Outline

Introduction

Models

3 Temporal Specifications

- General Definitions
- (Linear) Temporal Specifications
- Branching Temporal Specifications
- CTL^*
- $\bullet~\mathrm{CTL}$

Satisfiability and Model Checking

More on Temporal Specifications

<□ ▶ < □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ . = ∽ へ ペ - 43/78

Temporal Structures

Definition: Flows of time

A flow of time is a strict order $(\mathbb{T}, <)$ where \mathbb{T} is the nonempty set of time points and < is an irreflexive transitive relation on \mathbb{T} .

Example: Flows of time

- $(\{0,\ldots,n\},<)$: Finite runs of sequential systems.
- ► (N, <): Infinite runs of sequential systems.</p>
- $(\mathbb{R}, <)$: runs of real-time sequential systems.
- Trees: Finite or infinite run-trees of sequential systems.
- Mazurkiewicz traces: runs of distributed systems (partial orders).
- and also $(\mathbb{Z},<)$ or $(\mathbb{Q},<)$ or $(\omega^2,<),$ \ldots

Definition: Temporal Structures

Let AP be a set of atoms (atomic propositions).

A *temporal structure* over a class C of time flows and AP is a triple $(\mathbb{T}, <, h)$ where $(\mathbb{T}, <)$ is a time flow in C and $h : AP \to 2^{\mathbb{T}}$ is an assignment.

If $p \in AP$ then $h(p) \subseteq \mathbb{T}$ gives the time points where p holds.

◆□▶ ◆□▶ ◆ 壹▶ ◆ 壹 ▶ ○ ④ へぐ 46/78

Static and dynamic properties

Example: Static properties

Mutual exclusion

Safety properties are often static. They can be reduced to reachability.

Example: Dynamic properties Every elevator request should be eventually granted.

The elevator should not cross a level for which a call is pending without stopping.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで 45/78

Linear behaviors and specifications

Let $M = (S,T,I,\mathrm{AP},\ell)$ be a Kripke structure.

Definition: Runs as temporal structures

An infinite run $\sigma = s_0 s_1 s_2 \cdots$ of M with $(s_i, s_{i+1}) \in T$ for all $i \ge 0$ defines a *linear* temporal structure $\ell(\sigma) = (\mathbb{N}, <, h)$ where $h(p) = \{i \in \mathbb{N} \mid p \in \ell(s_i)\}$.

Such a temporal structure can be seen as an infinite word over $\Sigma = 2^{AP}$: $\ell(\sigma) = \ell(s_0)\ell(s_1)\ell(s_2)\cdots = (\mathbb{N}, <, w)$ with $w(i) = \ell(s_i) \in \Sigma$.

Linear specifications only depend on runs.

Example: The printer manager is fair.

On each run, whenever some process requests the printer, it eventually gets it.

Remark:

Two Kripke structures having the same linear temporal structures satisfy the same linear specifications.

Branching behaviors and specifications

The system has an infinite active run, but it may always reach an inactive state.

Definition: Computation-tree or run-tree : unfolding of the TS

Let $M = (S, T, I, AP, \ell)$ be a Kripke structure. Wlog. $I = \{s_0\}$ is a singleton. Let D be a finite set with |D| the outdegree of the transition relation T. The computation-tree of M is an unordered tree $t : D^* \to S$ (partial map) s.t.

- $t(\varepsilon) = s_0$,
- ▶ For every node $u \in dom(t)$ labelled s = t(u), if $T(s) = \{s_1, \ldots, s_k\}$ then u has exactly k children which are labelled s_1, \ldots, s_k

Associated temporal structure $\ell(t) = (dom(t), <, h)$ where

- \sim < is the strict prefix relation over D^* ,
- and $h(p) = \{ u \in dom(t) \mid p \in \ell(t(u)) \}.$

(Linear) runs of M are branches of the computation-tree t.

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ > ○ Q (~ 48/78

First-order vs Temporal

First-order logic

- FO(<) has a good expressive power
- \ldots but $\mathrm{FO}(<)\text{-}\mathsf{formulae}$ are not easy to write and to understand.
- FO(<) is decidable
- ... but satisfiability and model checking are non elementary.

Temporal logics

- no variables: time is implicit.
- quantifications and variables are replaced by modalities.
- Usual specifications are easy to write and read.
- Good complexity for satisfiability and model checking problems.
- Good expressive power.

Linear Temporal Logic (LTL) over $(\mathbb{N},<)$ introduced by Pnueli (1977) as a convenient specification language for verification of systems.

First-order Specifications

Definition: Syntax of FO(AP, <)

Let $Var = \{x, y, \ldots\}$ be first-order variables.

 $\varphi ::= \bot \mid p(x) \mid x = y \mid x < y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \varphi$

where $p \in AP$.

Definition: Semantics of FO(AP, <)

Let $w = (\mathbb{T}, <, h)$ be a temporal structure over AP. Let $\nu : \operatorname{Var} \to \mathbb{T}$ be an assignment of first-order variables to time points.

 $\begin{array}{lll} w,\nu\models p(x) & \text{if} & \nu(x)\in h(p) \\ w,\nu\models x=y & \text{if} & \nu(x)=\nu(y) \\ w,\nu\models x<y & \text{if} & \nu(x)<\nu(y) \\ w,\nu\models \exists x\,\varphi & \text{if} & w,\nu[x\mapsto t]\models\varphi \text{ for some }t\in\mathbb{T} \end{array}$

where $\nu[x \mapsto t]$ maps x to t and $y \neq x$ to $\nu(y)$.

Previous specifications can be written in FO(<) (except the branching one).

▲□▶▲舂▶▲壹▶▲壹▶ 壹 のへの 49/78

Temporal Specifications

Definition: Syntax of $TL(AP, SU, SS)$					
$\varphi ::= \bot \mid p \ (p \in \operatorname{AP}) \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \operatorname{SU} \varphi \mid \varphi \operatorname{SS} \varphi$					
Definition: Semantics: $w = (\mathbb{T}, <, h)$ temporal structure and $i \in \mathbb{T}$					
$w, i \models p$ if $i \in h(p)$					
$w,i\models \neg \varphi$ if $w,i\not\models \varphi$					
$w,i\models \varphi \lor \psi \qquad ext{if} w,i\models \varphi ext{ or } w,i\models \psi$					
$w,i \models \varphi \operatorname{SU} \psi \text{ if } \exists k \; i < k \; \text{and} \; w,k \models \psi \; \text{and} \; \forall j \; (i < j < k \rightarrow w, j \models \varphi)$					
$w,i\models\varphi SS \psi \text{ if } \exists k \; i>k \; \text{and} \; w,k\models\psi \; \text{and} \; \forall j \; (i>j>k\rightarrow w,j\models\varphi)$					
Previous specifications can be written in $TL(AP, SU, SS)$ (except the branching one).					

▲□▶▲@▶▲≣▶▲≣▶ ≣ の�� 50/78

Temporal Specifications

$\begin{array}{c|c} \mbox{Definition: non-strict versions of until and since} \\ \varphi \mbox{U} \psi & \stackrel{\text{def}}{=} & \psi \lor (\varphi \land \varphi \mbox{SU} \psi) & \varphi \mbox{S} \psi & \stackrel{\text{def}}{=} & \psi \lor (\varphi \land \varphi \mbox{SS} \psi) \\ \\ w, i \models \varphi \mbox{U} \psi & \text{if} & \exists k \ i \leq k \ \text{and} \ w, k \models \psi \ \text{and} \ \forall j \ (i \leq j < k \rightarrow w, j \models \varphi) \\ w, i \models \varphi \mbox{S} \psi & \text{if} & \exists k \ i \geq k \ \text{and} \ w, k \models \psi \ \text{and} \ \forall j \ (i \geq j > k \rightarrow w, j \models \varphi) \\ \end{array}$

Definition: Derived modalities		
$X arphi \stackrel{ ext{def}}{=} \perp SU arphi$ Next	$Y\varphi \;\;\stackrel{\scriptscriptstyledef}{=}\;\; \botSS\varphi$	Yesterday
$w, i \models X \varphi$ if $\exists k \ i < k$ and $w, i \models Y \varphi$ if $\exists k \ i > k$ and		- ,
$\begin{array}{ccc} F\varphi & \stackrel{\scriptscriptstyle def}{=} & \topU\varphi \\ G\varphi & \stackrel{\scriptscriptstyle def}{=} & \negF\neg\varphi \end{array}$	$\begin{array}{rcl} P\varphi & \stackrel{\scriptscriptstyle \mathrm{def}}{=} & \topS\varphi \\ H\varphi & \stackrel{\scriptscriptstyle \mathrm{def}}{=} & \negP\neg\varphi \end{array}$	
$\varphi W \psi \stackrel{def}{=} (G \varphi) \lor (\varphi)$	$(U\psi)$ Weak Ur	ntil

 $\varphi \mathsf{R} \psi \stackrel{\text{def}}{=} (\mathsf{G} \psi) \lor (\varphi \mathsf{U} \psi)$ Weak Only $\varphi \mathsf{R} \psi \stackrel{\text{def}}{=} (\mathsf{G} \psi) \lor (\psi \mathsf{U} (\varphi \land \psi))$ Release

< □ > < 母 > < 臣 > < 臣 > 、臣 > ○ Q (53/78

Discrete linear time flows

Definition: discrete linear time flows $(\mathbb{T}, <)$ A linear time flow is discrete if SF $\top \rightarrow X \top$ and SP $\top \rightarrow Y \top$ are valid formulae. $(\mathbb{N}, <)$ and $(\mathbb{Z}, <)$ are discrete. $(\mathbb{Q}, <)$ and $(\mathbb{R}, <)$ are not discrete.

Exercise: For discrete linear time flows $(\mathbb{T}, <)$ φ SU $\psi \equiv X(\varphi \cup \psi)$ φ SS $\psi \equiv Y(\varphi S \psi)$ $\neg X \varphi \equiv \neg X \top \lor X \neg \varphi$ $\neg Y \varphi \equiv \neg Y \top \lor Y \neg \varphi$ $\neg(\varphi \cup \psi) \equiv (G \neg \psi) \lor (\neg \psi \cup (\neg \varphi \land \neg \psi))$ $\equiv \neg \psi W (\neg \varphi \land \neg \psi)$ $\equiv \neg \varphi R \neg \psi$

Temporal Specifications

Example: Specifications on the time flow $(\mathbb{N},<)$				
Safety:	G good			
MutEx:	$\neg F(\operatorname{crit}_1 \wedge \operatorname{crit}_2)$			
Liveness:	G F active			
Response:	$G(\mathrm{request}\toF\mathrm{grant})$			
Response':	$G(\mathrm{request} \to (\neg \mathrm{request} \ SU \ \mathrm{grant}))$			
Release:	reset R alarm			
Strong fairness:	$({\sf G}{\sf F}{\rm request}) \to ({\sf G}{\sf F}{\rm grant})$			
Weak fairness:	$(FG\mathrm{request}) \to (GF\mathrm{grant})$			

▲□▶▲@▶▲≣▶▲≣▶ ≣ ∽QQ 55/78

Model checking for linear behaviors

Definition: Model checking problem				
Input:A Kripke structure $M = (S, T, I, AP, \ell)$ A formula $\varphi \in LTL(AP, SU, SS)$				
Question: Does $M \models \varphi$?				
 Universal MC: M ⊨_∀ φ if ℓ(σ), 0 ⊨ φ for all initial infinite runs σ of M. Existential MC: M ⊨_∃ φ if ℓ(σ), 0 ⊨ φ for some initial infinite run σ of M. M ⊨_∀ φ iff M ⊭_∃ ¬φ 				
Theorem [10, Sistla, Clarke 85], [9, Lichtenstein & Pnueli 85]				
The Model checking problem for LTL is PSPACE-complete. Proof later				

Weaknesses of linear behaviors

Example:

 φ : Whenever p holds, it is possible to reach a state where q holds. φ cannot be checked on linear behaviors. We need to consider the computation-trees.

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ • ○ Q ○ 59/78

MSO Specifications

Definition: Syntax of MSO(AP, <)

 $\varphi ::= \bot \mid p(x) \mid x = y \mid x < y \mid x \in X \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \varphi \mid \exists X \varphi$

where $p \in AP$, x, y are first-order variables and X is a second-order variable.

Definition: Semantics of MSO(AP, <)

Let $w = (\mathbb{T}, <, h)$ be a temporal structure over AP. An assignment ν maps first-order variables to time points in \mathbb{T} and second-order variables to sets of time points.

The semantics of first-order constructs is unchanged.

 $\begin{array}{ll} w,\nu\models x\in X & \text{ if } \quad \nu(x)\in\nu(X) \\ w,\nu\models \exists X\,\varphi & \text{ if } \quad w,\nu[X\mapsto T]\models\varphi \text{ for some }T\subseteq\mathbb{T} \end{array}$

where $\nu[X\mapsto T]$ maps X to T and keeps unchanged the other assignments.

Weaknesses of FO specifications

Example:

 ψ : The system has an infinite active run, but it may always reach an inactive state. ψ cannot be expressed in FO.

We need quantifications on runs: $\psi = EG(Active \land EF \neg Active)$

E: for some infinite run

A: for all infinite runs

▲□▶▲@▶▲壹▶▲壹▶ 壹 のへで 60/78

MSO vs Temporal

MSO logic

MSO(<) has a good expressive power

- \dots but MSO(<)-formulae are not easy to write and to understand.
- MSO(<) is decidable on computation trees
- \ldots but satisfiability and model checking are non elementary.

We need a temporal logic

- with no explicit variables,
- allowing quantifications over runs,
- usual specifications should be easy to write and read,
- with good complexity for satisfiability and model checking problems,
- with good expressive power.

Computation Tree Logic CTL* introduced by Emerson & Halpern (1986).

CTL* (Emerson & Halpern 86)

Definition: Syntax of the Computation Tree Logic $\mathrm{CTL}^*(\mathrm{AP},\mathsf{SU})$

 $\varphi ::= \bot \mid p \ (p \in \operatorname{AP}) \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \operatorname{\mathsf{SU}} \varphi \mid \operatorname{\mathsf{E}} \varphi \mid \operatorname{\mathsf{A}} \varphi$

We may also add the past modality SS

Definition: Semantics of $CTL^*(AP, SU)$

Let $M = (S, T, I, AP, \ell)$ be a Kripke structure. Let $\sigma = s_0 s_1 s_2 \cdots$ be an infinite run of M.

 $\begin{array}{ll} M,\sigma,i\models p & \text{if } p\in\ell(s_i)\\ M,\sigma,i\models\varphi\, \mathsf{SU}\,\psi & \text{if } \exists k>i, \ M,\sigma,k\models\psi \text{ and }\forall i< j< k, \ M,\sigma,j\models\varphi\\ M,\sigma,i\models\mathsf{E}\varphi & \text{if } M,\sigma',i\models\varphi \text{ for some infinite run }\sigma' \text{ such that }\sigma'[i]=\sigma[i]\\ M,\sigma,i\models\mathsf{A}\varphi & \text{if } M,\sigma',i\models\varphi \text{ for all infinite runs }\sigma' \text{ such that }\sigma'[i]=\sigma[i] \end{array}$

where $\sigma[i] = s_0 \cdots s_i$.

Remark:

 $\sigma'[i] = \sigma[i]$ means that future is branching but past is not.

```
▲□▶▲□▶▲≧▶▲≧▶ ≧ ∽۹ペ~ 65/78
```

Model checking of CTL^*

Definition: Existential and universal model checking

Let $M=(S,T,I,\mathrm{AP},\ell)$ be a Kripke structure and $\varphi\in\mathrm{CTL}^*$ a formula.

 $\begin{array}{ll} M\models_\exists \varphi & \text{if } M, \sigma, 0 \models \varphi \text{ for some initial infinite run } \sigma \text{ of } M. \\ M\models_\forall \varphi & \text{if } M, \sigma, 0 \models \varphi \text{ for all initial infinite runs } \sigma \text{ of } M. \end{array}$

 $\mathsf{Remark:}\ M\models_\forall \varphi \text{ iff } M \not\models_\exists \neg \varphi$

Definition: Model checking problems $MC_{CTL^*}^{\forall}$ and $MC_{CTL^*}^{\exists}$

Input: A Kripke structure $M = (S, T, I, AP, \ell)$ and a formula $\varphi \in CTL^*$

or

Question: Does $M \models_{\forall} \varphi$?

Does $M \models_\exists \varphi$?

Theorem:

The model checking problem for CTL^* is PSPACE-complete.

Proof later

▲□▶▲舂▶▲≧▶▲≧▶ ≧ の�� 67/78

CTL* (Emerson & Halpern 86)

Example: Some specifications

- EF φ : φ is possible
- AG φ : φ is an invariant
- AF φ : φ is unavoidable
- EG φ : φ holds globally along some path

Remark: Some equivalences

- ${}^{\scriptstyle \triangleright} \ {\sf A}\,\varphi \equiv \neg\,{\sf E}\,\neg\varphi$
- $\mathsf{E}(\varphi \lor \psi) \equiv \mathsf{E} \, \varphi \lor \mathsf{E} \, \psi$
- $\mathsf{A}(\varphi \land \psi) \equiv \mathsf{A}\, \varphi \land \mathsf{A}\, \psi$

▲□▶▲圖▶▲臺▶▲臺▶ 臺 夕久? 66/78

State formulae and path formulae

Definition: State formulae

$$\begin{split} \varphi \in \mathrm{CTL}^* \text{ is a state formula if } \forall M, \sigma, \sigma', i, j \text{ such that } \sigma(i) = \sigma'(j) \text{ we have} \\ M, \sigma, i \models \varphi \iff M, \sigma', j \models \varphi \\ \text{If } \varphi \text{ is a state formula and } M = (S, T, I, \mathrm{AP}, \ell), \text{ define} \\ M, s \models \varphi \text{ if } M, \sigma, 0 \models \varphi \text{ for some infinite run } \sigma \text{ of } M \text{ with } \sigma(0) = s \\ \text{and} \qquad [\![\varphi]\!]^M = \{s \in S \mid M, s \models \varphi\} \end{split}$$

Example: State formulae

Atomic propositions are state formulae:	$\llbracket p \rrbracket = \{ s \in S \mid p \in \ell(s) \}$			
State formulae are closed under boolean connectives.				
$\llbracket \neg \varphi \rrbracket = S \setminus \llbracket \varphi \rrbracket$	$\llbracket \varphi_1 \vee \varphi_2 \rrbracket = \llbracket \varphi_1 \rrbracket \cup \llbracket \varphi_2 \rrbracket$			
Formulae of the form $\mathbf{E} \varphi$ or $\mathbf{A} \varphi$ are state formulae, provided φ is future.				
$Remark: \qquad M \models_\exists \varphi \text{ iff } I \cap \llbracket E \varphi \rrbracket \neq \emptyset$	$M\models_\forall \varphi \text{ iff } M \not\models_\exists \neg \varphi$			
Definition: Alternative syntax				

 $\begin{array}{lll} \text{State formulae} & \varphi ::= \bot \mid p \ (p \in \operatorname{AP}) \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{E} \psi \mid \mathsf{A} \psi \\ \text{Path formulae} & \psi ::= \varphi \mid \neg \psi \mid \psi \lor \psi \mid \psi \ \mathsf{SU} \psi \end{array}$

CTL (Clarke & Emerson 81) CTL (Clarke & Emerson 81) Definition: Computation Tree Logic CTL(AP, X, U) Syntax: Definition: Semantics $\varphi ::= \bot \mid p \ (p \in AP) \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{EX} \varphi \mid \mathsf{AX} \varphi \mid \mathsf{E} \varphi \, \mathsf{U} \varphi \mid \mathsf{A} \varphi \, \mathsf{U} \varphi$ All CTL-formulae are state formulae. Hence, we have a simpler semantics. Let $M = (S, T, I, AP, \ell)$ be a Kripke structure without deadlocks and let $s \in S$. The semantics is inherited from CTL^* . $M, s \models p$ if $p \in \ell(s)$ Remark: All CTL formulae are state formulae $M, s \models \mathsf{EX} \varphi$ if $\exists s \to s'$ with $M, s' \models \varphi$ $\llbracket \varphi \rrbracket^M = \{ s \in S \mid M, s \models \varphi \}$ $M, s \models \mathsf{AX} \varphi$ if $\forall s \to s'$ we have $M, s' \models \varphi$ $M, s \models \mathsf{E} \varphi \mathsf{U} \psi$ if $\exists s = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \cdots \rightarrow s_k$ finite path, with $M, s_k \models \psi$ and $M, s_i \models \varphi$ for all $0 \le i \le k$ Examples: Macros $M, s \models \mathsf{A} \varphi \mathsf{U} \psi$ if $\forall s = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \cdots$ infinite paths, $\exists k \ge 0$ with $\mathsf{EF}\,\varphi = \mathsf{E} \top \mathsf{U}\,\varphi$ and $\mathsf{AG}\,\varphi = \neg \,\mathsf{EF}\,\neg\varphi$ $M, s_k \models \psi$ and $M, s_i \models \varphi$ for all $0 \le i \le k$ $AF \varphi = A \top U \varphi$ and $EG \varphi = \neg AF \neg \varphi$ $AG(req \rightarrow EF grant)$ $AG(req \rightarrow AF grant)$ ◆□▶<□</p> ◆□▶◆□▶◆豆▶◆豆▶ 豆 のQ@ 71/78 CTL (Clarke & Emerson 81) CTL (Clarke & Emerson 81) Example: Remark: Equivalent formulae p, rp,q $AX \varphi \equiv \neg EX \neg \varphi$, $\neg(\varphi \mathsf{U} \psi) \equiv \mathsf{G} \neg \psi \lor (\neg \psi \mathsf{U} (\neg \varphi \land \neg \psi))$ $\mathsf{A}\varphi \mathsf{U}\psi \equiv \neg \mathsf{E}\mathsf{G}\neg\psi \land \neg \mathsf{E}(\neg\psi \mathsf{U}(\neg\varphi \land \neg\psi))$ $AG(req \rightarrow F grant) \equiv AG(req \rightarrow AF grant)$ $A G F \varphi \equiv AG AF \varphi$ $\mathsf{E}\,\mathsf{F}\,\mathsf{G}\,\varphi \equiv \mathsf{E}\,\mathsf{F}\,\mathsf{E}\,\mathsf{G}\,\varphi$ $\llbracket \mathsf{EX} p \rrbracket =$ $\llbracket \mathsf{AX} p \rrbracket =$ $EG EF \varphi \not\equiv EG F \varphi \not\equiv EG AF \varphi$ $\llbracket \mathsf{EF} p \rrbracket =$ $AFAG \varphi \neq AFG \varphi \neq AFEG \varphi$ $\llbracket \mathsf{AF} p \rrbracket =$ $EG EX \varphi \not\equiv EG X \varphi \not\equiv EG AX \varphi$ $\llbracket \mathsf{E} q \mathsf{U} r \rrbracket =$ $\llbracket A q \cup r \rrbracket =$

<□▶<週▶<重▶<重▶<重▶ 重 のQで 72/78

▲□▶▲舂▶▲葦▶▲葦▶ 葦 釣�� 73/78

Model checking of CTL

Definition: Existential and universal model checking

Let $M=(S,T,I,\mathrm{AP},\ell)$ be a Kripke structure and $\varphi\in\mathrm{CTL}$ a formula.

 $\begin{array}{ll} M \models_\exists \varphi & \text{if } M, s \models \varphi \text{ for some } s \in I. \\ M \models_\forall \varphi & \text{if } M, s \models \varphi \text{ for all } s \in I. \end{array}$

Remark:

$$\begin{split} M &\models_{\exists} \varphi \quad \text{iff} \quad I \cap \llbracket \varphi \rrbracket \neq \emptyset \\ M &\models_{\forall} \varphi \quad \text{iff} \quad I \subseteq \llbracket \varphi \rrbracket \\ M &\models_{\forall} \varphi \quad \text{iff} \quad M \not\models_{\exists} \neg \varphi \end{split}$$

Definition: Model checking problems $\mathrm{MC}_{\mathrm{CTL}}^{\forall}$ and $\mathrm{MC}_{\mathrm{CTL}}^{\exists}$

Input: A Kripke structure $M = (S, T, I, AP, \ell)$ and a formula $\varphi \in CTL$ Question: Does $M \models_{\forall} \varphi$? or Does $M \models_{\exists} \varphi$?

Theorem:

Let $M = (S, T, I, AP, \ell)$ be a Kripke structure and $\varphi \in CTL$ a formula. The model checking problem $M \models_\exists \varphi$ is decidable in time $\mathcal{O}(|M| \cdot |\varphi|)$

References

- [6] S. Demri and P. Gastin. Specification and Verification using Temporal Logics. In Modern applications of automata theory, IISc Research Monographs 2. World Scientific, 2012. http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php
- [7] D. Gabbay, I. Hodkinson and M. Reynolds. Temporal logic: mathematical foundations and computational aspects. Vol 1, Clarendon Press, Oxford, 1994.
- [8] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness. In 7th Annual ACM Symposium PoPL'80, 163–173. ACM Press.
- [9] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their linear specification. In ACM Symposium PoPL'85, 97–107.
- [10] A. Sistla and E. Clarke.

The complexity of propositional linear temporal logic. Journal of the Association for Computing Machinery. **32** (3), 733–749, (1985).

<□▶<□▶<□▶<三▶<三▶<=> ○<</td>

References

- Christel Baier and Joost-Pieter Katoen. *Principles of Model Checking*. MIT Press, 2008.
- [2] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, Ph. Schnoebelen. Systems and Software Verification. Model-Checking Techniques and Tools. Springer, 2001.
- [3] E.M. Clarke, O. Grumberg, D.A. Peled. Model Checking. MIT Press, 1999.
- [4] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer, 1991.
- [5] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer, 1995.

▲□▶▲舂▶▲壹▶▲壹▶ 壹 のへで 75/78