Need for formal verification methods

Critical systems
- Transport
- Energy
- Medicine
- Communication
- Finance
- Embedded systems
- ...

Disastrous software bugs

Mariner 1 probe, 1962

See http://en.wikipedia.org/wiki/Mariner_1

- Destroyed 293 seconds after launch
- Missing hyphen in the data or program? No!
- Overbar missing in the mathematical specification:
 \[\overline{R}_n \]
 \(n \)th smoothed value of the time derivative of a radius.
- Without the smoothing function indicated by the bar, the program treated normal minor variations of velocity as if they were serious, causing spurious corrections that sent the rocket off course.
Disastrous software bugs

Ariane 5 flight 501, 1996
See http://en.wikipedia.org/wiki/Ariane_5_Flight_501
- Destroyed 37 seconds after launch (cost: 370 millions dollars).
- Data conversion from a 64-bit floating point to 16-bit signed integer value caused a hardware exception (arithmetic overflow).
- Efficiency considerations had led to the disabling of the software handler (in Ada code) for this error trap.
- The fault occurred in the inertial reference system of Ariane 5. The software from Ariane 4 was re-used for Ariane 5 without re-testing.
- On the basis of those calculations the main computer commanded the booster nozzles, and somewhat later the main engine nozzle also, to make a large correction for an attitude deviation that had not occurred.
- The error occurred in a realignment function which was not useful for Ariane 5.

Disastrous software bugs

Spirit Rover (Mars Exploration), 2004
- Ceased communicating on January 21.
- Flash memory management anomaly: too many files on the file system
- Resumed to working condition on February 6.

Disastrous software bugs

Other well-known bugs

Formal verifications methods

Complementary approaches
- Theorem prover
- Model checking
- Static analysis
- Test
Model Checking

- Purpose 1: automatically finding software or hardware bugs.
- Purpose 2: prove correctness of abstract models.
- Should be applied during design.
- Real systems can be analysed with abstractions.

E.M. Clarke E.A. Emerson J. Sifakis

Prix Turing 2007.

References

Outline

Introduction
- Models
 - Transition Systems
 - ... with Variables
 - Concurrent Systems
 - Synchronization and Communication

Temporal Specifications

Satisfiability and Model Checking

More on Temporal Specifications
Model and abstractions

Example: Golden face

Each coin has a golden face and a silver face. At each step, we may flip simultaneously the 3 coins of a line, column or diagonal. Is it possible to have all coins showing its golden face? If yes, what is the smallest number of steps.

Model = Transition system

I States: configurations of the board: \(2^9 = 512\) states
I Transitions: flipping a line/column/diagonal
I Problem: reachability

Abstraction 1: number of golden faces in a configuration.
Abstraction 2: parity of the number of golden faces in the corners.

Model and Specification

Example: Men, Wolf, Goat, Cabbage

Model = Transition system
I State = who is on which side of the river
I Transition = crossing the river
I Specification
 - Safety: Never leave WG or GC alone
 - Liveness: Take everyone to the other side of the river.

Transition system or Kripke structure

Definition: TS
\[M = (S, \Sigma, T, I, AP, \ell) \]
- \(S\): set of states (finite or infinite)
- \(\Sigma\): set of actions
- \(T \subseteq S \times \Sigma \times S\): set of transitions
- \(I \subseteq S\): set of initial states
- \(AP\): set of atomic propositions
- \(\ell: S \rightarrow 2^{AP}\): labelling function.

Every discrete system may be described with a TS.

Example: Digicode ABA

Description Languages

Pb: How can we easily describe big systems?

Description Languages (high level)
- Programming languages
- Boolean circuits
- Modular description, e.g., parallel compositions
- Problems: concurrency, synchronization, communication, atomicity, fairness, ...
- Petri nets (intermediate level)
- Transition systems (intermediate level)
 - with variables, stacks, channels, ...
 - synchronized products
- Logical formulae (low level)

Operational semantics

High level descriptions are translated (compiled) to low level (infinite) TS.
Transition systems with variables

Definition: TSV \(M = (S, \Sigma, V, (D_v)_{v \in V}, T, I, AP, \ell) \)

- \(V \): set of (typed) variables, e.g., boolean, \([0..4], N, \ldots\)
- Each variable \(v \in V \) has a domain \(D_v \) (finite or infinite).
 Let \(D = \prod_{v \in V} D_v \).
- Guard or Condition \(g \) with semantics \([g]: D \rightarrow \text{truth value} \)
 Symbolic descriptions: \(x < 5, x + y = 10, \ldots \)
- Instruction or Update \(f \) with semantics \([f]: D \rightarrow D \)
 Symbolic descriptions: \(x := 0, x := (y + 1)^2, \ldots \)
- \(T \subseteq S \times (\text{Guard} \times \Sigma \times \text{Update}) \times S \)
 Symbolic descriptions: \(s : x < 50, ?\text{coin}, x := x + \text{coin} \rightarrow s' \)
- \(I \subseteq S \times \text{Guard} \)
 Symbolic descriptions: \((s_0, x = 0) \)

Example: Vending machine
- coffee: 50 cents, orange juice: 1 euro, ...
- possible coins: 10, 20, 50 cents
- we may shuffle coin insertions and drink selection

Example: Digicode

Programs = Kripke structures with variables
- Program counter = states
- Instructions = transitions
- Variables = variables

Example: GCD

Only variables

The state is nothing but a special variable: \(s \in V \) with domain \(D_s = S \).

Definition: TSV \(M = (V, (D_v)_{v \in V}, T, I, AP, \ell) \)

Symbolic representations with logic formulae
- \(I \) given by a formula \(\psi(\nu) \)
- \(T \) given by a formula \(\phi(\nu, \nu') \)
 \(\nu, \nu' \): values before the transition
 \(\nu' \): values after the transition
- Often we use boolean variables only: \(D_v = \{0, 1\} \)
- Concise descriptions of boolean formulae with Binary Decision Diagrams.

Example: Boolean circuit: modulo 8 counter

\[
\begin{align*}
&b_0' = \neg b_0 \\
&b_1' = b_0 \oplus b_1 \\
&b_2' = (b_0 \land b_1) \oplus b_2
\end{align*}
\]
Modular description of concurrent systems

\[M = M_1 \parallel M_2 \parallel \cdots \parallel M_n \]

Semantics
- Various semantics for the parallel composition \(\parallel \)
- Various communication mechanisms between components: Shared variables, FIFO channels, Rendez-vous, ...
- Various restrictions
Atomic propositions are inherited from the local systems.

Example: Elevator with 1 cabin, 3 doors, 3 calling devices
- Cabin:
- Door for level \(i \):
- Call for level \(i \):

Synchronized products

Definition: General product
- Components: \(M_i = (S_i, \Sigma_i, T_i, I_i, AP_i, \ell_i) \)
- Product: \(M = (S, \Sigma, T, I, AP, \ell) \) with
 \[S = \Pi_i S_i, \quad \Sigma = \Pi_i (\Sigma_i \cup \{ \varepsilon \}), \quad \text{and} \quad I = \Pi_i I_i \]
 \[T = \{(p_1, \ldots, p_n) (a_1, \ldots, a_n) (q_1, \ldots, q_n) \mid \text{for all } i, (p_i, a_i, q_i) \in T_i \text{ or } a_i = \varepsilon \text{ and } p_i = q_i\} \]
- \(AP = \bigcup_i AP_i \) and \(\ell(p_1, \ldots, p_n) = \bigcup_i \ell(p_i) \)

Synchronized products: restrictions of the general product.
Parallel compositions: 2 special cases
- Synchronous: \(\Sigma_{\text{sync}} = \Pi_i \Sigma_i \)
- Asynchronous: \(\Sigma_{\text{async}} = \bigcup_i \Sigma_i' \) with \(\Sigma_i' = \{ \varepsilon \}^{i-1} \times \Sigma_i \times \{ \varepsilon \}^{n-i} \)

Restrictions
- on states: \(S_{\text{restrict}} \subseteq S \)
- on labels: \(\Sigma_{\text{restrict}} \subseteq \Sigma \)
- on transitions: \(T_{\text{restrict}} \subseteq T \)

Shared variables

Definition: Asynchronous product + shared variables
\(\bar{s} = (s_1, \ldots, s_n) \) denotes a tuple of states
\(\nu \in D = \Pi_{v \in V} D_v \) is a valuation of variables.

Semantics (SOS)
\[\nu \models g \iff s_i \models g \wedge (s' \models f(\nu)) \]

Example: Mutual exclusion for 2 processes satisfying
- Safety: never simultaneously in critical section (CS).
- Liveness: if a process wants to enter its CS, it eventually does.
- Fairness: if process 1 wants to enter its CS, then process 2 will enter its CS at most once before process 1 does.

using shared variables but without further restrictions: the atomicity is
- testing or reading or writing a single variable at a time
- no test-and-set: \(\{ x = 0; x := 1 \} \)

Peterson’s algorithm (1981)

Process \(i \):
\[// i \text{ is not a variable} \]
loop forever
 \(\text{req}[i] := \text{true}; \text{turn} := 1-i \)
 wait until (turn = \(i \) or \(\text{req}[1-i] \) = false)
Critical section
 \(\text{req}[i] := \text{false} \)

Exercise:
- Draw the concrete TS assuming the first two assignments are atomic.
- Is the algorithm still correct if we swap the first two assignments?
Atomicity

Example:
Initially \(x = 1 \land y = 2 \)
Program \(P_1: \ x := x + y \parallel y := x + y \)
Program \(P_2: \begin{cases} \text{Load} R_1, x \\ \text{Add} R_1, y \\ \text{Store} R_1, x \end{cases} \parallel \begin{cases} \text{Load} R_2, x \\ \text{Add} R_2, y \\ \text{Store} R_2, y \end{cases} \)

Assuming each instruction is atomic, what are the possible results of \(P_1 \) and \(P_2 \)?

Communication by Rendez-vous

Restriction on transitions is universal but too low-level.

Definition: Rendez-vous
- \(!m\) sending message \(m\)
- \(?m\) receiving message \(m\)
- SOS: Structural Operational Semantics

 Local actions
 \[
 \begin{align*}
 s_1 & \xrightarrow{a_1} s'_1 \\
 s_1 & \xrightarrow{a_2} s'_2 \\
 s_2 & \xrightarrow{a_2} s'_2 \\
 s_2 & \xrightarrow{a_2} s'_2
 \end{align*}
 \]

 Rendez-vous
 \[
 \begin{align*}
 s_1 & \xrightarrow{!m} s'_1 \land s_2 & \xrightarrow{?m} s'_2 \\
 s_1 & \xrightarrow{?m} s'_1 \land s_2 & \xrightarrow{!m} s'_2
 \end{align*}
 \]
- It is a restriction on actions.
- Essential feature of process algebra.

Example: Elevator with 1 cabin, 3 doors, 3 calling devices
- \(?\text{up}\) is uncontrollable for the cabin
- \(?\text{leave}_i\) is uncontrollable for door \(i \)
- \(?\text{call}_0\) is uncontrollable for the system

Atomicity

Definition: Atomic statements: \(\text{atomic}(\text{ES}) \)

Elementary statements (no loops, no communications, no synchronizations)
\[
\begin{align*}
\text{ES} & := \text{skip} \mid \text{await } c \mid x := e \mid \text{ES} \parallel \text{ES} \\
& \mid \text{when } c \text{ do } \text{ES} \mid \text{if } c \text{ then } \text{ES} \text{ else } \text{ES}
\end{align*}
\]

Atomic statements: if the ES can be fully executed then it is executed in one step.
\[
\begin{align*}
(\bar{s}, \bar{\nu}) & \xrightarrow{\text{ES}} (\bar{s}', \bar{\nu}') \\
(\bar{s}, \bar{\nu}) & \xrightarrow{\text{atomic}(\text{ES})} (\bar{s}', \bar{\nu}')
\end{align*}
\]

Example: Atomic statements
- \(\text{atomic}(x = 0; x := 1) \) (Test and set)
- \(\text{atomic}(y := y - 1; \text{await}(y = 0); y := 1) \) is equivalent to \(\text{await}(y = 1) \)

Channels

Example: Leader election
We have \(n \) processes on a directed ring, each having a unique \(\text{id} \in \{1, \ldots, n\} \).

\[
\begin{align*}
\text{send}(\text{id}) \\
\text{loop forever} \\
& \text{receive}(x) \\
& \text{if } (x = \text{id}) \text{ then STOP fi} \\
& \text{if } (x > \text{id}) \text{ then send}(x)
\end{align*}
\]
Channels

Definition: Channels

- Declaration:
 - \(c \) : channel \([k]\) of bool size \(k \)
 - \(c \) : channel \([\infty]\) of int unbounded
 - \(c \) : channel \([0]\) of colors Rendez-vous

- Primitives:
 - empty\((c)\)
 - \(c! e \) add the value of expression \(e \) to channel \(c \)
 - \(c? x \) read a value from \(c \) and assign it to variable \(x \)

- Domain: Let \(D_m \) be the domain for a single message.
 - \(D_e = D_m^k \) size \(k \)
 - \(D_e = D_m^{\infty} \) unbounded
 - \(D_e = \{ \epsilon \} \) Rendez-vous

- Politics: FIFO, LIFO, BAG, ...

Semantics: (lossy) FIFO

\[
\begin{align*}
\text{Send:} & \quad s_i \xrightarrow{c!e} s'_i \land \nu'(c) = \nu(e) \cdot \nu(c) \\
& \quad (s_i, \nu) \xrightarrow{c!e} (s'_i, \nu') \\
\text{Receive:} & \quad s_i \xrightarrow{c?x} s'_i \land \nu'(c) = \nu'(c) \cdot \nu'(x) \\
& \quad (s_i, \nu) \xrightarrow{c?x} (s'_i, \nu') \\
\text{Lossy send:} & \quad s_i \xrightarrow{c!e} s'_i \\
& \quad (s_i, \nu) \xrightarrow{c!e} (s'_i, \nu)
\end{align*}
\]

Implicit assumption: all variables that do not occur in the premise are not modified.

Exercises:
1. Implement a FIFO channel using rendez-vous with an intermediary process.
2. Give the semantics of a LIFO channel.
3. Model the alternating bit protocol (ABP) using a lossy FIFO channel.
 Fairness assumption: For each channel, if infinitely many messages are sent, then infinitely many messages are delivered.

High-level descriptions

Summary
- Sequential program = transition system with variables
- Concurrent program with shared variables
- Concurrent program with Rendez-vous
- Concurrent program with FIFO communication
- Petri net
- ...

Models: expressivity versus decidability

Remark: (Un)decidability
- Automata with 2 integer variables = Turing powerful
- Restriction to variables taking values in finite sets
- Asynchronous communication: unbounded fifo channels = Turing powerful
- Restriction to bounded channels or lossy channels

Remark: Some infinite state models are decidable
- Petri nets. Several unbounded integer variables but no zero-test.
- Pushdown automata. Model for recursive procedure calls.
- Timed automata.
- ...

Channels