Outline

Introduction

Models

Temporal Specifications

4 Satisfiability and Model Checking

- \bullet Satisfiability and Model Checking for CTL
- Satisfiability and Model Checking for fair-CTL
- Büchi automata and transducers
- From LTL to BA
- Satisfiability and Model Checking for LTL
- \bullet Satisfiability and Model Checking for CTL^*

More on Temporal Specifications

▲□▶▲舂▶▲葦▶▲葦▶ 葦 のへで 5/53

Model checking of CTL

Definition: procedure semantics(φ)	
$\begin{array}{l} case \ \varphi = \neg \varphi_1 \\ semantics(\varphi_1) \\ \llbracket \varphi \rrbracket := S \setminus \llbracket \varphi_1 \rrbracket \end{array}$	$\mathcal{O}(S)$
$\begin{array}{l} case \ \varphi = \varphi_1 \lor \varphi_2 \\ semantics(\varphi_1); \ semantics(\varphi_2) \\ \llbracket \varphi \rrbracket := \llbracket \varphi_1 \rrbracket \cup \llbracket \varphi_2 \rrbracket \end{array}$	$\mathcal{O}(S)$
$\begin{array}{l} case \ \varphi = EX\varphi_1\\ semantics(\varphi_1)\\ \llbracket \varphi \rrbracket := \emptyset\\ for all \ (s,t) \in T \ do \ if \ t \in \llbracket \varphi_1 \rrbracket \ then \ \llbracket \varphi \rrbracket := \llbracket \varphi \rrbracket \cup \{s\} \end{array}$	$\mathcal{O}(S) \ \mathcal{O}(T)$
$\begin{array}{l} case \ \varphi = AX\varphi_1 \\ semantics(\varphi_1) \\ \llbracket \varphi \rrbracket := S \\ for all \ (s,t) \in T \ do \ if \ t \notin \llbracket \varphi_1 \rrbracket \ then \ \llbracket \varphi \rrbracket := \llbracket \varphi \rrbracket \setminus \{s\} \end{array}$	$\mathcal{O}(S) \ \mathcal{O}(T)$

Model checking of CTL

Theorem: MC for CTL

Let $M = (S, T, I, AP, \ell)$ be a Kripke structure and $\varphi \in CTL$ a formula. The model checking problem $M \models_\exists \varphi$ is decidable in time $\mathcal{O}(|M| \cdot |\varphi|)$

Proof:

 $\begin{array}{l} \text{Compute } \llbracket \varphi \rrbracket = \{s \in S \mid M, s \models \varphi\} \text{ by induction on the formula.} \\ \text{The set } \llbracket \varphi \rrbracket \text{ is represented by a boolean array: } L[\varphi][s] = \top \text{ if } s \in \llbracket \varphi \rrbracket. \\ \text{The labelling } \ell \text{ is encoded in } L: \text{ for } p \in \text{AP we have } L[p][s] = \top \text{ if } p \in \ell(s). \end{array}$

▲□▶▲圖▶▲臺▶▲臺▶ 臺 のへで 7/53

Model checking of CTL

Definition: procedure semantics($arphi$)	
$case\; \varphi = E \varphi_1 \:U\; \varphi_2$	$\mathcal{O}(S + T)$
$semantics(arphi_1); semantics(arphi_2)$	
$L := \llbracket \varphi_2 \rrbracket$ // the "todo" set L is imlemented with a list	$\mathcal{O}(S)$
$Z:=\llbracket arphi_2 rbracket \ //$ the "result" is computed in the array Z	$\mathcal{O}(S)$
while $L eq \emptyset$ do	S times
Invariant: $L \subseteq Z$ and	
$\llbracket \varphi_2 \rrbracket \cup (\llbracket \varphi_1 \rrbracket \cap T^{-1}(Z \setminus L)) \subseteq Z \subseteq \llbracket E \varphi_1 U \varphi_2 \rrbracket$	
take $t \in L$; $L := L \setminus \{t\}$	$\mathcal{O}(1)$
for all $s \in T^{-1}(t)$ do	T times
if $s \in \llbracket \varphi_1 \rrbracket \setminus Z$ then $L := L \cup \{s\}$; $Z := Z \cup \{s\}$	$\mathcal{O}(1)$
od	
$[\![\varphi]\!]:=Z$	$\mathcal{O}(S)$

Z is only used to make the invariant clear. It can be replaced by $[\![\varphi]\!]$.

< □ > < □ > < □ > < Ξ > < Ξ > Ξ - Ͽ < ⊙ < ⊙ - 9/53

Model checking of CTL

Z is only used to make the invariant clear. It can be replaced by $\llbracket \varphi \rrbracket$.

▲□▶▲♂▶▲≧▶▲≧▶ ≧ ∽Aペ 10/53

Fairness

Complexity of CTL Definition: SAT(CTL) A formula $\varphi \in CTL$ Input: Question: Existence of a model M and a state s such that $M, s \models \varphi$? Theorem: Complexity The model checking problem for CTL is PTIME-complete. The satisfiability problem for CTL is EXPTIME-complete. ・ロト・(部)・・ヨト・ヨト ヨーのへの 11/53 fair-CTL Definition: Syntax of fair-CTL $\varphi ::= \bot \mid p \ (p \in AP) \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{E}_{\mathsf{f}} \mathsf{X} \varphi \mid \mathsf{A}_{\mathsf{f}} \mathsf{X} \varphi \mid \mathsf{E}_{\mathsf{f}} \varphi \mathsf{U} \varphi \mid \mathsf{A}_{\mathsf{f}} \varphi \mathsf{U} \varphi$ Definition: Semantics as a fragment of CTL* Let $M = (S, T, I, AP, \ell, F_1, \dots, F_n)$ be a fair Kripke structure. $\mathsf{E}_{\mathbf{f}} \varphi = \mathsf{E}(\operatorname{fair} \land \varphi)$ and $\mathsf{A}_{\mathbf{f}} \varphi = \mathsf{A}(\operatorname{fair} \rightarrow \varphi)$ Then, $\mathbf{fair} = \bigwedge_{i} \mathsf{G} \mathsf{F} F_{i}$ where $\mathsf{A}_{\mathbf{f}}\varphi = \neg \mathsf{E}_{\mathbf{f}} \neg \varphi$ Remark: Lemma: fair-CTL cannot be expressed in CTL

◆□▶◆□▶◆豆▶◆豆▶ 豆 の�♡ 14/53

▲□▶▲舂▶▲壹▶▲壹▶ 壹 釣�� 13/53

fair-CTL

Proof: fair-CTL cannot be expressed in CTL Consider the Kripke structure M_k defined by:

$$(2k) \xrightarrow{p} (2k-1) \xrightarrow{p} (2k-2) \xrightarrow{p} (2k-3) \xrightarrow{p} (2k-3)$$

- $M_k, 2k \models \mathsf{E}\mathsf{G}\mathsf{F}p \quad \mathsf{but} \quad M_k, 2k-2 \not\models \mathsf{E}\mathsf{G}\mathsf{F}p$
- If $\varphi \in \operatorname{CTL}$ and $|\varphi| \leq m \leq k$ then

 $M_k, 2k \models \varphi \text{ iff } M_k, 2m \models \varphi$ $M_k, 2k - 1 \models \varphi \text{ iff } M_k, 2m - 1 \models \varphi$

If the fairness condition is $\ell^{-1}(p)$ then $\mathsf{E}_f \top$ cannot be expressed in CTL.

◆□ → ◆ ● → ◆ ■ → ▲ ■ → ● ◆ ○ へ ○ 15/53

Model checking of fair-CTL

Proof: Reductions $E_f X \varphi = E X(FAIR \land \varphi)$ and $E_f \varphi U \psi = E \varphi U (FAIR \land \psi)$ It remains to deal with $A_f \varphi U \psi$. We have $A_f \varphi U \psi = \neg E_f G \neg \psi \land \neg E_f (\neg \psi U (\neg \varphi \land \neg \psi))$ Hence, we only need to compute the semantics of $E_f G \varphi$.

Proof: Computation of $E_f G \varphi$

Let M_{φ} be the restriction of M to $\llbracket \varphi \rrbracket_f$. Compute the SCC of M_{φ} with Tarjan's algorithm (in linear time). Let S' be the union of the (non trivial) SCCs of M_{φ} which intersect each F_i . Then, $M, s \models \mathsf{E}_f \mathsf{G} \varphi$ iff $M, s \models \mathsf{E} \varphi \cup S'$ iff $M_{\varphi}, s \models \mathsf{EF} S'$. This is again a reachability problem which can be solved in linear time.

Model checking of fair-CTL

Theorem

The model checking problem for fair- CTL is decidable in time $\mathcal{O}(|M|\cdot|\varphi|)$

Proof: Computation of FAIR = $\{s \in S \mid M, s \models E_f \top\}$ Compute the SCC of M with Tarjan's algorithm (in time $\mathcal{O}(|M|)$). Let S' be the union of the (non trivial) SCCs which intersect each F_i . Then, FAIR is the set of states that can reach S'. Note that reachability can be computed in linear time.

▲□▶▲@▶▲≣▶▲≣▶ ≣ ∽QQ 16/53

Büchi automata

Definition:

A Büchi automaton (BA) is a tuple $\mathcal{A} = (Q, \Sigma, I, T, F)$ where

- Q: finite set of states
- Σ : finite set of labels
- $I \subseteq Q$: set of initial states
- ► $T \subseteq Q \times \Sigma \times Q$: set of transitions (non-deterministic)
- $F \subseteq Q$: set of accepting (repeated, final) states

Run: $\rho = q_0, a_0, q_1, a_1, q_2, a_2, q_3, \dots$ with $(q_i, a_i, q_{i+1}) \in T$ for all $i \ge 0$.

 ρ is accepting if $q_0 \in I$ and $q_i \in F$ for infinitely many *i*'s.

 $\mathcal{L}(\mathcal{A}) = \{a_0 a_1 a_2 \dots \in \Sigma^{\omega} \mid \exists \rho = q_0, a_0, q_1, a_1, q_2, a_2, q_3, \dots \text{ accepting run} \}$

A language $L \subseteq \Sigma^{\omega}$ is ω -regular if it can be accepted by some Büchi automaton.

▲□▶▲舂▶▲≧▶▲≧▶ ≧ の�� 17/53

Büchi automata

Examples: Infinitely many *a*'s: Finitely many *a*'s:

Whenever a then later b:

<□ ▶ < 畳 ▶ < 差 ▶ < 差 ▶ 差 の Q (? 20/53)

Büchi automata

Theorem: Büchi

Let $L\subseteq \Sigma^\omega$ be a language. The following are equivalent:

- L is ω -regular
- L is ω -rational, i.e., L is a finite union of languages of the form $L_1 \cdot L_2^{\omega}$ where $L_1, L_2 \subseteq \Sigma^+$ are rational.
- L is MSO-definable, i.e., there is a sentence $\varphi \in MSO_{\Sigma}(<)$ such that $L = \mathcal{L}(\varphi) = \{ w \in \Sigma^{\omega} \mid w \models \varphi \}.$

Exercises:

1. Construct a BA for $\mathcal{L}(\varphi)$ where φ is the $\mathrm{FO}_{\Sigma}(<)$ sentence

$$(\forall x, (P_a(x) \to \exists y > x, P_a(y))) \to (\forall x, (P_b(x) \to \exists y > x, P_c(y)))$$

2. Given BA for $L_1 \subseteq \Sigma^{\omega}$ and $L_2 \subseteq \Sigma^{\omega}$, construct BA for

 $\operatorname{next}(L_1) = \Sigma \cdot L_1$ SUntil $(L_1, L_2) = \{ uv \in \Sigma^{\omega} \mid u \in \Sigma^+ \land v \in L_2 \land$ $u''v \in L_1 \text{ for all } u', u'' \in \Sigma^+ \text{ with } u = u'u'' \}$

<□ ▶ < @ ▶ < 差 ▶ < 差 ▶ 差 の Q @ 22/53

Büchi automata

Properties

Büchi automata are closed under union, intersection, complement.

- Union: trivial
- Intersection: easy (exercise)
- complement: difficult

Let $L = \Sigma^* (a \Sigma^{n-1} b \cup b \Sigma^{n-1} a) \Sigma^{\omega}$

Any non deterministic Büchi automaton for $\Sigma^{\omega} \setminus L$ has at least 2^n states.

◆□ ▶ ◆ 畳 ▶ ◆ 量 ▶ ◆ 量 ▶ ■ ⑦ � ♡ 21/53

Generalized Büchi automata

Definition: acceptance on states or on transitions

 $\mathcal{A} = (Q, \Sigma, I, T, F_1, \dots, F_n)$ with $F_i \subseteq Q$. An infinite run σ is successful if it visits infinitely often each F_i .

 $\mathcal{A} = (Q, \Sigma, I, T, T_1, \dots, T_n)$ with $T_i \subseteq T$. An infinite run σ is successful if it uses infinitely many transitions from each T_i .

Example: Infinitely many a's and infinitely many b's

Theorem:

- 1. GBA and BA have the same expressive power.
- 2. Checking whether a BA or GBA has an accepting run is NLOGSPACE-complete.

<□ ▶ < @ ▶ < 注 ▶ < 注 ▶ 注 の Q (? 23/53)

Büchi automata with output

Definition: SBT: Synchronous (letter to letter) Büchi transducer

Let \boldsymbol{A} and \boldsymbol{B} be two alphabets.

A synchronous Büchi transducer from A to B is a tuple $\mathcal{A}=(Q,A,I,T,F,\mu)$ where (Q,A,I,T,F) is a Büchi automaton (input) and $\mu:T\to B$ is the output function. It computes the relation

 $\llbracket A \rrbracket = \{ (u, v) \in A^{\omega} \times B^{\omega} \mid \exists \rho = q_0, a_0, q_1, a_1, q_2, a_2, q_3, \dots \text{ accepting run} \\ \text{with } u = a_0 a_1 a_2 \cdots \text{ and } v = \mu(\tau_0) \mu(\tau_1) \mu(\tau_2) \cdots \\ \text{where } \tau_i = (q_i, a_i, q_{i+1}) \}$

If (Q, A, I, T, F) is unambiguous then $\llbracket A \rrbracket : A^{\omega} \to B^{\omega}$ is a (partial) function.

We will also use SGBT: synchronous transducers with generalized Büchi acceptance.

Example: Left shift with $A = B = \{a, b\}$

Product of Büchi transducers

Definition: Product

Let A, B, C be alphabets. Let $\mathcal{A} = (Q, A, I, T, (F_i)_i, \mu)$ be an SGBT from A to B. Let $\mathcal{A}' = (Q', A, I', T', (F'_j)_j, \mu')$ be an SGBT from A to C. Then $\mathcal{A} \times \mathcal{A}' = (Q \times Q', A, I \times I', T'', (F_i \times Q')_i, (Q \times F'_j)_j, \mu'')$ is defined by:

 $\tau'' = (p, p') \xrightarrow{a} (q, q') \in T'' \text{ and } \mu''(\tau'') = (b, c)$

iff

$$au = p \xrightarrow{a} q \in T$$
 and $b = \mu(au)$ and $au' = p' \xrightarrow{a} q' \in T'$ and $c = \mu'(au')$

 $\mathcal{A} \times \mathcal{A}'$ is an SGBT from A to $B \times C$.

Proposition: Product

We identify $(B \times C)^{\omega}$ with $B^{\omega} \times C^{\omega}$.

- 1. We have $\llbracket \mathcal{A} \times \mathcal{A}' \rrbracket = \{(u, v, v') \mid (u, v) \in \llbracket \mathcal{A} \rrbracket \text{ and } (u, v') \in \llbracket \mathcal{A}' \rrbracket \}.$
- 2. If $(Q, A, I, T, (F_i)_i)$ and $(Q', A, I', T', (F'_j)_j)$ are unambiguous then $(Q \times Q', A, I \times I', T'', (F_i \times Q')_i, (Q \times F'_j)_j)$ is also unambiguous. Then, $\forall u \in A^{\omega}$ we have $\llbracket \mathcal{A} \times \mathcal{A}' \rrbracket (u) = (\llbracket \mathcal{A} \rrbracket (u), \llbracket \mathcal{A}' \rrbracket (u)).$

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ◆ ○ Q ○ 27/53

Composition of Büchi transducers

Definition: Composition

Let A, B, C be alphabets. Let $\mathcal{A} = (Q, A, I, T, (F_i)_i, \mu)$ be an SGBT from A to B. Let $\mathcal{A}' = (Q', B, I', T', (F'_j)_j, \mu')$ be an SGBT from B to C. Then $\mathcal{A} \cdot \mathcal{A}' = (Q \times Q', A, I \times I', T'', (F_i \times Q')_i, (Q \times F'_j)_j, \mu'')$ is defined by:

$$\tau'' = (p,p') \xrightarrow{a} (q,q') \in T'' \text{ and } \mu''(\tau'') = c$$

iff

$$\tau = p \xrightarrow{a} q \in T$$
 and $\tau' = p' \xrightarrow{\mu(\tau)} q' \in T'$ and $c = \mu'(\tau')$

 $\mathcal{A} \cdot \mathcal{A}'$ is an SGBT from A to C. When the transducers define functions, we also denote the composition by $\mathcal{A}' \circ \mathcal{A}$.

Proposition: Composition

 We have [A · A'] = [A] · [A'].
 If (Q, A, I, T, (F_i)_i) and (Q', B, I', T', (F'_j)_j) are unambiguous then (Q × Q', A, I × I', T'', (F_i × Q')_i, (Q × F'_j)_j) is also unambiguous. Then, ∀u ∈ A^ω we have [A' ∘ A](u) = [A']([A](u)).

▲□▶ < 圖▶ < 필▶ < 필▶ < 필 > ② Q C^{26/53}

Subalphabets of $\Sigma = 2^{AP}$

Definition:

For a propositional formula ξ over AP, we let $\Sigma_{\xi} = \{a \in \Sigma \mid a \models \xi\}$. For instance, for $p, q \in AP$, $\Sigma_p = \{a \in \Sigma \mid p \in a\}$ and $\Sigma_{\neg p} = \Sigma \setminus \Sigma_p$ $\Sigma_{p \wedge q} = \Sigma_p \cap \Sigma_q$ and $\Sigma_{p \vee q} = \Sigma_p \cup \Sigma_q$ $\Sigma_{p \wedge \neg q} = \Sigma_p \setminus \Sigma_q$...

Notation:

In automata, $p \xrightarrow{\Sigma_{\xi}} q$ stands for the set of transitions $\{p\} \times \Sigma_{\xi} \times \{q\}$. To simplify the pictures, we use $p \xrightarrow{\xi} q$ instead of $p \xrightarrow{\Sigma_{\xi}} q$.

Example:

<□▶<@▶<差▶<差▶ 差 のへで 29/53

Semantics of LTL with sequential functions

Definition: Semantics of $\varphi \in LTL(AP, SU, SS)$ Let $\Sigma = 2^{AP}$ and $\mathbb{B} = \{0, 1\}$. Define $\llbracket \varphi \rrbracket : \Sigma^{\omega} \to \mathbb{B}^{\omega}$ by $\llbracket \varphi \rrbracket (u) = b_0 b_1 b_2 \cdots$ with $b_i = \begin{cases} 1 & \text{if } u, i \models \varphi \\ 0 & \text{otherwise.} \end{cases}$

Example:

$$\begin{split} & \llbracket p \ \mathsf{SU} \ q \rrbracket (\emptyset \{q\} \{p\} \emptyset \{p\} \{q\} \emptyset \{p\} \{p\} \{p, q\} \emptyset^{\omega}) = 10011101100^{\omega} \\ & \llbracket \mathsf{X} \ p \rrbracket (\emptyset \{q\} \{p\} \emptyset \{p\} \{q\} \emptyset \{p\} \{q\} \emptyset \{p\} \{p\} \{q\} \emptyset \{p\} \{p\} \{\phi\} \psi^{\omega}) = 01011001100^{\omega} \\ & \llbracket \mathsf{F} \ p \rrbracket (\emptyset \{q\} \{p\} \emptyset \{p\} \{q\} \{q\} \emptyset \{p\} \{q\} \emptyset \{p\} \{p\} \{\phi\} \psi^{\omega}) = 1111111110^{\omega} \end{split}$$

The aim is to compute $\llbracket \varphi \rrbracket$ with Büchi transducers.

<□▶<፼▶<토▶<토▶ 토 ∽੧< ♂

Special cases of Until: Future and Next

Exercise: Give SBT's for the following formulae: $p \cup q$, G q, $p \in q$, $p \in q$.

Synchronous Büchi transducer for p SU q

From LTL to Büchi automata

Definition: SBT for LTL modalities
• \mathcal{A}_{\top} from Σ to $\mathbb{B} = \{0,1\}$: $\longrightarrow \bigcirc \Sigma/1$
• \mathcal{A}_p from Σ to $\mathbb{B} = \{0,1\}$: $\longrightarrow \bigcirc \bigcirc \qquad p / 1$ $\neg p / 0$
$\sim \mathcal{A}_{\neg}$ from \mathbb{B} to \mathbb{B} :
$ \mathcal{A}_{\vee} \text{ from } \mathbb{B}^2 \text{ to } \mathbb{B}: \longrightarrow \bigcirc \qquad \stackrel{0, 0 \ / \ 0}{\longrightarrow} \stackrel{1, 0 \ / \ 1}{0, 1 \ / 1} $
$ \mathcal{A}_{\wedge} \text{ from } \mathbb{B}^2 \text{ to } \mathbb{B}: \qquad \longrightarrow \bigcirc \qquad \stackrel{0, 0 / 0}{\longrightarrow} \qquad \stackrel{0, 0 / 0}{\underset{0, 1 / 0}{1, 0 / 0}} $

<□▶<@▶<注▶<注▶<注>< ○< ○ 32/53

From LTL to Büchi automata

Useful simplifications

Reducing the number of temporal subformulae

 $\begin{aligned} (\mathsf{X}\,\varphi)\wedge(\mathsf{X}\,\psi) &\equiv \mathsf{X}(\varphi\wedge\psi) \\ (\mathsf{G}\,\varphi)\wedge(\mathsf{G}\,\psi) &\equiv \mathsf{G}(\varphi\wedge\psi) \end{aligned} (\begin{aligned} \mathsf{X}\,\varphi) \: \mathsf{U}\,(\mathsf{X}\,\psi) &\equiv \mathsf{X}(\varphi\:\mathsf{U}\,\psi) &\equiv \varphi\:\mathsf{SU}\,\psi \\ \mathsf{G}\,\mathsf{F}\,\varphi\wedge(\mathsf{G}\,\psi) &\equiv \mathsf{G}\,\mathsf{F}(\varphi\vee\psi) \\ (\varphi_1\:\mathsf{U}\,\psi)\wedge(\varphi_2\:\mathsf{U}\,\psi) &\equiv (\varphi_1\wedge\varphi_2)\:\mathsf{U}\,\psi & (\varphi\:\mathsf{U}\,\psi_1)\vee(\varphi\:\mathsf{U}\,\psi_2) &\equiv \varphi\:\mathsf{U}\,(\psi_1\vee\psi_2) \end{aligned}$

Merging equivalent states

Let $\mathcal{A} = (Q, \Sigma, I, T, T_1, \dots, T_n, \mu)$ be an SGBT and $s_1, s_2 \in Q$. We can merge s_1 and s_2 if they have the same outgoing transitions: $\forall a \in \Sigma, \forall s \in Q$,

 $\begin{array}{rcl} (s_1,a,s)\in T & \Longleftrightarrow & (s_2,a,s)\in T\\ \text{and} & (s_1,a,s)\in T_i & \Longleftrightarrow & (s_2,a,s)\in T_i & \text{for all } 1\leq i\leq n\\ \text{and} & \mu(s_1,a,s) & = & \mu(s_2,a,s) \end{array}$

From LTL to Büchi automata

Definition: Translation from LTL to SGBT

For each $\xi \in LTL(AP, SU, SS)$ we define inductively an SGBT \mathcal{A}_{ξ} as follows:

- $\mathcal{A}_{ op}$ and \mathcal{A}_p for $p \in \mathrm{AP}$ are already defined
- $\mathcal{A}_{
 eg arphi} = \mathcal{A}_{
 eg} \circ \mathcal{A}_{arphi}$
- $\mathcal{A}_{\varphi \lor \psi} = \mathcal{A}_{\lor} \circ (\mathcal{A}_{\varphi} \times \mathcal{A}_{\psi})$
- $\blacktriangleright \ \mathcal{A}_{\varphi \mathsf{SS}\psi} = \mathcal{A}_{\mathsf{SS}} \circ (\mathcal{A}_{\varphi} \times \mathcal{A}_{\psi})$
- $\succ \mathcal{A}_{\varphi \mathsf{SU}\psi} = \mathcal{A}_{\mathsf{SU}} \circ (\mathcal{A}_{\varphi} \times \mathcal{A}_{\psi})$

Theorem: Correctness of the translation

For each $\xi \in LTL(AP, SU, SS)$, we have $\llbracket \mathcal{A}_{\xi} \rrbracket = \llbracket \xi \rrbracket$.

Moreover, the number of states of A_{ξ} is at most $2^{|\xi|_{SS}} \cdot 3^{|\xi|_{SU}}$ where $|\xi|_{SS}$ (resp. $|\xi|_{SU}$) is the number of SS (resp. SU) occurring in ξ .

Remark:

If a subformula φ occurs serveral times in ξ , we only need one copy of \mathcal{A}_{φ} . We may also use automata for other modalities: \mathcal{A}_{X} , \mathcal{A}_{II} , A_{F} , ...

◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶</

Other constructions

- Tableau construction. See for instance [15, Wolper 85]
 - + : Easy definition, easy proof of correctness
 - + : Works both for future and past modalities
 - : Inefficient without strong optimizations
- ▶ Using Very Weak Alternating Automata [16, Gastin & Oddoux 01].
 - + : Very efficient
 - : Only for future modalities

Online tool: http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/

- Using reduction rules [6, Demri & Gastin 10].
 - + : Efficient and produces small automata
 - + : Can be used by hand on real examples
 - : Only for future modalities
- The domain is still very active.

Satisfiability for LTL over $(\mathbb{N}, <)$

Let AP be the set of atomic propositions and $\Sigma = 2^{AP}$.

Definition: S	Satisfiability	problem
---------------	----------------	---------

Input:	A formula $\varphi \in LTL(AP, SU, SS)$
Question:	Existence of $w \in \Sigma^{\omega}$ and $i \in \mathbb{N}$ such that $w, i \models \varphi$.

Definition: Initial Satisfiability problem

Input:	A formula	$\varphi \in LTL($	(AP, SU, SS)
--------	-----------	--------------------	--------------

Question: Existence of $w \in \Sigma^{\omega}$ such that $w, \mathbf{0} \models \varphi$.

Remark: φ is satisfiable iff F φ is *initially* satisfiable.

Definition: (Initial) validity

 φ is valid iff $\neg \varphi$ is not satisfiable.

Theorem [10, Sistla, Clarke 85], [9, Lichtenstein & Pnueli 85] The satisfiability problem for LTL is PSPACE-complete.

$MC^{\exists}(SU) \leq_P SAT(SU)$ [10, Sistla & Clarke 85]

Let $M = (S, T, I, AP, \ell)$ be a Kripke structure and $\varphi \in LTL(AP, SU)$

Introduce new atomic propositions: $AP_S = \{at_s \mid s \in S\}$ Define $AP' = AP \uplus AP_S$ $\Sigma' = 2^{AP'}$ $\pi : \Sigma'^{\omega} \to \Sigma^{\omega}$ by $\pi(a) = a \cap AP$.

Let $w \in \Sigma'^{\omega}$. We have $w \models \varphi$ iff $\pi(w) \models \varphi$

Define $\psi_M \in LTL(AP', X, F)$ of size $\mathcal{O}(|M|^2)$ by

 $\psi_M = \left(\bigvee_{s \in I} \operatorname{at}_s\right) \wedge \mathsf{G}\left(\bigvee_{s \in S} \left(\operatorname{at}_s \wedge \bigwedge_{t \neq s} \neg \operatorname{at}_t \wedge \bigwedge_{p \in \ell(s)} p \wedge \bigwedge_{p \notin \ell(s)} \neg p \wedge \bigvee_{t \in T(s)} \mathsf{X} \operatorname{at}_t\right)\right)$

Let $w = a_0 a_1 a_2 \cdots \in \Sigma'^{\omega}$. Then, $w \models \psi_M$ iff there exists an initial infinite run $\sigma = s_0 s_1 s_2 \cdots$ of M such that $\ell(\sigma) = \pi(w)$ and $a_i \cap AP_S = \{a_{t_{s_i}}\}$ for all $i \ge 0$.

Therefore, $M \models_\exists \varphi$ iff $\psi_M \land \varphi$ is satisfiable $M \models_\forall \varphi$ iff $\psi_M \land \neg \varphi$ is not satisfiable

Remark: we also have $MC^{\exists}(X, F) \leq_P SAT(X, F)$.

Input:

Definition: Model checking problem

Question: Does $M \models \varphi$?

A Kripke structure $M = (S, T, I, AP, \ell)$ A formula $\varphi \in LTL(AP, SU, SS)$

QBF Quantified Boolean Formulae

Model checking for LTL

Universal MC: $M \models_{\forall} \varphi$ if $\ell(\sigma), 0 \models \varphi$ for all initial infinite runs of M.

 $M \models_{\forall} \varphi$ iff $M \not\models_{\exists} \neg \varphi$

Theorem [10, Sistla, Clarke 85], [9, Lichtenstein & Pnueli 85]

The Model checking problem for LTL is PSPACE-complete

Existential MC: $M \models_{\exists} \varphi$ if $\ell(\sigma), 0 \models \varphi$ for some initial infinite run of M.

Definition: QBF

Question: Is γ valid?

Definition:

An assignment of the variables $\{x_1, \ldots, x_n\}$ is a word $v = v_1 \cdots v_n \in \{0, 1\}^n$. We write v[i] for the prefix of length *i*. Let $V \subseteq \{0,1\}^n$ be a set of assignments.

- V is valid (for γ') if $v \models \gamma'$ for all $v \in V$,
- V is closed (for γ) if $\forall v \in V, \forall 1 \le i \le n$ s.t. $Q_i = \forall$,
 - $\exists v' \in V \text{ s.t. } v[i-1] = v'[i-1] \text{ and } \{v_i, v'_i\} = \{0, 1\}.$

Proposition:

 γ is valid iff $\exists V \subset \{0,1\}^n$ s.t. V is nonempty valid and closed

Complexity of CTL^*

Theorem

The model checking problem for CTL^* is PSPACE-complete

Proof:

 $\mathsf{PSPACE}\text{-hardness: follows from } \mathrm{LTL} \subseteq \mathrm{CTL}^*.$

PSPACE-easiness: reduction to LTL-model checking by inductive eliminations of path quantifications.

Complexity of LTL

Theorem: Complexity of LTL

The following problems are PSPACE-complete:

- $\mathbf{SAT}(\mathrm{LTL}(\mathsf{SU},\mathsf{SS})),\ \mathrm{MC}^{\forall}(\mathrm{LTL}(\mathsf{SU},\mathsf{SS})),\ \mathrm{MC}^{\exists}(\mathrm{LTL}(\mathsf{SU},\mathsf{SS}))$
- $\succ \ \mathrm{SAT}(\mathrm{LTL}(\mathsf{X},\mathsf{F})), \ \mathrm{MC}^{\forall}(\mathrm{LTL}(\mathsf{X},\mathsf{F})), \ \mathrm{MC}^{\exists}(\mathrm{LTL}(\mathsf{X},\mathsf{F}))$
- SAT(LTL(U)), $\mathrm{MC}^{\forall}(\mathrm{LTL}(U))$, $\mathrm{MC}^{\exists}(\mathrm{LTL}(U))$
- > The restriction of the above problems to a unique propositional variable

The following problems are NP-complete:

► SAT(LTL(F)), $MC^{\exists}(LTL(F))$

▲□▶▲圏▶▲園▶▲園▶ ■ 夕久や 47/53

$\mathrm{MC}_{\mathrm{CTL}^*}^{\exists}$ in PSPACE

Proof:

For $\psi \in \text{LTL}$, let $\text{MC}_{\text{LTL}}^{\exists}(M, t, \psi)$ be the function which computes in polynomial space whether $M, t \models_{\exists} \psi$, i.e., if $M, t \models_{\exists} \psi$.

Let $M = (S, T, I, AP, \ell)$ be a Kripke structure, $s \in S$ and $\varphi \in CTL^*$. Replacing A ψ by $\neg E \neg \psi$ we assume φ only contains the existential path quantifier.

$\mathrm{MC}^{\exists}_{\mathrm{CTL}^*}(M, s, \varphi)$

If *E* does not occur in φ then return $\mathrm{MC}^{\exists}_{\mathrm{LTL}}(M, s, \varphi)$ fi Let $\mathrm{E}\psi$ be a subformula of φ with $\psi \in \mathrm{LTL}$ Let e_{ψ} be a new propositional variable Define $\ell': S \to 2^{\mathrm{AP}'}$ with $\mathrm{AP}' = \mathrm{AP} \uplus \{e_{\psi}\}$ by $\ell'(t) \cap \mathrm{AP} = \ell(t)$ and $e_{\psi} \in \ell'(t)$ iff $\mathrm{MC}^{\exists}_{\mathrm{LTL}}(M, t, \psi)$ Let $M' = (S, T, I, \mathrm{AP}', \ell')$ Let $\varphi' = \varphi[e_{\psi} / \mathrm{E}\psi]$ be obtained from φ by replacing each $\mathrm{E}\psi$ by e_{ψ} Return $\mathrm{MC}^{\exists}_{\mathrm{CTL}*}(M', s, \varphi')$

Satisfiability for CTL^\ast

Definition: Satisfiability problem for CTL^*

Input: A formula $\varphi \in CTL^*$

Question: Existence of a model M, a run σ , a position i such that $M, \sigma, i \models \varphi$?

Definition: Initial Satisfiability problem for CTL*

Input: A formula $\varphi \in CTL^*$

Question: Existence of a model M and a run σ such that $M,\sigma,0\models\varphi$?

Theorem

The (initial) satisfiability problem for CTL^* is 2-EXPTIME-complete

◆□ ▶ ◆ ● ▶ ◆ ■ ▶ ◆ ■ ◆ つ へ ○ 51/53

Some References

 [9] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their linear specification. In ACM Symposium PoPL'85, 97–107.
 P. Wolper. The tableau method for temporal logic: An overview, Logique et Analyse. 110–111, 119–136, (1985).
 [10] A. Sistla and E. Clarke. The complexity of propositional linear temporal logic. Journal of the Association for Computing Machinery. 32 (3), 733–749, (1985).
[16] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In CAV'01, vol. 2102, Lecture Notes in Computer Science, pp. 53-65. Springer, (2001). http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php
[6] S. Demri and P. Gastin. Specification and Verification using Temporal Logics. In Modern applications of automata theory, IISc Research Monographs 2. World Scientific, 2012. http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php