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Need for formal verification methods

Critical systems
I Transport

I Energy

I Medicine

I Communication

I Finance

I Embedded systems

I . . .
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Disastrous software bugs

https://en.wikipedia.org/wiki/List_of_software_bugs

Mariner 1 probe, 1962

See http://en.wikipedia.org/wiki/Mariner_1

I Destroyed 293 seconds after launch

I Missing hyphen in the data or program? No!

I Overbar missing in the mathematical
specification:

Ṙn: nth smoothed value of the time derivative
of a radius.
Without the smoothing function indicated by
the bar, the program treated normal minor
variations of velocity as if they were serious,
causing spurious corrections that sent the
rocket off course.

https://en.wikipedia.org/wiki/List_of_software_bugs
http://en.wikipedia.org/wiki/Mariner_1
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Disastrous software bugs
Ariane 5 flight 501, 1996

See http://en.wikipedia.org/wiki/Ariane_5_Flight_501

I Destroyed 37 seconds after launch (cost: 370 millions
dollars).

I data conversion from a 64-bit floating point to 16-bit
signed integer value caused a hardware exception
(arithmetic overflow).

I Efficiency considerations had led to the disabling of the
software handler (in Ada code) for this error trap.

I The fault occured in the inertial reference system of Ariane
5. The software from Ariane 4 was re-used for Ariane 5
without re-testing.

I On the basis of those calculations the main computer
commanded the booster nozzles, and somewhat later the
main engine nozzle also, to make a large correction for an
attitude deviation that had not occurred.

I The error occurred in a realignment function which was not
useful for Ariane 5.

http://en.wikipedia.org/wiki/Ariane_5_Flight_501
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Disastrous software bugs
Spirit Rover (Mars Exploration), 2004

See http://en.wikipedia.org/wiki/Spirit_rover

I Landed on January 4, 2004.

I Ceased communicating on January 21.

I Flash memory management anomaly:
too many files on the file system

I Resumed to working condition on February 6.

http://en.wikipedia.org/wiki/Spirit_rover
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Disastrous software bugs

Other well-known bugs
I Therac-25, at least 3 death by massive overdoses of radiation.

Race condition in accessing shared resources.
See http://en.wikipedia.org/wiki/Therac-25

I Electricity blackout, USA and Canada, 2003, 55 millions people.
Race condition in accessing shared resources.
See http://en.wikipedia.org/wiki/Northeast_Blackout_of_2003

I Pentium FDIV bug, 1994.
Flaw in the division algorithm, discovered by Thomas Nicely.
See http://en.wikipedia.org/wiki/Pentium_FDIV_bug

I Needham-Schroeder, authentication protocol based on symmetric encryption.
Published in 1978 by Needham and Schroeder
Proved correct by Burrows, Abadi and Needham in 1989
Flaw found by Lowe in 1995 (man in the middle)
Automatically proved incorrect in 1996.
See http://en.wikipedia.org/wiki/Needham-Schroeder_protocol

http://en.wikipedia.org/wiki/Therac-25
http://en.wikipedia.org/wiki/Northeast_Blackout_of_2003
http://en.wikipedia.org/wiki/Pentium_FDIV_bug
http://en.wikipedia.org/wiki/Needham-Schroeder_protocol
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Formal verifications methods

Based on
I A formal model of the system

I A formal semantics of the modelling language

I A formal specification

Complementary approaches
I Theorem prover

I Model checking

I Static analysis

I Test
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Model Checking

I Purpose 1: automatically finding software or hardware bugs.

I Purpose 2: prove correctness of abstract models.

I Should be applied during design.

I Real systems can be analysed with abstractions.

E.M. Clarke E.A. Emerson J. Sifakis

Prix Turing 2007.
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Model Checking
3 steps

I Constructing the model M (transition systems)

I Formalizing the specification ϕ (temporal logics)

I Checking whether M |= ϕ (algorithmics)

Main difficulties
I Size of models (combinatorial explosion)

I Expressivity of models or logics

I Decidability and complexity of the model-checking problem

I Efficiency of tools

Challenges
I Extend models and algorithms to cope with more systems.

Infinite systems, parameterized systems, probabilistic systems, concurrent
systems, timed systems, hybrid systems, . . . See Modules 2.8 & 2.9

I Scale current tools to cope with real-size systems.
Needs for modularity, abstractions, symmetries, . . .
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Model and abstractions
Example: Golden face

Each coin has a golden face and a silver face.
At each step, we may flip simultaneously the 3 coins of a line, column or diagonal.
Is it possible to have all coins showing its golden face ?
If yes, what is the smallest number of steps.

Model = Transition system

I States: configurations of the board: 29 = 512 states

I Transitions: flipping a line/column/diagonal

I Problem: reachability

Abstraction 1: number of golden faces in a configuration.
Abstraction 2: parity of the number of golden faces in the corners.
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Model and Specification

Example: Men, Wolf, Goat, Cabbage

Model = Transition system
I State = who is on which side of the river

I Transition = crossing the river

I Specification
Safety: Never leave WG or GC alone
Liveness: Take everyone to the other side of the river.
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Transition system or Kripke structure

Definition: TS M = (S,Σ, T, I,AP, `)

I S: set of states (finite or infinite)

I Σ: set of actions

I T ⊆ S × Σ× S: set of transitions

I I ⊆ S: set of initial states

I AP: set of atomic propositions

I ` : S → 2AP: labelling function.

Every discrete system may be described with a TS.

Example: Digicode ABA

1 2 3 4

OPEN

A B A

B,C A

C

B,C
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Description Languages

Pb: How can we easily describe big systems?

Description Languages (high level)
I Programming languages

I Boolean circuits

I Modular description, e.g., parallel compositions
problems: concurrency, synchronization, communication, atomicity, fairness, ...

I Petri nets (intermediate level)

I Transition systems (intermediate level)
with variables, stacks, channels, ...
synchronized products

I Logical formulae (low level)

Operational semantics

High level descriptions are translated (compiled) to low level (infinite) TS.
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Transition systems with variables
Definition: TSV M = (S,Σ,V , (Dv)v∈V , T, I,AP, `)

I Finite description with S, Σ, AP, ` as before

I V: set of (typed) variables, e.g., boolean, [0..4], N, . . .

I Each variable v ∈ V has a domain Dv (finite or infinite). Let D =
∏
v∈V Dv.

I Guard or Condition g with semantics [[g]] ⊆ D (predicate)
Symbolic descriptions: x < 5, x+ y = 10, ...

I Instruction or Update f with semantics [[f ]] : D → D (or [[f ]] ⊆ D ×D)
Symbolic descriptions: x := 0, x := (y + 1)2, ...

I T ⊆ S × (Guard× Σ× Update)× S
Symbolic descriptions: s

x<50,?coin,x:=x+coin−−−−−−−−−−−−−−→ s′

I I ⊆ S × Guard

Symbolic descriptions: (s0, x = 0)

Example: Vending machine
I coffee: 50 cents, orange juice: 1 euro, ...

I possible coins: 10, 20, 50 cents

I we may shuffle coin insertions and drink selection
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Transition systems with variables
Semantics: low level TS

I S′ = S ×D
I I ′ = {(s, ν) | ∃(s, g) ∈ I with ν |= g}
I Transitions: T ′ ⊆ (S ×D)× Σ× (S ×D)

s
g,a,f−−−→ s′ ∧ ν |= g

(s, ν)
a−→ (s′, f(ν))

SOS: Structural Operational Semantics

I AP′: we may use atomic propositions in AP or guards such as x > 0.

Programs = Kripke structures with variables
I Program counter = states

I Instructions = transitions

I Variables = variables

Example: GCD
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TS with variables . . .

Example: Digicode

1
cpt = 0

2 3 4

OPEN

A B A

cpt < n
B,C
cpt++

cpt < n
A
cpt++

cpt < n
C
cpt++

cpt < n
B,C
cpt++

5

ERROR

cpt = n
B,C
cpt++

cpt = n
A,C
cpt++

cpt = n
B,C
cpt++
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Only variables
The state is nothing but a special variable: s ∈ V with domain Ds = S.

Definition: TSV M = (V , (Dv)v∈V , T, I,AP, `)

I D =
∏
v∈V Dv,

I I ⊆ D, T ⊆ D ×D

Symbolic representations with logic formulae
I I given by a formula ψ(ν)

I T given by a formula ϕ(ν, ν′)
ν: values before the transition
ν′: values after the transition

I Often we use boolean variables only: Dv = {0, 1}
I Concise descriptions of boolean formulae with Binary Decision Diagrams.

Example: Boolean circuit: modulo 8 counter

b′0 = ¬b0
b′1 = b0 ⊕ b1
b′2 = (b0 ∧ b1)⊕ b2
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Modular description of concurrent systems

M = M1 ‖M2 ‖ · · · ‖Mn

Semantics
I Various semantics for the parallel composition ‖
I Various communication mechanisms between components:

Shared variables, FIFO channels, Rendez-vous, ...

I Various restrictions

Atomic propositions are inherited from the local systems.

Example: Elevator with 1 cabin, 3 doors, 3 calling devices

I Cabin:

0 1 2

I Door for level i:

Closed Opened

I Call for level i:

False True

The actual system is a synchronized product of all these automata.
It consists of (at most) 3× 23 × 23 = 192 states.



28/153

Synchronized products (semantics)
Definition: General product

I Components: Mi = (Si,Σi, Ti, Ii,APi, `i)

I Product: M = (S,Σ, T, I,AP, `) with

S =
∏
i Si, Σ =

∏
i(Σi ∪ {ε}), and I =

∏
i Ii

T defined by
∀i, (pi

ai−→ qi ∈ Ti ∨ (ai = ε ∧ pi = qi))

(p1, . . . , pn)
(a1,...,an)−−−−−−→ (q1, . . . , qn)

AP =
⊎
i APi and `(p1, . . . , pn) =

⋃
i `(pi)

Synchronized products: restrictions of the general product.

Parallel compositions: 2 special cases

I Synchronous: Σsync =
∏

i
Σi

I Asynchronous: Σasync =
⊎
i
Σ′i with Σ′i = {ε}i−1 × Σi × {ε}n−i

Restrictions

I on states: Srestrict ⊆ S
I on labels: Σrestrict ⊆ Σ

I on transitions: Trestrict ⊆ T
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Shared variables

Definition: Asynchronous product + shared variables

s̄ = (s1, . . . , sn) denotes a tuple of states
ν ∈ D =

∏
v∈V Dv is a valuation of variables.

Semantics (SOS)
ν |= g ∧ si

g,a,f−−−→ s′i ∧ s′j = sj for j 6= i

(s̄, ν)
a−→ (s̄′, f(ν))

Example: Mutual exclusion for 2 processes satisfying
I Safety: never simultaneously in critical section (CS).

I Liveness: if a process wants to enter its CS, it eventually does.

I Fairness: if process 1 wants to enter its CS, then process 2 will enter its CS at
most once before process 1 does.

using shared variables but without further restrictions: the atomicity is

I testing or reading or writing a single variable at a time

I no test-and-set: {x = 0;x := 1}
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Peterson’s algorithm (1981)
Process i: // i is not a variable

loop forever

req[i] := true; turn := 1-i

wait until (turn = i or req[1-i] = false)

Critical section

req[i] := false

1 2

Waiti

3

Waiti

4

CSi

req[i]:=true

turn:=1-i

turn=i?

req[1-i]=false?

req[i]:=false

elseuse

idle

Exercise:
I Draw the concrete TS assuming the first two assignments are atomic.

I Is the algorithm still correct if we swape the first two assignments?
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Atomicity

Example:

Intially x = 1 ∧ y = 2
Program P1: x := x+ y ‖ y := x+ y

Program P2:

 LoadR1, x
AddR1, y

StoreR1, x

 ‖
 LoadR2, x

AddR2, y
StoreR2, y


Assuming each instruction is atomic, what are the possible results of P1 and P2?
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Atomicity

Definition: Atomic statements: atomic(ES)

Elementary statements (no loops, no communications, no synchronizations)

ES ::= skip | await c | x := e | ES ; ES | ES 2 ES

| when c do ES | if c then ES else ES

Atomic statements: if the ES can be fully executed then it is executed in one step.

(s̄, ν) ES−−−→∗ (s̄′, ν′)

(s̄, ν)
atomic(ES)−−−−−−−→ (s̄′, ν′)

Example: Atomic statements
I atomic(x = 0;x := 1) (Test and set)

I atomic(y := y − 1; await(y = 0); y := 1) is equivalent to await(y = 1)
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Communication by Rendez-vous
Restriction on transitions is universal but too low-level.

Definition: Rendez-vous
I !m sending message m

I ?m receiving message m

I SOS: Structural Operational Semantics

Local actions
s1

a1−→1 s
′
1

(s1, s2)
a1−→ (s′1, s2)

s2
a2−→1 s

′
2

(s1, s2)
a2−→ (s1, s

′
2)

Rendez-vous
s1

!m−−→1 s
′
1 ∧ s2

?m−−→2 s
′
2

(s1, s2)
m−→ (s′1, s

′
2)

s1
?m−−→1 s

′
1 ∧ s2

!m−−→2 s
′
2

(s1, s2)
m−→ (s′1, s

′
2)

I It is a restriction on actions.

I Essential feature of process algebra.

Example: Elevator with 1 cabin, 3 doors, 3 calling devices
I ?up is uncontrollable for the cabin

I ?leavei is uncontrollable for door i

I ?call0 is uncontrollable for the system
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Channels

Example: Leader election

We have n processes on a directed ring, each having a unique id ∈ {1, . . . , n}.

send(id)

loop forever

receive(x)

if (x = id) then STOP fi

if (x > id) then send(x)
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Channels

Definition: Channels
I Declaration:

c : channel [k] of bool size k
c : channel [∞] of int unbounded
c : channel [0] of colors Rendez-vous

I Primitives:
empty(c)
c!e add the value of expression e to channel c
c?x read a value from c and assign it to variable x

I Domain: Let Dm be the domain for a single message.

Dc = Dk
m size k

Dc = D∗m unbounded
Dc = {ε} Rendez-vous

I Politics: FIFO, LIFO, BAG, . . .
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Channels

Semantics: (lossy) FIFO

Send
si

c!e−−→ s′i ∧ ν′(c) = ν(e) · ν(c)

(s̄, ν)
c!e−−→ (s̄′, ν′)

Receive
si

c?x−−→ s′i ∧ ν(c) = ν′(c) · ν′(x)

(s̄, ν)
c?e−−→ (s̄′, ν′)

Lossy send
si

c!e−−→ s′i

(s̄, ν)
c!e−−→ (s̄′, ν)

Implicit assumption: all variables that do not occur in the premise are not modified.

Exercises:
1. Implement a FIFO channel using rendez-vous with an intermediary process.

2. Give the semantics of a LIFO channel.

3. Model the alternating bit protocol (ABP) using a lossy FIFO channel.
Fairness assumption: For each channel, if infinitely many messages are sent,
then infinitely many messages are delivered.
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High-level descriptions

Summary
I Sequential program = transition system with variables

I Concurrent program with shared variables

I Concurrent program with Rendez-vous

I Concurrent program with FIFO communication

I Petri net

I . . .
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Models: expressivity versus decidability

Remark: (Un)decidability
I Automata with 2 integer variables = Turing powerful

Restriction to variables taking values in finite sets

I Asynchronous communication: unbounded fifo channels = Turing powerful
Restriction to bounded channels or lossy channels

Remark: Some infinite state models are decidable
I Petri nets. Several unbounded integer variables but no zero-test.

I Pushdown automata. Model for recursive procedure calls.

I Timed automata.

I . . .
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Static and dynamic properties

Example: Static properties

Mutual exclusion

¬(Crit1 ∧ Crit2) or ∀t,¬(Crit1(t) ∧ Crit2(t))

Safety properties are often static.

They can be reduced to reachability.

Example: Dynamic properties

Every elevator request should be eventually granted.

∧
i

∀t, (Calli(t) −→ ∃t′ ≥ t, (atLeveli(t
′) ∧ openDoori(t

′)))

The elevator should not cross a level for which a call is pending without stopping.

∧
i

∀t∀t′, (Calli(t) ∧ t ≤ t′ ∧ atLeveli(t
′)) −→

∃t ≤ t′′ ≤ t′, (atLeveli(t
′′) ∧ openDoori(t

′′)))
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Temporal Structures
Definition: Flows of time

A flow of time is a strict order (T, <) where T is the nonempty set of time points
and < is an irreflexive transitive relation on T.

Example: Flows of time
I ({0, . . . , n}, <): Finite runs of sequential systems.

I (N, <): Infinite runs of sequential systems.

I (R, <): runs of real-time sequential systems.

I Trees: Finite or infinite run-trees of sequential systems.

I Mazurkiewicz traces: runs of distributed systems (partial orders).

I and also (Z, <) or (Q, <) or (ω2, <), . . .

Definition: Temporal Structures

Let AP be a set of atoms (atomic propositions) and let C be a class of time flows.

A temporal structure over (C,AP) is a triple (T, <, λ) where (T, <) is a time flow
in C and λ : T→ 2AP labels time points with atomic propositions.

The temporal structure (T, <, λ) is also denoted (T, <, h) where h : AP → 2T

assigns time points to atomic propositions: h(p) = {t ∈ T | p ∈ λ(t)} for p ∈ AP.
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Linear behaviors and specifications

Let M = (S, T, I,AP, `) be a Kripke structure.

Definition: Runs as temporal structures

An infinite run σ = s0s1s2 · · · of M with (si, si+1) ∈ T for all i ≥ 0 defines a linear
temporal structure `(σ) = (N, <, λ) where λ(i) = `(si) for i ∈ N.

Such a temporal structure can be seen as an infinite word over Σ = 2AP:
`(σ) = `(s0)`(s1)`(s2) · · · ∈ Σω

Linear specifications only depend on runs.

Example: The printer manager is starvation free.

On each run, whenever some process requests the printer, it eventually gets it.

Remark:
Two Kripke structures having the same linear temporal structures satisfy the same
linear specifications.
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Branching behaviors and specifications

The system has an infinite active
run, along which it may always
reach an inactive state.

1

Active

2 3

Active

Definition: Computation-tree or run-tree : unfolding of the TS

Let M = (S, T, I,AP, `) be a Kripke structure. Wlog. I = {s0} is a singleton.

Let D be a finite set with |D| the outdegree of the transition relation T .

The computation-tree of M is an unordered tree t : D∗ → S (partial map) s.t.

I t(ε) = s0,

I For every node u ∈ dom(t) labelled s = t(u), if T (s) = {s1, . . . , sk} then u
has exactly k children which are labelled s1,. . . ,sk

Associated temporal structure `(t) = (dom(t), <, λ) where

I < is the strict prefix relation over D∗,

I and λ(u) = `(t(u)) for u ∈ dom(t).

(Linear) runs of M are branches of the computation-tree t.
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First-order Specifications
Definition: Syntax of FO(AP, <)

Let Var = {x, y, . . .} be first-order variables.

ϕ ::= ⊥ | p(x) | x = y | x < y | ¬ϕ | ϕ ∨ ϕ | ∃xϕ

where p ∈ AP.

Definition: Semantics of FO(AP, <)

Let w = (T, <, λ) be a temporal structure over AP.
Let ν : Var→ T be an assignment of first-order variables to time points.

w, ν |= p(x) if p ∈ λ(ν(x))

w, ν |= x = y if ν(x) = ν(y)

w, ν |= x < y if ν(x) < ν(y)

w, ν |= ∃xϕ if w, ν[x 7→ t] |= ϕ for some t ∈ T

where ν[x 7→ t] maps x to t and y 6= x to ν(y).

Previous specifications can be written in FO(<) (except the branching one).
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First-order vs Temporal

First-order logic
I FO(<) has a good expressive power

. . . but FO(<)-formulae are not easy to write and to understand.

I FO(<) is decidable
. . . but satisfiability and model checking are non elementary.

Temporal logics
I no variables: time is implicit.

I quantifications and variables are replaced by modalities.

I Usual specifications are easy to write and read.

I Good complexity for satisfiability and model checking problems.

I Good expressive power.

Linear Temporal Logic (LTL) over (N, <) introduced by Pnueli (1977) as a conve-
nient specification language for verification of systems.
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Temporal Specifications
Definition: Syntax of TL(AP, SU, SS)

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | ϕ SU ϕ | ϕ SS ϕ

Definition: Semantics: w = (T, <, λ) temporal structure and i ∈ T
w, i |= p if p ∈ λ(i)

w, i |= ¬ϕ if w, i 6|= ϕ

w, i |= ϕ ∨ ψ if w, i |= ϕ or w, i |= ψ

w, i |= ϕ SU ψ if ∃k i < k and w, k |= ψ and ∀j (i < j < k → w, j |= ϕ)

w, i |= ϕ SS ψ if ∃k i > k and w, k |= ψ and ∀j (i > j > k → w, j |= ϕ)

Previous specifications can be written in TL(AP,SU,SS)
(except the branching one).

Theorem: TL ⊆ FO3

For each ϕ ∈ TL(AP,SU,SS) we can construct an equivalent formula with one free
variable ϕ̃(x) ∈ FO3(AP, <).
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Temporal Specifications
Definition: non-strict versions of until and since

ϕ U ψ
def
= ψ ∨ (ϕ ∧ ϕ SU ψ) ϕ S ψ

def
= ψ ∨ (ϕ ∧ ϕ SS ψ)

w, i |= ϕ U ψ if ∃k i ≤ k and w, k |= ψ and ∀j (i ≤ j < k → w, j |= ϕ)

w, i |= ϕ S ψ if ∃k i ≥ k and w, k |= ψ and ∀j (i ≥ j > k → w, j |= ϕ)

Definition: Derived modalities

Xϕ
def
= ⊥ SU ϕ Next Yϕ

def
= ⊥ SS ϕ Yesterday

w, i |= Xϕ if ∃k i < k and w, k |= ϕ and ¬∃j (i < j < k)

w, i |= Yϕ if ∃k i > k and w, k |= ϕ and ¬∃j (i > j > k)

SFϕ
def
= > SU ϕ SPϕ

def
= > SS ϕ

Fϕ
def
= > U ϕ Pϕ

def
= > S ϕ

Gϕ
def
= ¬F¬ϕ Hϕ

def
= ¬P¬ϕ

ϕW ψ
def
= (Gϕ) ∨ (ϕ U ψ) Weak Until

ϕ R ψ
def
= (Gψ) ∨ (ψ U (ϕ ∧ ψ)) Release
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Temporal Specifications

Example: Specifications on the time flow (N, <)
I Safety: G good

I MutEx: ¬F(crit1 ∧ crit2)

I Liveness: G F active

I Response: G(request→ F grant)

I Response’: G(request→ (¬request SU grant))

I Release: reset R alarm

I Strong fairness: (G F request)→ (G F grant)

I Weak fairness: (F G request)→ (G F grant)

I Stability: G¬p ∨ (¬p U G p)
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Discrete linear time flows
Definition: discrete linear time flows (T, <)

A linear time flow is discrete if SF> → X> and SP> → Y> are valid formulae.

(N, <) and (Z, <) are discrete.

(Q, <) and (R, <) are not discrete.

Exercise: For discrete linear time flows (T, <)

ϕ SU ψ ≡ X(ϕ U ψ)

ϕ SS ψ ≡ Y(ϕ S ψ)

¬Xϕ ≡ ¬X> ∨ X¬ϕ
¬Yϕ ≡ ¬Y> ∨ Y¬ϕ

¬(ϕ U ψ) ≡ (G¬ψ) ∨ (¬ψ U (¬ϕ ∧ ¬ψ))
≡ ¬ψ W (¬ϕ ∧ ¬ψ)
≡ ¬ϕ R ¬ψ

Remark: Dense time flow T = Q or T = R
¬(ϕ U ψ) does not imply ¬ϕ R ¬ψ.
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Model checking for linear behaviors

Definition: Model checking problem

Input: A Kripke structure M = (S, T, I,AP, `)
A formula ϕ ∈ LTL(AP,SU,SS)

Question: Does M |= ϕ ?

I Universal MC: M |=∀ ϕ if `(σ), 0 |= ϕ for all initial infinite runs σ of M .

I Existential MC: M |=∃ ϕ if `(σ), 0 |= ϕ for some initial infinite run σ of M .

M |=∀ ϕ iff M 6|=∃ ¬ϕ

Theorem [11, Sistla, Clarke 85], [10, Lichtenstein & Pnueli 85]

The Model checking problem for LTL is PSPACE-complete. Proof later
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Weaknesses of linear behaviors

Example:

ϕ: Whenever p holds, it is possible to reach a state where q holds.

ϕ cannot be checked on linear behaviors.

We need to consider the computation-trees.

Consider the two models:

M1: 1

p, q

2

p
3

q

4

and M2: 1

p, q
2

p

2’

p

3

q

4

M1 |= ϕ but M2 6|= ϕ

M1 and M2 have the same linear behaviors.
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Weaknesses of FO specifications

Example:

ψ: The system has an infinite active run, along which it may always reach an inactive
state.

ψ cannot be expressed in FO.

1

Active

2 3

Active

We need quantifications on runs: ψ = EG(Active ∧ EF¬Active)

I E: for some infinite run

I A: for all infinite runs
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MSO Specifications

Definition: Syntax of MSO(AP, <)

ϕ ::= ⊥ | p(x) | x = y | x < y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃xϕ | ∃X ϕ

where p ∈ AP, x, y are first-order variables and X is a second-order variable.

Definition: Semantics of MSO(AP, <)

Let w = (T, <, λ) be a temporal structure over AP.
An assignment ν maps first-order variables to time points in T
and second-order variables to sets of time points.

The semantics of first-order constructs is unchanged.

w, ν |= x ∈ X if ν(x) ∈ ν(X)

w, ν |= ∃X ϕ if w, ν[X 7→ T ] |= ϕ for some T ⊆ T

where ν[X 7→ T ] maps X to T and keeps unchanged the other assignments.
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MSO vs Temporal

MSO logic
I MSO(<) has a good expressive power

. . . but MSO(<)-formulae are not easy to write and to understand.

I MSO(<) is decidable on computation trees
. . . but satisfiability and model checking are non elementary.

We need a temporal logic
I with no explicit variables,

I allowing quantifications over runs,

I usual specifications should be easy to write and read,

I with good complexity for satisfiability and model checking problems,

I with good expressive power.

Computation Tree Logic CTL∗ introduced by Emerson & Halpern (1986).
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CTL∗ (Emerson & Halpern 86)
Definition: Syntax of the Computation Tree Logic CTL∗(AP, SU)

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | ϕ SU ϕ | Eϕ | Aϕ

We may also add the past modality SS

Definition: Semantics of CTL∗(AP, SU)

Let M = (S, T, I,AP, `) be a Kripke structure.
Let σ = s0s1s2 · · · be an infinte run of M .

M,σ, i |= p if p ∈ `(si)
M,σ, i |= ϕ SU ψ if ∃k > i, M, σ, k |= ψ and ∀i < j < k, M, σ, j |= ϕ

M,σ, i |= Eϕ if M,σ′, i |= ϕ for some infinite run σ′ such that σ′[i] = σ[i]

M,σ, i |= Aϕ if M,σ′, i |= ϕ for all infinite runs σ′ such that σ′[i] = σ[i]

where σ[i] = s0 · · · si.

Remark:
I σ′[i] = σ[i] means that future is branching but past is not.
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CTL∗ (Emerson & Halpern 86)

Example: Some specifications
I EFϕ: ϕ is possible

I AGϕ: ϕ is an invariant

I AFϕ: ϕ is unavoidable

I EGϕ: ϕ holds globally along some path

Remark: Some equivalences
I Aϕ ≡ ¬E¬ϕ
I E(ϕ ∨ ψ) ≡ Eϕ ∨ Eψ

I A(ϕ ∧ ψ) ≡ Aϕ ∧ Aψ

Theorem: CTL∗ ⊆ MSO

For each ϕ ∈ CTL∗(AP,SU) we can construct an equivalent formula with two free
variables ϕ̃(X,x) ∈ MSO(AP, <).
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Model checking of CTL∗

Definition: Existential and universal model checking

Let M = (S, T, I,AP, `) be a Kripke structure and ϕ ∈ CTL∗ a formula.

M |=∃ ϕ if M,σ, 0 |= ϕ for some initial infinite run σ of M .
M |=∀ ϕ if M,σ, 0 |= ϕ for all initial infinite runs σ of M .

Remark: M |=∀ ϕ iff M 6|=∃ ¬ϕ

Definition: Model checking problems MC∀CTL∗ and MC∃CTL∗

Input: A Kripke structure M = (S, T, I,AP, `) and a formula ϕ ∈ CTL∗

Question: Does M |=∀ ϕ ? or Does M |=∃ ϕ ?

Theorem:

The model checking problem for CTL∗ is PSPACE-complete. Proof later
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State formulae and path formulae
Definition: State formulae

ϕ ∈ CTL∗ is a state formula if ∀M,σ, σ′, i, j such that σ(i) = σ′(j) we have

M,σ, i |= ϕ ⇐⇒ M,σ′, j |= ϕ

If ϕ is a state formula and M = (S, T, I,AP, `), define

M, s |= ϕ if M,σ, 0 |= ϕ for some infinite run σ of M with σ(0) = s

and [[ϕ]]M = {s ∈ S |M, s |= ϕ}

Example: State formulae

Atomic propositions are state formulae: [[p]] = {s ∈ S | p ∈ `(s)}
State formulae are closed under boolean connectives.

[[¬ϕ]] = S \ [[ϕ]] [[ϕ1 ∨ ϕ2]] = [[ϕ1]] ∪ [[ϕ2]]

Formulae of the form Eϕ or Aϕ are state formulae, provided ϕ is future.

Remark: M |=∃ ϕ iff I ∩ [[Eϕ]] 6= ∅ M |=∀ ϕ iff I ⊆ [[Aϕ]]

Definition: Alternative syntax

State formulae ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | Eψ | Aψ
Path formulae ψ ::= ϕ | ¬ψ | ψ ∨ ψ | ψ SU ψ



70/153

CTL (Clarke & Emerson 81)

Definition: Computation Tree Logic CTL(AP,X,U)

Syntax:

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | EXϕ | AXϕ | Eϕ U ϕ | Aϕ U ϕ

The semantics is inherited from CTL∗.

Remark: All CTL formulae are state formulae

[[ϕ]]M = {s ∈ S |M, s |= ϕ}

Examples: Macros
I EFϕ = E> U ϕ and AGϕ = ¬EF¬ϕ
I AFϕ = A> U ϕ and EGϕ = ¬AF¬ϕ
I AG(req→ EF grant)

I AG(req→ AF grant)
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CTL (Clarke & Emerson 81)

Definition: Semantics
All CTL-formulae are state formulae. Hence, we have a simpler semantics.
Let M = (S, T, I,AP, `) be a Kripke structure without deadlocks and let s ∈ S.

M, s |= p if p ∈ `(s)
M, s |= EXϕ if ∃s→ s′ with M, s′ |= ϕ

M, s |= AXϕ if ∀s→ s′ we have M, s′ |= ϕ

M, s |= Eϕ U ψ if ∃s = s0 → s1 → s2 → · · · sk finite path, with
M, sk |= ψ and M, sj |= ϕ for all 0 ≤ j < k

M, s |= Aϕ U ψ if ∀s = s0 → s1 → s2 → · · · infinite paths, ∃k ≥ 0 with
M, sk |= ψ and M, sj |= ϕ for all 0 ≤ j < k

Theorem: CTL ⊆ MSO

For each ϕ ∈ CTL(AP,X,U) we can construct an equivalent formula with one free
variable ϕ̃(x) ∈ MSO(AP, <).
NB. Here models are computation trees.
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CTL (Clarke & Emerson 81)

Example:

1 2 3 4

5 6 7 8

q p, q q r

p, r p, r p, q

[[EX p]] =

{1, 2, 3, 5, 6}

[[AX p]] =

{3, 6}

[[EF p]] =

{1, 2, 3, 4, 5, 6, 7, 8}

[[AF p]] =

{2, 3, 5, 6, 7}

[[E q U r]] =

{1, 2, 3, 4, 5, 6}

[[A q U r]] =

{2, 3, 4, 5, 6}
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CTL (Clarke & Emerson 81)

Remark: Equivalent formulae
I AXϕ ≡ ¬EX¬ϕ,

I ¬(ϕ U ψ) ≡ G¬ψ ∨ (¬ψ U (¬ϕ ∧ ¬ψ))

I Aϕ U ψ ≡ ¬EG¬ψ ∧ ¬E(¬ψ U (¬ϕ ∧ ¬ψ))

I AG(req→ F grant) ≡ AG(req→ AF grant)

I A G Fϕ ≡ AG AFϕ

infinitely often

I E F Gϕ ≡ EF EGϕ

ultimately

I EG EFϕ 6≡ E G Fϕ 6≡ EG AFϕ

I AF AGϕ 6≡ A F Gϕ 6≡ AF EGϕ

I EG EXϕ 6≡ E G Xϕ 6≡ EG AXϕ

1 2 3

1 2

¬ϕ ϕ ¬ϕ

¬ϕ ϕ
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Model checking of CTL
Definition: Existential and universal model checking

Let M = (S, T, I,AP, `) be a Kripke structure and ϕ ∈ CTL a formula.

M |=∃ ϕ if M, s |= ϕ for some s ∈ I.
M |=∀ ϕ if M, s |= ϕ for all s ∈ I.

Remark:

M |=∃ ϕ iff I ∩ [[ϕ]] 6= ∅
M |=∀ ϕ iff I ⊆ [[ϕ]]

M |=∀ ϕ iff M 6|=∃ ¬ϕ

Definition: Model checking problems MC∀CTL and MC∃CTL

Input: A Kripke structure M = (S, T, I,AP, `) and a formula ϕ ∈ CTL

Question: Does M |=∀ ϕ ? or Does M |=∃ ϕ ?

Theorem:

Let M = (S, T, I,AP, `) be a Kripke structure and ϕ ∈ CTL a formula.
The model checking problem M |=∃ ϕ is decidable in time O(|M | · |ϕ|)
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Model checking of CTL

Theorem

Let M = (S, T, I,AP, `) be a Kripke structure and ϕ ∈ CTL a formula.
The set [[ϕ]] = {s ∈ S |M, s |= ϕ} can be computed in time O(|M | · |ϕ|).
Hence, the model checking problem M |=∃ ϕ is decidable in time O(|M | · |ϕ|).

Proof:

Compute [[ϕ]] by induction on the formula.

The set [[ϕ]] is represented by a boolean array: L[s] = > if s ∈ [[ϕ]].

For each t ∈ S, the set T−1(t) is represented as a list.

T−1 is an array of lists, its size is |S|+ |T |.

for all t ∈ S do for all s ∈ T−1(t) do ... od takes time O(|S|+ |T |).
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Model checking of CTL
Definition: function semantics(ϕ) returns boolean array L

case ϕ = p ∈ AP
for all s ∈ S do L[s] := (p ∈ `(s)) od O(|S|)

case ϕ = ¬ϕ1

L1 := semantics(ϕ1)
for all s ∈ S do L[s] := ¬L1[s] od O(|S|)

case ϕ = ϕ1 ∨ ϕ2

L1 := semantics(ϕ1); L2 := semantics(ϕ2)
for all s ∈ S do L[s] := L1[s] ∨ L2[s] od O(|S|)

case ϕ = EXϕ1

L1 := semantics(ϕ1)
for all s ∈ S do L[s] := ⊥ od O(|S|)
for all t ∈ S do if L1[t] then for all s ∈ T−1(t) do L[s] := > O(|S|+ |T |)

case ϕ = AXϕ1

L1 := semantics(ϕ1)
for all s ∈ S do L[s] := > od O(|S|)
for all t ∈ S do if ¬L1[t] then for all s ∈ T−1(t) do L[s] := ⊥ O(|S|+ |T |)
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Model checking of CTL

Definition: function semantics(ϕ) returns boolean array L

case ϕ = Eϕ1 U ϕ2 O(|S|+ |T |)
L1 := semantics(ϕ1); L2 := semantics(ϕ2)
for all s ∈ S do O(|S|)
L[s] := L2[s]
if L2[s] then Todo.push(s) // Todo is implemented with a stack

while Todo 6= ∅ do |S| times
Invariant 1: [[ϕ2]] ∪ Todo ⊆ L ⊆ [[Eϕ1 U ϕ2]]
t := Todo.pop() O(1)
for all s ∈ T−1(t) do |T | times

if L1[s] ∧ ¬L[s] then Todo.push(s); L[s] := > O(1)
od
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Model checking of CTL

Definition: function semantics(ϕ) returns boolean array L

case ϕ = Aϕ1 U ϕ2 O(|S|+ |T |)
L1 := semantics(ϕ1); L2 := semantics(ϕ2)
for all s ∈ S do O(|S|)
L[s] := L2[s]
if L2[s] then Todo.push(s) // Todo is implemented with a stack

for all s ∈ S do d[s] := 0; c[s] := 0 O(|S|)
for all t ∈ S do for all s ∈ T−1(t) do d[s] := d[s] + 1 O(|S|+ |T |)
while Todo 6= ∅ do |S| times
Invariant 1: ∀s ∈ S, d[s] = |T (s)| and c[s] = |T (s) ∩ (L \ Todo)|
Invariant 2: [[ϕ2]] ∪ Todo ⊆ L ⊆ [[Aϕ1 U ϕ2]]
t := Todo.pop() O(1)
for all s ∈ T−1(t) do |T | times
c[s] := c[s] + 1 O(1)
if c[s] = d[s] ∧ L1[s] ∧ ¬L[s] then Todo.push(s); L[s] := > O(1)

od
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Complexity of CTL

Definition: SAT(CTL)

Input: A formula ϕ ∈ CTL

Question: Existence of a model M and a state s such that M, s |= ϕ ?

Theorem: Complexity
I The model checking problem for CTL is PTIME-complete.

I The satisfiability problem for CTL is EXPTIME-complete.
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fairness

Example: Fairness

Only fair runs are of interest

I Each process is enabled infinitely often:
∧
i

G F runi

I No process stays ultimately in the critical section:
∧
i

¬F G csi =
∧
i

G F¬csi

Definition: Fair Kripke structure

M = (S, T, I,AP, `, F1, . . . , Fn) with Fi ⊆ S.

An infinite run σ is fair if it visits infinitely often each Fi
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fair CTL

Definition: Syntax of fair-CTL

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | Ef Xϕ | Af Xϕ | Ef ϕ U ϕ | Af ϕ U ϕ

Definition: Semantics as a fragment of CTL∗

Let M = (S, T, I,AP, `, F1, . . . , Fn) be a fair Kripke structure.

Let, Ef ϕ = E(FairRun ∧ ϕ) and Af ϕ = A(FairRun→ ϕ)

where FairRun =
∧
i G FFi

Then, [[ϕ]]f = [[ϕ]]

Lemma: CTLf cannot be expressed in CTL
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fair CTL

Proof: CTLf cannot be expressed in CTL

Consider the Kripke structure Mk defined by:

2k 2k − 1 2k − 2 2k − 3 · · · 4 3 2 1

p p p p¬p ¬p ¬p ¬p

I Mk, 2k |= E G F p but Mk, 2k − 2 6|= E G F p

I If ϕ ∈ CTL and |ϕ| ≤ m ≤ k then

Mk, 2k |= ϕ iff Mk, 2m |= ϕ

Mk, 2k − 1 |= ϕ iff Mk, 2m− 1 |= ϕ

If the fairness condition is `−1(p) then Ef > cannot be expressed in CTL.
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Model checking of CTLf
Theorem

The model checking problem for CTLf is decidable in time O(|M | · |ϕ|)

Proof: Computation of FairStates = {s ∈ S |M, s |= Ef >}
Compute the SCC of M in time O(|M |), e.g., with Tarjan’s algorithm.

Let S′ be the union of the (non trivial) SCCs which intersect each Fi.

Then, FairStates is the set of states that can reach S′: FairStates = [[E> U S′]].

Note that reachability can be computed in linear time.

Proof: Reductions

Ef Xϕ = E X(FairStates ∧ ϕ) and Ef ϕ U ψ = Eϕ U (FairStates ∧ ψ)

It remains to deal with Af ϕ U ψ. We have

Af ϕ U ψ = ¬Ef G¬ψ ∧ ¬Ef (¬ψ U (¬ϕ ∧ ¬ψ))

Hence, we only need to compute the semantics of Ef Gϕ.

Let Mϕ be the restriction of M to [[ϕ]]f . Then,

M, s |= Ef Gϕ iff Mϕ, s |= Ef >.

We apply the above algorithm for Ef > to Mϕ.
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Büchi automata
Definition:

A Büchi automaton (BA) is a tuple A = (Q,Σ, I, T, F ) where

I Q: finite set of states

I Σ: finite set of labels

I I ⊆ Q: set of initial states

I T ⊆ Q× Σ×Q: set of transitions (non-deterministic)

I F ⊆ Q: set of final (repeated) states

Run: ρ = q0, a0, q1, a1, q2, a2, q3, . . . with (qi, ai, qi+1) ∈ T for all i ≥ 0.

ρ is initial if q0 ∈ I.

ρ is final (successful) if qi ∈ F for infinitely many i’s.

ρ is accepting if it is both initial and final.

L(A) = {a0a1a2 · · · ∈ Σω | ∃ ρ = q0, a0, q1, a1, q2, a2, q3, . . . accepting run}

A language L ⊆ Σω is ω-regular if it can be accepted by some Büchi automaton.
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Büchi automata

Examples:

Infinitely many a’s:

1 2

aΣ \ {a}

Σ \ {a}

a

Finitely many a’s:

1 2

Σ Σ \ {a}

Σ

No deterministic Büchi automaton for this language.

Whenever a then later b:

1 2

Σ \ {a} Σ \ {b}

a

b
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Büchi automata

Properties

Büchi automata are closed under union, intersection, complement.

I Union: trivial

I Intersection: easy (exercise)

I complement: difficult

Let L = Σ∗(aΣn−1b ∪ bΣn−1a)Σω

0

Σ 1
a

2
Σ

· · · nΣ

0′

b
Σ

1’
b

2’
Σ

· · · n′

Σ

a

Any non deterministic Büchi automaton for Σω \ L has at least 2n states.



96/153

Büchi automata
Theorem: Büchi
Let L ⊆ Σω be a language. The following are equivalent:

I L is ω-regular

I L is ω-rational, i.e., L is a finite union of languages of the form L1 · Lω2 where
L1, L2 ⊆ Σ+ are rational.

I L is MSO-definable, i.e., there is a sentence ϕ ∈ MSOΣ(<) such that
L = L(ϕ) = {w ∈ Σω | w |= ϕ}.

Exercises:

1. Construct a BA for L(ϕ) where ϕ is the FOΣ(<) sentence

(∀x, (Pa(x)→ ∃y > x, Pa(y)))→ (∀x, (Pb(x)→ ∃y > x, Pc(y)))

2. Given BA for L1 ⊆ Σω and L2 ⊆ Σω, construct BA for

next(L1) = Σ · L1

strict− until(L1, L2) = {uv ∈ Σω | u ∈ Σ+ ∧ v ∈ L2 ∧
u′′v ∈ L1 for all u′, u′′ ∈ Σ+ with u = u′u′′}
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Generalized Büchi automata

Definition: final condition on states or on transitions

A = (Q,Σ, I, T, F1, . . . , Fn) with Fi ⊆ Q.
An infinite run σ is final (successful) if it visits infinitely often each Fi.

A = (Q,Σ, I, T, T1, . . . , Tn) with Ti ⊆ T .
An infinite run σ is final if it uses infinitely many transitions from each Ti.

Example: Infinitely many a’s and infinitely many b’s

0

Σ
a

Σb

Σ

0

Σ

ab

Theorem:
1. GBA and BA have the same expressive power.
2. Checking whether a BA or GBA has an accepting run is NLOGSPACE-complete.



99/153

Unambiguous, Complete, Prophetic (G)BA

Definition: Unambiguous, Complete, Prophetic Büchi automata

A BA or GBA A is unambiguous if every word has at most one accepting run in A.
A BA or GBA A is complete if every word has at least one accepting run in A.
A BA or GBA A is prophetic if every word has exactly one final run in A.
Rem: when I = Q then accepting = final.
Hence, when I = Q then prophetic = unambiguous and complete.

Examples: Unambiguous, Complete, Prophetic
I Finitely many a’s.

I G(a→ F b) with Σ = {a, b, c}.

Proposition: Closure properties

Prophetic BA or GBA are closed under boolean operations (union, intersection,
complement).

Theorem: Prophetic Büchi automata (Carton-Michel 2003)

Every ω-regular language can be accepted by a prophetic BA.



100/153

Büchi automata with output
Definition: SBT: Synchronous (letter to letter) Büchi transducer

Let A and B be two alphabets.
A synchronous Büchi transducer from A to B is a tuple A = (Q,A, I, T, F, µ) where
(Q,A, I, T, F ) is a Büchi automaton (input) and µ : T → B is the output function.
It computes the relation

[[A]] = {(u, v) ∈ Aω ×Bω | ∃ ρ = q0, a0, q1, a1, q2, a2, q3, . . . accepting run

with u = a0a1a2 · · · and v = µ(ρ),

i.e., v = b0b1b2 · · · with bi = µ(qi, ai, qi+1) for i ≥ 0}

If (Q,A, I, T, F ) is unambiguous then [[A]] : Aω → Bω is a (partial) function,
in which case we also write [[A]](u) = v for (u, v) ∈ [[A]].

We will also use SGBT: synchronous transducers with generalized Büchi acceptance.

Example: Left shift with A = B = {a, b}

a ba/a b/b
a/b

b/a
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Composition of Büchi transducers
Definition: Composition

Let A, B, C be alphabets.
Let A = (Q,A, I, T, (Fi)i, µ) be an SGBT from A to B.
Let A′ = (Q′, B, I ′, T ′, (F ′j)j , µ

′) be an SGBT from B to C.
Then A · A′ = (Q×Q′, A, I × I ′, T ′′, (Fi ×Q′)i, (Q× F ′j)j , µ′′) defined by:

τ ′′ = (p, p′)
a−→ (q, q′) ∈ T ′′ and µ′′(τ ′′) = c

iff

τ = p
a−→ q ∈ T and τ ′ = p′

µ(τ)−−−→ q′ ∈ T ′ and c = µ′(τ ′)

is an SGBT from A to C.
When the transducers define functions, we also denote the composition by A′ ◦ A.

Proposition: Composition

1. We have [[A · A′]] = [[A]] · [[A′]].
2. If (Q,A, I, T, (Fi)i) and (Q′, B, I ′, T ′, (F ′j)j) are unambiguous (resp.

complete, prophetic) then (Q×Q′, A, I × I ′, T ′′, (Fi ×Q′)i, (Q× F ′j)j) is
also unambiguous (resp. complete, prophetic), and
∀u ∈ Aω we have [[A′ ◦ A]](u) = [[A′]]([[A]](u)).
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Product of Büchi transducers
Definition: Product
Let A, B, C be alphabets.
Let A = (Q,A, I, T, (Fi)i, µ) be an SGBT from A to B.
Let A′ = (Q′, A, I ′, T ′, (F ′j)j , µ

′) be an SGBT from A to C.
Then A×A′ = (Q×Q′, A, I × I ′, T ′′, (Fi ×Q′)i, (Q× F ′j)j , µ′′) defined by:

τ ′′ = (p, p′)
a−→ (q, q′) ∈ T ′′ and µ′′(τ ′′) = (b, c)

iff
τ = p

a−→ q ∈ T and b = µ(τ) and τ ′ = p′
a−→ q′ ∈ T ′ and c = µ′(τ ′)

is an SGBT from A to B × C.

Proposition: Product

We identify (B × C)ω with Bω × Cω.

1. We have [[A×A′]] = {(u, v, v′) | (u, v) ∈ [[A]] and (u, v′) ∈ [[A′]]}.
2. If (Q,A, I, T, (Fi)i) and (Q′, A, I ′, T ′, (F ′j)j) are unambiguous (resp.

complete, prophetic) then (Q×Q′, A, I × I ′, T ′′, (Fi ×Q′)i, (Q× F ′j)j) is
also unambiguous (resp. complete, prophetic), and
∀u ∈ Aω we have [[A×A′]](u) = ([[A]](u), [[A′]](u)).
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Subalphabets of Σ = 2AP

Definition:

For a propositional formula ξ over AP, we let Σξ = {a ∈ Σ | a |= ξ}.
For instance, for p, q ∈ AP,

I Σp = {a ∈ Σ | p ∈ a} and Σ¬p = Σ \ Σp
I Σp∧q = Σp ∩ Σq and Σp∨q = Σp ∪ Σq
I Σp∧¬q = Σp \ Σq . . .

Notation:

In automata, s
Σξ−−→ s′ stands for the set of transitions {s} × Σξ × {s′}.

To simplify the pictures, we use s
ξ−→ s′ instead of s

Σξ−−→ s′.

Example: G(p→ F q)

1 2

¬p ∨ q ¬q

p ∧ ¬q

q
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Semantics of LTL with sequential functions

Definition: Semantics of ϕ ∈ LTL(AP, SU, SS)

Let Σ = 2AP and B = {0, 1}.

Define [[ϕ]] : Σω → Bω by [[ϕ]](u) = b0b1b2 · · · with bi =

{
1 if u, i |= ϕ

0 otherwise.

Example:

[[p SU q]](∅{q}{p}∅{p}{p}{q}∅{p}{p, q}∅ω) = 1001110110ω

[[X p]](∅{q}{p}∅{p}{p}{q}∅{p}{p, q}∅ω) = 0101100110ω

[[F p]](∅{q}{p}∅{p}{p}{q}∅{p}{p, q}∅ω) = 1111111110ω

The aim is to compute [[ϕ]] with synchronous Büchi transducers (actually, SGBT).

For past formulas, we use deterministic and complete GBA.

For future formulas, we use prophetic GBA.
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Synchronous Büchi transducer for p SU q
Example: An SBT for [[p SU q]]

1 2

3

q/1 p ∧ ¬q/1

¬q/0

q/1

p ∧ ¬q/1

q/0

¬p ∧ ¬q/1
¬p ∧ ¬q/1

Lemma: The input BA is prophetic

For all u = a0a1a2 · · · ∈ Σω,
there is a unique final run ρ = s0, a0, s1, a1, s2, a2, s3, . . . of A on u.

The run ρ satisfies for all i ≥ 0, si =


1 if u, i |= q

2 if u, i |= ¬q ∧ (p U q)

3 if u, i |= ¬(p U q)

Hence, the SBT computes [[p SU q]].
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Synchronous Büchi transducer for p U q

Example: An SBT for [[p U q]]

1 2

3

q/1 p ∧ ¬q/1

¬q/0

q/1

p ∧ ¬q/1

q/1

¬p ∧ ¬q/0
¬p ∧ ¬q/0

The automaton is prophetic (same input BA as for p SU q).
This SBT computes [[p U q]].
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Special cases of Until: Future and Next

Example: F q = > U q and X q = ⊥ SU q

1 2

3

q/1 ¬q/1

¬q/0

q/1

¬q/1

q/1

1

3

q/1

¬q/0

q/0¬q/1

Exercise: Give SBT’s for the following formulae:

SF q, SG q, p SR q, p SS q, Y q, G q, p R q, p S q, G(p→ F q).
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From LTL to Büchi automata

Definition: SBT for LTL modalities

I A> from Σ to B = {0, 1}: 0 Σ/1

I Ap from Σ to B = {0, 1}: 0
p / 1

¬p / 0

I A¬ from B to B: 0
0 / 1
1 / 0

I A∨ from B2 to B: 0

0, 0 / 0
1, 0 / 1
0, 1 / 1
1, 1 / 1

I A∧ from B2 to B: 0

0, 0 / 0
1, 0 / 0
0, 1 / 0
1, 1 / 1
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From LTL to Büchi automata

Definition: SBT for LTL modalities (cont.)

I ASU from B2 to B:
Prophetic

1 2

3

0, 1 / 1
1, 1 / 1

1, 0/1

0, 0 / 0
1, 0 / 0

0, 1 / 1
1, 1 / 1

1, 0/1

0, 1 / 0
1, 1 / 0

0, 0/1
0, 0/1

I ASS from B2 to B:
Deterministic &
Complete
Not prophetic

0 1
0, 0 / 0
1, 0 / 0

0, 1 / 0
1, 1 / 0 1, 0 / 1

0, 1 / 1
1, 1 / 10, 0/1
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From LTL to Büchi automata
Definition: Translation from LTL to SGBT

For each ξ ∈ LTL(AP,SU,SS) we define inductively an SGBT Aξ as follows:

I A> and Ap for p ∈ AP are already defined

I A¬ϕ = A¬ ◦ Aϕ
I Aϕ∨ψ = A∨ ◦ (Aϕ ×Aψ)

I AϕSSψ = ASS ◦ (Aϕ ×Aψ)

I AϕSUψ = ASU ◦ (Aϕ ×Aψ)

Theorem: Correctness of the translation

For each ξ ∈ LTL(AP,SU,SS), we have [[Aξ]] = [[ξ]] and Aξ is unambiguous.

Moreover, the number of states of Aξ is at most 2|ξ|SS · 3|ξ|SU
the number of acceptance conditions is |ξ|SU
where |ξ|SS (resp. |ξ|SU) is the number of SS (resp. SU) occurring in ξ.

Remark:
I If a subformula ϕ occurs serveral time in ξ, we only need one copy of Aϕ.

I We may also use automata for other modalities: AX (2 states), AU, . . .



112/153

Useful simplifications

Reducing the number of temporal subformulae

(Xϕ) ∧ (Xψ) ≡ X(ϕ ∧ ψ) (Xϕ) SU (Xψ) ≡ X(ϕ SU ψ)

(Gϕ) ∧ (Gψ) ≡ G(ϕ ∧ ψ) G Fϕ ∨ G Fψ ≡ G F(ϕ ∨ ψ)

(ϕ1 SU ψ) ∧ (ϕ2 SU ψ) ≡ (ϕ1 ∧ ϕ2) SU ψ (ϕ SU ψ1) ∨ (ϕ SU ψ2) ≡ ϕ SU (ψ1 ∨ ψ2)

Merging equivalent states

Let A = (Q,Σ, I, T, (Fi)i, µ) be an SGBT and s1, s2 ∈ Q.

We can merge s1 and s2 if they satisfy the same final conditions:

s1 ∈ Fi ⇐⇒ s2 ∈ Fi for all i

and they have the same outgoing transitions: ∀a ∈ Σ, ∀s ∈ Q,

τ1 = (s1, a, s) ∈ T ⇐⇒ τ2 = (s2, a, s) ∈ T and µ(τ1) = µ(τ2)



113/153

Other constructions

I Tableau construction. See for instance [16, Wolper 85]
+ : Easy definition, easy proof of correctness
+ : Works both for future and past modalities
– : Inefficient without strong optimizations

I Using Very Weak Alternating Automata [17, Gastin & Oddoux 01].
+ : Very efficient
– : Only for future modalities

Online tool: http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/

I Using reduction rules [7, Demri & Gastin 10].
+ : Efficient and produces small automata
+ : Can be used by hand on real examples
– : Only for future modalities

I The domain is still very active.

http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/
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Satisfiability for LTL over (N, <)
Let AP be the set of atomic propositions and Σ = 2AP.

Definition: Satisfiability problem

Input: A formula ϕ ∈ LTL(AP,SU,SS)

Question: Existence of w ∈ Σω and i ∈ N such that w, i |= ϕ.

Definition: Initial Satisfiability problem

Input: A formula ϕ ∈ LTL(AP,SU,SS)

Question: Existence of w ∈ Σω such that w, 0 |= ϕ.

Remark: ϕ is satisfiable iff Fϕ is initially satisfiable.

Definition: (Initial) validity

ϕ is valid iff ¬ϕ is not satisfiable.

Theorem [11, Sistla, Clarke 85], [10, Lichtenstein & Pnueli 85]

The satisfiability problem for LTL is PSPACE-complete.
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Model checking for LTL

Definition: Model checking problem

Input: A Kripke structure M = (S, T, I,AP, `)
A formula ϕ ∈ LTL(AP,SU,SS)

Question: Does M |= ϕ ?

I Universal MC: M |=∀ ϕ if `(σ), 0 |= ϕ for all initial infinite runs of M .

I Existential MC: M |=∃ ϕ if `(σ), 0 |= ϕ for some initial infinite run of M .

M |=∀ ϕ iff M 6|=∃ ¬ϕ

Theorem [11, Sistla, Clarke 85], [10, Lichtenstein & Pnueli 85]

The Model checking problem for LTL is PSPACE-complete
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MC∃(SU) ≤P SAT(SU)

[11, Sistla & Clarke 85]
Let M = (S, T, I,AP, `) be a Kripke structure and ϕ ∈ LTL(AP,SU)

Introduce new atomic propositions: APS = {ats | s ∈ S}
Define AP′ = AP ]APS Σ′ = 2AP′

π : Σ′ω → Σω by π(a) = a ∩AP.

Let w ∈ Σ′ω. We have w |= ϕ iff π(w) |= ϕ

Define ψM ∈ LTL(AP′,X,F) of size O(|M |2) by

ψM =

(∨
s∈I

ats

)
∧ G

∨
s∈S

ats ∧
∧
t 6=s

¬att ∧
∧

p∈`(s)

p ∧
∧

p/∈`(s)

¬p ∧
∨

t∈T (s)

X att


Let w = a0a1a2 · · · ∈ Σ′ω. Then, w |= ψM iff there exists an initial infinite run
σ = s0, s1, s2, . . . of M such that π(w) = `(σ) and ai ∩APS = {atsi} for all i ≥ 0.

Therefore, M |=∃ ϕ iff ψM ∧ ϕ is initially satisfiable
M |=∀ ϕ iff ψM ∧ ¬ϕ is not initially satisfiable

Remark: we also have MC∃(X,F) ≤P SAT(X,F).
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QBF Quantified Boolean Formulae

Definition: QBF

Input: A formula γ = Q1x1 · · ·Qnxnγ′ with γ′ =
∧

1≤i≤m

∨
1≤j≤ki

aij (CNF)

Qi ∈ {∀,∃} and aij ∈ {x1,¬x1, . . . , xn,¬xn}.

Question: Is γ valid?

Definition:

An assignment of the variables {x1, . . . , xn} is a word v = v1 · · · vn ∈ {0, 1}n.
We write v[i] for the prefix of length i.
Let V ⊆ {0, 1}n be a set of assignments.

I V is valid (for γ′) if v |= γ′ for all v ∈ V ,

I V is closed (for γ) if ∀v ∈ V , ∀1 ≤ i ≤ n s.t. Qi = ∀,

∃v′ ∈ V s.t. v[i− 1] = v′[i− 1] and v′i = 1− vi.

Proposition:

γ is valid iff ∃V ⊆ {0, 1}n s.t. V is nonempty valid and closed
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QBF ≤P MC∃(U) [11, Sistla & Clarke 85]
Let γ = Q1x1 · · ·Qnxn

∧
1≤i≤m

∨
1≤j≤ki

aij with Qi ∈ {∀,∃} and aij literals.

Consider the KS M :

e0 s1

xt
1

xf
1

e1 s2

xt
2

xf
2

e2 · · · sn

xt
n

xf
n

en

f0

a11

a12
...

a1k1

f1

a21

a22
...

a2k2

f2 · · · fm−1

am1

am2

...

amkm

fm

Let ψij =

{
G(xfk → sk R ¬aij) if aij = xk

G(xtk → sk R ¬aij) if aij = ¬xk
and ψ =

∧
i,j

ψij .

Let ϕi = G(ei−1 → (¬si−1 U xti) ∧ (¬si−1 U xfi )) and ϕ =
∧

i|Qi=∀

ϕi.

Then, γ is valid iff M |=∃ ψ ∧ ϕ.
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Complexity of LTL

Theorem: Complexity of LTL

The following problems are PSPACE-complete:

I SAT(LTL(SU,SS)), MC∀(LTL(SU,SS)), MC∃(LTL(SU,SS))

I SAT(LTL(X,F)), MC∀(LTL(X,F)), MC∃(LTL(X,F))

I SAT(LTL(U)), MC∀(LTL(U)), MC∃(LTL(U))

I The restriction of the above problems to a unique propositional variable

The following problems are NP-complete:

I SAT(LTL(F)), MC∃(LTL(F))
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Complexity of CTL∗

Definition: Syntax of the Computation Tree Logic CTL∗

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ | Eϕ | Aϕ

Theorem

The model checking problem for CTL∗ is PSPACE-complete

Proof:

PSPACE-hardness: follows from LTL ⊆ CTL∗.

PSPACE-easiness: reduction to LTL-model checking by inductive eliminations of
path quantifications.
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Satisfiability for CTL∗

Definition: SAT(CTL∗)

Input: A formula ϕ ∈ CTL∗

Question: Existence of a model M and a run σ such that M,σ, 0 |= ϕ ?

Theorem

The satisfiability problem for CTL∗ is 2-EXPTIME-complete
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Expressivity
Definition: Equivalence

Let C be a class of time flows.

Two formulae ϕ,ψ ∈ TL(AP,SU,SS) are equivalent over C if
for all temporal structures w = (T, <, λ) over C and all time points t ∈ T we have

w, t |= ϕ iff w, t |= ψ

Two formulae ϕ ∈ TL(AP,SU,SS) and ψ(x) ∈ FOAP(<) are equivalent over C if
for all temporal structures w = (T, <, λ) over C and all time points t ∈ T we have

w, t |= ϕ iff w, x 7→ t |= ψ

We also write w |= ψ(t).

Remark: TL(AP, SU, SS) ⊆ FO3
AP(<) ⊆ FOAP(<)

∀ϕ ∈ TL(AP,SU,SS), ∃ψ(x) ∈ FO3
AP(<) such that ϕ and ψ(x) are equivalent.

Expressivity problem: LTL = FO?
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Expressivity

Definition: complete linear time flows

A time flow (T, <) is linear if < is a total strict order.

A linear time flow (T, <) is complete if every nonempty and bounded subset of T
has a least upper bound and a greatest lower bound.

(N, <), (Z, <) and (R, <) are complete.

(Q, <) and (R \ {0}, <) are not complete.

Theorem: Expressive completeness [12, Kamp 68]

For complete linear time flows, TL(AP,SU,SS) = FOAP(<)

Example: Translate in TL(AP, SU, SS) (1)

ψ(x) = ¬Pa(x) ∧ ¬Pb(x) ∧ ∀y∀z (Pa(y) ∧ Pb(z) ∧ y < z)→

∃v y < v < z ∧

 Pc(v) ∧ x < y
∨ Pd(v) ∧ z < x
∨ Pe(v) ∧ y < x < z
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Initial equivalence

Note that FOAP(<) is strictly more expressive than TL(AP,SU) or TL(AP, SS).

Definition: Initial Equivalence

Let C be a class of time flows having a least element (denoted 0).
Two formulae ϕ,ψ ∈ TL(AP,SU,SS) are initially equivalent over C if
for all temporal structures w = (T, <, λ) over C we have

w, 0 |= ϕ iff w, 0 |= ψ

Two formulae ϕ ∈ TL(AP,SU,SS) and ψ(x) ∈ FOAP(<) are initially equivalent
over C if for all temporal structures w = (T, <, λ) over C we have

w, 0 |= ϕ iff w |= ψ(0)

Elegant algebraic proof of TL(AP,SU) initially equivalent to FOAP(<) over
(N, <) due to Wilke 98.

See also Diekert-Gastin [18]: TL = FO = SF = AP = CFBA = VWAA.
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Stavi connectives: Time flows with gaps

Definition: Stavi Until: U

Let w = (T, <, λ) be a temporal structure and i ∈ T. Then, w, i |= ϕ U ψ if

∃k i < k

∧ ∃j (i < j < k ∧ w, j |= ¬ϕ)

∧ ∃j (i < j < k ∧ ∀` (i < ` < j → w, ` |= ϕ))

∧ ∀j
[
i < j < k →

[
∃k′ [j < k′ ∧ ∀j′ (i < j′ < k′ → w, j′ |= ϕ)]
∨ [∀` (j < ` < k → w, ` |= ψ) ∧ ∃` (i < ` < j ∧ w, ` |= ¬ϕ)]

]]
Similar definition for the Stavi Since S.

Example: (2)

I Let w = (R \ {0}, <, h) with h(p) = R− and h(q) = R+.

Then, w,−1 6|= p SU q but w,−1 |= p U q.

I Let w′ = (R \ {0}, <, h′) with h′(p) = R \ {1, 1
2 ,

1
4 , . . . , 0} and h′(q) = R+.

Then, w′,−1 |= p U q.
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Stavi connectives: Time flows with gaps

Theorem: [14, Gabbay, Hodkinson, Reynolds]

TL(AP,SU,SS,S,U) is expressively complete for FOAP(<) over the class of all
linear time flows.

Exercise: Isolated gaps (3)

Let ϕp = p SU p ∧ SF¬p ∧ ¬(p SU ¬p) ∧ ¬(p SU ¬(p SU>)).

Let w = (T, <, λ) with T ⊆ R and t ∈ T.

Show that if w, t |= ϕp then T has a gap.

Let ψp,q = ϕp ∧ (q ∨ ϕp) SU (q ∧ ¬p).

Show that ψp,q is equivalent to p U q over the time flow (R \ {0}, <).

Show that TL(AP,SU,SS) is FOAP(<)-complete over the time flow (R \ Z, <).
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Temporal depth

Definition: Temporal depth of ϕ ∈ TL(AP, SU, SS)

td(p) = 0 if p ∈ AP

td(¬ϕ) = td(ϕ)

td(ϕ ∨ ψ) = max(td(ϕ), td(ψ))

td(ϕ SS ψ) = max(td(ϕ), td(ψ)) + 1

td(ϕ SU ψ) = max(td(ϕ), td(ψ)) + 1

Lemma:
Let B ⊆ AP be finite and k ∈ N.
There are (up to equivalence) finitely many formulae in TL(B, SU,SS) of temporal
depth at most k.
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k-equivalence

Definition:

Let w0 = (T0, <, h0) and w1 = (T1, <, h1) be two temporal structures.
Let i0 ∈ T0 and i1 ∈ T1. Let k ∈ N.

We say that (w0, i0) and (w1, i1) are k-equivalent, denoted (w0, i0) ≡k (w1, i1), if
they satisfy the same formulae in TL(AP,SU,SS) of temporal depth at most k.

Lemma: ≡k is an equivalence relation of finite index.

Example:

Let a = {p} and b = {q}. Let w0 = babaababaa and w1 = baababaaba.

(w0, 3) ≡0 (w1, 4)

(w0, 3) ≡1 (w1, 4) ?

(w0, 3) ≡1 (w1, 6) ?

Here, T0 = T1 = {0, 1, 2, . . . , 9}.
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EF-games for TL(AP, SU, SS)
The EF-game has two players: Spoiler (Player I) and Duplicator (Player II).

The game board consists of 2 temporal structures:
w0 = (T0, <, h0) and w1 = (T1, <, h1).

There are two tokens, one on each structure: i0 ∈ T0 and i1 ∈ T1.

A configuration is a tuple (w0, i0, w1, i1)
or simply (i0, i1) if the game board is understood.

Let k ∈ N.

The k-round EF-game from a configuration proceeds with (at most) k moves.

There are 2 available moves for TL(AP,SU,SS): SU-move or SS-move (see
below).

Spoiler chooses which move is played in each round.

Spoiler wins if

I Either duplicator cannot answer during a move (see below).

I Or a configuration such that (w0, i0) 6≡0 (w1, i1) is reached.

Otherwise, duplicator wins.
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Strict Until and Since moves

Definition: SU-move
I Spoiler chooses ε ∈ {0, 1} and kε ∈ Tε such that iε < kε.

I Duplicator chooses k1−ε ∈ T1−ε such that i1−ε < k1−ε.
Spoiler wins if there is no such k1−ε.
Either spoiler chooses (k0, k1) as next configuration of the EF-game,
or the move continues as follows

I Spoiler chooses j1−ε ∈ T1−ε with i1−ε < j1−ε < k1−ε.

I Duplicator chooses jε ∈ Tε with iε < jε < kε.
Spoiler wins if there is no such jε.
The next configuration is (j0, j1).

Similar definition for the SS-move.
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Winning strategy

Definition: Winning strategy

Duplicator has a winning strategy in the k-round EF-game starting from
(w0, i0, w1, i1) if he can win all plays starting from this configuration.
This is denoted by (w0, i0) ∼k (w1, i1).

Spoiler has a winning strategy in the k-round EF-game starting from (w0, i0, w1, i1)
if she can win all plays starting from this configuration.

Example: (4)

Let a = {p}, b = {q}, c = {r}. Let w0 = aaabbc and w1 = aababc.

(w0, 0) ∼1 (w1, 0)

(w0, 0) 6∼2 (w1, 0)

Here, T0 = T1 = {0, 1, 2, . . . , 5}.
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EF-games for TL(AP, SU, SS)

Lemma: Determinacy

The k-round EF-game for TL(AP,SU,SS) is determined:
For each initial configuration, either spoiler or duplicator has a winning strategy.

Theorem: Soundness and completeness of EF-games

For all k ∈ N and all configurations (w0, i0, w1, i1), we have

(w0, i0) ∼k (w1, i1) iff (w0, i0) ≡k (w1, i1)

Example:

Let a = {p}, b = {q}, c = {r}.
Then, aaaabbc, 0 |= p SU (q SU r) but aaababc, 0 6|= p SU (q SU r).

p SU (q SU r) cannot be expressed with a formula of temporal depth at most 1.

p SU (q ∧ X q) cannot be expressed with a formula of temporal depth at most 1.

Exercise:

On finite linear time flows, “even length” cannot be expressed in TL(AP,SU,SS).
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Moves for Strict Future and Past modalities

Definition: SF-move
I Spoiler chooses ε ∈ {0, 1} and jε ∈ Tε such that iε < jε.

I Duplicator chooses j1−ε ∈ T1−ε such that i1−ε < j1−ε.
Spoiler wins if there is no such j1−ε.
The new configuration is (j0, j1).

Similar definition for the SP-move.

Example:

p SU q is not expressible in TL(AP,SP,SF) over linear flows of time.

Let a = ∅, b = {p} and c = {q}.
Let w0 = (abc)na(abc)n and w1 = (abc)n(abc)n.

Note that w0, 3n |= (¬p∧¬q)∧X(¬p∧¬q) and w1, 3n 6|= (¬p∧¬q)∧X(¬p∧¬q).

If n > k then, starting from (w0, 3n,w1, 3n), duplicator has a winning strategy in
the k-round EF-game using SF-moves and SP-moves.
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Moves for Next and Yesterday modalities

Notation: il j
def
= i < j ∧ ¬∃k (i < k < j).

Definition: X-move
I Spoiler chooses ε ∈ {0, 1} and jε ∈ Tε such that iε l jε.

I Duplicator chooses j1−ε ∈ T1−ε such that i1−ε l j1−ε.
Spoiler wins if there is no such j1−ε.
The new configuration is (j0, j1).

Similar definition for the Y-move.

Exercise:

Show that p SU q is not expressible in TL(AP,Y,SP,X,SF) over linear time flows.
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Non-strict Until and Since moves
Definition: U-move

I Spoiler chooses ε ∈ {0, 1} and kε ∈ Tε such that iε ≤ kε.
I Duplicator chooses k1−ε ∈ T1−ε such that i1−ε ≤ k1−ε.

Either spoiler chooses (k0, k1) as new configuration of the EF-game,
or the move continues as follows

I Spoiler chooses j1−ε ∈ T1−ε with i1−ε ≤ j1−ε < k1−ε.

I Duplicator chooses jε ∈ Tε with iε ≤ jε < kε.
Spoiler wins if there is no such jε.
The new configuration is (j0, j1).

I If duplicator chooses k1−ε = i1−ε then the new configuration must be (k0, k1).

I If spoiler chooses kε = iε then duplicator must choose k1−ε = i1−ε,
otherwise he loses.

Similar definition for the S-move.

Exercise:

1. Show that SU is not expressible in TL(AP,S,U) over (R, <).
2. Show that SU is not expressible in TL(AP,S,U) over (N, <).
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Syntactic Separation

Definition: Syntactically pure formulae and separation

A formula ϕ ∈ TL(AP,SU,SS) is

I syntactically pure present if it is a boolean combination of formulae in AP,

I syntactically pure future if it is a boolean combination of formulae of the form
α SU β where α, β ∈ TL(AP,SU),

I syntactically pure past if it is a boolean combination of formulae of the form
α SS β where α, β ∈ TL(AP,SS).

I syntactically separated if it is a boolean combination of syntactically pure
formulae.

A logic L is syntactically separable over a class C of time flows if each formula ϕ ∈ L
is equivalent to some (finite) boolean combination of syntactically pure formulae.

Example: (5)

The formulae ϕ1 = SF(q ∧ SP p) and ϕ2 = SF(q ∧ ¬SP¬p) are not separated but
we can find equivalent syntactically separated formulae.
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Separation

Theorem: [9, Gabbay, Pnueli, Shelah & Stavi 80]

TL(AP,SU,SS) is syntactically separable over discrete and complete linear orders.

Definition: Discrete linear order

A linear time flow (T, <) is discrete if every non-maximal element has an immediate
successor and every non-minimal element has an immediate predecessor.

I (N, <) is the unique (up to isomorphism) discrete and complete linear order
with a first point and no last point.

I (Z, <) is the unique (up to isomorphism) discrete and complete linear order
with no first point and no last point.

I Any discrete and complete linear order is isomorphic to a sub-flow of (Z, <).

Theorem: Gabbay, Reynolds, see [8]

TL(AP,SU,SS) is syntactically separable over (R, <).



149/153

Initial equivalence

Corollary: of the separation theorem

For each ϕ ∈ TL(AP,SU,SS) there exists ψ ∈ TL(AP,SU) such that ϕ and ψ are
initially equivalent over (N, <).

Example: TL(AP, SU, SS) versus TL(AP, SU)

G(grant→ (¬grant SS request))

is initially equivalent to

(request R ¬grant) ∧ G(grant→ (request ∨ (request SR ¬grant)))

Theorem: (Laroussinie & Markey & Schnoebelen 2002)

TL(AP,SU,SS) may be exponentially more succinct than TL(AP,SU) over (N, <).
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Semantic Separation

Definition:

Let w = (T, <, λ) and w′ = (T, <, λ′) be temporal structures over the same time
flow, and let t, t′ ∈ T be time points.

I w,w′ agree on t, t′ if λ(t) = λ′(t′)

I w,w′ agree on the past of t, t′ if ({s ∈ T | s < t}, <, λ) and
({s ∈ T | s < t′}, <, λ′) are isomorphic.

I w,w′ agree on the future of t if ({s ∈ T | s > t}, <, λ) and
({s ∈ T | s > t′}, <, λ′) are isomorphic.

Definition: Pure formulae
Let C be a class of time flows. A formula ϕ over some logic L is pure past
(resp. pure present, pure future) over C if

w, t |= ϕ iff w′, t′ |= ϕ

for all temporal structures w = (T, <, λ) and w′ = (T, <, λ′) over C
and all time points t, t′ ∈ T such that

w,w′ agree on the past of t, t′ (resp. on t, t′, on the future of t, t′).
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Separation
Remark: Syntax versus semantic

Every formula ϕ ∈ TL(AP,SU,SS) which is syntactically pure present (resp. future,
past) is also semantically pure present (resp. future, past).

Definition: Separation

A logic L is separable over a class C of time flows if each formula ϕ ∈ L is equivalent
to some (finite) boolean combination of pure formulae.

Theorem: [13, Gabbay 89] (already stated by Gabbay in 81)

Let C be a class of linear time flows.

Let L be a temporal logic able to express SF and SP.

Then, L is separable over C iff it is expressively complete for FOAP(<) over C.

Exercise: Checking semantically pure

Is the following problem decidable? If yes, what is his complexity?

Input: A formula ϕ ∈ TL(AP,SU,SS)

Question: Is the formula ϕ semantically pure future?
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