
1/111

Initiation à la vérification
Basics of Verification

https://wikimpri.dptinfo.ens-cachan.fr/doku.php?id=cours:c-1-22

Paul Gastin

Paul.Gastin@lsv.ens-cachan.fr

http://www.lsv.ens-cachan.fr/~gastin/

MPRI – M1
2011 – 2012

2/111

Outline

1 Introduction

Models

Specifications

Satisfiability and Model Checking for LTL

Branching Time Specifications

3/111

Need for formal verifications methods

Critical systems
� Transport

� Energy

� Medicine

� Communication

� Finance

� Embedded systems

� . . .

4/111

Disastrous software bugs

Mariner 1 probe, 1962
See http://en.wikipedia.org/wiki/Mariner_1

� Destroyed 293 seconds after launch

� Missing hyphen in the data or program? No!

� Overbar missing in the mathematical
specification:

Ṙn: nth smoothed value of the time derivative
of a radius.
Without the smoothing function indicated by
the bar, the program treated normal minor
variations of velocity as if they were serious,
causing spurious corrections that sent the
rocket off course.



5/111

Disastrous software bugs
Ariane 5 flight 501, 1996
See http://en.wikipedia.org/wiki/Ariane_5_Flight_501

� Destroyed 37 seconds after launch (cost: 370 millions
dollars).

� data conversion from a 64-bit floating point to 16-bit
signed integer value caused a hardware exception
(arithmetic overflow).

� Efficiency considerations had led to the disabling of the
software handler (in Ada code) for this error trap.

� The fault occured in the inertial reference system of Ariane
5. The software from Ariane 4 was re-used for Ariane 5
without re-testing.

� On the basis of those calculations the main computer
commanded the booster nozzles, and somewhat later the
main engine nozzle also, to make a large correction for an
attitude deviation that had not occurred.

� The error occurred in a realignment function which was not
useful for Ariane 5.

6/111

Disastrous software bugs
Spirit Rover (Mars Exploration), 2004

See http://en.wikipedia.org/wiki/Spirit_rover

� Landed on January 4, 2004.

� Ceased communicating on January 21.

� Flash memory management anomaly:
too many files on the file system

� Resumed to working condition on February 6.

7/111

Disastrous software bugs

Other well-known bugs
� Therac-25, at least 3 death by massive overdoses of radiation.

Race condition in accessing shared resources.
See http://en.wikipedia.org/wiki/Therac-25

� Electricity blackout, USA and Canada, 2003, 55 millions people.
Race condition in accessing shared resources.
See http://en.wikipedia.org/wiki/Northeast_Blackout_of_2003

� Pentium FDIV bug, 1994.
Flaw in the division algorithm, discovered by Thomas Nicely.
See http://en.wikipedia.org/wiki/Pentium_FDIV_bug

� Needham-Schroeder, authentication protocol based on symmetric encryption.
Published in 1978 by Needham and Schroeder
Proved correct by Burrows, Abadi and Needham in 1989
Flaw found by Lowe in 1995 (man in the middle)
Automatically proved incorrect in 1996.
See http://en.wikipedia.org/wiki/Needham-Schroeder_protocol

8/111

Formal verifications methods

Complementary approaches
� Theorem prover

� Model checking

� Static analysis

� Test



9/111

Model Checking

� Purpose 1: automatically finding software or hardware bugs.

� Purpose 2: prove correctness of abstract models.

� Should be applied during design.

� Real systems can be analysed with abstractions.

E.M. Clarke E.A. Emerson J. Sifakis

Prix Turing 2007.

10/111

Model Checking
3 steps

� Constructing the model M (transition systems)

� Formalizing the specification ϕ (temporal logics)

� Checking whether M |= ϕ (algorithmics)

Main difficulties
� Size of models (combinatorial explosion)

� Expressivity of models or logics

� Decidability and complexity of the model-checking problem

� Efficiency of tools

Challenges
� Extend models and algorithms to cope with more systems.

Infinite systems, parameterized systems, probabilistic systems, concurrent
systems, timed systems, hybrid systems, . . . See Modules 2.8 & 2.9

� Scale current tools to cope with real-size systems.
Needs for modularity, abstractions, symmetries, . . .

11/111

References
Bibliography

[1] Christel Baier and Joost-Pieter Katoen.
Principles of Model Checking.
MIT Press, 2008.

[2] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
Ph. Schnoebelen.
Systems and Software Verification. Model-Checking Techniques and Tools.
Springer, 2001.

[3] E.M. Clarke, O. Grumberg, D.A. Peled.
Model Checking.
MIT Press, 1999.

[4] Z. Manna and A. Pnueli.
The Temporal Logic of Reactive and Concurrent Systems: Specification.
Springer, 1991.

[5] Z. Manna and A. Pnueli.
Temporal Verification of Reactive Systems: Safety.
Springer, 1995.

12/111

Outline

Introduction

2 Models

Transition systems

. . . with variables

Concurrent systems

Synchronization and communication

Specifications

Satisfiability and Model Checking for LTL

Branching Time Specifications



13/111

Outline

Introduction

2 Models

Transition systems

. . . with variables

Concurrent systems

Synchronization and communication

Specifications

Satisfiability and Model Checking for LTL

Branching Time Specifications

14/111

Constructing the model
Example: Men, Wolf, Goat, Cabbage

Model = Transition system
� State = who is on which side of the river

� Transition = crossing the river

� Specification
Safety: Never leave WG or GC alone
Liveness: Take everyone to the other side of the river.

16/111

Transition system or Kripke structure

Definition: TS M = (S,Σ, T, I,AP, �)
� S: set of states (finite or infinite)

� Σ: set of actions

� T ⊆ S × Σ× S: set of transitions

� I ⊆ S: set of initial states

� AP: set of atomic propositions

� � : S → 2AP: labelling function.

Every discrete system may be described with a TS.

Example: Digicode ABA

17/111

Description Languages

Pb: How can we easily describe big systems?

Description Languages (high level)
� Programming languages

� Boolean circuits

� Modular description, e.g., parallel compositions
problems: concurrency, synchronization, communication, atomicity, fairness, ...

� Petri nets (intermediate level)

� Transition systems (intermediate level)
with variables, stacks, channels, ...
synchronized products

� Logical formulae (low level)

Operational semantics

High level descriptions are translated (compiled) to low level (infinite) TS.



18/111

Outline

Introduction

2 Models

Transition systems

. . . with variables

Concurrent systems

Synchronization and communication

Specifications

Satisfiability and Model Checking for LTL

Branching Time Specifications

19/111

Transition systems with variables
Definition: TSV M = (S,Σ,V , (Dv)v∈V , T, I,AP, �)

� V: set of (typed) variables, e.g., boolean, [0..4], . . .
� Each variable v ∈ V has a domain Dv (finite or infinite)

� Guard or Condition: unary predicate over D =
�

v∈V Dv

Symbolic descriptions: x < 5, x+ y = 10, ...

� Instruction or Update: map f : D → D
Symbolic descriptions: x := 0, x := (y + 1)2, ...

� T ⊆ S × (2D × Σ×DD)× S

Symbolic descriptions: s
x<50,?coin,x:=x+coin−−−−−−−−−−−−−−→ s�

� I ⊆ S × 2D

Symbolic descriptions: (s0, x = 0)

Example: Vending machine
� coffee: 50 cents, orange juice: 1 euro, ...

� possible coins: 10, 20, 50 cents

� we may shuffle coin insertions and drink selection

20/111

Transition systems with variables
Semantics: low level TS

� S� = S ×D

� I � = {(s, ν) | ∃(s, g) ∈ I with ν |= g}
� Transitions: T � ⊆ (S ×D)× Σ× (S ×D)

s
g,a,f−−−→ s� ∧ ν |= g

(s, ν)
a−→ (s�, f(ν))

SOS: Structural Operational Semantics

� AP�: we may use atomic propositions in AP or guards in 2D such as x > 0.

Programs = Kripke structures with variables
� Program counter = states

� Instructions = transitions

� Variables = variables

Example: GCD

21/111

TS with variables . . .

Example: Digicode

1 2 3 4

OPEN

A B A

cpt < n
B,C
cpt++

cpt < n
A
cpt++

cpt < n
C
cpt++

cpt < n
B,C
cpt++

5

ERROR

cpt = n
B,C
cpt++

cpt = n
A,C
cpt++

cpt = n
B,C
cpt++



23/111

Only variables
The state is nothing but a special variable: s ∈ V with domain Ds = S.

Definition: TSV M = (V , (Dv)v∈V , T, I,AP, �)
� D =

�
v∈V Dv,

� I ⊆ D, T ⊆ D ×D

Symbolic representations with logic formulae
� I given by a formula ψ(ν)

� T given by a formula ϕ(ν, ν�)
ν: values before the transition
ν�: values after the transition

� Often we use boolean variables only: Dv = {0, 1}
� Concise descriptions of boolean formulae with Binary Decision Diagrams.

Example: Boolean circuit: modulo 8 counter

b�0 = ¬b0
b�1 = b0 ⊕ b1
b�2 = (b0 ∧ b1)⊕ b2

25/111

Outline

Introduction

2 Models

Transition systems

. . . with variables

Concurrent systems

Synchronization and communication

Specifications

Satisfiability and Model Checking for LTL

Branching Time Specifications

26/111

Modular description of concurrent systems

M = M1 �M2 � · · · �Mn

Semantics
� Various semantics for the parallel composition �
� Various communication mechanisms between components:

Shared variables, FIFO channels, Rendez-vous, ...

� Various synchronization mechanisms

Atomic propositions are inherited from the local systems.

Example: Elevator with 1 cabin, 3 doors, 3 calling devices

� Cabin:

� Door for level i:

� Call for level i:

The actual system is a synchronized product of all these automata.
It consists of (at most) 3× 23 × 23 = 192 states.

27/111

Synchronized products
Definition: General product

� Components: Mi = (Si,Σi, Ti, Ii,APi, �i)

� Product: M = (S,Σ, T, I,AP, �) with

S =
�

i Si, Σ =
�

i(Σi ∪ {ε}), and I =
�

i Ii

T = {(p1, . . . , pn)
(a1,...,an)−−−−−−→ (q1, . . . , qn) | for all i, (pi, ai, qi) ∈ Ti or

pi = qi and ai = ε}
AP =

�
i APi and �(p1, . . . , pn) =

�
i �(pi)

Synchronized products: restrictions of the general product.
Parallel compositions: 2 special cases

� Synchronous: Σsync =
�

i
Σi

� Asynchronous: Σsync =
�

i
Σ�

i with Σ�
i = {ε}i−1 × Σi × {ε}n−i

Synchronizations

� By states: Ssync ⊆ S

� By labels: Σsync ⊆ Σ

� By transitions: Tsync ⊆ T



30/111

Outline

Introduction

2 Models

Transition systems

. . . with variables

Concurrent systems

Synchronization and communication

Specifications

Satisfiability and Model Checking for LTL

Branching Time Specifications

31/111

Synchronization by Rendez-vous
Synchronization by transitions is universal but too low-level.

Definition: Rendez-vous
� !m sending message m

� ?m receiving message m

� SOS: Structural Operational Semantics

Local actions
s1

a1−→1 s�1
(s1, s2)

a1−→ (s�1, s2)

s2
a2−→1 s�2

(s1, s2)
a2−→ (s1, s�2)

Rendez-vous
s1

!m−−→1 s�1 ∧ s2
?m−−→2 s�2

(s1, s2)
m−→ (s�1, s

�
2)

s1
?m−−→1 s�1 ∧ s2

!m−−→2 s�2
(s1, s2)

m−→ (s�1, s
�
2)

� It is a kind of synchronization by actions.

� Essential feature of process algebra.

Example: Elevator with 1 cabin, 3 doors, 3 calling devices
� ?up is uncontrollable for the cabin

� ?leavei is uncontrollable for door i

� ?call0 is uncontrollable for the system

33/111

Shared variables

Definition: Asynchronous product + shared variables

s̄ = (s1, . . . , sn) denotes a tuple of states
ν ∈ D =

�
v∈V Dv is a valuation of variables.

Semantics (SOS) ν |= g ∧ si
g,a,f−−−→ s�i ∧ s�j = sj for j �= i

(s̄, ν)
a−→ (s̄�, f(ν))

Example: Mutual exclusion for 2 processes satisfying
� Safety: never simultaneously in critical section (CS).

� Liveness: if a process wants to enter its CS, it eventually does.

� Fairness: if process 1 wants to enter its CS, then process 2 will enter its CS at
most once before process 1 does.

using shared variables but no synchronization mechanisms: the atomicity is

� testing or reading or writing a single variable at a time

� no test-and-set: {x = 0;x := 1}

34/111

Peterson’s algorithm (1981)
Process i:

loop forever

req[i] := true; turn := 1-i

wait until (turn = i or req[1-i] = false)

Critical section

req[i] := false

Exercise:
� Draw the concrete TS assuming the first two assignments are atomic.

� Is the algorithm still correct if we swape the first two assignments?



35/111

Atomicity

Example:
Intially x = 1 ∧ y = 2
Program P1: x := x+ y � y := x+ y

Program P2:




LoadR1, x
AddR1, y

StoreR1, x



 �




LoadR2, x
AddR2, y
StoreR2, y





Assuming each instruction is atomic, what are the possible results of P1 and P2?

36/111

Atomicity

Definition: Atomic statements: atomic(ES)

Elementary statements (no loops, no communications, no synchronizations)

ES ::= skip | await c | x := e | ES ; ES | ES ✷ ES

| when c do ES | if c then ES else ES

Atomic statements: if the ES can be fully executed then it is executed in one step.

(s̄, ν) ES−−−→∗ (s̄�, ν�)

(s̄, ν)
atomic(ES)−−−−−−−→ (s̄�, ν�)

Example: Atomic statements
� atomic(x = 0;x := 1) (Test and set)

� atomic(y := y − 1; await(y = 0); y := 1) is equivalent to await(y = 1)

37/111

Channels

Example: Leader election

We have n processes on a directed ring, each having a unique id ∈ {1, . . . , n}.

send(id)

loop forever

receive(x)

if (x = id) then STOP fi

if (x > id) then send(x)

38/111

Channels

Definition: Channels
� Declaration:

c : channel [k] of bool size k
c : channel [∞] of int unbounded
c : channel [0] of colors Rendez-vous

� Primitives:
empty(c)
c!e add the value of expression e to channel c
c?x read a value from c and assign it to variable x

� Domain: Let Dm be the domain for a single message.

Dc = Dk
m size k

Dc = D∗
m unbounded

Dc = {ε} Rendez-vous
� Politics: FIFO, LIFO, BAG, . . .



39/111

Channels

Semantics: (lossy) FIFO

Send
si

c!e−−→ s�i ∧ ν�(c) = ν(e) · ν(c)
(s̄, ν)

c!e−−→ (s̄�, ν�)

Receive
si

c?x−−→ s�i ∧ ν(c) = ν�(c) · ν�(x)
(s̄, ν)

c?e−−→ (s̄�, ν�)

Lossy send
si

c!e−−→ s�i
(s̄, ν)

c!e−−→ (s̄�, ν)

Implicit assumption: all variables that do not occur in the premise are not modified.

Exercises:
1. Implement a FIFO channel using rendez-vous with an intermediary process.

2. Give the semantics of a LIFO channel.

3. Model the alternating bit protocol (ABP) using a lossy FIFO channel.
Fairness assumption: For each channel, if infinitely many messages are sent,
then infinitely many messages are delivered.

40/111

High-level descriptions

Summary
� Sequential program = transition system with variables

� Concurrent program with shared variables

� Concurrent program with Rendez-vous

� Concurrent program with FIFO communication

� Petri net

� . . .

41/111

Models: expressivity versus decidability

Remark: (Un)decidability
� Automata with 2 integer variables = Turing powerful

Restriction to variables taking values in finite sets

� Asynchronous communication: unbounded fifo channels = Turing powerful
Restriction to bounded channels

Remark: Some infinite state models are decidable
� Petri nets. Several unbounded integer variables but no zero-test.

� Pushdown automata. Model for recursive procedure calls.

� Timed automata.

� . . .


