Basics of Verification

Midterm exam, November 15, 2019 Duration: 2H

Authorized documents: all. All answers should be rigorously and clearly justified. Questions are independent. The number in front of each question gives an indication on its length or difficulty.

1 CTL and CTL^*

Fix $AP = \{p, q, r\}$. The goal is to see whether the CTL^* formula

 $\varphi_1 = \mathsf{E}((p \mathsf{U} q) \mathsf{U} r)$

can be expressed in CTL. Consider the following CTL formulæ:

$$\begin{aligned} \varphi_2 &= \mathsf{E}((p \lor q) \:\mathsf{U}\,r) \\ \varphi_3 &= \mathsf{E}((p \lor q) \:\mathsf{U}\,(r \land \mathsf{E}(p \:\mathsf{U}\,q))) \end{aligned}$$

Let ψ_1, ψ_2 be two CTL^{*} state formulæ. Recall that ψ_1 implies ψ_2 (resp. ψ_1 and ψ_2 are equivalent) if for all models M and all states s of M, we have $M, s \models \psi$ implies $M, s \models \psi_2$ (resp. $M, s \models \psi_1$ if and only if $M, s \models \psi_2$).

- [4] **a)** Show that φ_1 implies φ_2 , but φ_1 and φ_2 are not equivalent. Show that φ_3 implies φ_1 , but φ_1 and φ_3 are not equivalent.
- [4] b) Prove that φ_1 can be expressed in CTL, i.e., give a CTL formula φ_4 and show that φ_1 and φ_4 are equivalent.

2 LTL and Büchi transducers

The flow of time is $(\mathbb{N}, <)$, $AP \neq \emptyset$ is the set of atomic propositions and $\Sigma = 2^{AP}$.

In addition to the usual LTL future modalidies X and U, we define two new binary modalities, U_2 and $U_2^\prime.$

The semantics is defined as follows. Let $w = a_0 a_1 a_2 \cdots \in \Sigma^{\omega}$ be an infinite word and $i \in \mathbb{N}$.

$$\begin{array}{ll} w,i \models \varphi \ \mathsf{U}_2 \ \psi & \text{if } \exists k \ge 0 \text{ with } w,i+2k \models \psi \text{ and } w,i+2j \models \varphi \text{ for all } 0 \le j < k \\ w,i \models \varphi \ \mathsf{U}_2' \ \psi & \text{if } \exists k \ge 0 \text{ with } w,i+2k \models \psi \text{ and } w,i+j \models \varphi \text{ for all } 0 \le j < 2k \end{array}$$

As usual, we denote by $\mathcal{L}(\varphi) = \{ w \in \Sigma^{\omega} \mid w, 0 \models \varphi \}$. Also, we let $\mathsf{F}_2 \ \varphi = \top \mathsf{U}_2 \ \varphi$. Remark: $F_2 \ q$ cannot be expressed in LTL(X, U).

- [2] a) Show that $\varphi \cup_2' \psi$ can be expressed in LTL(X, U, U₂). Show that $\varphi \cup \psi$ can be expressed in LTL(X, U₂).
- [1] b) Let $p, q \in AP$. Give a deterministic Büchi automaton which recognizes $\mathcal{L}(p \cup_2 q)$.
- [2] c) Let $p, q \in AP$. Give an MSO(AP, <) formula $\Phi(x)$ with one (first-order) free variable which is equivalent to $p \cup_2 q$, i.e., for all $w \in \Sigma^{\omega}$ and all $i \in \mathbb{N}$, we have

 $w, i \models p \, \mathsf{U}_2 q \text{ iff } w, [x \mapsto i] \models \Phi.$

- [2] d) Let $q \in AP$. Give a Büchi automaton \mathcal{A}_1 which recognizes $L_1 = \mathcal{L}(\mathsf{GF}_2 q)$. Hint: Give a non-deterministic Büchi automaton with 3 states.
- [3] e) Let $q \in AP$ and consider the language $L_2 = \sum_{\neg q}^* (\sum_q \sum_{\neg q} (\sum_{\neg q} \sum_{\neg q})^*)^{\omega}$. Give a deterministic Büchi automaton \mathcal{A}_2 which recognizes L_2 . Give a formula $\varphi_2 \in LTL(X, U_2)$ which defines L_2 .
- [2] **f**) Let $q \in AP$ and consider $\varphi = \mathsf{G}(q \to \mathsf{X}\mathsf{X}\mathsf{F}_2 q)$. Show that $L_1 \cap L_2 = \emptyset$ and $L_1 \cup L_2 \subseteq L = \mathcal{L}(\varphi)$. Give a Büchi automaton \mathcal{A}_3 which recognizes $L_3 = L \setminus (L_1 \cup L_2)$.