Basics of Verification

Midterm exam, November 15, 2019 Duration: 2H

Authorized documents: all. All answers should be rigorously and clearly justified. Questions are independent. The number in front of each question gives an indication on its length or difficulty.

1 CTL and CTL^*

Fix $AP = \{p, q, r\}$. The goal is to see whether the CTL^* formula

$$\varphi_1 = \mathsf{E}((p \mathsf{U} q) \mathsf{U} r)$$

can be expressed in CTL. Consider the following CTL formulæ:

$$\begin{aligned} \varphi_2 &= \mathsf{E}((p \lor q) \:\mathsf{U}\,r) \\ \varphi_3 &= \mathsf{E}((p \lor q) \:\mathsf{U}\,(r \land \mathsf{E}(p \:\mathsf{U}\,q))) \end{aligned}$$

Let ψ_1, ψ_2 be two CTL^{*} state formulæ. Recall that ψ_1 implies ψ_2 (resp. ψ_1 and ψ_2 are equivalent) if for all models M and all states s of M, we have $M, s \models \psi$ implies $M, s \models \psi_2$ (resp. $M, s \models \psi_1$ if and only if $M, s \models \psi_2$).

[4] **a)** Show that φ_1 implies φ_2 , but φ_1 and φ_2 are not equivalent. Show that φ_3 implies φ_1 , but φ_1 and φ_3 are not equivalent.

Answer: We have $p \cup q$ implies $p \vee q$, hence also $(p \cup q) \cup r$ implies $(p \vee q) \cup r$. It follows that φ_1 implies φ_2 .

1

The converse is false. Consider the model $M_1 =$

We have $M_1, 1 \models \varphi_2$ but $M_1, 1 \not\models \varphi_1$. We show now that φ_3 implies φ_1 . Let M be a model and s a state such that $M, s \models \varphi_3$. There is a run σ starting from s and $j \ge 0$ such that $M, \sigma, j \models r \land \mathsf{E}(p \cup q)$ and $M, \sigma, i \models p \lor q$ for $0 \le i < j$. There is a run σ' with $\sigma[j] = \sigma'[j]$ (same prefix up to j) such that $M, \sigma', j \models p \cup q$. Using $\sigma[j] = \sigma'[j]$ and $M, \sigma, i \models p \lor q$ for i < j, we deduce that $M, \sigma', i \models p \cup q$ for i < j. Since $M, \sigma', j \models r$ we obtain $M, s \models \varphi_1$. Once again, the converse is false. Consider the model $M_2 = - 1$. We have $M_2, 1 \models \varphi_1$ but $M_2, 1 \not\models \varphi_3$. [5] **b)** Prove that φ_1 can be expressed in CTL, i.e., give a CTL formula φ_4 and show that φ_1 and φ_4 are equivalent.

Answer: $\varphi_4 = r \lor \varphi_3 \lor \varphi_5$ where $\varphi_5 = \mathsf{E}(p \lor q) \mathsf{U}(q \land \mathsf{EX} r)$. We show now that φ_1 implies φ_4 . Let M be a model and s a state such that $M, s \models \varphi_1$. There is a run σ starting from s and $j \ge 0$ such that $M, \sigma, j \models r$ and $M, \sigma, i \models p \mathsf{U} q$ for $0 \le i < j$. If j = 0 then $M, s \models r$, hence $M, s \models \varphi_4$. We assume below that j > 0. If $M, \sigma, j - 1 \models q$ then $M, \sigma, 0 \models (p \lor q) \mathsf{U}(q \land \mathsf{EX} r)$ and $M, s \models \varphi_5$. Otherwise, $M, \sigma, j - 1 \models p \land \neg q$. Since $M, \sigma, j - 1 \models p \mathsf{U} q$ we deduce $M, \sigma, j \models p \mathsf{U} q$. Therefore, $M, s \models \varphi_3$. Conversely, r clearly implies φ_1 and we have seen above that φ_3 implies φ_1 . It remains to show that φ_5 implies φ_1 . If $M, s \models \varphi_5$, there is a run σ starting from s and some $j \ge 0$ with $M, \sigma, j + 1 \models r, M, \sigma, j \models q$ and $M, \sigma, i \models p \lor q$ for i < j. We deduce that $M, \sigma, i \models p \mathsf{U} q$ for all i < j + 1. Hence, $M, s \models \varphi_1$.

2 LTL and Büchi transducers

The flow of time is $(\mathbb{N}, <)$, $AP \neq \emptyset$ is the set of atomic propositions and $\Sigma = 2^{AP}$.

In addition to the usual LTL future modalidies X and U, we define two new binary modalities, U_2 and $U_2^\prime.$

The semantics is defined as follows. Let $w = a_0 a_1 a_2 \cdots \in \Sigma^{\omega}$ be an infinite word and $i \in \mathbb{N}$.

 $\begin{array}{ll} w,i \models \varphi \: \mathsf{U}_2 \: \psi & \text{ if } \exists k \geq 0 \text{ with } w,i+2k \models \psi \text{ and } w,i+2j \models \varphi \text{ for all } 0 \leq j < k \\ w,i \models \varphi \: \mathsf{U}_2' \: \psi & \text{ if } \exists k \geq 0 \text{ with } w,i+2k \models \psi \text{ and } w,i+j \models \varphi \text{ for all } 0 \leq j < 2k \end{array}$

As usual, we denote by $\mathcal{L}(\varphi) = \{ w \in \Sigma^{\omega} \mid w, 0 \models \varphi \}$. Also, we let $\mathsf{F}_2 \ \varphi = \top \mathsf{U}_2 \ \varphi$. Remark: $F_2 \ q$ cannot be expressed in LTL(X, U).

[2] a) Show that $\varphi \cup_2' \psi$ can be expressed in LTL(X, U, U₂). Show that $\varphi \cup \psi$ can be expressed in LTL(X, U₂).

Answer:

Answer: $\varphi \, \mathsf{U}'_2 \, \psi \equiv (\varphi \wedge \mathsf{X} \, \varphi) \, \mathsf{U}_2 \, \psi \text{ and } \varphi \, \mathsf{U} \, \psi \equiv \varphi \, \mathsf{U}'_2 \, (\psi \lor (\varphi \land \mathsf{X} \, \psi)).$

[1] b) Let $p, q \in AP$. Give a deterministic Büchi automaton which recognizes $\mathcal{L}(p \cup_2 q)$.

 $\begin{array}{c} & & \top & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \end{array} \end{array} \begin{array}{c} & & & \\ \hline & & & \\ \hline & & & \\ \end{array} \end{array} \begin{array}{c} & & & \\ \hline & & & \\ \hline & & & \\ \end{array} \end{array} \begin{array}{c} & & & \\ \hline & & & \\ \hline & & & \\ \end{array} \end{array} \begin{array}{c} & & & \\ \hline & & & \\ \hline & & & \\ \end{array} \end{array} \begin{array}{c} & & & \\ \hline & & & \\ \hline & & & \\ \end{array} \end{array} \begin{array}{c} & & & \\ \hline & & & \\ \hline & & & \\ \end{array} \end{array} \begin{array}{c} & & & \\ \hline & & & \\ \end{array} \end{array}$

[2] c) Let $p, q \in AP$. Give an MSO(AP, <) formula $\Phi(x)$ with one (first-order) free variable which is equivalent to $p \cup_2 q$, i.e., for all $w \in \Sigma^{\omega}$ and all $i \in \mathbb{N}$, we have

 $w, i \models p \, \mathsf{U}_2 q \text{ iff } w, [x \mapsto i] \models \Phi.$

Answer: $\Phi(x) = \exists z \exists Y, q(z) \land z \in Y \land \forall y \in Y \setminus \{x\}, \exists y_1, y_2 (p(y_1) \land y_1 \lessdot y_2 \lessdot y)$ where $u \lessdot v = u \lt v \land \neg \exists w (u \lt w \lt v).$ [3] d) Let $q \in AP$. Give a Büchi automaton \mathcal{A}_1 which recognizes $L_1 = \mathcal{L}(\mathsf{GF}_2 q)$. Hint: Give a non-deterministic Büchi automaton with 3 states.

Answer: Notice that $w \in L_1$ iff w contains infinitely many odd positions satisfying q and infinitely many even positions satisfying q. Hence $L_1 = ((\Sigma \Sigma)^* \Sigma_q)^{\omega}$. Hence,

[3] e) Let $q \in AP$ and consider the language $L_2 = \sum_{\neg q}^* (\sum_q \sum_{\neg q} (\sum_{\neg q} \sum_{\neg q})^*)^{\omega}$. Give a deterministic Büchi automaton \mathcal{A}_2 which recognizes L_2 . Give a formula $\varphi_2 \in LTL(X, U_2)$ which defines L_2 .

$$\begin{aligned} \varphi_2 &= (\neg q \, \mathsf{U} \, (q \land \neg \mathsf{X} \, \mathsf{F}_2 \, q)) \land \mathsf{G}(q \to \mathsf{X} \, \mathsf{X} \, \mathsf{F}_2 \, q) \\ &\equiv \mathsf{F} \, q \land \mathsf{G}(q \to \mathsf{X} \, \mathsf{X} \, \mathsf{F}_2 \, q) \land \neg \mathsf{G} \, \mathsf{F}_2 \, q \end{aligned}$$

[3] **f**) Let $q \in AP$ and consider $\varphi = \mathsf{G}(q \to \mathsf{X}\mathsf{X}\mathsf{F}_2 q)$. Show that $L_1 \cap L_2 = \emptyset$ and $L_1 \cup L_2 \subseteq L = \mathcal{L}(\varphi)$. Give a Büchi automaton \mathcal{A}_3 which recognizes $L_3 = L \setminus (L_1 \cup L_2)$.

Answer: From the discussion above, we know that $L_1 \cap L_2 = \emptyset$. Now, $\mathcal{L}(\varphi)$ is the set of words w such that if w satisfies q in some position i (odd or even) then it contains infinitely many positions satisfying q with the same parity as i. We deduce that $L_1 \cup L_2 \subseteq L$ and that L_3 is the set of words which never satisfy q: $L_3 = \mathcal{L}(\mathsf{G} \neg q) = (\Sigma_{\neg q})^{\omega}$. Therefore, $\mathcal{A}_3 = - (1 -)^{\neg q}$