
42/111

Outline

Introduction

Models

3 Specifications

Definitions

Expressivity

Separation

Ehrenfeucht-Fräıssé games

Satisfiability and Model Checking for LTL

Branching Time Specifications

43/111

Some References

[7] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi.
On the temporal analysis of fairness.
In 7th Annual ACM Symposium PoPL’80, 163–173. ACM Press.

[8] D. Gabbay.
The declarative past and imperative future: Executable temporal logics for
interactive systems.
In Temporal Logics in Specifications, April 87. LNCS 398, 409–448, 1989.

[10] D. Gabbay, I. Hodkinson and M. Reynolds.
Temporal logic: mathematical foundations and computational aspects.
Vol 1, Clarendon Press, Oxford, 1994.

[16] S. Demri and P. Gastin.
Specification and Verification using Temporal Logics.
In Modern applications of automata theory, IISc Research Monographs 2.
World Scientific, To appear.
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

44/111

Outline

Introduction

Models

3 Specifications

Definitions

Expressivity

Separation

Ehrenfeucht-Fräıssé games

Satisfiability and Model Checking for LTL

Branching Time Specifications

45/111

Static and dynamic properties

Example: Static properties

Mutual exclusion

Safety properties are often static.

They can be reduced to reachability.

Example: Dynamic properties

Every elevator request should be eventually granted.

�

i

∀t, (Calli(t) −→ ∃t� ≥ t, (atLeveli(t
�
) ∧ openDoori(t

�
)))

The elevator should not cross a level for which a call is pending without stopping.

�

i

∀t∀t�, (Calli(t) ∧ t ≤ t� ∧ atLeveli(t
�
)) −→

∃t ≤ t�� ≤ t�, (atLeveli(t��) ∧ openDoori(t
��)))

46/111

Temporal Structures

Definition: Flows of time

A flow of time is a strict order (T, <) where T is the nonempty set of time points
and < is an irreflexive transitive relation on T.

Example: Flows of time

� ({0, . . . , n}, <): Finite runs of sequential systems.

� (N, <): Infinite runs of sequential systems.

� Trees: Finite or infinite run-trees of sequential systems.

� Mazurkiewicz traces: runs of distributed systems (partial orders).

� and also (Z, <) or (Q, <) or (R, <), (ω2, <), . . .

Definition: Temporal Structures

Let AP be a set of atoms (atomic propositions).

A temporal structure over a class C of time flows and AP is a triple (T, <, h) where
(T, <) is a time flow in C and h : AP → 2T is an assignment.

If p ∈ AP then h(p) ⊆ T gives the time points where p holds.

47/111

Linear behaviors and specifications

Let M = (S, T, I,AP, �) be a Kripke structure.

Definition: Runs as temporal structures

An infinite run σ = s0 → s1 → s2 → · · · with si → si+1 ∈ T of M defines a linear
temporal structure �(σ) = (N, <, h) where h(p) = {i ∈ N | p ∈ �(si)}.

Such a temporal structure can be seen as an infinite word over Σ = 2AP:
�(σ) = �(s0)�(s1)�(s2) · · · = (N, <,w) with w(i) = �(si) ∈ Σ.

Linear specifications only depend on runs.

Example: The printer manager is fair.

On each run, whenever some process requests the printer, it eventually gets it.

Remark:

Two Kripke structures having the same linear temporal structures satisfy the same
linear specifications.

48/111

Branching behaviors and specifications

Let M = (S, T, I,AP, �) be a Kripke structure.

Definition: Run-trees as temporal strucutres

Run-tree = unfolding of the transition system.

Let D be a finite set with |D| the outdegree of the transition relation T .

Unordered tree t : D∗ → Σ (partial map).

Associated temporal structure (dom(t), <, h) where
< is the strict prefix relation over D∗ and h(p) = {i ∈ dom(t) | p ∈ t(i)}.

Example: Each process has the possibility to print first.

49/111

First-order Specifications

Definition: Syntax of FO(<)

Let P,Q, . . . be unary predicates twinned with atoms p, q, . . . in AP.
Let Var = {x, y, . . .} be first-order variables.

ϕ ::= ⊥ | P (x) | x = y | x < y | ¬ϕ | ϕ ∨ ϕ | ∃xϕ

Definition: Semantics of FO(<)

Let w = (T, <, h) be a temporal structure.
Precidates P,Q, . . . twinned with p, q, . . . are interpreded as h(p), h(q), . . .
Let ν : Var → T be an assignment of first-order variables.

w, ν |= P (x) if ν(x) ∈ h(p)

w, ν |= x = y if ν(x) = ν(y)

w, ν |= x < y if ν(x) < ν(y)

w, ν |= ∃xϕ if w, ν[x �→ t] |= ϕ for some t ∈ T

where ν[x �→ t] maps x to t and y �= x to ν(y).

Previous specifications can be written in FO(<).

50/111

First-order vs Temporal

First-order logic

� FO(<) has a good expressive power.
. . . but FO(<)-formulae are not easy to write and to understand.

� FO(<) is decidable.
. . . but satisfiability and model checking are non elementary.

Temporal logics

� no variables: time is implicit.

� quantifications and variables are replaced by modalities.

� Usual specifications are easy to write and read.

� Good complexity for satisfiability and model checking problems.

� Good expressive power.

Linear Temporal Logic (LTL) over (N, <) introduced by Pnueli (1977) as a conve-
nient specification language for verification of systems.

51/111

Temporal Specifications

Definition: Syntax of TL(AP, S,U)

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | Fϕ | Pϕ | Gϕ | Hϕ | ϕ U ϕ | ϕ S ϕ | Xϕ | Yϕ

Definition: Semantics: w = (T, <, h) temporal structure and i ∈ T
w, i |= p if i ∈ h(p)

w, i |= Fϕ if ∃j i < j and w, j |= ϕ

w, i |= Gϕ if ∀j i < j → w, j |= ϕ

w, i |= ϕ U ψ if ∃k i < k and w, k |= ψ and ∀j (i < j < k) → w, j |= ϕ

w, i |= Xϕ if ∃j i < j and w, j |= ϕ and ¬∃k (i < k < j)

w, i |= Pϕ if ∃j i > j and w, j |= ϕ

w, i |= Hϕ if ∀j i > j → w, j |= ϕ

w, i |= ϕ S ψ if ∃k i > k and w, k |= ψ and ∀j (i > j > k) → w, j |= ϕ

w, i |= Yϕ if ∃j i > j and w, j |= ϕ and ¬∃k (i > k > j)

Previous specifications can be written in TL(AP).

52/111

Temporal Specifications

Relations between modalities

Fϕ = � U ϕ
Gϕ = ¬F¬ϕ
Xϕ = ⊥ U ϕ

Definition: Derived modalities

ϕW ψ
def
= (Gϕ) ∨ (ϕ U ψ) Weak Until

ϕ R ψ
def
= (Gψ) ∨ (ψ U (ϕ ∧ ψ)) Release

Definition: non-strict versions of modalities

F� ϕ
def
= ϕ ∨ Fϕ

G� ϕ
def
= ϕ ∧ Gϕ

ϕ U� ψ
def
= ψ ∨ (ϕ ∧ ϕ U ψ)

ϕ R� ψ
def
= ψ ∧ (ϕ ∨ ϕ R ψ)

54/111

Temporal Specifications

Example: Specifications on the time flow (N, <)

� Safety: G�
good

� MutEx: ¬F�
(crit1 ∧ crit2)

� Liveness: G F active

� Response: G�
(request → F grant)

� Response’: G�
(request → (¬request U grant))

� Release: reset R alarm

� Strong fairness: G F request → GF grant

� Weak fairness: FG request → GF grant

55/111

Outline

Introduction

Models

3 Specifications

Definitions

Expressivity

Separation

Ehrenfeucht-Fräıssé games

Satisfiability and Model Checking for LTL

Branching Time Specifications

56/111

Some References
[6] J. Kamp.

Tense Logic and the Theory of Linear Order.
PhD thesis, UCLA, USA, (1968).

[7] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi.
On the temporal analysis of fairness.
In 7th Annual ACM Symposium PoPL’80, 163–173. ACM Press.

[8] D. Gabbay.
The declarative past and imperative future: Executable temporal logics for
interactive systems.
In Temporal Logics in Specifications, April 87. LNCS 398, 409–448, 1989.

[9] D. Gabbay, I. Hodkinson and M. Reynolds.
Temporal expressive completeness in the presence of gaps.
In Logic Colloquium ’90, Springer Lecture Notes in Logic 2, pp. 89-121, 1993.

[17] V. Diekert and P. Gastin.
First-order definable languages.
In Logic and Automata: History and Perspectives, vol. 2, Texts in Logic and
Games, pp. 261–306. Amsterdam University Press, (2008).
Overview of formalisms expressively equivalent to First-Order for words.
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

57/111

Temporal Specifications

Proposition: For discrete linear time flows (T, <)

Fϕ = XF� ϕ
Gϕ = XG� ϕ

ϕ U ψ = X(ϕ U� ψ)

¬Xϕ = X¬ϕ ∨ ¬X�

¬(ϕ U ψ) = (G¬ψ) ∨ (¬ψ U (¬ϕ ∧ ¬ψ))
= ¬ψ W (¬ϕ ∧ ¬ψ)
= ¬ϕ R ¬ψ

Definition: discrete linear time flows

A linear time flow (T, <) is discrete if F� → X� and P� → Y� are valid formulae.

(N, <) and (Z, <) are discrete.

(Q, <) and (R, <) are not discrete.

58/111

Expressivity

Definition: Equivalence

Let C be a class of time flows.

Two formulae ϕ,ψ ∈ TL(AP, S,U) are equivalent over C if
for all temporal structures w = (T, <, h) over C and all time points t ∈ T we have

w, t |= ϕ iff w, t |= ψ

Two formulae ϕ ∈ TL(AP, S,U) and ψ(x) ∈ FOAP(<) are equivalent over C if
for all temporal structures w = (T, <, h) over C and all time points t ∈ T we have

w, t |= ϕ iff w |= ψ(t)

Remark: LTL(AP, S,U) ⊆ FOAP(<)

∀ϕ ∈ TL(AP, S,U), ∃ψ(x) ∈ FOAP(<) such that ϕ and ψ(x) are equivalent.

59/111

Expressivity

Theorem: Expressive completeness [6, Kamp 68]

For complete linear time flows,

TL(AP, S,U) = FOAP(<)

Definition: complete linear time flows

A linear time flow (T, <) is complete if every nonempty and bounded subset of T
has a least upper bound and a greatest lower bound.

(N, <), (Z, <) and (R, <) are complete.

(Q, <) and (R \ {0}, <) are not complete.

Remark:

Elegant algebraic proof of TL(AP,U) = FOAP(<) over (N, <) due to Wilke 98.

60/111

Stavi connectives: Time flows with gaps

Definition: Stavi Until: U

Let w = (T, <, h) be a temporal structure and i ∈ T. Then, w, i |= ϕ U ψ if

∃k i < k

∧ ∃j (i < j < k ∧ w, j |= ¬ϕ)
∧ ∃j (i < j < k ∧ ∀� (i < � < j → w, � |= ϕ)

∧ ∀j
�
i < j < k →

�
∃k� [j < k� ∧ ∀j� (i < j� < k� → w, j� |= ϕ)]

∨ [∀� (j < � < k → w, � |= ψ) ∧ ∃� (i < � < j ∧ w, � |= ¬ϕ)]

��

Similar definition for the Stavi Since S.

Theorem: [9, Gabbay, Hodkinson, Reynolds]

TL(AP, S,U, S,U) is expressively complete for FOAP(<) over the class of all linear
time flows.

Exercise: Isolated gaps

Show that TL(AP, S,U) is FOAP(<)-complete over the time flow (R \ Z, <).

61/111

Outline

Introduction

Models

3 Specifications

Definitions

Expressivity

Separation

Ehrenfeucht-Fräıssé games

Satisfiability and Model Checking for LTL

Branching Time Specifications

62/111

Some References

[7] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi.
On the temporal analysis of fairness.
In 7th Annual ACM Symposium PoPL’80, 163–173. ACM Press.

[8] D. Gabbay.
The declarative past and imperative future: Executable temporal logics for
interactive systems.
In Temporal Logics in Specifications, April 87. LNCS 398, 409–448, 1989.

[10] D. Gabbay, I. Hodkinson and M. Reynolds.
Temporal logic: mathematical foundations and computational aspects.
Vol 1, Clarendon Press, Oxford, 1994.

[11] I. Hodkinson and M. Reynolds.
Separation — Past, Present and Future.
In “We Will Show Them: Essays in Honour of Dov Gabbay”.
Vol 2, pages 117–142, College Publications, 2005.
Great survey on separation properties.

63/111

Separation

Definition:

Let w = (T, <, h) and w� = (T, <, h�) be temporal structures over the same time
flow, and let t ∈ T be a time point.

� w,w� agree on t if h(t) = h�(t)

� w,w� agree on the past of t if h(s) = h�(s) for all s < t

� w,w� agree on the future of t if h(s) = h�(s) for all s > t

Definition: Pure formulae

Let C be a class of time flows. A formula ϕ over some logic L is pure past (resp.
pure present, pure future) over C if for all temporal structures w = (T, <, h) and
w� = (T, <, h�) over C and all time points t ∈ T such that w,w� agree on the past
of t (resp. on t, on the future of t) we have

w, t |= ϕ iff w�, t |= ϕ

64/111

Separation

Definition: Separation

A logic L is separable over a class C of time flows if each formula ϕ ∈ L is equivalent
to some (finite) boolean combination of pure formulae.

Theorem: [7, Gabbay, Pnueli, Shelah & Stavi 80]

TL(AP, S,U) is separable over discrete and complete linear orders.

� (N, <) is the unique (up to isomorphism) discrete and complete linear order
with a first point and no last point.

� (Z, <) is the unique (up to isomorphism) discrete and complete linear order
with no first point and no last point.

� Any discrete and complete linear order is isomorphic to a sub-flow of (Z, <).

Theorem: Gabbay, Reynolds, see [10]

TL(AP, S,U) is separable over (R, <).

65/111

Separation and Expressivity

Theorem: [8, Gabbay 89] (already stated by Gabbay in 81)

Let C be a class of linear time flows.

Let L be a temporal logic able to express F and P.

Then, L is separable over C iff it is expressively complete over C.

66/111

Initial equivalence

Definition: Initial Equivalence

Let C be a class of time flows having a minimum (denoted 0).
Two formulae ϕ,ψ ∈ TL(AP, S,U) are initially equivalent over C if
for all temporal structures w = (T, <, h) over C we have

w, 0 |= ϕ iff w, 0 |= ψ

Two formulae ϕ ∈ TL(AP, S,U) and ψ(x) ∈ FOAP(<) are initially equivalent over
C if for all temporal structures w = (T, <, h) over C we have

w, 0 |= ϕ iff w |= ψ(0)

Corollary: of the separation theorem

For each ϕ ∈ TL(AP, S,U) there exists ψ ∈ TL(AP,U) such that ϕ and ψ are
initially equivalent over (N, <).

67/111

Initial equivalence

Example: TL(AP, S,U) versus TL(AP,U)

G�
(grant → (¬grant S request))

is initially equivalent to

(request R� ¬grant) ∧ G(grant → (request ∨ (request R ¬grant)))

Theorem: (Laroussinie & Markey & Schnoebelen 2002)

TL(AP, S,U) may be exponentially more succinct than TL(AP,U) over (N, <).

68/111

Outline

Introduction

Models

3 Specifications

Definitions

Expressivity

Separation

Ehrenfeucht-Fräıssé games

Satisfiability and Model Checking for LTL

Branching Time Specifications

69/111

Some References

[18] H. Straubing.
Finite automata, formal logic, and circuit complexity.
In Progress in Theoretical Computer Science, Birkhäuser, (1994).

[19] K. Etessami and Th. Wilke.
An until hierarchy and other applications of an Ehrenfeucht-Fräıssé game for
temporal logic.
In Information and Computation, vol. 106, pp. 88–108, (2000).

70/111

Temporal depth

Definition: Temporal depth of ϕ ∈ TL(AP, S,U)

td(p) = 0 if p ∈ AP

td(¬ϕ) = td(ϕ)

td(ϕ ∨ ψ) = max(td(ϕ), td(ψ))

td(ϕ S ψ) = max(td(ϕ), td(ψ)) + 1

td(ϕ U ψ) = max(td(ϕ), td(ψ)) + 1

Lemma:

Let B ⊆ AP be finite and k ∈ N.
There are (up to equivalence) finitely many formulae in TL(B, S,U) of temporal
depth at most k.

71/111

k-equivalence

Definition:

Let w0 = (T0, <, h0) and w1 = (T1, <, h1) be two temporal structures.
Let i0 ∈ T0 and i1 ∈ T1. Let k ∈ N.

We say that (w0, i0) and (w1, i1) are k-equivalent, denoted (w0, i0) ≡k (w1, i1), if
they satisfy the same formulae in TL(AP, S,U) of temporal depth at most k.

Lemma: ≡k is an equivalence relation of finite index.

Example:

Let a = {p} and b = {q}. Let w0 = babaababaa and w1 = baababaaba.

(w0, 3) ≡0 (w1, 4)

(w0, 3) ≡1 (w1, 4) ?

(w0, 3) ≡1 (w1, 6) ?

Here, T0 = T1 = {0, 1, 2, . . . , 9}.

72/111

EF-games for TL(AP, S,U)

The EF-game has two players: Spoiler (Player I) and Duplicator (Player II).

The game board consists of 2 temporal structures:
w0 = (T0, <, h0) and w1 = (T1, <, h1).

There are two tokens, one on each structure: i0 ∈ T0 and i1 ∈ T1.

A configuration is a tuple (w0, i0, w1, i1)
or simply (i0, i1) if the game board is understood.

Let k ∈ N.
The k-round EF-game from a configuration proceeds with (at most) k moves.

There are 2 available moves for TL(AP, S,U): Until or Since (see below).

Spoiler chooses which move is played in each round.

Spoiler wins if

� Either duplicator cannot answer during a move (see below).

� Or a configuration such that (w0, i0) �≡0 (w1, i1) is reached.

Otherwise, duplicator wins.

73/111

Until and Since moves

Definition: (Strict) Until move

� Spoiler chooses ε ∈ {0, 1} and kε ∈ Tε such that iε < kε.

� Duplicator chooses k1−ε ∈ T1−ε such that i1−ε < k1−ε.
Spoiler wins if there is no such k1−ε.
Either spoiler chooses (k0, k1) as next configuration of the EF-game,
or the move continues as follows

� Spoiler chooses j1−ε ∈ T1−ε with i1−ε < j1−ε < k1−ε.

� Duplicator chooses jε ∈ Tε with iε < jε < kε.
Spoiler wins if there is no such jε.
The next configuration is (j0, j1).

Similar definition for the (strict) Since move.

74/111

Winning strategy

Definition: Winning strategy

Duplicator has a winning strategy in the k-round EF-game starting from
(w0, i0, w1, i1) if he can win all plays starting from this configuration.
This is denoted by (w0, i0) ∼k (w1, i1).

Spoiler has a winning strategy in the k-round EF-game starting from (w0, i0, w1, i1)
if she can win all plays starting from this configuration.

Example:

Let a = {p}, b = {q}, c = {r}. Let w0 = aaabbc and w1 = aababc.

(w0, 0) ∼1 (w1, 0)

(w0, 0) �∼2 (w1, 0)

Here, T0 = T1 = {0, 1, 2, . . . , 5}.

75/111

EF-games for TL(AP, S,U)

Lemma: Determinacy

The k-round EF-game for TL(AP, S,U) is determined:
For each initial configuration, either spoiler or duplicator has a winning strategy.

Theorem: Soundness and completeness of EF-games

For all k ∈ N and all configurations (w0, i0, w1, i1), we have

(w0, i0) ∼k (w1, i1) iff (w0, i0) ≡k (w1, i1)

Example:

Let a = {p}, b = {q}, c = {r}.
Then, aaabbc, 0 |= p U (q U r) but aababc, 0 �|= p U (q U r).

Hence, pU (qU r) cannot be expressed with a formula of temporal depth at most 1.

Exercise:

On finite linear time flows, “even length” cannot be expressed in TL(AP, S,U).

76/111

Moves for Future and Past modalities

Definition: (Strict) Future move

� Spoiler chooses ε ∈ {0, 1} and jε ∈ Tε such that iε < jε.

� Duplicator chooses j1−ε ∈ T1−ε such that i1−ε < j1−ε.
Spoiler wins if there is no such j1−ε.
The new configuration is (j0, j1).

Similar definition for (strict) Past move.

Example:

p U q is not expressible in TL(AP,P,F) over linear flows of time.

Let a = ∅, b = {p} and c = {q}.
Let w0 = (abc)na(abc)n and w1 = (abc)n(abc)n.

If n > k then, starting from (w0, 3n,w1, 3n), duplicator has a winning strategy in
the k-round EF-game using Future and Past moves.

77/111

Moves for Next and Yesterday modalities

Notation: i� j
def
= i < j ∧ ¬∃k (i < k < j).

Definition: Next move

� Spoiler chooses ε ∈ {0, 1} and jε ∈ Tε such that iε � jε.

� Duplicator chooses j1−ε ∈ T1−ε such that i1−ε � j1−ε.
Spoiler wins if there is no such j1−ε.
The new configuration is (j0, j1).

Similar definition for Yesterday move.

Exercise:

Show that p U q is not expressible in TL(AP,Y,P,X,F) over linear flows of time.

78/111

Non-strict Until and Since moves

Definition: non-strict Until move

� Spoiler chooses ε ∈ {0, 1} and kε ∈ Tε such that iε ≤ kε.

� Duplicator chooses k1−ε ∈ T1−ε such that i1−ε ≤ k1−ε.
Either spoiler chooses (k0, k1) as new configuration of the EF-game,
or the move continues as follows

� Spoiler chooses j1−ε ∈ T1−ε with i1−ε ≤ j1−ε < k1−ε.

� Duplicator chooses jε ∈ Tε with iε ≤ jε < kε.
Spoiler wins if there is no such jε.
The new configuration is (j0, j1).

� If duplicator chooses k1−ε = i1−ε then the new configuration must be (k0, k1).

� If spoiler chooses kε = iε then duplicator must choose k1−ε = i1−ε,
otherwise he loses.

Similar definition for the non-strict Since move.

Exercise:

1. Show that strict until is not expressible in TL(AP, S�,U�) over (R, <).
2. Show that strict until is not expressible in TL(AP, S�,U�) over (N, <).

