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Static and dynamic properties

Example: Static properties

Mutual exclusion
Safety properties are often static.
They can be reduced to reachability.

Example: Dynamic properties

Every elevator request should be eventually granted.

The elevator should not cross a level for which a call is pending without stopping.




Temporal Structures

Definition: Flows of time

A flow of time is a strict order (T, <) where T is the nonempty set of time points
and < is an irreflexive transitive relation on T.

Example: Flows of time
({0,...,n}, <): Finite runs of sequential systems.
(N, <): Infinite runs of sequential systems.
Trees: Finite or infinite run-trees of sequential systems.

Mazurkiewicz traces: runs of distributed systems (partial orders).
and also (Z, <) or (Q, <) or (R, <), (w?,<), ...

Definition: Temporal Structures

Let AP be a set of atoms (atomic propositions).

A temporal structure over a class C of time flows and AP is a triple (T, <, k) where
(T, <) is a time flow in C and h : AP — 2T is an assignment.

If p € AP then h(p) C T gives the time points where p holds.

Linear behaviors and specifications

Let M = (S,T,1,AP,?) be a Kripke structure.

Definition: Runs as temporal structures

An infinite run o = sy — s1 — so — -+ with s; = s;41 € T of M defines a linear
temporal structure £(o) = (N, <, h) where h(p) ={i e N | p € £(s;)}.

Such a temporal structure can be seen as an infinite word over 3 = 24F:

(o) = L(s0)l(s1)l(s2) - = (N, <, w) with w(i) = £(s;) € 2.

Linear specifications only depend on runs.

Example: The printer manager is fair.

On each run, whenever some process requests the printer, it eventually gets it.

Remark:

Two Kripke structures having the same linear temporal structures satisfy the same
linear specifications.

Branching behaviors and specifications

Let M = (S,T,1,AP,?) be a Kripke structure.

Definition: Run-trees as temporal strucutres

Run-tree = unfolding of the transition system.

Let D be a finite set with |D| the outdegree of the transition relation 7.
Unordered tree ¢ : D* — 3 (partial map).

Associated temporal structure (dom(t), <, h) where

< is the strict prefix relation over D* and h(p) = {i € dom(t) | p € t(7)}.

Example: Each process has the possibility to print first.

First-order Specifications

Definition: Syntax of FO(<)

Let P,Q,... be unary predicates twinned with atoms p,q,... in AP.
Let Var = {x, vy, ...} be first-order variables.

pu=L|P)|z=ylz<y|-p|leVe|dze

Definition: Semantics of FO(<)

Let w = (T, <, k) be a temporal structure.
Precidates P, @, ... twinned with p, g, ... are interpreded as h(p), h(q), ...
Let v : Var — T be an assignment of first-order variables.

w,v = P(z) if v(z) € hp)

wrvEz=y if v(z)=v(y)

wviEzrz<y if v(z)<viy)

wy,wEIre if w, vz t] = forsometeT

where v[z — t] maps x to ¢t and y # x to v(y).

Previous specifications can be written in FO(<).




First-order vs Temporal

First-order logic

FO(<) has a good expressive power.
... but FO(<)-formulae are not easy to write and to understand.

FO(<) is decidable.
... but satisfiability and model checking are non elementary.

Temporal logics
no variables: time is implicit.
quantifications and variables are replaced by modalities.
Usual specifications are easy to write and read.
Good complexity for satisfiability and model checking problems.

Good expressive power.

Linear Temporal Logic (LTL) over (N, <) introduced by Pnueli (1977) as a conve-
nient specification language for verification of systems.

Temporal Specifications

Definition: Syntax of TL(AP, S, U)
pu=L|p(P€EAP) [~ | oV |Fo|[Pp|[Go|Hp|pUp|pSy|Xe|Ye

Definition: Semantics: w = (T, <, h) temporal structure and i € T
w,i Ep if € h(p)

w,i = Fo if Jji<jandw,jEp

w,i E Gy if Vii<j—owjEe

wyiEeUy if Jki<kandw,klEvandVj(i<j<k)—wjEe
w,i =X if Jji<jandw,jEeand -3k (i <k <j)

w,i =Py if Jji>jandw,jEe

w,iEHe if Vii>j—owjEe

wyiEeSy if Jki>kandw,kEvandVji(i>j5>k) s w,jEe
w,i =Yoo if 3Jji>jandw,jEeand -3k (i >k > j)

Previous specifications can be written in TL(AP).

Temporal Specifications

Relations between modalities

Fo = TUgp
Xp = LUgp

Definition: Derived modalities

def

oWy = (Go)V(pU1) Weak Until

PRY = (GY)V@WU(pAY)) Release

Definition: non-strict versions of modalities
Flo = pVFp
Go = 9AGy
pUy = 4VipApUy)
R Y = PA(pVeRY)

Temporal Specifications

Example: Specifications on the time flow (N, <)

Safety: G’ good

MutEx: = F'(crity A critg)

Liveness: G F active

Response: G'(request — F grant)

Response’: G'(request — (—request U grant))
Release: reset R alarm

Strong fairness: GFrequest — GF grant
Weak fairness:  F Grequest — G F grant
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Temporal Specifications

Proposition: For discrete linear time flows (T, <)

XF'/ga

XG o
X(p U 9)
X—\(p\/—\XT

(GY)V (= U (=p A =)
YW (= A =)
—p R—¢

Definition: discrete linear time flows

A linear time flow (T, <) is discrete if F T — X T and P T — Y T are valid formulae.

(N, <) and (Z, <) are discrete.

(Q,<) and (R, <) are not discrete.

Expressivity

Definition: Equivalence
Let C be a class of time flows.

Two formulae ¢,1 € TL(AP,S,U) are equivalent over C if
for all temporal structures w = (T, <, k) over C and all time points ¢t € T we have

witEp iff wtEY
Two formulae ¢ € TL(AP,S,U) and ¢(z) € FOap(<) are equivalent over C if
for all temporal structures w = (T, <, h) over C and all time points ¢t € T we have

w,t =@ iff  wE ()

Remark: LTL(AP,S,U) C FOxp(<)
Vi € TL(AP,S,U), F(z) € FOap(<) such that ¢ and 1 (z) are equivalent.




Expressivity

Theorem: Expressive completeness [6, Kamp 68]

For complete linear time flows,

TL(AP,S,U) = FOAp(<)

Definition: complete linear time flows

A linear time flow (T, <) is complete if every nonempty and bounded subset of T
has a least upper bound and a greatest lower bound.

(N, <), (Z,<) and (R, <) are complete.
(Q,<) and (R\ {0}, <) are not complete.

Remark:
Elegant algebraic proof of TL(AP,U) = FOap (<) over (N, <) due to Wilke 98.

Stavi connectives: Time flows with gaps

Definition: Stavi Until: U
Let w = (T, <,h) be a temporal structure and i € T. Then, w,i = ¢ U if

i<k
A3j(i<j<kAw,jE-p)
ANTj(i<j<kAVL(GE<l<j—wlkEy)

K [§ <K AV (i <j <K —w,j E ) H

AV [i<‘j<k—>[\/[V€(j<€<k—>w,£':w)/\3€(i<K<j/\w,€l:—|<p)]

Similar definition for the Stavi Since S.

Theorem: [9, Gabbay, Hodkinson, Reynolds]

TL(AP, S, U,S, U) is expressively complete for FOAp(<) over the class of all linear
time flows.

Exercise: Isolated gaps
Show that TL(AP,S,U) is FOsp(<)-complete over the time flow (R \ Z, <).
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Separation

Definition:
Let w = (T, <,h) and w’ = (T, <,h’) be temporal structures over the same time
flow, and let ¢ € T be a time point.

w,w’ agree on t if h(t) = h'(¢)
w,w’ agree on the past of ¢ if h(s) = h/(s) for all s < ¢
w,w’ agree on the future of ¢ if h(s) = h'(s) for all s > ¢

Definition: Pure formulae

Let C be a class of time flows. A formula ¢ over some logic L is pure past (resp.
pure present, pure future) over C if for all temporal structures w = (T, <, h) and
w' = (T, <,h’) over C and all time points ¢ € T such that w,w’ agree on the past
of t (resp. on t, on the future of t) we have

witEp iff W tEe

Separation

Definition: Separation

A logic L is separable over a class C of time flows if each formula ¢ € L is equivalent
to some (finite) boolean combination of pure formulae.

Theorem: [7, Gabbay, Pnueli, Shelah & Stavi 80]
TL(AP,S, U) is separable over discrete and complete linear orders.

» (N, <) is the unique (up to isomorphism) discrete and complete linear order
with a first point and no last point.

» (Z,<) is the unique (up to isomorphism) discrete and complete linear order
with no first point and no last point.

» Any discrete and complete linear order is isomorphic to a sub-flow of (Z, <).

Theorem: Gabbay, Reynolds, see [10]
TL(AP,S, U) is separable over (R, <).

Separation and Expressivity

Theorem: [8, Gabbay 89] (already stated by Gabbay in 81)

Let C be a class of linear time flows.
Let £ be a temporal logic able to express F and P.
Then, L is separable over C iff it is expressively complete over C.

Initial equivalence

Definition: Initial Equivalence

Let C be a class of time flows having a minimum (denoted 0).
Two formulae ¢,1 € TL(AP,S,U) are initially equivalent over C if
for all temporal structures w = (T, <, h) over C we have

w,0E=¢ iff w0EY

Two formulae ¢ € TL(AP,S,U) and ¢(x) € FOap(<) are initially equivalent over
C if for all temporal structures w = (T, <, h) over C we have

w,0=¢ iff  w=(0)

Corollary: of the separation theorem

For each ¢ € TL(AP,S,U) there exists 1) € TL(AP,U) such that ¢ and ¢ are
initially equivalent over (N, <).




Initial equivalence

Example: TL(AP, S, U) versus TL(AP, U)
G'(grant — (—grant S request))
is initially equivalent to

(request R” —grant) A G(grant — (request V (request R —grant)))

Theorem: (Laroussinie & Markey & Schnoebelen 2002)
TL(AP,S,U) may be exponentially more succinct than TL(AP, U) over (N, <).
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Temporal depth

Definition: Temporal depth of ¢ € TL(AP,S,U)

td(p) =0 if pe AP
td(—p) = td(p)
td(p V ¢) = max(td(p), td(¢))
td(p S 1) = max(td(p), td(1))) + 1
td(p U 9) = max(td(p), td(¢))) + 1

Lemma:

Let B C AP be finite and k € N.
There are (up to equivalence) finitely many formulae in TL(B,S,U) of temporal

depth at most k.




k-equivalence

Definition:

Let wo = (To, <,ho) and wy = (T, <, hy) be two temporal structures.
Let ig € Ty and i1 € Ty. Let k € N.

We say that (wp,i9) and (w1,%1) are k-equivalent, denoted (wp,ig) =g (w1,11), if
they satisfy the same formulae in TL(AP,S, U) of temporal depth at most k.

Lemma: =, is an equivalence relation of finite index.

Example:
Let a = {p} and b = {q}. Let wo = babaababaa and wy = baababaaba.

(wo, 3) =0 (w1,4)
('LU(),3) =1 (w1,4) ?
(w0,3) S (w1,6) ?

Here, To =T, ={0,1,2,...,9}.

EF-games for TL(AP,S,U)

The EF-game has two players: Spoiler (Player 1) and Duplicator (Player II).
The game board consists of 2 temporal structures:

wo = (To, <,h0) and wy = (Tl, <7h1).

There are two tokens, one on each structure: ig € Ty and i; € T;.

A configuration is a tuple (wp, ig, w1, 1)
or simply (ig,%1) if the game board is understood.

Let k € N.

The k-round EF-game from a configuration proceeds with (at most) k& moves.
There are 2 available moves for TL(AP, S, U): Until or Since (see below).
Spoiler chooses which move is played in each round.

Spoiler wins if
» Either duplicator cannot answer during a move (see below).

» Or a configuration such that (wy,ig) Zo (wy,41) is reached.

Otherwise, duplicator wins.

Until and Since moves

Definition: (Strict) Until move

Spoiler chooses € € {0,1} and k. € T. such that i. < k..

Duplicator chooses k1. € T1_. such that i;_. < k1 _..

Spoiler wins if there is no such k;_..

Either spoiler chooses (kg, k1) as next configuration of the EF-game,
or the move continues as follows

Spoiler chooses j1_. € Ty with i1 < j1_ < k1_¢.

Duplicator chooses j. € T, with i, < j. < k..
Spoiler wins if there is no such j..
The next configuration is (jo,j1)-

Similar definition for the (strict) Since move.

Winning strategy

Definition: Winning strategy

Duplicator has a winning strategy in the k-round EF-game starting from
(wo, 40, w1, 11) if he can win all plays starting from this configuration.
This is denoted by (wq,ig) ~ (w1,11).

Spoiler has a winning strategy in the k-round EF-game starting from (wo, g, w1, 1)
if she can win all plays starting from this configuration.

Example:
Let a = {p}, b ={q}, c={r}. Let wy = aaabbc and wy = aababe.

(’u)o, O) o~ (’Ll)l, O)
(wo,0) A2 (w1,0)

Here, To =T, ={0,1,2,...,5}.




EF-games for TL(AP,S,U)

Lemma: Determinacy

The k-round EF-game for TL(AP, S, U) is determined:
For each initial configuration, either spoiler or duplicator has a winning strategy.

Theorem: Soundness and completeness of EF-games

For all k£ € N and all configurations (wyg, g, w1, 1), we have
(wo, i) ~k (w1, 1) iff (wo,40) = (wr,%1)

Example:

Let a = {p}, b={q} c={r}.
Then, aaabbe,0 = p U (g U r) but aababe,0 = pU (gUr).

Hence, pU (qUr) cannot be expressed with a formula of temporal depth at most 1.

Exercise:

On finite linear time flows, “even length” cannot be expressed in TL(AP,S, U).

Moves for Future and Past modalities

Definition: (Strict) Future move

Spoiler chooses ¢ € {0,1} and j. € T. such that i, < j..

Duplicator chooses j;_. € T1_. such that i7_. < j;_..
Spoiler wins if there is no such j;_..
The new configuration is (jo, j1).

Similar definition for (strict) Past move.

Example:

p U ¢ is not expressible in TL(AP, P, F) over linear flows of time.

Let a =0, b= {p} and ¢ = {q}.

Let wy = (abc)"a(abe)™ and wy = (abe)™(abe)™.

If n > k then, starting from (wo, 3n,w1,3n), duplicator has a winning strategy in
the k-round EF-game using Future and Past moves.

Moves for Next and Yesterday modalities

Notation: i < j = i< jA-3k(i <k < j).

Definition: Next move
Spoiler chooses ¢ € {0,1} and j. € T. such that i. < j..

Duplicator chooses j;_. € T1_. such that i1, < jj_.
Spoiler wins if there is no such j;_..
The new configuration is (jo, j1).

Similar definition for Yesterday move.

Exercise:
Show that p U g is not expressible in TL(AP,Y, P, X, F) over linear flows of time.

Non-strict Until and Since moves
Definition: non-strict Until move
Spoiler chooses ¢ € {0,1} and k. € T, such that i. < k..

Duplicator chooses k1. € T1_. such that i;_. < k1 _..
Either spoiler chooses (ko, k1) as new configuration of the EF-game,
or the move continues as follows

Spoiler chooses j1_. € Ty . with 47, < j1_. < k1_¢.
Duplicator chooses j. € T, with i. < j. < k..

Spoiler wins if there is no such j..

The new configuration is (jo,71)-

» If duplicator chooses k;_. = i1_. then the new configuration must be (kq, k1).
» If spoiler chooses k. = i. then duplicator must choose k1_. = i1_¢,
otherwise he loses.

Similar definition for the non-strict Since move.

Exercise:

1. Show that strict until is not expressible in TL(AP,S’, U’) over (R, <).
2. Show that strict until is not expressible in TL(AP,S’, U’) over (N, <).




