| Outline                                                                                        | Possibility is not expressible in LTL                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                | Example:                                                                                                                                                                                                                                                                                                                          |
| Introduction                                                                                   | $\varphi$ : Whenever $p$ holds, it is possible to reach a state where $q$ holds.                                                                                                                                                                                                                                                  |
| Models                                                                                         | arphi cannot be expressed in LTL.                                                                                                                                                                                                                                                                                                 |
| Specifications                                                                                 |                                                                                                                                                                                                                                                                                                                                   |
| Satisfiability and Model Checking for LTL                                                      |                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>Branching Time Specifications</li> <li>CTL*</li> <li>CTL</li> <li>Fair CTL</li> </ul> |                                                                                                                                                                                                                                                                                                                                   |
| Fair CIL                                                                                       | We need quantifications on runs: $\varphi = \operatorname{AG}(p \to \operatorname{EF} q)$                                                                                                                                                                                                                                         |
|                                                                                                | E: for some infinite run                                                                                                                                                                                                                                                                                                          |
|                                                                                                | A: for all infinite runs                                                                                                                                                                                                                                                                                                          |
| <ロト                                                                                            | <ロ><合><をき><き> き、のへの 7/32                                                                                                                                                                                                                                                                                                          |
| Outline                                                                                        | CTL* (Emerson & Halpern 86)                                                                                                                                                                                                                                                                                                       |
|                                                                                                | Definition: Syntax of the Computation Tree Logic $\mathrm{CTL}^*$                                                                                                                                                                                                                                                                 |
| Introduction                                                                                   | $\varphi ::= \bot \mid p \ (p \in \operatorname{AP}) \mid \neg \varphi \mid \varphi \lor \varphi \mid X \varphi \mid \varphi \ U \varphi \mid E \varphi \mid A \varphi$                                                                                                                                                           |
| Models                                                                                         | In this chapter, temporal modalities U, F, G, $\ldots$ are non-strict. We may also add past modalities Y and S                                                                                                                                                                                                                    |
| Specifications                                                                                 | Definition: Semantics of CTTI*                                                                                                                                                                                                                                                                                                    |
| Satisfiability and Model Checking for LTL                                                      | Let $M = (S, T, I, AP, \ell)$ be a Kripke structure.<br>Let $\sigma = s_0 s_1 s_2 \cdots$ be an infinite run of $M$ .                                                                                                                                                                                                             |
| <ul> <li>Branching Time Specifications</li> <li>CTL*</li> </ul>                                | $\begin{array}{ll} M,\sigma,i\models E\varphi & \text{if} & M,\sigma',i\models\varphi \text{ for some infinite run }\sigma' \text{ such that }\sigma'[i]=\sigma[i]\\ M,\sigma,i\models A\varphi & \text{if} & M,\sigma',i\models\varphi \text{ for all infinite runs }\sigma' \text{ such that }\sigma'[i]=\sigma[i] \end{array}$ |
| Fair CTL                                                                                       | where $\sigma[i] = s_0 \cdots s_i$ .                                                                                                                                                                                                                                                                                              |
|                                                                                                | Remark:                                                                                                                                                                                                                                                                                                                           |
|                                                                                                | ► A $\varphi \equiv \neg E \neg \varphi$<br>► $\sigma'[i] = \sigma[i]$ means that future is branching but past is not.                                                                                                                                                                                                            |

< □ ▶ < @ ▶ < 差 ▶ < 差 ▶ 差 少へで 8/32

▲□▶▲@▶▲불▶▲불▶ 볼 ∽੧< ↔ 9/32



<□ ▶ < @ ▶ < E ▶ < E ▶ ● E ∽ Q @ 10/32

## Model checking of $\mathrm{CTL}^*$

Definition: Existential and universal model checking Let  $M = (S, T, I, AP, \ell)$  be a Kripke structure and  $\varphi \in CTL^*$  a formula.  $M \models_\exists \varphi$  if  $M, \sigma, 0 \models \varphi$  for some initial infinite run  $\sigma$  of M.  $M \models_\forall \varphi$  if  $M, \sigma, 0 \models \varphi$  for all initial infinite run  $\sigma$  of M.

#### Remark:

$$\begin{split} M &\models_{\exists} \varphi \quad \text{iff} \quad I \cap \llbracket E \varphi \rrbracket \neq \emptyset \\ M &\models_{\forall} \varphi \quad \text{iff} \quad I \subseteq \llbracket A \varphi \rrbracket \\ M &\models_{\forall} \varphi \quad \text{iff} \quad M \not\models_{\exists} \neg \varphi \end{split}$$

Definition: Model checking problems  $MC_{CTL^*}^{\forall}$  and  $MC_{CTL^*}^{\exists}$ Input:A Kripke structure  $M = (S, T, I, AP, \ell)$  and a formula  $\varphi \in CTL^*$ Question:Does  $M \models_{\forall} \varphi$ ?orDoes  $M \models_{\exists} \varphi$ ?

### State formulae and path formulae

Definition: State formulae

 $\varphi\in {\rm CTL}^*$  is a state formula if  $\forall M,\sigma,\sigma',i,j$  such that  $\sigma(i)=\sigma'(j)$  we have

 $M, \sigma, i \models \varphi \iff M, \sigma', j \models \varphi$ 

If  $\varphi$  is a state formula and  $M = (S, T, I, AP, \ell)$ , define

 $\llbracket \varphi \rrbracket^M = \{ s \in S \mid M, s \models \varphi \}$ 

Example: State formulae Atomic propositions are state formulae: [p] =

Atomic propositions are state formulae:  $[p] = \{s \in S \mid p \in \ell(s)\}$ State formulae are closed under boolean connectives.

 $\llbracket \neg \varphi \rrbracket = S \setminus \llbracket \varphi \rrbracket \qquad \llbracket \varphi_1 \lor \varphi_2 \rrbracket = \llbracket \varphi_1 \rrbracket \cup \llbracket \varphi_2 \rrbracket$ Formulae of the form  $\mathsf{E} \varphi$  or  $\mathsf{A} \varphi$  are state formulae, provided  $\varphi$  is future.

Definition: Alternative syntax

 $\begin{array}{lll} \mbox{State formulae} & \varphi ::= \bot \mid p \ (p \in {\rm AP}) \mid \neg \varphi \mid \varphi \lor \varphi \mid {\sf E} \ \psi \mid {\sf A} \ \psi \\ \mbox{Path formulae} & \psi ::= \varphi \mid \neg \psi \mid \psi \lor \psi \mid {\sf X} \ \psi \mid \psi \ U \ \psi \end{array}$ 

## Complexity of $\mathrm{CTL}^*$

Definition: Syntax of the Computation Tree Logic  $\operatorname{CTL}^*$ 

 $\varphi ::= \bot \mid p \ (p \in AP) \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{X} \varphi \mid \varphi \mathsf{U} \varphi \mid \mathsf{E} \varphi \mid \mathsf{A} \varphi$ 

#### Theorem

The model checking problem for  $\mathrm{CTL}^*$  is PSPACE-complete

### Proof:

 $\mathsf{PSPACE}\text{-hardness: follows from } \mathrm{LTL} \subseteq \mathrm{CTL}^*.$ 

PSPACE-easiness: reduction to LTL-model checking by inductive eliminations of path quantifications.

# $\mathrm{MC}_{\mathrm{CTL}^*}^\exists$ in PSPACE

#### Proof:

For  $\psi \in LTL$ , let  $MC_{LTL}^{\exists}(M, t, \psi)$  be the function which computes in polynomial space whether  $M, t \models_{\exists} \psi$ , i.e., if  $M, t \models_{\exists} \psi$ .

Let  $M = (S, T, I, AP, \ell)$  be a Kripke structure,  $s \in S$  and  $\varphi \in CTL^*$ . Replacing A  $\psi$  by  $\neg E \neg \psi$  we assume  $\varphi$  only contains the existential path quantifier.

### $\mathrm{MC}_{\mathrm{CTL}^*}^\exists (M,s,\varphi)$

If *E* does not occur in  $\varphi$  then return  $\mathrm{MC}^{\exists}_{\mathrm{LTL}}(M, s, \varphi)$  fi Let  $\mathsf{E}\psi$  be a subformula of  $\varphi$  with  $\psi \in \mathrm{LTL}$ Let  $e_{\psi}$  be a new propositional variable Define  $\ell' : S \to 2^{\mathrm{AP}'}$  with  $\mathrm{AP}' = \mathrm{AP} \uplus \{e_{\psi}\}$  by  $\ell'(t) \cap \mathrm{AP} = \ell(t)$  and  $e_{\psi} \in \ell'(t)$  iff  $\mathrm{MC}^{\exists}_{\mathrm{LTL}}(M, t, \psi)$ Let  $M' = (S, T, I, \mathrm{AP}', \ell')$ Let  $\varphi' = \varphi[e_{\psi} / \mathsf{E}\psi]$  be obtained from  $\varphi$  by replacing each  $\mathsf{E}\psi$  by  $e_{\psi}$ Return  $\mathrm{MC}^{\exists}_{\mathrm{CTL}*}(M', s, \varphi')$ 

<□ > < @ > < E > < E > E の Q @ 14/32

## Outline

Introduction

Models

**Specifications** 

Satisfiability and Model Checking for LTL

#### **5** Branching Time Specifications

 $\mathrm{CTL}^\ast$ 

• CTL Fair CTL

### Satisfiability for $\mathrm{CTL}^*$

Definition:  $SAT(CTL^*)$ 

Input: A formula  $\varphi \in \operatorname{CTL}^*$ 

Question: Existence of a model M and a run  $\sigma$  such that  $M,\sigma,0\models\varphi$  ?

Theorem The satisfiability problem for  $CTL^*$  is 2-EXPTIME-complete

▲□▶▲□▶▲国▶▲国▶ 国 のへで 15/32

## CTL (Clarke & Emerson 81)

Definition: Computation Tree Logic (CTL) Syntax:

 $\varphi ::= \bot \mid p \ (p \in AP) \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{EX} \varphi \mid \mathsf{AX} \varphi \mid \mathsf{E} \varphi \, \mathsf{U} \varphi \mid \mathsf{A} \varphi \, \mathsf{U} \varphi$ 

The semantics is inherited from  $\mathrm{CTL}^*$ .

Remark: All CTL formulae are state formulae

 $\llbracket \varphi \rrbracket^M = \{ s \in S \mid M, s \models \varphi \}$ 

#### Examples: Macros

- $\mathsf{EF}\, \varphi = \mathsf{E} \top \mathsf{U}\, \varphi$  and  $\mathsf{AF}\, \varphi = \mathsf{A} \top \mathsf{U}\, \varphi$
- EG  $\varphi = \neg \operatorname{AF} \neg \varphi$  and AG  $\varphi = \neg \operatorname{EF} \neg \varphi$
- $AG(req \rightarrow EF grant)$
- $AG(req \rightarrow AF grant)$

◆□▶<日本</p>
◆□▶<日本</p>
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@ 17/32

### CTL (Clarke & Emerson 81)

### Definition: Semantics

All CTL-formulae are state formulae. Hence, we have a simpler semantics. Let  $M = (S, T, I, AP, \ell)$  be a Kripke structure without deadlocks and let  $s \in S$ .

| $s \models p$                   | if | $p \in \ell(s)$                                                                                          |
|---------------------------------|----|----------------------------------------------------------------------------------------------------------|
| $s\models EX\varphi$            | if | $\exists s \rightarrow s' \text{ with } s' \models \varphi$                                              |
| $s\models AX\varphi$            | if | $orall s  ightarrow s' \models arphi$                                                                   |
| $s\models E\varphiU\psi$        | if | $\exists s = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \cdots s_j$ finite path, with               |
|                                 |    | $s_j \models \psi$ and $s_k \models arphi$ for all $0 \leq k < j$                                        |
| $s \models A  \varphi  U  \psi$ | if | $\forall s = s_0  ightarrow s_1  ightarrow s_2  ightarrow \cdots$ infinite path, $\exists j \geq 0$ with |
|                                 |    | $s_j \models \psi$ and $s_k \models \varphi$ for all $0 \le k < j$                                       |
|                                 |    |                                                                                                          |

▲□▶▲舂▶▲≧▶▲≧▶ ≧ のへで 18/32

### CTL (Clarke & Emerson 81)

### Remark: Equivalent formulae

- $\blacktriangleright \mathsf{AX} \varphi = \neg \mathsf{EX} \neg \varphi,$
- $\succ \neg(\varphi \mathsf{U} \psi) = \mathsf{G} \neg \psi \lor (\neg \psi \mathsf{U} (\neg \varphi \land \neg \psi))$
- $\succ \mathsf{A} \varphi \mathsf{U} \psi = \neg \mathsf{E} \mathsf{G} \neg \psi \land \neg \mathsf{E} (\neg \psi \mathsf{U} (\neg \varphi \land \neg \psi))$
- $AG(req \rightarrow F grant) = AG(req \rightarrow AF grant)$
- $\blacktriangleright \mathsf{A} \mathsf{G} \mathsf{F} \varphi = \mathsf{A} \mathsf{G} \mathsf{A} \mathsf{F} \varphi$
- $\blacktriangleright \mathsf{E} \mathsf{F} \mathsf{G} \varphi = \mathsf{E} \mathsf{F} \mathsf{E} \mathsf{G} \varphi$
- ${}^{\triangleright} \ \mathsf{EG}\,\mathsf{EF}\,\varphi \neq \mathsf{E}\,\mathsf{G}\,\mathsf{F}\,\varphi$
- ${}^{\scriptstyle \triangleright} \ \operatorname{AF}\operatorname{AG}\varphi \neq \operatorname{AF}\operatorname{G}\varphi$
- $\succ \, \operatorname{\mathsf{EG}} \operatorname{\mathsf{EX}} \varphi \neq \operatorname{\mathsf{E}} \operatorname{\mathsf{G}} \operatorname{\mathsf{X}} \varphi$

### CTL (Clarke & Emerson 81)





### Model checking of $\operatorname{CTL}$

 $\begin{array}{lll} \mbox{Definition: Existential and universal model checking} \\ \mbox{Let } M = (S,T,I,{\rm AP},\ell) \mbox{ be a Kripke structure and } \varphi \in {\rm CTL} \mbox{ a formula.} \\ M \models_{\exists} \varphi & \mbox{if } M,s \models \varphi \mbox{ for some } s \in I. \\ M \models_{\forall} \varphi & \mbox{if } M,s \models \varphi \mbox{ for all } s \in I. \\ \end{array}$ 

#### Remark:

$$\begin{split} M &\models_{\exists} \varphi \quad \text{iff} \quad I \cap \llbracket \varphi \rrbracket \neq \emptyset \\ M &\models_{\forall} \varphi \quad \text{iff} \quad I \subseteq \llbracket \varphi \rrbracket \\ M &\models_{\forall} \varphi \quad \text{iff} \quad M \not\models_{\exists} \neg \varphi \end{split}$$

Definition: Model checking problems  $MC_{CTL}^{\forall}$  and  $MC_{CTL}^{\exists}$ Input:A Kripke structure  $M = (S, T, I, AP, \ell)$  and a formula  $\varphi \in CTL$ Question:Does  $M \models_{\forall} \varphi$ ?orDoes  $M \models_{\exists} \varphi$ ?

infinitely often

ultimately

### Model checking of CTL

### Theorem

Let  $M = (S, T, I, AP, \ell)$  be a Kripke structure and  $\varphi \in CTL$  a formula. The model checking problem  $M \models_\exists \varphi$  is decidable in time  $\mathcal{O}(|M| \cdot |\varphi|)$ 

Proof:

 $\mathsf{Compute}\;[\![\varphi]\!]=\{s\in S\mid M,s\models\varphi\} \text{ by induction on the formula}.$ 

The set  $\llbracket \varphi \rrbracket$  is represented by a boolean array:  $L[s][\varphi] = \top$  if  $s \in \llbracket \varphi \rrbracket$ .

The labelling  $\ell$  is encoded in L: for  $p \in AP$  we have  $L[s][p] = \top$  if  $p \in \ell(s)$ .

<□▶<@▶<≧▶<≧▶ ≣▶ ■ ● ● ● 22/32

## Model checking of $\operatorname{CTL}$

| Definition: procedure semantics( $\varphi$ )                                                                               |                          |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------|
| $case  \varphi = E \varphi_1  U  \varphi_2$                                                                                | $\mathcal{O}( S  +  T )$ |
| semantics( $\varphi_1$ ); semantics( $\varphi_2$ )                                                                         |                          |
| $L := [\varphi_2]$ // the "todo" set L is imlemented with a list                                                           | $\mathcal{O}( S )$       |
| $Z:=\llbracket arphi_2  rbracket \ //$ the "result" is computed in the array $Z$                                           | $\mathcal{O}( S )$       |
| while $L  eq \emptyset$ do                                                                                                 | S  times                 |
| Invariant: $L \subseteq Z$ and                                                                                             |                          |
| $[\![\varphi_2]\!] \cup ([\![\varphi_1]\!] \cap T^{-1}(Z \setminus L)) \subseteq Z \subseteq [\![E\varphi_1U\varphi_2]\!]$ |                          |
| take $t \in L$ ; $L := L \setminus \{t\}$                                                                                  | $\mathcal{O}(1)$         |
| for all $s \in T^{-1}(t)$ do                                                                                               | T  times                 |
| if $s \in \llbracket \varphi_1 \rrbracket \setminus Z$ then $L := L \cup \{s\}$ ; $Z := Z \cup \{s\}$                      | $\mathcal{O}(1)$         |
| od                                                                                                                         |                          |
| $[\![\varphi]\!]:=Z$                                                                                                       | $\mathcal{O}( S )$       |

Z is only used to make the invariant clear. It can be replaced by  $[\![\varphi]\!]$ .

## Model checking of $\operatorname{CTL}$

| $\begin{array}{l} case \ \varphi = \neg \varphi_1 \\ semantics(\varphi_1) \\ \llbracket \varphi \rrbracket := S \setminus \llbracket \varphi_1 \rrbracket \end{array} \tag{$0$}$                                                                                                                          | $\mathcal{O}( S )$                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|                                                                                                                                                                                                                                                                                                           |                                       |
| $\begin{array}{l} case \ \varphi = \varphi_1 \lor \varphi_2 \\ semantics(\varphi_1); \ semantics(\varphi_2) \\ \llbracket \varphi \rrbracket := \llbracket \varphi_1 \rrbracket \cup \llbracket \varphi_2 \rrbracket \end{array} \tag{2}$                                                                 | $\mathcal{O}( S )$                    |
| $\begin{array}{l} case \ \varphi = E X \varphi_1 \\ semantics(\varphi_1) \\ \llbracket \varphi \rrbracket := \emptyset \\ for all \ (s,t) \in T \ do \ if \ t \in \llbracket \varphi_1 \rrbracket \ then \ \llbracket \varphi \rrbracket := \llbracket \varphi \rrbracket \cup \{s\} \end{array} \tag{2}$ | $\mathcal{O}( S ) \ \mathcal{O}( T )$ |
| $\begin{array}{l} case \ \varphi = AX\varphi_1\\ semantics(\varphi_1)\\ \llbracket \varphi \rrbracket := S\\ for all \ (s,t) \in T \ do \ if \ t \notin \llbracket \varphi_1 \rrbracket \ then \ \llbracket \varphi \rrbracket := \llbracket \varphi \rrbracket \setminus \{s\} \end{array}$              | $\mathcal{O}( S ) \ \mathcal{O}( T )$ |

◆□▶<@▶<≧▶<≧▶<差</p>

## Model checking of $\operatorname{CTL}$

. . (

D (' '.'

| Definition: procedure semantics( $\varphi$ )                                                                                                                                   |                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| $case\; \varphi = A \varphi_1  U  \varphi_2$                                                                                                                                   | $\mathcal{O}( S  +  T )$ |
| semantics( $arphi_1$ ); semantics( $arphi_2$ )                                                                                                                                 |                          |
| $L := \llbracket arphi_2  rbracket$ // the "todo" set $L$ is imlemented with a list                                                                                            | $\mathcal{O}( S )$       |
| $Z:=\llbracket arphi_2  rbracket \ //$ the "result" is computed in the array $Z$                                                                                               | $\mathcal{O}( S )$       |
| for all $s \in S$ do $c[s] :=  T(s) $                                                                                                                                          | $\mathcal{O}( S )$       |
| while $L  eq \emptyset$ do                                                                                                                                                     | S  times                 |
| Invariant: $L \subseteq Z$ and                                                                                                                                                 |                          |
| $\forall s \in S, \ c[s] =  T(s) \setminus (Z \setminus L) $ and                                                                                                               |                          |
| $\llbracket \varphi_2 \rrbracket \cup (\llbracket \varphi_1 \rrbracket \cap \{s \in S \mid c[s] = 0\}) \subseteq Z \subseteq \llbracket A  \varphi_1  U  \varphi_2 \rrbracket$ |                          |
| take $t\in L;~L:=L\setminus\{t\}$                                                                                                                                              | $\mathcal{O}(1)$         |
| for all $s \in T^{-1}(t)$ do                                                                                                                                                   | T  times                 |
| c[s] := c[s] - 1                                                                                                                                                               | $\mathcal{O}(1)$         |
| $\text{if } \boldsymbol{c}[s] = \boldsymbol{0} \land s \in \llbracket \varphi_1 \rrbracket \setminus Z \text{ then } L := L \cup \{s\}; Z := Z \cup \{s\}$                     | $\mathcal{O}(1)$         |
| od                                                                                                                                                                             |                          |
| $\llbracket \varphi \rrbracket := Z$                                                                                                                                           | $\mathcal{O}( S )$       |

Z is only used to make the invariant clear. It can be replaced by  $\llbracket \varphi \rrbracket$ .

### **Complexity of** CTL Outline Introduction Models Definition: SAT(CTL) Input: A formula $\varphi \in \text{CTL}$ **Specifications** Question: Existence of a model M and a state s such that $M, s \models \varphi$ ? Satisfiability and Model Checking for LTL Theorem: Complexity The model checking problem for CTL is PTIME-complete. **5** Branching Time Specifications The satisfiability problem for CTL is EXPTIME-complete. $CTL^*$ CTL • Fair CTL ▲□▶▲@▶▲≣▶▲≣▶ ≣ 約९@ 26/32 ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶</ fairness fair CTL Definition: Syntax of fair-CTL Example: Fairness $\varphi ::= \bot \mid p \ (p \in AP) \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{E}_{f} \mathsf{X} \varphi \mid \mathsf{A}_{f} \mathsf{X} \varphi \mid \mathsf{E}_{f} \varphi \mathsf{U} \varphi \mid \mathsf{A}_{f} \varphi \mathsf{U} \varphi$ Only fair runs are of interest Each process is enabled infinitely often: $\bigwedge_{i}\mathsf{G}\,\mathsf{F}\,\mathrm{run}_i$ Definition: Semantics as a fragment of CTL\* Let $M = (S, T, I, AP, \ell, F_1, \dots, F_n)$ be a fair Kripke structure. No process stays ultimately in the critical section: $\bigwedge \neg \mathsf{F} \, \mathsf{G} \, \mathrm{CS}_i = \bigwedge \mathsf{G} \, \mathsf{F} \, \neg \mathrm{CS}_i$ $\mathsf{E}_{\mathbf{f}} \varphi = \mathsf{E}(\operatorname{fair} \land \varphi) \quad \text{and} \quad \mathsf{A}_{\mathbf{f}} \varphi = \mathsf{A}(\operatorname{fair} \rightarrow \varphi)$ Then, Definition: Fair Kripke structure fair = $\bigwedge_i \mathsf{GF} F_i$ where $M = (S, T, I, AP, \ell, F_1, \dots, F_n)$ with $F_i \subseteq S$ . Lemma: $CTL_f$ cannot be expressed in CTLAn infinite run $\sigma$ is fair if it visits infinitely often each $F_i$

### fair CTL

Proof:  $CTL_f$  cannot be expressed in CTL

Consider the Kripke structure  ${\it M}_k$  defined by:

$$\underbrace{2k}_{p} \underbrace{2k-1}_{\neg p} \underbrace{2k-2}_{p} \underbrace{2k-3}_{\neg p} \cdots \underbrace{4}_{p} \underbrace{3}_{\neg p} \underbrace{2}_{p} \underbrace{1}_{\neg p}$$

- ${}^{\scriptstyle \triangleright} \ M_k, 2k \models \mathsf{E}\,\mathsf{G}\,\mathsf{F}\,p \quad \text{but} \quad M_k, 2k-2 \not\models \mathsf{E}\,\mathsf{G}\,\mathsf{F}\,p$
- If  $\varphi \in \operatorname{CTL}$  and  $|\varphi| \leq m \leq k$  then

$$\begin{split} M_k, 2k \models \varphi \text{ iff } M_k, 2m \models \varphi \\ M_k, 2k-1 \models \varphi \text{ iff } M_k, 2m-1 \models \varphi \end{split}$$

If the fairness condition is  $\ell^{-1}(p)$  then  $E_f \top$  cannot be expressed in CTL.

### Model checking of $CTL_f$

### Theorem

The model checking problem for  $\mathrm{CTL}_f$  is decidable in time  $\mathcal{O}(|M|\cdot|\varphi|)$ 

Proof: Computation of Fair =  $\{s \in S \mid M, s \models \mathsf{E}_f \top\}$ Compute the SCC of M with Tarjan's algorithm (in time  $\mathcal{O}(|M|)$ ). Let S' be the union of the (non trivial) SCCs which intersect each  $F_i$ . Then, Fair is the set of states that can reach S'. Note that reachability can be computed in linear time.

▲□▶▲□▶▲ ■▶▲ ■ シー ■ のへで 31/32

▲□▶▲□▶▲□▶▲□▶ □ のへで 30/32

## Model checking of $CTL_f$

Proof: Reductions $E_f X \varphi = E X(Fair \land \varphi)$  and  $E_f \varphi U \psi = E \varphi U (Fair \land \psi)$ It remains to deal with  $A_f \varphi U \psi$ .We have $A_f \varphi U \psi = \neg E_f G \neg \psi \land \neg E_f (\neg \psi U (\neg \varphi \land \neg \psi))$ Hence, we only need to compute the semantics of  $E_f G \varphi$ .

#### Proof: Computation of $E_f G \varphi$

Let  $M_{\varphi}$  be the restriction of M to  $\llbracket \varphi \rrbracket_{f}$ . Compute the SCC of  $M_{\varphi}$  with Tarjan's algorithm (in linear time). Let S' be the union of the (non trivial) SCCs of  $M_{\varphi}$  which intersect each  $F_{i}$ . Then,  $M, s \models \mathsf{E}_{f} \mathsf{G} \varphi$  iff  $M, s \models \mathsf{E} \varphi \mathsf{U} S'$  iff  $M_{\varphi}, s \models \mathsf{EF} S'$ . This is again a reachability problem which can be solved in linear time.