Outline	Some References [12] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their linear specification.
Introduction	In ACM Symposium PoPL'85, 97–107.
Models	 [13] P. Wolper. The tableau method for temporal logic: An overview, Logique et Analyse. 110–111, 119–136, (1985).
Specifications Satisfiability and Model Checking for LTL	 [14] A. Sistla and E. Clarke. The complexity of propositional linear temporal logic. Journal of the Association for Computing Machinery. 32 (3), 733–749, (1985).
Büchi automata From LTL to BA Decidability and Complexity Branching Time Specifications	[15] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In CAV'01, vol. 2102, Lecture Notes in Computer Science, pp. 53-65. Springer, (2001). http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php
<ロ><(ロ)><(日)><(日)><(日)><(日)><(日)><(日)><(日)><(日	[16] S. Demri and P. Gastin. Specification and Verification using Temporal Logics. In Modern applications of automata theory, IISc Research Monographs 2. World Scientific, To appear. http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php
Outline	Büchi automata
Introduction	Definition:
Models	A Büchi automaton (BA) is a tuple $\mathcal{A} = (Q, \Sigma, I, T, F)$ where Q: finite set of states
Specifications	 Σ: finite set of labels I ⊆ Q: set of initial states
 Satisfiability and Model Checking for LTL Büchi automata From LTL to BA 	$T \subseteq Q \times \Sigma \times Q: \text{ set of transitions (non-deterministic)}$ $F \subseteq Q: \text{ set of accepting (repeated, final) states}$ Run: $\rho = q_0, a_0, q_1, a_1, q_2, a_2, q_3, \dots$ with $(q_i, a_i, q_{i+1}) \in T$ for all $i \ge 0$.
Decidability and Complexity Branching Time Specifications	$ ho$ is accepting if $q_0 \in I$ and $q_i \in F$ for infinitely many <i>i</i> 's. $\mathcal{L}(\mathcal{A}) = \{a_0 a_1 a_2 \dots \in \Sigma^{\omega} \mid \exists \rho = q_0, a_0, q_1, a_1, q_2, a_2, q_3, \dots \text{ accepting run}\}$
	A language $L \subseteq \Sigma^{\omega}$ is ω -regular if it can be accepted by some Büchi automaton.

Büchi automata

Examples:

Infinitely many a's:

Finitely many *a*'s:

Whenever a then later b:

◆□ → < 団 → < 三 → < 三 → 三 の Q ↔ 83/111</p>

Büchi automata

Theorem: Büchi

Let $L\subseteq \Sigma^\omega$ be a language. The following are equivalent:

- L is ω -regular
- L is ω -rational, i.e., L is a finite union of languages of the form $L_1 \cdot L_2^{\omega}$ where $L_1, L_2 \subseteq \Sigma^+$ are rational.
- L is MSO-definable, i.e., there is a sentence $\varphi \in MSO_{\Sigma}(\leq)_{\Sigma}(<)$ such that $L = \mathcal{L}(\varphi) = \{ w \in \Sigma^{\omega} \mid w \models \varphi \}.$

Exercises:

1. Construct a BA for $\mathcal{L}(\varphi)$ where φ is the $\mathrm{FO}_{\Sigma}(<)$ sentence

$$(\forall x, (P_a(x) \rightarrow \exists y > x, P_a(y))) \rightarrow (\forall x, (P_b(x) \rightarrow \exists y > x, P_c(y)))$$

2. Given BA for $L_1\subseteq \Sigma^\omega$ and $L_2\subseteq \Sigma^\omega$, construct BA for

$$\begin{split} \operatorname{next}(L_1) &= \Sigma \cdot L_1\\ \operatorname{until}(L_1, L_2) &= \{ uv \in \Sigma^{\omega} \mid u \in \Sigma^+ \land v \in L_2 \land \\ & u''v \in L_1 \text{ for all } u', u'' \in \Sigma^+ \text{ with } u = u'u'' \end{split}$$

▲□▶▲罰▶▲≧▶▲≧▶ ≧ 釣�? 85/111

Büchi automata

Properties

Büchi automata are closed under union, intersection, complement.

- Union: trivial
- Intersection: easy (exercise)
- complement: difficult
 - Let $L = \Sigma^*(a\Sigma^{n-1}b \cup b\Sigma^{n-1}a)\Sigma^{\omega}$

Any non deterministic Büchi automaton for $\Sigma^{\omega} \setminus L$ has at least 2^n states.

▲□▶▲圖▶▲臺▶▲臺▶ 臺 のへで 84/111

Generalized Büchi automata

Definition: acceptance on states or on transitions

 $\mathcal{A} = (Q, \Sigma, I, T, F_1, \dots, F_n)$ with $F_i \subseteq Q$. An infinite run σ is successful if it visits infinitely often each F_i .

 $\mathcal{A} = (Q, \Sigma, I, T, T_1, \dots, T_n)$ with $T_i \subseteq T$. An infinite run σ is successful if it uses infinitely many transitions from each T_i .

Example: Infinitely many a's and infinitely many b's

Theorem:

- 1. GBA and BA have the same expressive power.
- 2. Checking whether a BA or GBA has an accepting run is NLOGSPACE-complete.

Büchi automata with output

Definition: SBT: Synchronous (letter to letter) Büchi transducer

Let \boldsymbol{A} and \boldsymbol{B} be two alphabets.

A synchronous Büchi transducer from A to B is a tuple $\mathcal{A}=(Q,A,I,T,F,\mu)$ where (Q,A,I,T,F) is a Büchi automaton (input) and $\mu:T\to B$ is the output function. It computes the relation

 $\llbracket \mathcal{A} \rrbracket = \{ (u, v) \in A^{\omega} \times B^{\omega} \mid \exists \rho = q_0, a_0, q_1, a_1, q_2, a_2, q_3, \dots \text{ accepting run} \\ \text{ with } u = a_0 a_1 a_2 \cdots \\ \text{ and } v = \mu(q_0, a_0, q_1) \mu(q_1, a_1, q_2) \mu(q_2, a_2, q_3) \cdots \}$

If (Q,A,I,T,F) is unambiguous then $[\![\mathcal{A}]\!]:A^\omega\to B^\omega$ is a (partial) function.

We will also use SGBT: synchronous transducers with generalized Büchi acceptance.

Example: Left shift with $A = B = \{a, b\}$

Product of Büchi transducers

Definition: Product

Let A, B, C be alphabets. Let $\mathcal{A} = (Q, A, I, T, (F_i)_i, \mu)$ be an SGBT from A to B. Let $\mathcal{A}' = (Q', A, I', T', (F'_j)_j, \mu')$ be an SGBT from A to C. Then $\mathcal{A} \times \mathcal{A}' = (Q \times Q', A, I \times I', T'', (F_i \times Q')_i, (Q \times F'_j)_j, \mu'')$ is defined by:

 $\tau^{\prime\prime}=(p,p^\prime)\xrightarrow{a}(q,q^\prime)\in T^{\prime\prime} \text{ and } \mu^{\prime\prime}(\tau^{\prime\prime})=(b,c)$

iff

 $au = p \xrightarrow{a} q \in T$ and $b = \mu(au)$ and $au' = p' \xrightarrow{a} q' \in T'$ and $c = \mu'(au')$

 $\mathcal{A} \times \mathcal{A}'$ is an SGBT from A to $B \times C$.

Proposition: Product

We identify $(B \times C)^{\omega}$ with $B^{\omega} \times C^{\omega}$.

- 1. We have $\llbracket \mathcal{A} \times \mathcal{A}' \rrbracket = \{(u, v, v') \mid (u, v) \in \llbracket \mathcal{A} \rrbracket \text{ and } (u, v') \in \llbracket \mathcal{A}' \rrbracket \}.$
- 2. If $(Q, A, I, T, (F_i)_i)$ and $(Q', A, I', T', (F'_j)_j)$ are unambiguous then $(Q \times Q', A, I \times I', T'', (F_i \times Q')_i, (Q \times F'_j)_j)$ is also unambiguous. Then, $\forall u \in A^{\omega}$ we have $\llbracket \mathcal{A} \times \mathcal{A}' \rrbracket (u) = (\llbracket \mathcal{A} \rrbracket (u), \llbracket \mathcal{A}' \rrbracket (u)).$

◆□▶◆舂▶◆≧▶◆≧▶ ≧ つへで 90/111

Composition of Büchi transducers

Definition: Composition

Let A, B, C be alphabets. Let $\mathcal{A} = (Q, A, I, T, (F_i)_i, \mu)$ be an SGBT from A to B. Let $\mathcal{A}' = (Q', B, I', T', (F'_j)_j, \mu')$ be an SGBT from B to C. Then $\mathcal{A} \cdot \mathcal{A}' = (Q \times Q', A, I \times I', T'', (F_i \times Q')_i, (Q \times F'_j)_j, \mu'')$ is defined by:

$$\tau'' = (p,p') \xrightarrow{a} (q,q') \in T'' \text{ and } \mu''(\tau'') = c$$

iff

$$\tau=p\xrightarrow{a}q\in T$$
 and $\tau'=p'\xrightarrow{\mu(\tau)}q'\in T'$ and $c=\mu'(\tau')$

 $\mathcal{A} \cdot \mathcal{A}'$ is an SGBT from A to C. When the transducers define functions, we also denote the composition by $\mathcal{A}' \circ \mathcal{A}$.

Proposition: Composition

 We have [[A · A']] = [[A]] · [[A']].
 If (Q, A, I, T, (F_i)_i) and (Q', B, I', T', (F'_j)_j) are unambiguous then (Q × Q', A, I × I', T'', (F_i × Q')_i, (Q × F'_j)_j) is also unambiguous. Then, ∀u ∈ A^ω we have [[A' ∘ A]](u) = [[A']]([[A]](u)).

Outline

Introduction

Models

Specifications

Satisfiability and Model Checking for LTL Büchi automata

• From LTL to BA Decidability and Complexity

Branching Time Specifications

◆□▶<□▶<Ξ▶<Ξ▶<Ξ▶<Ξ> つへで 91/111

Subalphabets of $\Sigma = 2^{AP}$

Definition:

For a propositional formula ξ over AP, we let $\Sigma_{\xi} = \{a \in \Sigma \mid a \models \xi\}$. For instance, for $p, q \in AP$,

$$\begin{split} & \Sigma_p = \{ a \in \Sigma \mid p \in a \} \quad \text{and} \quad \Sigma_{\neg p} = \Sigma \setminus \Sigma_p \\ & \Sigma_{p \wedge q} = \Sigma_p \cap \Sigma_q \quad \text{and} \quad \Sigma_{p \vee q} = \Sigma_p \cup \Sigma_q \\ & \Sigma_{p \wedge \neg q} = \Sigma_p \setminus \Sigma_q \quad \dots \end{split}$$

Notation:

In automata, $p \xrightarrow{\Sigma_{\xi}} q$ stands for the set of transitions $\{p\} \times \Sigma_{\xi} \times \{q\}$. To simplify the pictures, we use $p \xrightarrow{\xi} q$ instead of $p \xrightarrow{\Sigma_{\xi}} q$.

Example:

Synchronous Büchi transducer for $p \cup q$

Lemma: The input BA is prophetic

For all $u = a_0 a_1 a_2 \dots \in \Sigma^{\omega}$, there is a unique accepting run $\rho = q_0, a_0, q_1, a_1, q_2, a_2, q_3, \dots$ of \mathcal{A} on u. The run ρ satisfies for all $i \ge 0$, $q_i = \begin{cases} 1 & \text{if } u, i \models q \\ 2 & \text{if } u, i \models \neg q \land (p \ U' q) \\ 3 & \text{if } u, i \models \neg (p \ U' q) \end{cases}$

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ のへで 94/111

Semantics of LTL with sequential functions

Definition: Semantics of $\varphi \in LTL(AP, S, U)$

Let $\Sigma = 2^{AP}$ and $\mathbb{B} = \{0, 1\}$. Define $\llbracket \varphi \rrbracket : \Sigma^{\omega} \to \mathbb{B}^{\omega}$ by $\llbracket \varphi \rrbracket(u) = b_0 b_1 b_2 \cdots$ with $b_i = \begin{cases} 1 & \text{if } u, i \models \varphi \\ 0 & \text{otherwise.} \end{cases}$

Example:

$$\begin{split} & [\![p \ \mathsf{U} \ q]\!](\emptyset\{q\}\{p\}\emptyset\{p\}\{q\}\emptyset\{p\}\{p\}\{q\}\emptyset\{p\}\{p,q\}\emptyset^{\omega}) = 1001110110^{\omega} \\ & [\![\mathsf{X} \ p]\!](\emptyset\{q\}\{p\}\emptyset\{p\}\{q\}\{q\}\emptyset\{p\}\{q\}\emptyset\{p\}\{q\}\emptyset\{p\}\{q\}\emptyset^{\omega}) = 0101100110^{\omega} \\ & [\![\mathsf{F} \ p]\!](\emptyset\{q\}\{p\}\emptyset\{p\}\{q\}\{q\}\emptyset\{p\}\{q\}\emptyset\{p\}\{q\}\emptyset^{\omega}) = 111111110^{\omega} \end{split}$$

The aim is to compute $\llbracket \varphi \rrbracket$ with Büchi transducers.

<□▶ < 臣▶< 臣▶< 臣▶ 臣 のへで 93/111

Special cases of Until: Future and Next

Exercise: Give SBT's for the following formulae: $p \cup q$, F'q, Gq, G'q, p Rq, p R'q, p Sq, p S'q, $G(p \rightarrow Fq)$.

▲□▶▲@▶▲≧▶▲≧▶ 差 のQで 95/111

From LTL to Büchi automata

▲□▶▲舂▶▲≧▶▲≧▶ ≧ わなぐ 96/111

From LTL to Büchi automata

Definition: Translation from LTL to SGBT

For each $\xi \in LTL(AP, S, U)$ we define inductively an SGBT \mathcal{A}_{ξ} as follows:

 $ightarrow \mathcal{A}_{ op}$ and \mathcal{A}_p for $p\in\operatorname{AP}$ are already defined

$$\blacktriangleright \ \mathcal{A}_{\neg\varphi} = \mathcal{A}_{\neg} \circ \mathcal{A}_{\varphi}$$

- $\blacktriangleright \mathcal{A}_{\varphi \mathsf{S}\psi} = \mathcal{A}_{\mathsf{S}} \circ (\mathcal{A}_{\varphi} \times \mathcal{A}_{\psi})$
- $\succ \mathcal{A}_{\varphi \cup \psi} = \mathcal{A}_{\cup} \circ (\mathcal{A}_{\varphi} \times \mathcal{A}_{\psi})$

Theorem: Correctness of the translation

For each $\xi \in LTL(AP, S, U)$, we have $\llbracket \mathcal{A}_{\xi} \rrbracket = \llbracket \xi \rrbracket$.

Moreover, the number of states of \mathcal{A}_{ξ} is at most $2^{|\xi|_{S}} \cdot 3^{|\xi|_{U}}$ where $|\xi|_{S}$ (resp. $|\xi|_{U}$) is the number of S (resp. U) occurring in ξ .

Remark:

- If a subformula φ occurs serveral time in ξ , we only need one copy of \mathcal{A}_{φ} .
- $\,\,$ We may also use automata for other modalities: $\mathcal{A}_X,\,\mathcal{A}_{U'},\,\ldots$

◆□ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ ○ ○ 98/111

From LTL to Büchi automata

Let $\mathcal{A} = (Q, \Sigma, I, T, T_1, \dots, T_n)$ be a GBA and $s_1, s_2 \in Q$. We can merge s_1 and s_2 if they have the same outgoing transitions: $\forall a \in \Sigma, \forall s \in Q$,

> $(s_1, a, s) \in T \iff (s_2, a, s) \in T$ and $(s_1, a, s) \in T_i \iff (s_2, a, s) \in T_i$ for all $1 \le i \le n$.

> > ◆□ → ◆ 部 → ◆ 差 → ● 差 一 多 へ ⁽²⁾ 99/111

The satisfiability problem for LTL is PSPACE-complete.

 Decidability and Complexity **Branching Time Specifications** ◆□▶◆舂▶◆葦▶◆葦▶ 葦 の�� 101/111

Outline

Model checking for LTL

Definition: Model checking problem A Kripke structure $M = (S, T, I, AP, \ell)$ A formula $\varphi \in LTL(AP, S, U)$ Question: Does $M \models \varphi$? ▶ Universal MC: $M \models_{\forall} \varphi$ if $\ell(\sigma), 0 \models \varphi$ for all initial infinite run of M. **Existential** MC: $M \models_{\exists} \varphi$ if $\ell(\sigma), 0 \models \varphi$ for some initial infinite run of M. $M \models_{\forall} \varphi$ iff $M \not\models_{\exists} \neg \varphi$

Theorem [14, Sistla, Clarke 85], [12, Lichtenstein & Pnueli 85] The Model checking problem for LTL is PSPACE-complete

$MC^{\exists}(U) \leq_P SAT(U)$ [14, Sistla & Clarke 85]

Let $M=(S,T,I,\mathrm{AP},\ell)$ be a Kripke structure and $\varphi\in\mathrm{LTL}(\mathrm{AP},\mathrm{U})$

 $\begin{array}{l} \mbox{Introduce new atomic propositions: } {\rm AP}_S = \{ {\rm at}_s \mid s \in S \} \\ \mbox{Define } {\rm AP}' = {\rm AP} \uplus {\rm AP}_S \qquad \Sigma' = 2^{{\rm AP}'} \qquad \pi : \Sigma'^\omega \to \Sigma^\omega \mbox{ by } \pi(a) = a \cap {\rm AP}. \end{array}$

Let $w \in \Sigma'^{\omega}$. We have $w \models \varphi$ iff $\pi(w) \models \varphi$

Define $\psi_M \in \operatorname{LTL}(\operatorname{AP}', \mathsf{X}, \mathsf{F}')$ of size $\mathcal{O}(|M|^2)$ by

$$\psi_M = \left(\bigvee_{s \in I} \operatorname{at}_s\right) \wedge \mathsf{G}'\left(\bigvee_{s \in S} \left(\operatorname{at}_s \wedge \bigwedge_{t \neq s} \neg \operatorname{at}_t \wedge \bigwedge_{p \in \ell(s)} p \wedge \bigwedge_{p \notin \ell(s)} \neg p \wedge \bigvee_{t \in T(s)} \mathsf{X}\operatorname{at}_t\right)\right)$$

Let $w = a_0 a_1 a_2 \dots \in \Sigma'^{\omega}$. Then, $w \models \psi_M$ iff there exists an initial infinite run σ of M such that $\pi(w) = \ell(\sigma)$ and $a_i \cap AP_S = \{at_{s_i}\}$ for all $i \ge 0$.

◆□▶◆舂▶◆差▶◆差▶ 差 のへで 105/111

 $\begin{array}{lll} \text{Therefore,} & M \models_\exists \varphi & \text{iff} & \psi_M \wedge \varphi \text{ is satisfiable} \\ & M \models_\forall \varphi & \text{iff} & \psi_M \wedge \neg \varphi \text{ is not satisfiable} \end{array}$

Remark: we also have $MC^{\exists}(X, F') \leq_P SAT(X, F')$.

 $\begin{array}{c} \operatorname{QBF} \leq_{P} \operatorname{MC}^{\exists}(\mathsf{U}') \quad [\texttt{14, Sistla \& Clarke 85}]\\ \operatorname{Let} \gamma = Q_{1}x_{1} \cdots Q_{n}x_{n} \\ \stackrel{1 \leq i \leq m}{\longrightarrow} 1 \leq j \leq k_{i} \end{array}$ Consider the KS *M*: $\begin{array}{c} \underset{i = 0 \\ i \leq m}{\longrightarrow} 1 \leq j \leq k_{i} \end{array}$ $\begin{array}{c} \underset{i = 0 \\ i \leq m}{\longrightarrow} 1 \leq j \leq k_{i} \end{array}$ $\begin{array}{c} \underset{i = 0 \\ i \leq m}{\longrightarrow} 1 \leq j \leq k_{i} \end{array}$ $\begin{array}{c} \underset{i = 0 \\ i \leq m}{\longrightarrow} 1 \leq j \leq k_{i} \end{array}$ $\begin{array}{c} \underset{i = 0 \\ i \leq m}{\longrightarrow} 1 \leq j \leq k_{i} \end{array}$ $\begin{array}{c} \underset{i = 0 \\ i \leq m}{\longrightarrow} 1 \leq j \leq k_{i} \end{array}$ $\begin{array}{c} \underset{i = 0 \\ i \leq m}{\longrightarrow} 1 \leq j \leq k_{i} \end{array}$ $\begin{array}{c} \underset{i = 0 \\ i \leq m}{\longrightarrow} 1 \leq j \leq k_{i} \end{array}$ $\begin{array}{c} \underset{i = 0 \\ i \leq m}{\longrightarrow} 1 \leq j \leq k_{i} \end{array}$ $\begin{array}{c} \underset{i = 0 \\ i \leq m}{\longrightarrow} 1 \leq j \leq k_{i} \end{array}$ $\begin{array}{c} \underset{i = 0 \\ i \leq m}{\longrightarrow} 1 \leq j \leq k_{i} \end{array}$ $\begin{array}{c} \underset{i = 0 \\ i \leq m}{\longrightarrow} 1 \leq j \leq k_{i} \end{array}$ $\begin{array}{c} \underset{i = 0 \\ i \leq m}{\longrightarrow} 1 \leq j \leq k_{i} \end{array}$ $\begin{array}{c} \underset{i = 0 \\ i \leq m}{\longrightarrow} 1 \leq j \leq k_{i} \end{array}$ $\begin{array}{c} \underset{i = 0 \\ i \leq m}{\longrightarrow} 1 \leq j \leq k_{i} \end{array}$ $\begin{array}{c} \underset{i = 0 \\ i \leq m}{\longrightarrow} 1 \leq j \leq k_{i} \end{array}$ $\begin{array}{c} \underset{i = 0 \\ i \leq m}{\longrightarrow} 1 \leq j \leq k_{i} \end{array}$ $\begin{array}{c} \underset{i = 0 \\ i \leq m}{\longrightarrow} 1 \leq j \leq k_{i} \end{array}$ $\begin{array}{c} \underset{i = 0 \\ i \leq m}{\longrightarrow} 1 \leq j \leq k_{i} \end{array}$ $\begin{array}{c} \underset{i = 0 \\ i \leq m}{\longrightarrow} 1 \leq j \leq k_{i} \end{array}$ $\begin{array}{c} \underset{i = 0 \\ i \leq m}{\longrightarrow} 1 \leq j \leq k_{i} \end{array}$ $\begin{array}{c} \underset{i = 0 \\ i \leq m}{\longrightarrow} 1 \leq j \leq k_{i} \end{array}$ $\begin{array}{c} \underset{i = 0 \\ i \leq m}{1 \leq m}{1$

${\rm QBF}\xspace$ QBF Quantified Boolean Formulae

Definition: QBF

Input: A formula
$$\gamma = Q_1 x_1 \cdots Q_n x_n \gamma'$$
 with $\gamma' = \bigwedge_{1 \le i \le m} \bigvee_{1 \le j \le k_i} a_{ij}$
 $Q_i \in \{\forall, \exists\} \text{ and } a_{ij} \in \{x_1, \neg x_1, \dots, x_n, \neg x_n\}.$

Question: Is γ valid?

Definition:

An assignment of the variables $\{x_1, \ldots, x_n\}$ is a word $v = v_1 \cdots v_n \in \{0, 1\}^n$. We write v[i] for the prefix of length *i*. Let $V \subseteq \{0, 1\}^n$ be a set of assignments.

- ▶ V is valid (for γ') if $v \models \gamma'$ for all $v \in V$.
- V is valid (for γ) if $v \models \gamma$ for all $v \in V$,
- ► V is closed (for γ) if $\forall v \in V$, $\forall 1 \leq i \leq n$ s.t. $Q_i = \forall$, $\exists v' \in V$ s.t. v[i-1] = v'[i-1] and $\{v_i, v'_i\} = \{0, 1\}$.

Proposition:

 γ is valid iff $\exists V \subseteq \{0,1\}^n$ s.t. V is nonempty valid and closed

```
<□▶<□▶<□▶<□▶<≣▶<≣▶

Ξ

・

○

へ

○

06/111
```

Complexity of LTL

Theorem: Complexity of LTL

The following problems are PSPACE-complete:

- ▷ SAT(LTL(S,U)), $MC^{\forall}(LTL(S,U))$, $MC^{\exists}(LTL(S,U))$
- $\succ \ \mathrm{SAT}(\mathrm{LTL}(\mathsf{X},\mathsf{F}')), \ \mathrm{MC}^{\forall}(\mathrm{LTL}(\mathsf{X},\mathsf{F}')), \ \mathrm{MC}^{\exists}(\mathrm{LTL}(\mathsf{X},\mathsf{F}'))$
- SAT(LTL(U')), $\mathrm{MC}^{\forall}(\mathrm{LTL}(U'))$, $\mathrm{MC}^{\exists}(\mathrm{LTL}(U'))$
- The restriction of the above problems to a unique propositional variable

The following problems are NP-complete:

SAT(LTL(F')), $\mathrm{MC}^{\exists}(\mathrm{LTL}(\mathsf{F}'))$