Outline

Introduction

Models

Temporal Specifications

4 Satisfiability and Model Checking

- CTL
- Fair CTL
- Büchi automata
- From LTL to BA
- LTL
- CTL^*

More on Temporal Specifications

◆□→ < □→ < Ξ→ < Ξ→ < Ξ→ Ξ の Q (* 77/127)</p>

Model checking of CTL

Definition: procedure semantics($arphi$)	
$\begin{array}{l} case \ \varphi = \neg \varphi_1 \\ semantics(\varphi_1) \\ \llbracket \varphi \rrbracket := S \setminus \llbracket \varphi_1 \rrbracket \end{array}$	$\mathcal{O}(S)$
$\begin{array}{l} case \ \varphi = \varphi_1 \lor \varphi_2 \\ semantics(\varphi_1); \ semantics(\varphi_2) \\ \llbracket \varphi \rrbracket := \llbracket \varphi_1 \rrbracket \cup \llbracket \varphi_2 \rrbracket \end{array}$	$\mathcal{O}(S)$
$\begin{array}{l} \operatorname{case} \varphi = EX\varphi_1\\ \operatorname{semantics}(\varphi_1)\\ \llbracket \varphi \rrbracket := \emptyset\\ \operatorname{for all} \ t \in \llbracket \varphi_1 \rrbracket \text{ do for all } s \in T^{-1}(t) \text{ do } \llbracket \varphi \rrbracket := \llbracket \varphi \rrbracket \cup \{s\} \end{array}$	$\mathcal{O}(S) \ \mathcal{O}(T)$
$\begin{array}{l} \operatorname{case} \varphi = AX\varphi_1\\ \operatorname{semantics}(\varphi_1)\\ \llbracket \varphi \rrbracket := S\\ \operatorname{for all} t \notin \llbracket \varphi_1 \rrbracket \text{ do for all } s \in T^{-1}(t) \text{ do } \llbracket \varphi \rrbracket := \llbracket \varphi \rrbracket \setminus \{s\} \end{array}$	$\mathcal{O}(S) \ \mathcal{O}(T)$

Model checking of CTL

Theorem

Let $M = (S, T, I, AP, \ell)$ be a Kripke structure and $\varphi \in CTL$ a formula. The model checking problem $M \models_\exists \varphi$ is decidable in time $\mathcal{O}(|M| \cdot |\varphi|)$

Proof:

Compute $\llbracket \varphi \rrbracket = \{s \in S \mid M, s \models \varphi\}$ by induction on the formula. The set $\llbracket \varphi \rrbracket$ is represented by a boolean array: $L[s][\varphi] = \top$ if $s \in \llbracket \varphi \rrbracket$. The labelling ℓ is encoded in L: for $p \in AP$ we have $L[s][p] = \top$ if $p \in \ell(s)$.

The labeling i is encoded in D. for $p \in AI$ we have D[s][p] = 1 if $p \in AI$

For each $t \in S$, the set $T^{-1}(t)$ is represented as a *list*.

for all $t \in S$ do for all $s \in T^{-1}(t)$ do ... od takes time $\mathcal{O}(|T|)$.

Model checking of CTL

Definition: procedure semantics(φ) $\mathcal{O}(|S| + |T|)$ case $\varphi = \mathsf{E} \varphi_1 \mathsf{U} \varphi_2$ semantics(φ_1); semantics(φ_2) Todo := $\llbracket \varphi_2 \rrbracket$ // the "todo" set Todo is imlemented with a list $\mathcal{O}(|S|)$ Good := $[\varphi_2]$ // the "result" is computed in the array Good $\mathcal{O}(|S|)$ while $Todo \neq \emptyset$ do |S| times Invariant 1: $\llbracket \varphi_2 \rrbracket \cup \operatorname{Todo} \subseteq \operatorname{Good} \subseteq \llbracket E \varphi_1 \cup \varphi_2 \rrbracket$ and Invariant 2: $\llbracket \varphi_1 \rrbracket \cap T^{-1}(\text{Good} \setminus \text{Todo}) \subset \text{Good}$ take $t \in \text{Todo}$; Todo := Todo \ {t} $\mathcal{O}(1)$ for all $s \in T^{-1}(t)$ do |T| times if $s \in \llbracket \varphi_1 \rrbracket \setminus \text{Good then}$ $Todo := Todo \cup \{s\}; Good := Good \cup \{s\}$ $\mathcal{O}(1)$ od $\llbracket \varphi \rrbracket := \text{Good}$ $\mathcal{O}(|S|)$

Good is only used to make the invariant clear. It can be replaced by $\llbracket \varphi \rrbracket$.

<□▶<@▶<불▶<불▶ 불 외۹℃ 80/127

◆□ → ◆ □ → ◆ Ξ → ◆ Ξ → ○ Q ○ 81/127

Model checking of CTL

Definition: procedure semantics(φ)

$case \varphi = A \varphi_1 U \varphi_2$	$\mathcal{O}(S + T)$
semantics(φ_1); semantics(φ_2)	
Todo := $\llbracket \varphi_2 \rrbracket$ // the "todo" set Todo is imlemented with a list	$\mathcal{O}(S)$
Good := $\llbracket \varphi_2 \rrbracket$ // the "result" is computed in the array Good	$\mathcal{O}(S)$
for all $s \in S$ do $c[s] := T(s) $	$\mathcal{O}(S)$
while $\operatorname{Todo} \neq \emptyset$ do	S times
Invariant 1: $\llbracket \varphi_2 \rrbracket \cup \operatorname{Todo} \subseteq \operatorname{Good} \subseteq \llbracket A \varphi_1 U \varphi_2 \rrbracket$ and	
Invariant 2: $\forall s \in S, c[s] = T(s) \setminus (\text{Good} \setminus \text{Todo}) $ and	
Invariant 3: $\llbracket \varphi_1 \rrbracket \cap \{s \in S \mid c[s] = 0\} \subseteq \text{Good}$	
take $t \in \text{Todo}$; Todo := Todo \ { t }	$\mathcal{O}(1)$
for all $s \in T^{-1}(t)$ do	T times
c[s] := c[s] - 1	$\mathcal{O}(1)$
if $c[s] = 0 \land s \in \llbracket \varphi_1 \rrbracket \setminus ext{Good then}$	
$Todo := Todo \cup \{s\}; Good := Good \cup \{s\}$	$\mathcal{O}(1)$
od	
$\llbracket \varphi \rrbracket := \text{Good}$	$\mathcal{O}(S)$

Good is only used to make the invariant clear. It can be replaced by $\llbracket \varphi \rrbracket$.

fairness

Complexity of CTL Definition: SAT(CTL) Input: A formula $\varphi \in CTL$ Question: Existence of a model M and a state s such that $M, s \models \varphi$? Theorem: Complexity The model checking problem for CTL is PTIME-complete. The satisfiability problem for CTL is EXPTIME-complete. ◆□▶◆□▶◆□▶◆□▶ □ のへで 84/127 fair CTL Definition: Syntax of fair-CTL $\varphi ::= \bot \mid p \ (p \in AP) \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{E}_{f} \mathsf{X} \varphi \mid \mathsf{A}_{f} \mathsf{X} \varphi \mid \mathsf{E}_{f} \varphi \mathsf{U} \varphi \mid \mathsf{A}_{f} \varphi \mathsf{U} \varphi$ Definition: Semantics as a fragment of CTL* Let $M = (S, T, I, AP, \ell, F_1, \dots, F_n)$ be a fair Kripke structure. $\mathsf{E}_{\mathbf{f}} \varphi = \mathsf{E}(\operatorname{fair} \land \varphi)$ and $\mathsf{A}_{\mathbf{f}} \varphi = \mathsf{A}(\operatorname{fair} \rightarrow \varphi)$ Then, fair = $\bigwedge_i \mathsf{G} \mathsf{F} F_i$ where Lemma: CTL_f cannot be expressed in CTL

fair CTL

◆□ ▶ < 酉 ▶ < Ξ ▶ < Ξ ▶ Ξ の Q ↔ 88/127</p>

Model checking of CTL_f

Proof: Reductions $E_f X \varphi = E X(Fair \land \varphi)$ and $E_f \varphi U \psi = E \varphi U (Fair \land \psi)$ It remains to deal with $A_f \varphi U \psi$.We have $A_f \varphi U \psi = \neg E_f G \neg \psi \land \neg E_f (\neg \psi U (\neg \varphi \land \neg \psi))$ Hence, we only need to compute the semantics of $E_f G \varphi$.

Proof: Computation of $E_f G \varphi$

Let M_{φ} be the restriction of M to $\llbracket \varphi \rrbracket_f$. Compute the SCC of M_{φ} with Tarjan's algorithm (in linear time). Let S' be the union of the (non trivial) SCCs of M_{φ} which intersect each F_i . Then, $M, s \models \mathsf{E}_f \mathsf{G} \varphi$ iff $M, s \models \mathsf{E} \varphi \mathsf{U} S'$ iff $M_{\varphi}, s \models \mathsf{EF} S'$.

This is again a reachability problem which can be solved in linear time.

Model checking of CTL_f

Theorem

The model checking problem for ${\rm CTL}_f$ is decidable in time $\mathcal{O}(|M|\cdot|\varphi|)$

Proof: Computation of Fair = $\{s \in S \mid M, s \models E_f \top\}$ Compute the SCC of M with Tarjan's algorithm (in time $\mathcal{O}(|M|)$). Let S' be the union of the (non trivial) SCCs which intersect each F_i . Then, Fair is the set of states that can reach S'. Note that reachability can be computed in linear time.

▲□▶▲圖▶▲臺▶▲臺▶ 臺 のへで 89/127

Büchi automata

Definition:

A Büchi automaton (BA) is a tuple $\mathcal{A} = (Q, \Sigma, I, T, F)$ where

- Q: finite set of states
- Σ : finite set of labels
- $I \subseteq Q$: set of initial states
- ► $T \subseteq Q \times \Sigma \times Q$: set of transitions (non-deterministic)
- ▶ $F \subseteq Q$: set of final (repeated) states

Run: $\rho = q_0, a_0, q_1, a_1, q_2, a_2, q_3, \dots$ with $(q_i, a_i, q_{i+1}) \in T$ for all $i \ge 0$.

 ρ is initial if $q_0 \in I$.

 ρ is final (successful) if $q_i \in F$ for infinitely many *i*'s.

 ρ is accepting if it is both initial and final.

 $\mathcal{L}(\mathcal{A}) = \{a_0 a_1 a_2 \dots \in \Sigma^{\omega} \mid \exists \rho = q_0, a_0, q_1, a_1, q_2, a_2, q_3, \dots \text{ accepting run}\}$

A language $L\subseteq \Sigma^\omega$ is $\omega\text{-regular}$ if it can be accepted by some Büchi automaton.

Büchi automata

Examples: Infinitely many a's: Finitely many a's:

Whenever a then later b:

◆□ → < ⑦ → < Ξ → < Ξ → Ξ の Q ○ 93/127</p>

Büchi automata

Theorem: Büchi

Let $L\subseteq \Sigma^\omega$ be a language. The following are equivalent:

- L is ω -regular
- L is ω -rational, i.e., L is a finite union of languages of the form $L_1 \cdot L_2^{\omega}$ where $L_1, L_2 \subseteq \Sigma^+$ are rational.
- L is MSO-definable, i.e., there is a sentence $\varphi \in MSO_{\Sigma}(<)$ such that $L = \mathcal{L}(\varphi) = \{ w \in \Sigma^{\omega} \mid w \models \varphi \}.$

Exercises:

1. Construct a BA for $\mathcal{L}(\varphi)$ where φ is the $\mathrm{FO}_{\Sigma}(<)$ sentence

$$(\forall x, (P_a(x) \to \exists y > x, P_a(y))) \to (\forall x, (P_b(x) \to \exists y > x, P_c(y)))$$

2. Given BA for $L_1\subseteq \Sigma^\omega$ and $L_2\subseteq \Sigma^\omega,$ construct BA for

 $next(L_1) = \Sigma \cdot L_1$

$$\operatorname{until}(L_1, L_2) = \{ uv \in \Sigma^{\omega} \mid u \in \Sigma^+ \land v \in L_2 \land$$

$$u''v \in L_1$$
 for all $u', u'' \in \Sigma^+$ with $u = u'u''$

◆□▶◆舂▶◆≧▶◆≧▶ ≧ のへで 95/127

Büchi automata

Properties

Büchi automata are closed under union, intersection, complement.

- Union: trivial
- Intersection: easy (exercise)
- complement: difficult

Let $L = \Sigma^* (a \Sigma^{n-1} b \cup b \Sigma^{n-1} a) \Sigma^{\omega}$

Any non deterministic Büchi automaton for $\Sigma^\omega \setminus L$ has at least 2^n states.

◆□ ▶ ◆ ● ▶ ◆ ■ ▶ ◆ ■ • ⑦ � ? 94/127

Generalized Büchi automata

Definition: final condition on states or on transitions

 $\mathcal{A} = (Q, \Sigma, I, T, F_1, \dots, F_n)$ with $F_i \subseteq Q$. An infinite run σ is final (successful) if it visits infinitely often each F_i .

 $\mathcal{A} = (Q, \Sigma, I, T, T_1, \dots, T_n)$ with $T_i \subseteq T$. An infinite run σ is final if it uses infinitely many transitions from each T_i .

Example: Infinitely many a's and infinitely many b's

Theorem:

- 1. GBA and BA have the same expressive power.
- 2. Checking whether a BA or GBA has an accepting run is NLOGSPACE-complete.

<**□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □**

Unambiguous or prophetic Büchi automata

Definition: Unambiguous Büchi automata A BA or GBA A is unambiguous if every word has at most one accepting run in A.

Definition: Prophetic Büchi automata

A BA or GBA \mathcal{A} is prophetic if every word has exactly one final run in \mathcal{A} .

Examples: UBA and PBA

- Finitely many *a*'s.
- $\mathsf{G}(a \to \mathsf{F} b)$ with $\Sigma = \{a, b, c\}$.

Theorem: Prophetic Büchi automata (Carton-Michel 2003)

Every $\omega\text{-regular}$ language can be accepted by a prophetic BA.