schnoebelen 2002)

PLTL may be exponentially more succinct than LTL.

51/85

Past LTL

Definition: Semantics: w = a0a1a2 · · · ∈ Σω with Σ = 2AP and i ∈ N

w, i |= Yϕ if i > 0 and w, i − 1 |= ϕ

w, i |= ϕ S ψ if ∃k. k ≤ i and w, k |= ψ and ∀j. (k < j ≤ i) → w, y |= ϕ

Example:

r r r

g g

r

g¬g ¬g ¬g¬g
r

¬g
r

¬g

Example: LTL versus PLTL

G(grant → Y(¬grant S request))

= (request R ¬grant) ∧ G(grant → (request ∨ X(request R ¬grant)))

Theorem (Laroussinie & Markey & Schnoebelen 2002)

PLTL may be exponentially more succinct than LTL.

52/85

Expressivity

Theorem [8, Kamp 68]

LTL(Y, S,X,U) = FOΣ(≤)

Separation Theorem [13, Gabbay, Pnueli, Shelah & Stavi 80]

For all ϕ ∈ LTL(Y, S,X,U) there exist ←−ϕi ∈ LTL(Y, S) and −→ϕi ∈ LTL(X,U) such
that for all w ∈ Σω and k ≥ 0,

w, k |= ϕ ⇐⇒ w, k |=
∨

i

←−ϕi ∧
−→ϕi

Corollary: LTL(Y, S,X,U) = LTL(X,U)

For all ϕ ∈ LTL(Y, S,X,U) there exist −→ϕ ∈ LTL(X,U) such that for all w ∈ Σω,

w, 0 |= ϕ ⇐⇒ w, 0 |= −→ϕ

Elegant algebraic proof of LTL(X,U) = FOΣ(≤) due to Wilke 98.

