Büchi automata with output

Definition: SBT: Synchronous (letter to letter) Büchi transducer

Let A and B be two alphabets.

A synchronous Büchi transducer from A to B is a tuple $\mathcal{A}=(Q,A,I,T,F,\mu)$ where (Q,A,I,T,F) is a Büchi automaton (input) and $\mu:T\to B$ is the output function. It computes the relation

 $\llbracket \mathcal{A} \rrbracket = \{(u, v) \in A^{\omega} \times B^{\omega} \mid \exists \rho = q_0, a_0, q_1, a_1, q_2, a_2, q_3, \dots \text{ accepting run} with \ u = a_0 a_1 a_2 \cdots \text{ and } v = \mu(\rho),$

i.e., $v = b_0 b_1 b_2 \cdots$ with $b_i = \mu(q_i, a_i, q_{i+1})$ for $i \ge 0$

If (Q, A, I, T, F) is unambiguous then $\llbracket \mathcal{A} \rrbracket : A^{\omega} \to B^{\omega}$ is a (partial) function, in which case we also write $\llbracket \mathcal{A} \rrbracket(u) = v$ for $(u, v) \in \llbracket \mathcal{A} \rrbracket$.

We will also use SGBT: synchronous transducers with generalized Büchi acceptance.

Example: Left shift with $A = B = \{a, b\}$

◆□▶◆舂▶◆≧▶◆≧▶ ≧ のへで 101/13

Product of Büchi transducers

Definition: Product

Let A, B, C be alphabets. Let $\mathcal{A} = (Q, A, I, T, (F_i)_i, \mu)$ be an SGBT from A to B. Let $\mathcal{A}' = (Q', A, I', T', (F'_i)_j, \mu')$ be an SGBT from A to C.

Then $\mathcal{A} \times \mathcal{A}' = (Q \times Q', A, I \times I', T'', (F_i \times Q')_i, (Q \times F'_j)_j, \mu'')$ defined by:

$$\tau'' = (p,p') \xrightarrow{a} (q,q') \in T'' \text{ and } \mu''(\tau'') = (b,c)$$

iff

 $\tau=p\xrightarrow{a}q\in T \text{ and } b=\mu(\tau) \text{ and } \tau'=p'\xrightarrow{a}q'\in T' \text{ and } c=\mu'(\tau')$

is an SGBT from A to $B \times C$.

Proposition: Product

We identify $(B \times C)^{\omega}$ with $B^{\omega} \times C^{\omega}$.

- 1. We have $\llbracket \mathcal{A} \times \mathcal{A}' \rrbracket = \{(u, v, v') \mid (u, v) \in \llbracket \mathcal{A} \rrbracket$ and $(u, v') \in \llbracket \mathcal{A}' \rrbracket\}$.
- 2. If $(Q, A, I, T, (F_i)_i)$ and $(Q', A, I', T', (F'_j)_j)$ are unambiguous (resp. prophetic) then $(Q \times Q', A, I \times I', T'', (F_i \times Q')_i, (Q \times F'_j)_j)$ is also unambiguous (resp. prophetic), and $\forall u \in A^{\omega}$ we have $[\![\mathcal{A} \times \mathcal{A}']\!](u) = ([\![\mathcal{A}]\!](u), [\![\mathcal{A}']\!](u)).$

Composition of Büchi transducers

Definition: Composition

Let A, B, C be alphabets. Let $\mathcal{A} = (Q, A, I, T, (F_i)_i, \mu)$ be an SGBT from A to B. Let $\mathcal{A}' = (Q', B, I', T', (F'_j)_j, \mu')$ be an SGBT from B to C. Then $\mathcal{A} \cdot \mathcal{A}' = (Q \times Q', A, I \times I', T'', (F_i \times Q')_i, (Q \times F'_j)_j, \mu'')$ defined by:

$$\tau'' = (p,p') \xrightarrow{a} (q,q') \in T'' \text{ and } \mu''(\tau'') = c$$

iff

$$\tau = p \xrightarrow{a} q \in T \text{ and } \tau' = p' \xrightarrow{\mu(\tau)} q' \in T' \text{ and } c = \mu'(\tau')$$

is an SGBT from A to C. When the transducers define functions, we also denote the composition by $\mathcal{A}' \circ \mathcal{A}$.

Proposition: Composition

- 1. We have $\llbracket \mathcal{A} \cdot \mathcal{A}' \rrbracket = \llbracket \mathcal{A} \rrbracket \cdot \llbracket \mathcal{A}' \rrbracket$.
- 2. If $(Q, A, I, T, (F_i)_i)$ and $(Q', B, I', T', (F'_j)_j)$ are unambiguous (resp. prophetic) then $(Q \times Q', A, I \times I', T'', (F_i \times Q')_i, (Q \times F'_j)_j)$ is also unambiguous (resp. prophetic), and $\forall u \in A^{\omega}$ we have $\llbracket \mathcal{A}' \circ \mathcal{A} \rrbracket (u) = \llbracket \mathcal{A}' \rrbracket (\llbracket \mathcal{A} \rrbracket (u)).$

Subalphabets of $\Sigma = 2^{AP}$

Definition:

For a propositional formula ξ over AP, we let $\Sigma_{\xi} = \{a \in \Sigma \mid a \models \xi\}$. For instance, for $p, q \in AP$, $\Sigma_p = \{a \in \Sigma \mid p \in a\}$ and $\Sigma_{\neg p} = \Sigma \setminus \Sigma_p$ $\Sigma_{p \wedge q} = \Sigma_p \cap \Sigma_q$ and $\Sigma_{p \vee q} = \Sigma_p \cup \Sigma_q$ $\Sigma_{p \wedge \neg q} = \Sigma_p \setminus \Sigma_q$...

Notation:

In automata, $s \xrightarrow{\Sigma_{\xi}} s'$ stands for the set of transitions $\{s\} \times \Sigma_{\xi} \times \{s'\}$. To simplify the pictures, we use $s \xrightarrow{\xi} s'$ instead of $s \xrightarrow{\Sigma_{\xi}} s'$.

Example: $G(p \rightarrow Fq)$

Semantics of LTL with sequential functions

Definition: Semantics of $\varphi \in LTL(AP, SU, SS)$ Let $\Sigma = 2^{AP}$ and $\mathbb{B} = \{0, 1\}$. Define $\llbracket \varphi \rrbracket : \Sigma^{\omega} \to \mathbb{B}^{\omega}$ by $\llbracket \varphi \rrbracket (u) = b_0 b_1 b_2 \cdots$ with $b_i = \begin{cases} 1 & \text{if } u, i \models \varphi \\ 0 & \text{otherwise.} \end{cases}$

Example:

$$\begin{split} & \llbracket p \operatorname{SU} q \rrbracket (\emptyset \{q\} \{p\} \emptyset \{p\} \{p\} \{q\} \emptyset \{p\} \{p, q\} \emptyset^{\omega}) = 1001110110^{\omega} \\ & \llbracket X p \rrbracket (\emptyset \{q\} \{p\} \emptyset \{p\} \{q\} \emptyset \{p\} \{q\} \emptyset \{p\} \{q\} \emptyset^{\omega}) = 0101100110^{\omega} \\ & \llbracket F p \rrbracket (\emptyset \{q\} \{p\} \emptyset \{p\} \{q\} \emptyset \{p\} \{q\} \emptyset \{p\} \{p, q\} \emptyset^{\omega}) = 111111110^{\omega} \end{split}$$

The aim is to compute $\llbracket \varphi \rrbracket$ with synchronous Büchi transducers (actually, SGBT).

Synchronous Büchi transducer for $p \cup q$

Synchronous Büchi transducer for p SU q

Special cases of Until: Future and Next

Exercise: Give SBT's for the following formulae: SF q, SG q, p SR q, p SS q, Y q, G q, p R q, p S q, G($p \rightarrow$ F q).

◆□▶◆舂▶◆臣▶◆臣▶ 臣 夕久で 106/130

Remark:

- If a subformula φ occurs serveral time in ξ , we only need one copy of \mathcal{A}_{φ} .
- We may also use automata for other modalities: A_X (2 states), A_U , ...

◆□▶<母▶<≧▶<≧▶<≧▶<</p>
○ 113/130

 $\tau_1 = (s_1, a, s) \in T \iff \tau_2 = (s_2, a, s) \in T$ and $\mu(\tau_1) = \mu(\tau_2)$

Other constructions ▶ Tableau construction. See for instance [15, Wolper 85] + : Easy definition, easy proof of correctness + : Works both for future and past modalities - : Inefficient without strong optimizations Using Very Weak Alternating Automata [16, Gastin & Oddoux 01]. + : Very efficient - : Only for future modalities Online tool: http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/ Using reduction rules [6, Demri & Gastin 10]. + : Efficient and produces small automata +: Can be used by hand on real examples - : Only for future modalities The domain is still very active. ◆□ ▶ < @ ▶ < E ▶ < E ▶ E の < 0 114/130</p> Satisfiability for LTL over $(\mathbb{N},<)$ Let AP be the set of atomic propositions and $\Sigma = 2^{AP}$. Definition: Satisfiability problem A formula $\varphi \in LTL(AP, SU, SS)$ Input: Existence of $w \in \Sigma^{\omega}$ and $i \in \mathbb{N}$ such that $w, i \models \varphi$. Question: Definition: Initial Satisfiability problem Input: A formula $\varphi \in LTL(AP, SU, SS)$ Existence of $w \in \Sigma^{\omega}$ such that $w, \mathbf{0} \models \varphi$. Question: Remark: φ is satisfiable iff F φ is *initially* satisfiable. Definition: (Initial) validity φ is valid iff $\neg \varphi$ is **not** satisfiable.

Theorem [10, Sistla, Clarke 85], [9, Lichtenstein & Pnueli 85] The satisfiability problem for LTL is PSPACE-complete.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - の � (*) 117/130

Some References
[9] O. Lichtenstein and A. Pnueli.
Checking that finite state concurrent programs satisfy their linear specification. In ACM Symposium PoPL'85, 97–107.
[15] P. Wolper.
The tableau method for temporal logic: An overview, <i>Logique et Analyse</i> . 110–111 , 119–136, (1985).
[10] A. Sistla and E. Clarke.
The complexity of propositional linear temporal logic.
Journal of the Association for Computing Machinery. 32 (3), 733–749, (1985).
[16] P. Gastin and D. Oddoux.
Fast LTL to Büchi automata translation.
In <i>CAV'01</i> , vol. 2102, <i>Lecture Notes in Computer Science</i> , pp. 53–65. Springer, (2001).
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php
[6] S. Demri and P. Gastin.
Specification and Verification using Temporal Logics.
In Modern applications of automata theory, IISc Research Monographs 2. World Scientific, 2012.
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php < □ ৮ বট্ট বই চাল ই তাওও াা5/1

Model checking for LTL

Definition: Model checking problem			
Input:	A Kripke structure $M = (S, T, I, AP, \ell)$ A formula $\varphi \in LTL(AP, SU, SS)$		
Question:	Does $M \models \varphi$?		
	rsal MC: $M \models_{\forall} \varphi$ if $\ell(\sigma), 0 \models \varphi$ for all initial infinite runs of M . Initial MC: $M \models_{\exists} \varphi$ if $\ell(\sigma), 0 \models \varphi$ for some initial infinite run of M .		
	$M\models_\forall \varphi \text{iff} M \not\models_\exists \neg \varphi$		
Theorem [10, Sistla, Clarke 85], [9, Lichtenstein & Pnueli 85]			
The Model checking problem for LTL is PSPACE-complete			

$MC^{\exists}(SU) \leq_P SAT(SU)$ [10, Sistla & Clarke 85]

Let $M = (S, T, I, AP, \ell)$ be a Kripke structure and $\varphi \in LTL(AP, SU)$

 $\begin{array}{ll} \mbox{Introduce new atomic propositions: $AP_S = \{at_s \mid s \in S\}$ \\ \mbox{Define $AP' = AP \uplus AP_S$} & \Sigma' = 2^{AP'} & \pi: \Sigma'^\omega \to \Sigma^\omega $ by $\pi(a) = a \cap AP$. } \end{array}$

Let $w \in \Sigma'^{\omega}$. We have $w \models \varphi$ iff $\pi(w) \models \varphi$

Define $\psi_M \in \text{LTL}(\text{AP}', \mathsf{X}, \mathsf{F})$ of size $\mathcal{O}(|M|^2)$ by $\psi_M = \left(\bigvee_{s \in I} \operatorname{at}_s\right) \wedge \mathsf{G}\left(\bigvee_{s \in S} \left(\operatorname{at}_s \wedge \bigwedge_{t \neq s} \neg \operatorname{at}_t \wedge \bigwedge_{p \in \ell(s)} p \wedge \bigwedge_{p \notin \ell(s)} \neg p \wedge \bigvee_{t \in T(s)} \mathsf{X}\operatorname{at}_t\right)\right)$

Let $w = a_0 a_1 a_2 \cdots \in \Sigma'^{\omega}$. Then, $w \models \psi_M$ iff there exists an initial infinite run $\sigma = s_0, s_1, s_2, \ldots$ of M such that $\pi(w) = \ell(\sigma)$ and $a_i \cap AP_S = \{at_{s_i}\}$ for all $i \ge 0$.

 $\begin{array}{lll} \mbox{Therefore,} & M \models_\exists \varphi & \mbox{iff} & \psi_M \land \varphi \mbox{ is initially satisfiable} \\ & M \models_\forall \varphi & \mbox{iff} & \psi_M \land \neg \varphi \mbox{ is not initially satisfiable} \end{array}$

Remark: we also have $MC^{\exists}(X, F) \leq_P SAT(X, F)$.

<□▶</p>

QBF Quantified Boolean Formulae

Definition: QBF

Input:	A formula $\gamma = Q_1 x_1 \cdots Q_n x_n \gamma'$ with $\gamma' = \bigwedge \qquad \bigvee \qquad a_{ij}$ (CNF)
	$Q_i \in \{ \forall, \exists \} \text{ and } a_{ij} \in \{x_1, \neg x_1, \dots, x_n, \neg x_n\}.$

Question: Is γ valid?

Definition:

An assignment of the variables $\{x_1, \ldots, x_n\}$ is a word $v = v_1 \cdots v_n \in \{0, 1\}^n$. We write v[i] for the prefix of length *i*.

Let $V \subseteq \{0,1\}^n$ be a set of assignments.

- ▶ V is valid (for γ') if $v \models \gamma'$ for all $v \in V$,
- ► V is closed (for γ) if $\forall v \in V$, $\forall 1 \leq i \leq n$ s.t. $Q_i = \forall$,

 $\exists v' \in V \text{ s.t. } v[i-1] = v'[i-1] \text{ and } v'_i = 1 - v_i.$

Proposition:

 γ is valid iff $\exists V \subseteq \{0,1\}^n$ s.t. V is nonempty valid and closed

▲□▶▲書▶▲書▶▲書▶ 書 のなで 121/130

Complexity of LTL

Theorem: Complexity of LTL

The following problems are PSPACE-complete:

- ▶ SAT(LTL(SU, SS)), $MC^{\forall}(LTL(SU, SS))$, $MC^{\exists}(LTL(SU, SS))$
- ▶ $SAT(LTL(X, F)), MC^{\forall}(LTL(X, F)), MC^{\exists}(LTL(X, F))$
- SAT(LTL(U)), $MC^{\forall}(LTL(U))$, $MC^{\exists}(LTL(U))$
- > The restriction of the above problems to a unique propositional variable

The following problems are NP-complete:

SAT(LTL(F)), $MC^{\exists}(LTL(F))$

Complexity of CTL^*

Definition: Syntax of the Computation Tree Logic CTL* $\varphi ::= \bot \mid p \ (p \in AP) \mid \neg \varphi \mid \varphi \lor \varphi \mid X \varphi \mid \varphi \cup \varphi \mid \mathsf{E} \varphi \mid A \varphi$

Theorem

The model checking problem for CTL^* is PSPACE-complete

Proof:

PSPACE-hardness: follows from $LTL \subseteq CTL^*$.

 $\mathsf{PSPACE}\text{-}\mathsf{easiness:}$ reduction to LTL-model checking by inductive eliminations of path quantifications.

◆□ ▶ < 클 ▶ < 클 ▶ < 클 ▶ ③ Q @ 127/130</p>

Satisfiability for CTL^*

Definition: SAT(CTL*)

Input: A formula $\varphi \in \operatorname{CTL}^*$

Question: Existence of a model M and a run σ such that $M, \sigma, 0 \models \varphi$?

Theorem

The satisfiability problem for CTL^* is 2-EXPTIME-complete

▲□▶▲圖▶▲臺▶▲臺▶ 臺 のへで 129/130