Basics of Verification

Written exam, November 28, 2012
2 hours 30

The lecture notes are the only authorized documents.
All answers should be rigorously and clearly justified.
Questions are independent.
The number in front of each question gives an indication on its length or difficulty.

Each automaton should be drawn neatly.
Hence, it is advised to draw the automaton first on the draft sheet and to think about the placement of states before drawing the automaton on the answer sheet.

Fix \(AP = \{p, q\} \) and let \(\Sigma = 2^{AP} \).

Consider the synchronous Büchi transducer (SBT) \(A = (Q, \Sigma, I, T, F, \mu) \) described below:

\[
\begin{array}{c}
\text{\(\Sigma/1 \)} \\
1 \quad p/1 \\
2 \quad p/0 \\
3 \quad \neg p/0 \\
4 \quad p/0 \\
\end{array}
\]

[5] a) Show that \(A \) is ambiguous, i.e., give two accepting runs of \(A \) over the same infinite word \(u \in \Sigma^\omega \).

Show that \(A \) is complete, i.e., there is an accepting run of \(A \) for each input infinite word \(u \in \Sigma^\omega \).

Let \((u, v) \in [A] \subseteq \Sigma^\omega \times \{0, 1\}^\omega \) with \(u = a_0a_1a_2\cdots \) and \(v = b_0b_1b_2\cdots \). Show that for all \(i \geq 0 \), we have \(b_i = 1 \) if and only if \(u, i \models F(p \land Xp) \).

[4] b) Give an unambiguous SBT \(A_1 \) with two states such that \([A_1] = [p \land Xp] \), i.e., such that for all \((u, v) \in [A_1] \) with \(u = a_0a_1a_2\cdots \) and \(v = b_0b_1b_2\cdots \) and all \(i \geq 0 \), we have \(b_i = 1 \) if and only if \(u, i \models p \land Xp \).

Give an unambiguous SBT \(A_2 \) such that \([A_2] = [F(p \land Xp)] \) by composing \(A_1 \) with the 3-states SBT for the \(F \) modality.
We introduce now a new modality U_1 which constrains the eventuality to occur after an odd number of steps. Formally, given an infinite word $u \in \Sigma^\omega$ and a position $i \geq 0$, we define the semantics as follows

$$u, i \models \varphi U_1 \psi \text{ if } \exists k \ [i \leq k \ & \ k-i \text{ is odd} \ & \ w, k \models \psi \ & \ \forall j \ (i \leq j < k \rightarrow w, j \models \varphi)$$

For instance, with $u = cbbdbdbacbbbbbca^\omega$ where $a = \emptyset$, $b = \{p\}$, $c = \{q\}$ and $d = \{p, q\}$, we have $[p \ U_1 q](u) = 01110100001010100^\omega$.

4) c) Show that $\varphi U_1 \psi \equiv (\varphi \land X \psi) \lor (\varphi \land X \varphi \land XX(\varphi U_1 \psi))$.
Show that $\neg(\varphi U_1 \psi) \equiv \neg \varphi \lor X(\neg \psi \land (\varphi \lor X \neg(\varphi U_1 \psi)))$.

Give a Büchi automaton (BA) B_1 with at most 3 states which accepts the language $L(B_1) = \{u \in \Sigma^\omega \mid u, 0 \models p U_1 q\}$.
Give a Büchi automaton (BA) B_2 with at most 3 states which accepts the language $L(B_2) = \{u \in \Sigma^\omega \mid u, 0 \models \neg(p U_1 q)\}$.

5) d) Here, we consider the formula $F_1 p = \top U_1 p$.
Give an unambiguos SBT A_3 which computes $[F_1 p]$.

6) e) For $n \geq 0$, let $w_n = a^n ba^\omega$ with $a = \emptyset$ and $b = \{p\}$. In this question, we consider Ehrenfeucht-Fraïssé games (EF-games) using only SU-moves.
Show that spoiler has a winning strategy starting from $(w_3, 0, w_n, 0)$ in the 3-round EF-game when $n \neq 3$, i.e., $(w_3, 0) \not\sim_3 (w_n, 0)$.
Show that duplicator has a winning strategy starting from $(w_m, 0, w_n, 0)$ in the k-round EF-game when $m, n > k$, i.e., $(w_m, 0) \sim_k (w_n, 0)$.
Show that $F_1 p$ is not expressible in TL(AP, SU).
Show (without using further EF-games) that $F_1 p$ is not expressible in TL(AP, SU, SS).

We turn now to the extension of CTL with formulae of the form $E \varphi U_1 \psi$ and $E \varphi U_0 \psi$. We first give the semantics. Let $M = (S, T, I, A, \ell)$ be a Kripke structure without deadlocks and let $s \in S$.

$$s \models E \varphi U_1 \psi \text{ if } \exists s = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \cdots s_k \text{ finite path of } M \text{ with } k \text{ odd}$$
$$\text{ such that } s_k \models \psi \ & \ s_j \models \varphi \text{ for all } 0 \leq j < k$$

$$s \models E \varphi U_0 \psi \text{ if } \exists s = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \cdots s_k \text{ finite path of } M \text{ with } k \text{ even}$$
$$\text{ such that } s_k \models \psi \ & \ s_j \models \varphi \text{ for all } 0 \leq j < k$$

6) f) Show that $E \varphi U \psi \equiv E \varphi U_0 \psi \lor E \varphi U_1 \psi$.
Show that $E \varphi U_1 \psi \equiv \varphi \land EX(E \varphi U_0 \psi)$.
Is the formula $E \varphi U_1 \psi \lor E \varphi U_0 \psi \models \varphi$ satisfiable?
Modify the procedure given in the lecture which computes the semantics of $E \varphi_1 U \varphi_2$ in order to compute simultaneously the semantics of the two formulae $E \varphi_1 U_0 \varphi_2$ and $E \varphi_1 U_1 \varphi_2$. The new algorithm should run in time $O(|S| + |T|)$ (assuming the semantics of φ_1 and φ_2 have already been computed). Prove that your algorithm is correct.