Outline	Some References
Introduction	 [7] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness. In 7th Annual ACM Symposium PoPL'80, 163–173, ACM Press.
 Specifications Definitions Everossivity 	 [8] D. Gabbay. The declarative past and imperative future: Executable temporal logics for interactive systems. In <i>Temporal Logics in Specifications, April 87.</i> LNCS 398, 409–448, 1989.
Separation Ehrenfeucht-Fraïssé games	 [10] D. Gabbay, I. Hodkinson and M. Reynolds. <i>Temporal logic: mathematical foundations and computational aspects.</i> Vol 1, Clarendon Press, Oxford, 1994.
Satisfiability and Model Checking for LTL Branching Time Specifications	 [16] S. Demri and P. Gastin. Specification and Verification using Temporal Logics. In Modern applications of automata theory, IISc Research Monographs 2. World Scientific, To appear. http://www.lsw.ens-cachan_fr/cgastin/mes-public.php
< াচ বটা কা ই তাও লৈ 42/111 Outline	・ロト・ボト・ミンマウ 43/111 Static and dynamic properties
Introduction	Example: Static properties
Models	Mutual exclusion Safety properties are often static. They can be reduced to reachability.
SpecificationsDefinitions	Example: Dynamic properties
Expressivity Separation Ehrenfeucht-Fraïssé games	Every elevator request should be eventually granted.
Satisfiability and Model Checking for LTL	The elevator should not cross a level for which a call is pending without stopping.

▲□▶▲圖▶▲臺▶▲臺▶ 臺 釣۹ペ 44/111

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで 45/111

Temporal Structures

Definition: Flows of time

A flow of time is a strict order $(\mathbb{T}, <)$ where \mathbb{T} is the nonempty set of time points and < is an irreflexive transitive relation on \mathbb{T} .

Example: Flows of time

- $(\{0, \ldots, n\}, <)$: Finite runs of sequential systems.
- ▶ (ℕ, <): Infinite runs of sequential systems.
- Trees: Finite or infinite run-trees of sequential systems.
- Mazurkiewicz traces: runs of distributed systems (partial orders).
- and also $(\mathbb{Z},<)$ or $(\mathbb{Q},<)$ or $(\mathbb{R},<)$, $(\omega^2,<)$, \ldots

Definition: Temporal Structures

Let AP be a set of atoms (atomic propositions).

A temporal structure over a class $\mathcal C$ of time flows and AP is a triple $(\mathbb T,<,h)$ where $(\mathbb T,<)$ is a time flow in $\mathcal C$ and $h:AP\to 2^{\mathbb T}$ is an assignment.

If $p\in \mathrm{AP}$ then $h(p)\subseteq \mathbb{T}$ gives the time points where p holds.

<□ ▶ < @ ▶ < 差 ▶ < 差 ▶ 差 の < @ 46/111

Branching behaviors and specifications

Let $M = (S, T, I, AP, \ell)$ be a Kripke structure.

Definition: Run-trees as temporal strucutres

Run-tree = unfolding of the transition system.

Let D be a finite set with |D| the outdegree of the transition relation T. Unordered tree $t: D^* \to \Sigma$ (partial map).

Associated temporal structure (dom(t), <, h) where < is the strict prefix relation over D^* and $h(p) = \{i \in dom(t) \mid p \in t(i)\}.$

Example: Each process has the possibility to print first.

Linear behaviors and specifications

Let $M = (S, T, I, AP, \ell)$ be a Kripke structure.

Definition: Runs as temporal structures

An infinite run $\sigma = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \cdots$ with $s_i \rightarrow s_{i+1} \in T$ of M defines a *linear* temporal structure $\ell(\sigma) = (\mathbb{N}, <, h)$ where $h(p) = \{i \in \mathbb{N} \mid p \in \ell(s_i)\}$.

Such a temporal structure can be seen as an infinite word over $\Sigma = 2^{AP}$: $\ell(\sigma) = \ell(s_0)\ell(s_1)\ell(s_2)\cdots = (\mathbb{N}, <, w)$ with $w(i) = \ell(s_i) \in \Sigma$.

Linear specifications only depend on runs. Example: The printer manager is fair. On each run, whenever some process requests the printer, it eventually gets it.

Remark:

Two Kripke structures having the same linear temporal structures satisfy the same linear specifications.

▲ロ▶▲母▶▲園▶▲園▶ ■ のへで 47/111

First-order Specifications

Definition: Syntax of FO(<)

Let P, Q, \ldots be unary predicates twinned with atoms p, q, \ldots in AP. Let $Var = \{x, y, \ldots\}$ be first-order variables.

 $\varphi ::= \bot \mid P(x) \mid x = y \mid x < y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \varphi$

Definition: Semantics of FO(<)

Let $w = (\mathbb{T}, <, h)$ be a temporal structure. Precidates P, Q, \ldots twinned with p, q, \ldots are interpreded as $h(p), h(q), \ldots$ Let $\nu : \operatorname{Var} \to \mathbb{T}$ be an assignment of first-order variables.

$w, \nu \models P(x)$	if	$\nu(x) \in h(p)$
$w,\nu\models x=y$	if	$\nu(x) = \nu(y)$
$w, \nu \models x < y$	if	$\nu(x) < \nu(y)$
$w, \nu \models \exists x \varphi$	if	$w, \nu[x \mapsto t] \models \varphi$ for some $t \in \mathbb{T}$

where $\nu[x \mapsto t]$ maps x to t and $y \neq x$ to $\nu(y)$.

Previous specifications can be written in FO(<).

▲□▶ ▲圖▶ ▲ 분▶ ▲ 분 ▶ 1 10 0 0 49/111

First-order vs Temporal

First-order logic

- FO(<) has a good expressive power. . . . but FO(<)-formulae are not easy to write and to understand.
- FO(<) is decidable.
 ... but satisfiability and model checking are non elementary.

Temporal logics

- no variables: time is implicit.
- quantifications and variables are replaced by modalities.
- Usual specifications are easy to write and read.
- Good complexity for satisfiability and model checking problems.
- Good expressive power.

Linear Temporal Logic (LTL) over $(\mathbb{N},<)$ introduced by Pnueli (1977) as a convenient specification language for verification of systems.

▲□▶▲@▶▲≣▶▲≣▶ ≣ のQで 50/111

Temporal Specifications

Relations between modalities

 $\begin{array}{rcl} \mathsf{F}\,\varphi &=& \top\,\mathsf{U}\,\varphi \\ \mathsf{G}\,\varphi &=& \neg\,\mathsf{F}\,\neg\varphi \\ \mathsf{X}\,\varphi &=& \bot\,\mathsf{U}\,\varphi \end{array}$

Definition: Derived modalities

$$\varphi \mathsf{W} \psi \stackrel{\text{\tiny def}}{=} (\mathsf{G} \varphi) \lor (\varphi \mathsf{U} \psi) \qquad \qquad \mathsf{Weak}$$

 $\varphi \mathsf{R} \psi \stackrel{\text{\tiny def}}{=} (\mathsf{G} \psi) \lor (\psi \mathsf{U} (\varphi \land \psi)) \quad \text{Release}$

Definition: non-strict versions of modalities

 $\begin{array}{cccc} \mathsf{F}'\,\varphi & \stackrel{\mathrm{def}}{=} & \varphi \lor \mathsf{F}\,\varphi \\ \mathsf{G}'\,\varphi & \stackrel{\mathrm{def}}{=} & \varphi \land \mathsf{G}\,\varphi \\ \varphi\,\mathsf{U}'\,\psi & \stackrel{\mathrm{def}}{=} & \psi \lor (\varphi \land \varphi\,\mathsf{U}\,\psi) \\ \varphi\,\mathsf{R}'\,\psi & \stackrel{\mathrm{def}}{=} & \psi \land (\varphi \lor \varphi\,\mathsf{R}\,\psi) \end{array}$

Temporal Specifications

Definition: Syntax of TL(AP, S, U)

 $\varphi ::= \bot \mid p \ (p \in \operatorname{AP}) \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{F} \varphi \mid \mathsf{P} \varphi \mid \mathsf{G} \varphi \mid \mathsf{H} \varphi \mid \varphi \,\mathsf{U} \varphi \mid \varphi \,\mathsf{S} \varphi \mid \mathsf{X} \varphi \mid \mathsf{Y} \varphi$

Definition: Semantics: $w = (\mathbb{T}, <, h)$ temporal structure and $i \in \mathbb{T}$

$w,i\models p$	if	$i \in h(p)$
$w, i \models F \varphi$ $w, i \models G \varphi$ $w, i \models \varphi U \psi$ $w, i \models \chi \varphi$	if if if	$\exists j \ i < j \text{ and } w, j \models \varphi$ $\forall j \ i < j \rightarrow w, j \models \varphi$ $\exists k \ i < k \text{ and } w, k \models \psi \text{ and } \forall j \ (i < j < k) \rightarrow w, j \models \varphi$ $\exists i \ i < k \text{ and } w, k \models \psi \text{ and } \neg h \ (i < k < i)$
$w, i \models P\varphi$ $w, i \models P\varphi$	if	$\exists j \ i < j \text{ and } w, j \models \varphi \text{ and } \neg \exists k \ (i < k < j)$ $\exists i \ i > i \text{ and } w, i \models \varphi$
$w, i \models H \varphi$	if	$ \begin{array}{c} \forall j \ i > j \rightarrow w, j \models \varphi \end{array} $
$w,i\models\varphiS\psi$	if	$\exists k \; i > k \; \text{and} \; w, k \models \psi \; \text{and} \; \forall j \; (i > j > k) \rightarrow w, j \models \varphi$
$w,i\models {\sf Y}\varphi$	if	$\exists j \ i > j \text{ and } w, j \models \varphi \text{ and } \neg \exists k \ (i > k > j)$

Previous specifications can be written in TL(AP).

▲□▶▲舂▶▲≧▶▲≧▶ 볼 の�? 51/111

Temporal Specifications

Safety:G' goodMutEx: \neg F'(crit_1 \land crit_2)Liveness:G F activeResponse:G'(request \rightarrow F grant)	Example: Specifica	ations on the time flow $(\mathbb{N},<)$
 Response': G'(request → (¬request U grant)) Release: reset R alarm Strong fairness: G F request → G F grant 	 Safety: MutEx: Liveness: Response: Response': Release: Strong fairness: 	$\begin{array}{l} G' \mbox{ good} \\ \neg F'({\rm crit}_1 \wedge {\rm crit}_2) \\ G F \mbox{ active} \\ G'({\rm request} \rightarrow F \mbox{ grant}) \\ G'({\rm request} \rightarrow (\neg {\rm request} U \mbox{ grant})) \\ {\rm reset} R alarm \\ G F \mbox{ request} \rightarrow G F \mbox{ grant} \end{array}$
Weak fairness: FG request $\rightarrow GF$ grant	Weak fairness:	$FG\mathrm{request}\toGF\mathrm{grant}$

◆□ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ ○ ○ ○ 52/111

Until

Outline	Some References
Introduction	[0] J. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, UCLA, USA, (1968).
Models	 [7] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness. In 7th Annual ACM Symposium PoPL '80, 163–173, ACM Press.
 Specifications Definitions Expressivity Separation Ehrenfeucht-Fraïssé games Satisfiability and Model Checking for LTL Branching Time Specifications 	 [8] D. Gabbay. The declarative past and imperative future: Executable temporal logics for interactive systems. In <i>Temporal Logics in Specifications, April 87.</i> LNCS 398, 409–448, 1989. [9] D. Gabbay, I. Hodkinson and M. Reynolds. <i>Temporal expressive completeness in the presence of gaps.</i> In <i>Logic Colloquium '90,</i> Springer Lecture Notes in Logic 2, pp. 89-121, 1993. [17] V. Diekert and P. Gastin. First-order definable languages. In <i>Logic and Automata: History and Perspectives,</i> vol. 2, <i>Texts in Logic and Games,</i> pp. 261–306. Amsterdam University Press, (2008). Overview of formalisms expressively equivalent to First-Order for words.
<ロ><週><週><見><見><見><見><見><見	http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php
Temporal Specifications	Expressivity
Proposition: For discrete linear time flows $(\mathbb{T}, <)$	
$F \varphi = X F' \varphi$	Definition: Equivalence
$\mathbf{G} \varphi = \mathbf{X} \mathbf{G}' \varphi$	Let $\mathcal C$ be a class of time flows.
$ \varphi \circ \psi = \chi(\varphi \circ \psi) $ $\neg \chi \varphi = \chi \neg \varphi \lor \neg \chi \top $	Two formulae $\varphi, \psi \in TL(AP, S, U)$ are equivalent over C if for all temporal structures $w = (\mathbb{T}, <, h)$ over C and all time points $t \in \mathbb{T}$ we have $w, t \models \varphi$ iff $w, t \models \psi$
$ \begin{array}{rcl} \neg(\varphi \ U \ \psi) &=& (G \neg \psi) \lor (\neg \psi \ U \ (\neg \varphi \land \neg \psi)) \\ &=& \neg \psi \ W \ (\neg \varphi \land \neg \psi) \\ &=& \neg \varphi \ R \neg \psi \end{array} $	Two formulae $\varphi \in TL(AP, S, U)$ and $\psi(x) \in FO_{AP}(<)$ are equivalent over C if for all temporal structures $w = (\mathbb{T}, <, h)$ over C and all time points $t \in \mathbb{T}$ we have $w, t \models \varphi$ iff $w \models \psi(t)$
Definition: discrete linear time flows	Remark: $LTL(AP, S, U) \subseteq FO_{AP}(<)$
A linear time flow $(\mathbb{T}, <)$ is discrete if $F \top \to X \top$ and $P \top \to Y \top$ are valid formulae.	$\forall \varphi \in \mathrm{TL}(\mathrm{AP},S,U), \exists \psi(x) \in \mathrm{FO}_{\mathrm{AP}}(<) \text{ such that } \varphi \text{ and } \psi(x) \text{ are equivalent.}$
$(\mathbb{N} <)$ and $(\mathbb{Z} <)$ are discrete	

 $(\mathbb{Q},<)$ and $(\mathbb{R},<)$ are not discrete.

◆□ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ ○ ○ ○ 57/111

▲□▶▲□▶▲ ■▶ ▲ ■ ▶ ■ のへで 58/111

Expressivity

Theorem: Expressive completeness [6, Kamp 68] For complete linear time flows,

 $\mathrm{TL}(\mathrm{AP}, \mathsf{S}, \mathsf{U}) = \mathrm{FO}_{\mathrm{AP}}(<)$

Definition: complete linear time flows

A linear time flow $(\mathbb{T}, <)$ is complete if every nonempty and bounded subset of \mathbb{T} has a least upper bound and a greatest lower bound.

$$\begin{split} (\mathbb{N},<),\ (\mathbb{Z},<) \text{ and } (\mathbb{R},<) \text{ are complete.} \\ (\mathbb{Q},<) \text{ and } (\mathbb{R}\setminus\{0\},<) \text{ are not complete.} \end{split}$$

Remark:

Elegant algebraic proof of $TL(AP, U) = FO_{AP}(<)$ over $(\mathbb{N}, <)$ due to Wilke 98.

▲□▶▲舂▶▲壹▶▲壹▶ 壹 のへで 59/111

Outline

Introduction

Models

3 Specifications

Definitions Expressivity

• Separation Ehrenfeucht-Fraïssé games

Satisfiability and Model Checking for LTL

Branching Time Specifications

Stavi connectives: Time flows with gaps

Definition: Stavi Until: \overline{U}

Let $w = (\mathbb{T}, <, h)$ be a temporal structure and $i \in \mathbb{T}$. Then, $w, i \models \varphi \ \overline{\mathsf{U}} \ \psi$ if

$$\begin{aligned} \exists k \ i < k \\ \wedge \ \exists j \ (i < j < k \land w, j \models \neg \varphi) \\ \wedge \ \exists j \ (i < j < k \land \forall \ell \ (i < \ell < j \rightarrow w, \ell \models \varphi)) \\ \wedge \ \forall j \ \left[i < j < k \land \forall \ell \ (j < k' \land \forall j' \ (i < j' < k' \rightarrow w, j' \models \varphi)] \\ \vee \ \left[\forall \ell \ (j < \ell < k \rightarrow w, \ell \models \psi) \land \exists \ell \ (i < \ell < j \land w, \ell \models \neg \varphi)] \right] \right] \end{aligned}$$

Similar definition for the Stavi Since \overline{S} .

Theorem: [9, Gabbay, Hodkinson, Reynolds]

 ${\rm TL}({\rm AP},S,U,\overline{S},\overline{U})$ is expressively complete for ${\rm FO}_{\rm AP}(<)$ over the class of all linear time flows.

Exercise: Isolated gaps

Show that $\mathrm{TL}(\mathrm{AP},\mathsf{S},\mathsf{U})$ is $\mathrm{FO}_{\mathrm{AP}}(<)\text{-complete over the time flow }(\mathbb{R}\setminus\mathbb{Z},<).$

▲□▶▲母▶▲≧▶▲≧▶ 볼 のへで 60/111

Some References

[7]	D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness. In <i>7th Annual ACM Symposium PoPL'80</i> , 163–173. ACM Press.
[8]	D. Gabbay. The declarative past and imperative future: Executable temporal logics for interactive systems. In <i>Temporal Logics in Specifications, April 87.</i> LNCS 398, 409–448, 1989.
[10]	D. Gabbay, I. Hodkinson and M. Reynolds. <i>Temporal logic: mathematical foundations and computational aspects.</i> Vol 1, Clarendon Press, Oxford, 1994.
[11]	I. Hodkinson and M. Reynolds. Separation — Past, Present and Future. In "We Will Show Them: Essays in Honour of Dov Gabbay". Vol 2, pages 117–142, College Publications, 2005. Great survey on separation properties.

Separation

Definition:

Let $w = (\mathbb{T}, <, h)$ and $w' = (\mathbb{T}, <, h')$ be temporal structures over the same time flow, and let $t \in \mathbb{T}$ be a time point.

- w, w' agree on t if h(t) = h'(t)
- ▶ w, w' agree on the past of t if h(s) = h'(s) for all s < t
- ▶ w, w' agree on the future of t if h(s) = h'(s) for all s > t

Definition: Pure formulae

Let C be a class of time flows. A formula φ over some logic \mathcal{L} is pure past (resp. pure present, pure future) over C if for all temporal structures $w = (\mathbb{T}, <, h)$ and $w' = (\mathbb{T}, <, h')$ over C and all time points $t \in \mathbb{T}$ such that w, w' agree on the past of t (resp. on t, on the future of t) we have

 $w,t\models \varphi$ iff $w',t\models \varphi$

<□▶<@▶<≧▶<≧▶<≧▶ ≧ のへで _{63/111}

Separation and Expressivity

Theorem: [8, Gabbay 89] (already stated by Gabbay in 81)

Let ${\mathcal C}$ be a class of linear time flows.

Let \mathcal{L} be a temporal logic able to express F and P.

Then, \mathcal{L} is separable over \mathcal{C} iff it is expressively complete over \mathcal{C} .

Separation

Definition: Separation

A logic \mathcal{L} is separable over a class \mathcal{C} of time flows if each formula $\varphi \in \mathcal{L}$ is equivalent to some (finite) boolean combination of pure formulae.

Theorem: [7, Gabbay, Pnueli, Shelah & Stavi 80]

 $\mathrm{TL}(\mathrm{AP},\mathsf{S},\mathsf{U})$ is separable over discrete and complete linear orders.

- (ℕ, <) is the unique (up to isomorphism) discrete and complete linear order with a first point and no last point.
- (ℤ, <) is the unique (up to isomorphism) discrete and complete linear order with no first point and no last point.
- Any discrete and complete linear order is isomorphic to a sub-flow of $(\mathbb{Z}, <)$.

Theorem: Gabbay, Reynolds, see [10]

 $\mathrm{TL}(\mathrm{AP},\mathsf{S},\mathsf{U})$ is separable over $(\mathbb{R},<).$

▲□▶▲圖▶▲臺▶▲臺▶ 臺 のQ@ 64/111

Initial equivalence

Definition: Initial Equivalence

Let \mathcal{C} be a class of time flows having a minimum (denoted 0). Two formulae $\varphi, \psi \in \mathrm{TL}(\mathrm{AP},\mathsf{S},\mathsf{U})$ are initially equivalent over \mathcal{C} if for all temporal structures $w = (\mathbb{T}, <, h)$ over \mathcal{C} we have

$$w, 0 \models \varphi \quad \text{iff} \quad w, 0 \models \psi$$

Two formulae $\varphi \in TL(AP, S, U)$ and $\psi(x) \in FO_{AP}(<)$ are initially equivalent over C if for all temporal structures $w = (\mathbb{T}, <, h)$ over C we have

 $w, 0 \models \varphi$ iff $w \models \psi(0)$

Corollary: of the separation theorem

For each $\varphi \in TL(AP, S, U)$ there exists $\psi \in TL(AP, U)$ such that φ and ψ are initially equivalent over $(\mathbb{N}, <)$.

Initial equivalence

Example: TL(AP, S, U) versus TL(AP, U)

 $G'(\mathrm{grant} \to (\neg \mathrm{grant} \; S \; \mathrm{request}))$

is initially equivalent to

 $(\operatorname{request} \mathsf{R}' \neg \operatorname{grant}) \land \mathsf{G}(\operatorname{grant} \rightarrow (\operatorname{request} \lor (\operatorname{request} \mathsf{R} \neg \operatorname{grant})))$

Theorem: (Laroussinie & Markey & Schnoebelen 2002) ${\rm TL}({\rm AP},S,U) \text{ may be exponentially more succinct than } {\rm TL}({\rm AP},U) \text{ over } (\mathbb{N},<).$

Some References

[18] H. Straubing.
 Finite automata, formal logic, and circuit complexity.
 In Progress in Theoretical Computer Science, Birkhäuser, (1994).

[19] K. Etessami and Th. Wilke.

An until hierarchy and other applications of an Ehrenfeucht-Fraïssé game for temporal logic.

In Information and Computation, vol. 106, pp. 88–108, (2000).

Outline

Introduction

Models

Specifications
Definitions

Expressivity

Separation

• Ehrenfeucht-Fraïssé games

Satisfiability and Model Checking for LTL

Branching Time Specifications

▲□▶▲@▶▲≣▶▲≣▶ ≣ のへで 68/111

if $p \in AP$

Temporal depth

Definition: Temporal depth of $\varphi \in TL(AP, S, U)$

 $\begin{aligned} \mathrm{td}(p) &= 0\\ \mathrm{td}(\neg \varphi) &= \mathrm{td}(\varphi)\\ \mathrm{td}(\varphi \lor \psi) &= \max(\mathrm{td}(\varphi), \mathrm{td}(\psi))\\ \mathrm{td}(\varphi \:\mathsf{S}\:\psi) &= \max(\mathrm{td}(\varphi), \mathrm{td}(\psi)) + 1\\ \mathrm{td}(\varphi \:\mathsf{U}\:\psi) &= \max(\mathrm{td}(\varphi), \mathrm{td}(\psi)) + 1 \end{aligned}$

Lemma:

Let $B \subseteq AP$ be finite and $k \in \mathbb{N}$. There are (up to equivalence) finitely many formulae in TL(B, S, U) of temporal depth at most k.

◆□ ▶ ◆□ ▶ ◆ Ξ ▶ ◆ Ξ ▶ ○ Ξ · ⑦ Q ○ 67/111

k-equivalence

Definition:

Let $w_0 = (\mathbb{T}_0, <, h_0)$ and $w_1 = (\mathbb{T}_1, <, h_1)$ be two temporal structures. Let $i_0 \in \mathbb{T}_0$ and $i_1 \in \mathbb{T}_1$. Let $k \in \mathbb{N}$.

We say that (w_0, i_0) and (w_1, i_1) are k-equivalent, denoted $(w_0, i_0) \equiv_k (w_1, i_1)$, if they satisfy the same formulae in TL(AP, S, U) of temporal depth at most k.

Lemma: \equiv_k is an equivalence relation of finite index.

Example:

Let $a = \{p\}$ and $b = \{q\}$. Let $w_0 = babaababaa$ and $w_1 = baababaabaa$.

$$(w_0, 3) \equiv_0 (w_1, 4)$$

$$(w_0, 3) \equiv_1 (w_1, 4) ?$$

$$(w_0, 3) \equiv_1 (w_1, 6) ?$$

Here, $\mathbb{T}_0 = \mathbb{T}_1 = \{0, 1, 2, \dots, 9\}.$

▲□▶▲圖▶▲臺▶▲臺▶ 臺 のQC 71/111

Until and Since moves

Definition: (Strict) Until move

- Spoiler chooses $\varepsilon \in \{0,1\}$ and $k_{\varepsilon} \in \mathbb{T}_{\varepsilon}$ such that $i_{\varepsilon} < k_{\varepsilon}$.
- Duplicator chooses k_{1-\varepsilon} \in \mathbb{T}_{1-\varepsilon} such that i_{1-\varepsilon} < k_{1-\varepsilon}.
 Spoiler wins if there is no such k_{1-\varepsilon}.
 Either spoiler chooses (k₀, k₁) as next configuration of the EF-game, or the move continues as follows
- Spoiler chooses $j_{1-\varepsilon} \in \mathbb{T}_{1-\varepsilon}$ with $i_{1-\varepsilon} < j_{1-\varepsilon} < k_{1-\varepsilon}$.
- Duplicator chooses $j_{\varepsilon} \in \mathbb{T}_{\varepsilon}$ with $i_{\varepsilon} < j_{\varepsilon} < k_{\varepsilon}$. Spoiler wins if there is no such j_{ε} . The next configuration is (j_0, j_1) .

Similar definition for the (strict) Since move.

EF-games for TL(AP, S, U)

The EF-game has two players: Spoiler (Player I) and Duplicator (Player II). The game board consists of 2 temporal structures: $w_0 = (\mathbb{T}_0, <, h_0)$ and $w_1 = (\mathbb{T}_1, <, h_1)$. There are two tokens, one on each structure: $i_0 \in \mathbb{T}_0$ and $i_1 \in \mathbb{T}_1$. A configuration is a tuple (w_0, i_0, w_1, i_1) or simply (i_0, i_1) if the game board is understood. Let $k \in \mathbb{N}$. The *k*-round EF-game from a configuration proceeds with (at most) *k* moves. There are 2 available moves for TL(AP, S, U): Until or Since (see below).

Spoiler wins if

• Either duplicator cannot answer during a move (see below).

Spoiler chooses which move is played in each round.

• Or a configuration such that $(w_0, i_0) \not\equiv_0 (w_1, i_1)$ is reached.

Otherwise, duplicator wins.

▲□▶▲舂▶▲壹▶▲壹▶ 壹 釣�? 72/111

Winning strategy

Definition: Winning strategy

Duplicator has a winning strategy in the k-round EF-game starting from (w_0, i_0, w_1, i_1) if he can win all plays starting from this configuration. This is denoted by $(w_0, i_0) \sim_k (w_1, i_1)$.

Spoiler has a winning strategy in the k-round EF-game starting from (w_0, i_0, w_1, i_1) if she can win all plays starting from this configuration.

Example:

Let $a = \{p\}$, $b = \{q\}$, $c = \{r\}$. Let $w_0 = aaabbc$ and $w_1 = aababc$.

 $(w_0, 0) \sim_1 (w_1, 0)$ $(w_0, 0) \not\sim_2 (w_1, 0)$

Here,
$$\mathbb{T}_0 = \mathbb{T}_1 = \{0, 1, 2, \dots, 5\}.$$

EF-games for TL(AP, S, U)

Lemma: Determinacy

The k-round EF-game for $\mathrm{TL}(\mathrm{AP},\mathsf{S},\mathsf{U})$ is determined: For each initial configuration, either spoiler or duplicator has a winning strategy.

Theorem: Soundness and completeness of EF-games

For all $k\in\mathbb{N}$ and all configurations $(w_0,i_0,w_1,i_1),$ we have

 $(w_0, i_0) \sim_k (w_1, i_1)$ iff $(w_0, i_0) \equiv_k (w_1, i_1)$

Example:

Let $a = \{p\}$, $b = \{q\}$, $c = \{r\}$. Then, $aaabbc, 0 \models p \cup (q \cup r)$ but $aababc, 0 \not\models p \cup (q \cup r)$. Hence, $p \cup (q \cup r)$ cannot be expressed with a formula of temporal depth at most 1.

Exercise:

On finite linear time flows, "even length" cannot be expressed in TL(AP, S, U).

▲□▶▲□▶▲ ■▶ ▲ ■ ▶ ■ のへで 75/111

Moves for Next and Yesterday modalities

Notation: $i \lessdot j \stackrel{\text{\tiny def}}{=} i < j \land \neg \exists k \ (i < k < j).$

Definition: Next move

- Spoiler chooses $\varepsilon \in \{0,1\}$ and $j_{\varepsilon} \in \mathbb{T}_{\varepsilon}$ such that $i_{\varepsilon} \lessdot j_{\varepsilon}$.
- Duplicator chooses $j_{1-\varepsilon} \in \mathbb{T}_{1-\varepsilon}$ such that $i_{1-\varepsilon} < j_{1-\varepsilon}$. Spoiler wins if there is no such $j_{1-\varepsilon}$. The new configuration is (j_0, j_1) .

Similar definition for Yesterday move.

Exercise:

Show that $p \cup q$ is not expressible in TL(AP, Y, P, X, F) over linear flows of time.

Moves for Future and Past modalities

Definition: (Strict) Future move

- Spoiler chooses $\varepsilon \in \{0,1\}$ and $j_{\varepsilon} \in \mathbb{T}_{\varepsilon}$ such that $i_{\varepsilon} < j_{\varepsilon}$.
- Duplicator chooses $j_{1-\varepsilon} \in \mathbb{T}_{1-\varepsilon}$ such that $i_{1-\varepsilon} < j_{1-\varepsilon}$. Spoiler wins if there is no such $j_{1-\varepsilon}$. The new configuration is (j_0, j_1) .

Similar definition for (strict) Past move.

Example:

 $p \cup q$ is not expressible in TL(AP, P, F) over linear flows of time. Let $a = \emptyset$, $b = \{p\}$ and $c = \{q\}$. Let $w_0 = (abc)^n a(abc)^n$ and $w_1 = (abc)^n (abc)^n$. If n > k then, starting from $(w_0, 3n, w_1, 3n)$, duplicator has a winning strategy in the k-round EF-game using Future and Past moves.

<□ ▶ < @ ▶ < 注 ▶ < 注 ▶ 注 の Q @ 76/111

Non-strict Until and Since moves

Definition: non-strict Until move

- Spoiler chooses $\varepsilon \in \{0,1\}$ and $k_{\varepsilon} \in \mathbb{T}_{\varepsilon}$ such that $i_{\varepsilon} \leq k_{\varepsilon}$.
- Duplicator chooses $k_{1-\varepsilon} \in \mathbb{T}_{1-\varepsilon}$ such that $i_{1-\varepsilon} \leq k_{1-\varepsilon}$. Either spoiler chooses (k_0, k_1) as new configuration of the EF-game, or the move continues as follows
- Spoiler chooses $j_{1-\varepsilon} \in \mathbb{T}_{1-\varepsilon}$ with $i_{1-\varepsilon} \leq j_{1-\varepsilon} < k_{1-\varepsilon}$.
- Duplicator chooses $j_{\varepsilon} \in \mathbb{T}_{\varepsilon}$ with $i_{\varepsilon} \leq j_{\varepsilon} < k_{\varepsilon}$. Spoiler wins if there is no such j_{ε} . The new configuration is (j_0, j_1) .
- If duplicator chooses $k_{1-\varepsilon} = i_{1-\varepsilon}$ then the new configuration must be (k_0, k_1) .
- ▶ If spoiler chooses $k_{\varepsilon} = i_{\varepsilon}$ then duplicator must choose $k_{1-\varepsilon} = i_{1-\varepsilon}$, otherwise he loses.

Similar definition for the non-strict Since move.

Exercise:

- 1. Show that strict until is not expressible in $\mathrm{TL}(\mathrm{AP},\mathsf{S}',\mathsf{U}')$ over $(\mathbb{R},<).$
- 2. Show that strict until is not expressible in TL(AP, S', U') over $(\mathbb{N}, <)$.