1 CTL and CTL*

Fix $AP = \{p, q, r\}$. The goal is to see whether the CTL* formula

$$\varphi_1 = E((p U q) U r)$$

can be expressed in CTL. Consider the following CTL formulæ:

$$\varphi_2 = E((p \lor q) U r)$$

$$\varphi_3 = E((p \lor q) U (r \land E(p U q)))$$

Let ψ_1, ψ_2 be two CTL* state formulæ. Recall that ψ_1 implies ψ_2 (resp. ψ_1 and ψ_2 are equivalent) if for all models M and all states s of M, we have $M, s \models \psi$ implies $M, s \models \psi_2$ (resp. $M, s \models \psi_1$ if and only if $M, s \models \psi_2$).

[4] a) Show that φ_1 implies φ_2, but φ_1 and φ_2 are not equivalent.

Show that φ_3 implies φ_1, but φ_1 and φ_3 are not equivalent.

Answer: We have $p U q$ implies $p \lor q$, hence also $(p U q) U r$ implies $(p \lor q) U r$. It follows that φ_1 implies φ_2.

The converse is false. Consider the model $M_1 = \begin{array}{c} 1 \\ p \end{array}$

We have $M_1, 1 \models \varphi_2$ but $M_1, 1 \not\models \varphi_1$.

We show now that φ_3 implies φ_1. Let M be a model and s a state such that $M, s \models \varphi_3$. There is a run σ starting from s and $j \geq 0$ such that $M, \sigma, j \models r \land E(p U q)$ and $M, \sigma, i \models p \lor q$ for $0 \leq i < j$.

There is a run σ' with $\sigma[j] = \sigma'[j]$ (same prefix up to j) such that $M, \sigma', j \models p U q$. Using $\sigma[j] = \sigma'[j]$ and $M, \sigma, i \models p \lor q$ for $i < j$, we deduce that $M, \sigma', i \models p U q$ for $i < j$. Since $M, \sigma', j \models r$ we obtain $M, s \models \varphi_1$.

Once again, the converse is false. Consider the model $M_2 = \begin{array}{c} 1 \end{array}$

We have $M_2, 1 \models \varphi_1$ but $M_2, 1 \not\models \varphi_3$.

b) Prove that \(\varphi_1 \) can be expressed in CTL, i.e., give a CTL formula \(\varphi_4 \) and show that \(\varphi_1 \) and \(\varphi_4 \) are equivalent.

Answer: \(\varphi_4 = r \lor \varphi_3 \lor \varphi_5 \) where \(\varphi_5 = E(p \lor q) \cup (q \land EXr) \).

We show now that \(\varphi_1 \) implies \(\varphi_4 \). Let \(M \) be a model and \(s \) a state such that \(M, s \models \varphi_1 \).

There is a run \(\sigma \) starting from \(s \) and \(j \geq 0 \) such that \(M, \sigma, j \models r \) and \(M, \sigma, i \models p \lor q \) for \(0 \leq i < j \).

If \(j = 0 \) then \(M, s \models r \), hence \(M, s \models \varphi_4 \). We assume below that \(j > 0 \).

If \(M, \sigma, j - 1 \models q \) then \(M, \sigma, 0 \models (p \lor q) \cup (q \land EXr) \) and \(M, s \models \varphi_5 \).

Otherwise, \(M, \sigma, j - 1 \models p \land \neg q \). Since \(M, \sigma, j - 1 \models p \lor q \) we deduce \(M, \sigma, j \models p \lor q \).

Therefore, \(M, s \models \varphi_3 \).

Conversely, \(r \) clearly implies \(\varphi_1 \) and we have seen above that \(\varphi_3 \) implies \(\varphi_1 \). It remains to show that \(\varphi_5 \) implies \(\varphi_1 \). If \(M, s \models \varphi_5 \), there is a run \(\sigma \) starting from \(s \) and some \(j \geq 0 \) with \(M, \sigma, j + 1 \models r \), \(M, \sigma, j \models q \) and \(M, \sigma, i \models p \lor q \) for \(i < j \). We deduce that \(M, \sigma, i \models p \lor q \) for all \(i < j + 1 \). Hence, \(M, s \models \varphi_1 \).

2 **LTL and Büchi transducers**

The flow of time is \((\mathbb{N},<)\), \(\text{AP} \neq \emptyset\) is the set of atomic propositions and \(\Sigma = 2^\text{AP}\).

In addition to the usual LTL future modalities \(X\) and \(U\), we define two new binary modalities, \(U_2\) and \(U_2'\).

The semantics is defined as follows. Let \(w = a_0a_1a_2\cdots \in \Sigma^\omega\) be an infinite word and \(i \in \mathbb{N}\).

\[
\begin{align*}
 w, i \models \varphi U_2 \psi & \iff \exists k \geq 0 \text{ with } w, i + 2k \models \psi \text{ and } w, i + 2j \models \varphi \text{ for all } 0 \leq j < k \\
 w, i \models \varphi U_2' \psi & \iff \exists k \geq 0 \text{ with } w, i + 2k \models \psi \text{ and } w, i + j \models \varphi \text{ for all } 0 \leq j < 2k
\end{align*}
\]

As usual, we denote by \(L(\varphi) = \{w \in \Sigma^\omega \mid w, 0 \models \varphi\}\). Also, we let \(F_2 \varphi = \top U_2 \varphi\).

Remark: \(F_2 q\) cannot be expressed in \(LTL(X, U)\).

[2] a) Show that \(\varphi U_2' \psi\) can be expressed in \(LTL(X, U, U_2)\).

Show that \(\varphi U \psi\) can be expressed in \(LTL(X, U, U_2)\).

Answer: \(\varphi U_2' \psi \equiv (\varphi \land X \varphi) U_2 \psi\) and \(\varphi U \psi \equiv \varphi U_2' (\psi \lor (\varphi \land X \psi))\).

b) Let \(p, q \in \text{AP}\). Give a deterministic Büchi automaton which recognizes \(L(p U_2 q)\).

Answer:

```
+---+
| T |
+---+
```

```
3 \( \quad \rightarrow \quad \) 1 \( \quad \rightarrow \quad \) 2
```

\(p \land \neg q \quad q \quad \top \)

[2] c) Let \(p, q \in \text{AP}\). Give an MSO(\(\text{AP},<\)) formula \(\Phi(x)\) with one (first-order) free variable which is equivalent to \(p U_2 q\), i.e., for all \(w \in \Sigma^\omega\) and all \(i \in \mathbb{N}\), we have

\[
 w, i \models p U_2 q \text{ iff } w, [x \mapsto i] \models \Phi.
\]

Answer:

\[
\Phi(x) = \exists z \exists Y, q(z) \land z \in Y \land \forall y \in Y \setminus \{x\}, \exists y_1, y_2 \ (p(y_1) \land y_1 < y_2 < y) \]

where \(u < v = u < v \land \neg \exists w (u < w < v)\).
Let $q \in \text{AP}$. Give a Büchi automaton A_1 which recognizes $L_1 = \mathcal{L}(GF_2 q)$.

Hint: Give a non-deterministic Büchi automaton with 3 states.

Answer: Notice that $w \in L_1$ iff w contains infinitely many odd positions satisfying q and infinitely many even positions satisfying q. Hence $L_1 = (\Sigma^* \Sigma_q)^\omega$. Hence,

\[A_1 = \begin{array}{c}
1 \quad 3 \quad 2 \\
\quad q \\
\end{array} \]

Let $q \in \text{AP}$ and consider the language $L_2 = \Sigma^*_q (\Sigma_q \Sigma^-q (\Sigma^-q \Sigma^-q)^*)^\omega$.

Give a deterministic Büchi automaton A_2 which recognizes L_2.

Give a formula $\varphi_2 \in \text{LTL}(X, U_2)$ which defines L_2.

Answer: Notice that $w \in L_2$ iff w contains infinitely many odd positions satisfying $q \text{ or infinitely many even positions satisfying } q$. Hence,

\[\varphi_2 = (\neg q \cup (q \land \neg XF_2 q)) \land G(q \rightarrow XF_2 q) \]

\[\equiv F q \land G(q \rightarrow XF_2 q) \land \neg GF_2 q \]

Let $q \in \text{AP}$ and consider $\varphi = G(q \rightarrow XF_2 q)$.

Show that $L_1 \cap L_2 = \emptyset$ and $L_1 \cup L_2 \subseteq L = \mathcal{L}(\varphi)$.

Give a Büchi automaton A_3 which recognizes $L_3 = L \setminus (L_1 \cup L_2)$.

Answer: From the discussion above, we know that $L_1 \cap L_2 = \emptyset$.

Now, $\mathcal{L}(\varphi)$ is the set of words w such that if w satisfies q in some position i (odd or even) then it contains infinitely many positions satisfying q with the same parity as i. We deduce that $L_1 \cup L_2 \subseteq L$ and that L_3 is the set of words which never satisfy q: $L_3 = \mathcal{L}(\neg q) = (\Sigma^-q)^\omega$. Therefore, $A_3 = \begin{array}{c}
1 \\
\neg q \\
\end{array}$.