
Basics of Verification

Written exam, November 16th, 2009

3 hours

The lecture notes are authorized, but no other documents.

Exercises are independent.

All answers should be rigorously and clearly justified.

The number in front of each question gives an indication on its length or difficulty.

1 LTL

We fix a set AP of atomic propositions containing {p, q} and its associated alphabet
Σ = 2AP.

[1] a) Consider the formulae ϕ1 = G(p→ q) and ϕ2 = G(p→ ((¬p) R q)).
Prove or disprove that ϕ1 implies ϕ2, i.e., that ϕ1 → ϕ2 is valid.
Prove or disprove that ϕ2 implies ϕ1.

[5] b) Consider the formulae α = pU q, β = q U p, ψ = (p→ α)∧ (q → β) and ϕ = Gψ. The
aim is to compute the generalized Büchi automaton (GBA) Aϕ associated with ϕ with
the construction seen during the course. The following intermediary steps are mandatory:

(i) Write the formula ϕ in negative normal form.

(ii) Draw the reduction graph starting from {ϕ}. Do not forget the marks !α and !β on
the reduction rules. You should use the additional reduction rules in order to get a
simpler graph.

(iii) Give the sets Red({ϕ}), Redα({ϕ}) and Redβ({ϕ}).

(iv) Draw the transitions starting from state {ϕ} in the GBA Aϕ.

(v) Complete the construction and draw the automaton Aϕ.
Indicate clearly the acceptance sets Tα and Tβ.

[1] c) Show that the following sets are expressible in LTL(AP,X,U): Σ∗
p · Σ

ω
¬p and Σn

p · Σω
¬p

for all n ≥ 0.

[4] d) Show that the set (Σ2
p)

∗ · Σω
¬p is not expressible in LTL(AP,X,U).

Hint: Define a sequence of words (wn)n≥0 with wn ∈ Σn+2
p · Σω

¬p and verifying:
for all ϕ ∈ LTL(AP,X,U) and all n ≥ 0, if ϕ has at most n occurrences of X then

wn, 0 |= ϕ if and only if wn, 1 |= ϕ.

[1] e) Prove or disprove that the language (Σp · Σ¬p)
ω is expressible in LTL(AP,X,U).

[3] f) Prove or disprove that the language (Σp · Σ)ω is expressible in LTL(AP,X,U).

1

2 CTL and CTL∗

[3] a) For n ≥ 1 we define the CTL∗ formula ϕn = A(Xn p ∨ F q).
Show that ϕ1 is equivalent to the CTL formula ψ1 = q ∨ AX(p ∨ AF q).
Prove that for all n ≥ 1, ϕn is equivalent to some CTL formula ψn that you should define.

[2] b) Prove or disprove that the CTL∗ formula A(X p ∨ (q U r)) can be expressed in CTL.

[5] c) Prove or disprove that the CTL∗ formula A((pUq)∨(p′ Uq′)) can be expressed in CTL.
Advice: Keep this question for the end, if you have some time left.

3 Specifications and CTL

The aim is to produce formal specifications for a lift system. The system consists of n
floors numbered from 1 to n. The cabin has one door which may be open or closed.

The formal specifications should use the following boolean variables:

• ati which is true if the cabin is at floor i (1 ≤ i ≤ n),

• closed which is true if the door of the cabin is closed,

• up which is true if the last direction of travel was up, and false otherwise,

• calli which is true if there is a request for floor i (1 ≤ i ≤ n).
A call for some floor i is satisfied when the cabin is at floor i with its door open.

[6] a) Give formal specifications in CTL for the following:

(i) Whenever the cabin is moving between consecutive floors, the door should be and
should stay closed.

(ii) The lift system stays idle if and only if there are no pending calls. By idle we mean
that the cabin stays at the same floor and its door stays either open or closed.

(iii) The cabin never moves in a direction toward which there are no pending calls.

(iv) The cabin travels in its current direction satisfying all calls until no more exist in
the current direction.

[6] b) Assuming that the lift system satisfies the above specifications, prove or disprove that
every call will be eventually satisfied.

We assume now a new boolean variable 2

3
-full which is true if the cabin has reached

two-thirds of its capacity. We also assume that calli is refined in two boolean variables
cabinCalli and landingCalli which are true respectively if a call for floor i was placed
inside the cabin or on the floor: calli = cabinCalli ∨ landingCalli.

[3] c) Give formal specifications for the following policies:

(i) When the cabin is 2

3
-full then the lift system answers cabin calls as before but it

does not answer landing calls anymore.

(ii) Give priority to calls from or to floor n (assumed to be the executive floor).

(iii) Combination of the above two policies.

2

Solution of Exercise 1

[1] a) ϕ1 does not imply ϕ2: Consider w = {p, q}∅ω. We have w, 0 |= ϕ1 but w, 0 6|= ϕ2.
Indeed, w, 0 |= p but w, 0 6|= (¬p) ∧ q and w, 1 6|= q. Hence, w, 0 6|= (¬p) R q.

ϕ2 implies ϕ1: Indeed, (¬p) R q = q ∧ (¬p ∨ X((¬p) R q)) which implies q.

[5] b) (i) ϕ = G((¬p ∨ (p U q)) ∧ (¬q ∨ (q U p)))

(ii) ϕ ψ,Xϕε ¬p ∨ α,¬q ∨ β,Xϕε

¬p,¬q ∨ β,Xϕ

ε

¬p,¬q,Xϕ

ε

¬p, β,Xϕ

ε

¬p, q,Xβ,Xϕ

ε !β

α,¬q ∨ β,Xϕ

ε

α, β,Xϕ

ε

α,¬q,Xϕ

ε

p,Xα,¬q,Xϕ

ε!α

q, β,Xϕ

ε

p,Xα, β,Xϕ

ε
!α

p,Xα,Xϕ

ε

q, p,Xϕ

ε

q,X β,Xϕ

ε
!β

(iii)
Red({ϕ}) = {{¬p,¬q,Xϕ}, {p, q,Xϕ}, {p,¬q,Xα,Xϕ}, {p,Xα,Xϕ}{¬p, q,X β,Xϕ}, {q,Xβ,Xϕ}}

Redα({ϕ}) = {{¬p,¬q,Xϕ}, {p, q,Xϕ}, {¬p, q,Xβ,Xϕ}, {q,Xβ,Xϕ}}

Redβ({ϕ}) = {{¬p,¬q,Xϕ}, {p, q,Xϕ}, {p,¬q,Xα,Xϕ}, {p,Xα,Xϕ}}

(iv) ϕ

Σp∧q

α, β

Σ¬p∧¬q

α, β

α, ϕ

Σp
β

β, ϕ
Σq α

(v) The reduction from the two new states adds the following part to the reduction graph
computed in (ii):

α, ϕ α, ψ,Xϕε α,¬p ∨ α,¬q ∨ β,Xϕε α,¬q ∨ β,Xϕε

β, ϕ β, ψ,Xϕε β,¬p ∨ α,¬q ∨ β,Xϕε ¬p ∨ α, β,Xϕε

¬p, β,Xϕ

ε

α, β,Xϕ

ε

3

The final GBA is: ϕ

Σp∧q

α, β

Σ¬p∧¬q

α, β

α, ϕ

Σp

β

β, ϕ

Σq
α

Σp

β

Σp∧q
α, β Σq

α

Σq

α

Σp∧q

α, β Σp

β

[1] c) The language Σ∗
p · Σ

ω
¬p is expressed by p U (G¬p).

For n ≥ 0, the language Σn
p · Σω

¬p is expressed by X
n(G¬p) ∧

∧

0≤i<n X
i p.

[4] d) For n ≥ 0, let wn = {p}n+2∅ω ∈ Σn+2
p · Σω

¬p.
We prove by induction on the formula that for all ϕ ∈ LTL(AP,X,U) and all n ≥ 0, if ϕ
has at most n occurrences of X then

wn, 0 |= ϕ if and only if wn, 1 |= ϕ.

• If ϕ ∈ AP then for all n ≥ 0 we have wn, 0 |= ϕ iff ϕ ∈ {p} iff wn, 1 |= ϕ.

• Negation and disjunction are trivial since we have an equivalence.

• If ϕ = Xϕ1 has at most n occurrences of X then
wn, 0 |= ϕ iff wn, 1 |= ϕ1 iff wn−1, 0 |= ϕ1 iff (by induction) wn−1, 1 |= ϕ1 iff wn, 1 |= ϕ.

• If ϕ = ϕ1 U ϕ2 has at most n occurrences of X then
wn, 0 |= ϕ iff wn, 0 |= ϕ2 or (wn, 0 |= ϕ1 and wn, 1 |= ϕ) iff (by induction)
wn, 1 |= ϕ2 or (wn, 1 |= ϕ1 and wn, 1 |= ϕ) iff wn, 1 |= ϕ.

Assume that the set (Σ2
p)

∗ · Σω
¬p can be expressed by a formula ϕ ∈ LTL(AP,X,U).

Let n ≥ 2 be an even upper bound on the number of occurrences of X in ϕ.
We have wn ∈ (Σ2

p)
∗ · Σω

¬p hence wn, 0 |= ϕ.
From the lemma above we deduce wn, 1 |= ϕ and wn−1, 0 |= ϕ.
This is a contradiction since wn−1 /∈ (Σ2

p)
∗ · Σω

¬p.

[1] e) The language (Σp · Σ¬p)
ω is expressed by p ∧ G(p→ X¬p) ∧ G(¬p→ X p).

[3] f) For n ≥ 0, let wn = {p}n+2({p}∅)ω ∈ Σω.
Exactly as for d) we can prove that for all ϕ ∈ LTL(AP,X,U) and all n ≥ 0, if ϕ has at
most n occurrences of X then

wn, 0 |= ϕ if and only if wn, 1 |= ϕ.

Assume that the set (Σp · Σ)ω can be expressed by a formula ϕ ∈ LTL(AP,X,U).
Let n ≥ 2 be an even upper bound on the number of occurrences of X in ϕ.
We have wn ∈ (Σp · Σ)ω hence wn, 0 |= ϕ.
From the lemma above we deduce wn, 1 |= ϕ and wn−1, 0 |= ϕ.
This is a contradiction since wn−1 /∈ (Σp · Σ)ω.

4

Solution of Exercise 2

Note that all formulae in this exercise are actually in CTL+ hence they have equivalent
CTL versions (See TD 4).

Throughout this exercise, M is an arbitrary Kripke structure.

[3] a) We show that A(α ∨ β) ≡ α ∨ A β if α is a state formula. Let s be a state of M .

- Assume M, s |= α. Then M, s |= A(α ∨ β) and M, s |= α ∨ A β.

- Assume M, s 6|= α. Then, for all run σ of M with σ(0) = s we have M,σ, 0 6|= α.
Therefore, M, s |= A(α ∨ β) iff M, s |= A β iff M, s |= α ∨ A β.

We prove now that ϕ1 ≡ ψ1. We use the classical identity AXα ≡ AX Aα.

ϕ1 = A(X p ∨ F q) ≡ A(X p ∨ q ∨ X F q) ≡ q ∨ A(X p ∨ X F q) ≡ q ∨ AX(p ∨ F q)

≡ q ∨ AX A(p ∨ F q) ≡ q ∨ AX(p ∨ AF q) = ψ1

For n > 1, we define ψn = q ∨ AXψn−1 ∈ CTL.
We show by induction on n that for all n ≥ 1, ϕn ≡ ψn.
The case n = 1 was already proved. For n > 1, we have:

ϕn = A(Xn p ∨ F q) ≡ A(Xn p ∨ q ∨ X F q) ≡ q ∨ A(Xn p ∨ X F q) ≡ q ∨ AX(Xn−1 p ∨ F q)

≡ q ∨ AX A(Xn−1 p ∨ F q) = q ∨ AXϕn−1 ≡ q ∨ AXψn−1 = ψn

[2] b) We show that the CTL∗ formula ϕ = A(X p∨ (qU r)) is equivalent to the CTL formula
ψ = r ∨ AX p ∨ (q ∧ AX(p ∧ A q U r)).

We use the classical identity A(α ∧ β) ≡ Aα ∧ A β.

ϕ = A(X p ∨ (q U r)) ≡ A(X p ∨ r ∨ (q ∧ X(q U r)))

≡ r ∨ A(X p ∨ (q ∧ X(q U r)))

≡ r ∨ A((q ∨ X p) ∧ (X p ∨ X(q U r)))

≡ r ∨ [A(q ∨ X p) ∧ AX(p ∨ (q U r))]

≡ r ∨ [(q ∨ AX p) ∧ AX A(p ∨ (q U r))]

≡ r ∨ [(q ∨ AX p) ∧ AX(p ∨ A q U r)]

≡ r ∨ (q ∧ AX(p ∨ A q U r)) ∨ (AX p ∧ AX(p ∨ A q U r))

≡ r ∨ (q ∧ AX(p ∨ A q U r)) ∨ AX p = ψ

Note that r ∨ [(q ∨ AX p) ∧ AX(p ∨ A q U r)] is already a CTL formula.

[5] c) We show that the CTL∗ formula ϕ = A((p U q) ∨ (p′ U q′)) is equivalent to the CTL
formula ψ = A((p ∧ p′) U ((A p U q) ∨ (A p′ U q′))).

We show first that ϕ implies ψ. Let s be a state of M and assume that M, s |= ϕ.
Let σ be a run of M with σ(0) = s. We have M,σ, 0 |= F q ∨ F q′ hence there is a
maximal k ≥ 0 such that for all 0 ≤ j < k, M,σ, j |= p ∧ p′ ∧ ¬(q ∨ q′). We show
that M,σ, k |= (A p U q) ∨ (A p′ U q′). If M,σ, k |= q ∨ q′ this is clear. So assume that
M,σ, k 6|= q ∨ q′. By maximality of k we get M,σ, k 6|= p ∧ p′. For instance M,σ, k 6|= p′

and we prove that M,σ, k |= A p U q. So consider a run σ′ with σ′(0) = σ(k). Then,
σ′′ = σ(0) · · ·σ(k−1)σ′ is a run of M starting from s. For all j ≤ k we have M,σ, j |= ¬q′

5

and also M,σ, k |= ¬p′ hence M,σ′′, 0 6|= p′ U q′. We deduce that M,σ′′, 0 |= p U q.
Since for all j < k we have M,σ, j |= ¬q we deduce that M,σ′′, k |= p U q. Therefore,
M,σ′, 0 |= p U q as desired. We have shown that M,σ, k |= A p U q. Since for all j < k we
have M,σ, j |= p ∧ p′ we deduce that M,σ, 0 |= (p ∧ p′) U ((A p U q) ∨ (A p′ U q′)). Finally,
we have shown that M, s |= ψ.

Conversely, we prove that ψ implies ϕ. Let s be a state of M and assume that M, s |= ψ.
Let σ be a run of M with σ(0) = s. Let k ≥ 0 with M,σ, k |= (A p U q) ∨ (A p′ U q′) and
M,σ, j |= p ∧ p′ for all j < k. We deduce that M,σ, k |= (p U q) ∨ (p′ U q′). Therefore, we
also have M,σ, 0 |= (p U q) ∨ (p′ U q′). Hence, we have shown that M, s |= ϕ.

Solution of Exercise 3

In this exercise, there are more or less implicit assumptions which are made explicit first.
The cabin is always at precisely one floor and it may only move to the next or previous
floor:

ψ1 = AG

∨

i

(ati ∧ ¬
∨

j 6=i

atj) ∧ AG

∧

i

(ati → AX(ati−1 ∨ ati ∨ ati+1))

where at0 = atn+1 = ⊥. Calls are not cancelled before they are answered:

ψ2 = AG

∧

j

[(atj ∧ ¬closed) → ¬callj] ∧ [callj → AX(callj ∨ (atj ∧ ¬closed))]

The history predicate up behaves as follows:

ψ3 = AG

∧

i

[(ati ∧ up) → AX(¬up ↔ ati−1)] ∧ [(ati ∧ ¬up) → AX(up ↔ ati+1)]

[6] a) (i) Whenever the cabin is moving between consecutive floors, the door should be and
should stay closed:

ϕ1 = AG

∧

i

((ati ∧ EX¬ati) → closed) ∧ (ati → AX(¬ati → closed))

(ii) The lift system stays idle if and only if there are no pending calls. We first define
some macros:

pendingCall =
∨

i

calli

possiblyIdle =
∨

i

[ati ∧ closed ∧ EX(ati ∧ closed)] ∨ [ati ∧ ¬closed ∧ EX(ati ∧ ¬closed)]

certainlyIdle =
∨

i

[ati ∧ closed ∧ AX(ati ∧ closed)] ∨ [ati ∧ ¬closed ∧ AX(ati ∧ ¬closed)]

The desired specification is

ϕ2 = AG(pendingCall → ¬possiblyIdle) ∧ AG(¬pendingCall → certainlyIdle)

6

(iii) The cabin never moves in a direction toward which there are no pending calls:

ϕ3 = AG

∧

i

((ati ∧ EX ati+1) →
∨

j>i

callj) ∧ ((ati ∧ EX ati−1) →
∨

j<i

callj)

(iv) The cabin travels in its current direction satisfying all calls until no more exist in the
current direction. This is the most difficult specification and we will split it in 3 parts.

First, a natural requirement would be that if a call is pending for the current floor it should
be answered immediately. This can be written AG

∧

j[(atj∧callj) → AX¬closed]. Note
that the premise atj ∧ callj implies closed by ψ2 and the conclusion ¬closed together
with ϕ1 implies atj and then ¬callj by ψ2 so that the call is answered for all next state.
But this requirement is too strong since it would prevent the lift system to answer calls
for other floors if whenever the door closes a call for the current floor is simultaneously
placed. So we give a weaker specification stating that a call pending for floor j must be
answered immediately the first time we reach floor j:

ϕ1
4 = AG

∧

j

[¬atj → AX((atj ∧ callj) → AX¬closed)]

Next we state that the cabin must eventually leave the current floor if there is a call
pending for some other floor:

ϕ2
4 = AG

∧

i

¬EG(ati ∧
∨

j 6=i

callj)

Finally, we state that the cabin does not change direction as long as there are calls pending
for the current direction:

ϕ3
4 = AG

∧

i

[(ati∧up∧
∨

j>i

callj) → AX(ati∨ati+1)]∧[(ati∧¬up∧
∨

j<i

callj) → AX(ati∨ati−1)]

[6] b) We have to show that the conjunction of all specifications above (including the as-
sumptions ψ1 ∧ ψ2 ∧ ψ3) implies AG

∧

j[callj → AF(atj ∧ ¬closed)].
Remark: I have accepted more or less informal answers. Below, I demonstrate that it is
also possible to give a formal (though not easy) proof.

We fix some 1 ≤ j ≤ n and for each state s of the model M we define a rank by:

rj(s) =

0 if M, s |= ¬callj

j − i if i < j and M, s |= ati ∧ callj ∧ up

i− j if j < i and M, s |= ati ∧ callj ∧ ¬up

n− i+ n− j if j < i and M, s |= ati ∧ callj ∧ up

i− 1 + j − 1 if i < j and M, s |= ati ∧ callj ∧ ¬up

2 max(i− 1, n− i) if i = j and M, s |= ati ∧ callj

and we will use an induction based on this rank to prove that for all infinite run σ of M
and all k ≥ 0, we have σ, k |= callj → F(atj ∧ ¬closed).

The result is clear if σ, k |= ¬callj , i.e. when rj(σ(k)) = 0. Assume now that σ, k |= callj

and let i be such that σ, k |= ati (which exists and is unique by ψ1).

7

Case 1: i = j. From ψ2 we know that the door is closed and by ϕ2 the lift system cannot
stay idle, hence we have σ, k + 1 |= ¬(closed ∧ ati). If σ, k + 1 |= ¬closed then by ϕ1

we deduce that σ, k + 1 |= ati. Therefore, σ, k |= F(atj ∧ ¬closed) and we are done.
Otherwise σ, k+1 |= ¬ati. By ψ2∧ψ3 we get σ, k+1 |= callj ∧(ati+1∧up∨ati−1∧¬up).
We deduce with a direct computation that rj(σ(k+1)) < rj(σ(k)). We obtain by induction
that σ, k + 1 |= F(atj ∧ ¬closed) hence also σ, k |= F(atj ∧ ¬closed) and we are done.

Case 2: j < i and σ, k |= up (the case i < j and σ, k |= ¬up is symmetric).
First, using ψ2 ∧ ϕ

2
4 we deduce that σ, k |= F¬ati. Next, using ψ1 ∧ ψ2 ∧ ψ3 we deduce

that σ, k |= (ati∧callj ∧up)U (ati+1∧up∨ati−1∧¬up). Hence, there exists k′ > k such
that σ, k′ |= ati+1 ∧ up∨ ati−1 ∧¬up and σ, k′− 1 |= ati ∧ callj ∧ up. From ϕ1 we deduce
that σ, k′ |= closed and using ψ2 we get σ, k′ |= callj ∧ (ati+1 ∧ up ∨ ati−1 ∧ ¬up).
If σ, k′ |= callj ∧ati+1∧up or if j < i−1 and σ, k′ |= callj ∧ati−1∧¬up then rj(σ(k′)) <
rj(σ(k)) and we conclude by induction. Now, if j = i − 1 and σ, k′ |= atj ∧ callj then
using ϕ1

4 ∧ ϕ1 we deduce that σ, k′ + 1 |= ¬closed ∧ atj , thus the call is also eventually
answered.

Case 3: i < j and σ, k |= up (the case j < i and σ, k |= ¬up is symmetric).
First, using ψ2 ∧ ϕ

2
4 we deduce that σ, k |= F¬ati. Next, using ϕ3

4 ∧ ψ2 ∧ ψ3 we deduce
that σ, k |= (ati ∧ callj ∧ up) U (ati+1 ∧ up). Hence, there exists k′ > k such that
σ, k′ |= ati+1∧up and σ, k′−1 |= ati∧callj∧up. From ϕ1 we deduce that σ, k′ |= closed

and using ψ2 we get σ, k′ |= callj ∧ ati+1 ∧ up.
If i+1 < j then rj(σ(k′)) < rj(σ(k)) and we can conclude by induction. Now, if j = i+1
then using ϕ1

4∧ϕ1 we deduce that σ, k′+1 |= ¬closed∧atj , thus the call is also eventually
answered.

[3] c) (i) We should still answer cabin calls as before, but we do not answer landing calls
if the cabin is 2

3
-full. The specifications ψ1, ψ2, ψ3 and ϕ1 are not affected. We define

the macro npCallj = cabinCallj ∨ (landingCallj ∧ ¬2

3
−full) which states that there

is a call for floor j which should not be posponed. The new specification is obtained by
replacing callj by npCallj in the specifications ϕ2, ϕ3, and ϕ4 = ϕ1

4 ∧ϕ
2
4 ∧ϕ

3
4. Note that

landing calls are no more necessarily answered. For instance, if the cabin is 2

3
-full and

there are only landing calls then by ϕ2 the system is idle until some cabin call is placed.

(ii) We do as above but with another definition of the macro: npCalln = calln and for
j < n we let npCallj = cabinCallj ∨ (landingCallj ∧ ¬calln).

(iii) The two policies are conflicting. We decide to give the priority to the first one. The
new definition for the macro is npCalln = cabinCalln ∨ (landingCalln ∧¬2

3
−full) and

for j < n we let npCallj = cabinCallj ∨ (landingCallj ∧ ¬2

3
−full ∧ ¬calln).

8

