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Counting Patterns

E =→+a?←+b?→+c?←+d?→+

w = c a b c d b a d c b a b

[[E]](w) = 8

An equivalent 1-way expression is more complex and less intuitive.

F =→+ a?x!
(
(¬x?→)∗ b? (¬x?→)+ c?←+ d?→+

)
→∗

[[F ]](w) = 4
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Future and Past modalities

ϕ1 = F(a ∧ P(b ∧ F(c ∧ P d)))

ϕ2 = G(grant→ P request)

ϕ3 = G(grant→ Y((¬grant)S request)
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Probabilistic LTL

Each LTL formula ϕ has an implicit free variable x denoting the position where the
formula is evaluated. We use a pebble to mark this position.

Let P(ϕ, u, i) denote the probability that ϕ holds on word u at position i.

P(Gϕ, u, i) =
∏
j≥i P(ϕ, u, j)

AGϕ(x) =

⊳?

Aϕ(y)
OK

KO

→

x? →

↓y
⊳?↑

EGϕ(x) = .?→∗x?
(
(y!Eϕ(y))→

)∗
/? .
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Probabilistic LTL

P(Fϕ, u, i) = P(ϕ, u, i) + (1− P(ϕ, u, i))× P(Fϕ, u, i+ 1)

=
∑
j≥i

(∏
i≤k<j P(¬ϕ, u, k)

)
× P(ϕ, u, j)

AFϕ(x) =
⊳?

Aϕ(y)
OK

KO

→

x? →

↓y

⊳?↑

⊳?↑

→

EFϕ(x) = .?→∗x?
(
(y!E¬ϕ(y))→

)∗
(y!Eϕ(y))→∗/?
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Probabilistic LTL

P(ϕ U ψ, u, i) = P(ψ, u, i) + P(¬ψ, u, i)× P(ϕ, u, i)× P(ϕ U ψ, u, i+ 1)

=
∑
k≥i

(∏
i≤j<k P(¬ψ, u, j)× P(ϕ, u, j)

)
× P(ψ, u, k)

AϕUψ(x) =
⊳?

Aψ(y)
OK

KO

Aϕ(y)
OK

KO

→

x?

↓y
⊳?↑

→

⊳?

←

⊲?

⊳?↑

→

EϕUψ(x) = .?→∗x?
(
(y!(E¬ψ(y)←∗Eϕ(y)))→

)∗
(y!Eψ(y))→∗/?
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Continuous semirings

A semiring S is complete if every family (si)i∈I ⊆ S is summable
and the following conditions are satisfied:

I
∑
i∈∅ si = 0

∑
i∈{1} si = s1

∑
i∈{1,2} si = s1 + s2 Compatibility

I if I =
⋃
j∈J Ij is a partition,

∑
j∈J

(∑
i∈Ij si

)
=
∑
i∈I si Associativity

I
(∑

i∈I si
)
×
(∑

j∈J tj
)
=
∑

(i,j)∈I×J(si × tj) Distributivity

A semiring S is continuous if it is complete and

I The relation a ≤ b if b = a+ c for some c is an order relation Order

I
∑
i∈I si is the least upper bound of the finite sums Approximability∑

i∈I
si =

⊔
J⊆I,J finite

∑
i∈J

si

Star operation: for s ∈ S, we let s∗ =
∑
i∈N s

i (with s0 = 1).
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Continuous semirings

Examples:

I The Boolean semiring ({0, 1},∨,∧, 0, 1) with
∑

defined as an infinite
disjunction.

I (R≥0 ∪ {∞},+,×, 0, 1) with
∑

defined as usual for positive series:
in particular, s∗ =∞ if s ≥ 1 and s∗ = 1/(1− s) if 0 ≤ s < 1.

I (N ∪ {∞},+,×, 0, 1) as a complete subsemiring of the previous one.

I (R ∪ {−∞},min,+,−∞, 0) with
∑

= inf.

I (R ∪ {∞},max,+,∞, 0) with
∑

= sup.

I Complete lattices such as ([0, 1],min,max, 0, 1).

I The semiring of languages over an alphabet A: (2A
∗
,∪,+, ∅, {ε}) with

∑
defined as (infinite) union.
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Marked words

I Let u = u0 · · ·un−1 ∈ A+ be a non-empty word.

The set of positions of u is pos(u) = {0, 1, . . . , n}.

I Let Peb be the (finite) set of pebbles.

I A (statically) marked word is a tuple (u, σ, i, j) where u ∈ A+ is a word,
σ : Peb→ pos(u) is a valuation and i, j ∈ pos(u) are positions.

We denote by Mk(A+) the set of marked words.

We will see below that Mk(A+) forms a partial monoid.
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Weighted expressions with pebbles
Syntax of pebWE:

E ::= s | ϕ | → | ← | x!E | E + E | E · E | E+

ϕ ::= a? | .? | /? | x? | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

with s ∈ S, a ∈ A, x ∈ Peb.

Semantics of Test formulas ϕ:

I .? holds on position 0,

I /? holds on position |u|,
I a? holds if the letter on the current position is a,

I x? holds if the current position is marked with pebble x.

Semantics over marked words: [[E]] ∈ S〈〈Mk(A+)〉〉.

[[E]] : Mk(A+) → S
(u, σ, i, j) 7→ [[E]](u, σ, i, j)
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Weighted expressions with pebbles
Syntax of pebWE:

E ::= s | ϕ | → | ← | x!E | E + E | E · E | E+

ϕ ::= a? | .? | /? | x? | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

with s ∈ S, a ∈ A, x ∈ Peb.

Semantics:

[[s]](u, σ, i, j) =

{
s if j = i

0 otherwise

[[ϕ]](u, σ, i, j) =

{
1 if j = i and u, σ, i |= ϕ

0 otherwise

[[→]](u, σ, i, j) =

{
1 if j = i+ 1

0 otherwise

[[←]](u, σ, i, j) =

{
1 if j = i− 1

0 otherwise
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Syntax of pebWE:

E ::= s | ϕ | → | ← | x!E | E + E | E · E | E+

ϕ ::= a? | .? | /? | x? | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

with s ∈ S, a ∈ A, x ∈ Peb.

Semantics:

[[E + F ]](u, σ, i, j) = [[E]](u, σ, i, j) + [[F ]](u, σ, i, j)

[[E · F ]](u, σ, i, j) =
∑
k∈pos(u)[[E]](u, σ, i, k)× [[F ]](u, σ, k, j)

[[E+]](u, σ, i, j) =
∑
n>0[[E

n]](u, σ, i, j)

[[x!E]](u, σ, i, j) =

{
[[E]](u, σ[x 7→ i], 0, |u|) if j = i < |u|
0 otherwise
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Examples of pebWE

Abbreviations:

I [[E]](u, σ) = [[E]](u, σ, 0, |u|).

I If E has no free variable:
[[E]](u, i, j) = [[E]](u, σ, i, j) and [[E]](u) = [[E]](u, 0, |u|).

Examples in the natural semiring

I [[→∗a?→∗]](baaba) = 3

I [[(2→)+]](u) = 2|u|

I [[E1 /?←∗ .?E2]](u) = [[E1]](u)× [[E2]](u)

I [[(x!((2→)+)→)+]](u) = 2|u|
2
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Examples of pebWE

Consider the continuous semiring (R∞≥0,+,×, 0, 1), and let 0 < s < 1:

E = (¬/?(s→+ (1− s)¬.?←))∗ /?

Random walk on a word u of length n (Markov chain):

0 1 2 n− 2 n− 1 n

s

1− s

s

1− s

. . .
s

1− s

s

With α = 1−s
s , one can show that

[[E]](u) =
1

1 + α+ . . .+ α|u|
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Expressions for probabilistic LTL

A = 2AP with AP the set of atomic propositions.

Ep(x) = .?→∗x?p?→∗/?
Eϕ∧ψ(x) = Eϕ(x)←∗Eψ(x)
Eϕ∨ψ(x) = Eϕ(x) + E¬ϕ∧ψ(x)

EXϕ(x) = .?→∗x?→(x!Eϕ(x))→∗/?
EYϕ(x) = .?→∗x?←(x!Eϕ(x))→∗/?

EϕUψ(x) = .?→∗x?
(
(x!E¬ψ∧ϕ(x))→

)∗
(x!Eψ(x))→∗/?

Eϕ Sψ(x) = .?→∗x?
(
(x!E¬ψ∧ϕ(x))←

)∗
(x!Eψ(x))→∗/?

Reusable pebbles!
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Semantics at a higher level

S〈〈A∗〉〉 is a semiring with pointwise sum and Cauchy product:

(f + g)(w) = f(w) + g(w)

(f × g)(w) =
∑
w=uv

f(u)× g(v)

If S is continuous, so is S〈〈A∗〉〉.
Hence we have a star operation on S〈〈A∗〉〉: f∗ =

∑
n≥0 f

n.

Compositional semantics of rational expressions over S〈〈A∗〉〉:

[[E + F ]] = [[E]] + [[F ]] [[E · F ]] = [[E]]× [[F ]] [[E∗]] = [[E]]∗

If M is an arbitrary monoid, the same holds in S〈〈M〉〉.

What about 2-way moves and pebbles?
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Semantics at a higher level

S〈〈A∗〉〉 is a semiring with pointwise sum and Cauchy product:

(f + g)(w) = f(w) + g(w)

(f × g)(w) =
∑
w=uv

f(u)× g(v)
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Partial monoid of marked words

Mk(A+) = {(u, σ, i, j) | u ∈ A+, σ : Peb→ pos(u), i, j ∈ pos(u)}

Partial composition over Mk(A+) (associative):

(u, σ, i, k) · (u, σ, k, j) = (u, σ, i, j)

Cauchy product over S〈〈Mk(A+)〉〉 (associative):

(f × g)(u, σ, i, j) =
∑

(u,σ,i,j)=xy

f(x)× g(y)

=
∑

k∈pos(w)

f(u, σ, i, k)× g(u, σ, k, j)

Compositional semantics of rational expressions over S〈〈Mk(A+)〉〉:
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Partial monoid of marked words
Partial units of Mk(A+):

Mk(A+) = {(u, σ, i, j) | u ∈ A+, σ : Peb→ pos(u), i, j ∈ pos(u)}
Unit(A+) = {(u, σ, i, i) | u ∈ A+, σ : Peb→ pos(u), i ∈ pos(u)}

Unit of S〈〈Mk(A+)〉〉 for the Cauchy product:

1Unit(A+) the characteristic function of Unit(A+).

(f×1Unit(A+))(u, σ, i, j) =
∑

k∈pos(w)

f(u, σ, i, k)×1Unit(A+)(u, σ, k, j) = f(u, σ, i, j)

(S〈〈Mk(A+)〉〉,+,×, 0, 1Unit(A+)) is a semiring.

S〈〈Mk(A+)〉〉 is continuous if S is continuous. Star operation: f∗ =
∑
n≥0 f

n

Compositional semantics of rational expressions:

[[E + F ]] = [[E]] + [[F ]] [[E · F ]] = [[E]]× [[F ]] [[E∗]] = [[E]]∗
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Partial monoids

A partial monoid is a triple (Z, ·, Y ) where

I Z is the set of elements,

I · : Z2 → Z is a partially defined associative concatenation,

I Y ⊆ Z is a set of partial units satisfying:

∀z ∈ Z ∃!y ∈ Y y · z = z

∀z ∈ Z ∃!y ∈ Y z · y = z

∀x, z ∈ Z ∀y ∈ Y x · y = z =⇒ x = z

∀x, z ∈ Z ∀y ∈ Y y · x = z =⇒ x = z

Proposition: Series over partial monoids

If S is a continuous semiring and (Z, ·, Y ) is a partial monoid, then

I the series S〈〈Z〉〉 forms a continuous semiring (S〈〈Z〉〉,+,×, 0, 1Y ),
I the star operation is defined on S〈〈Z〉〉.
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Weighted automata with pebbles
Move = {←,→, ↑} ∪ {↓x | x ∈ Peb} is the set of possible moves of an automaton.

A pebble weighted automaton (pebWA) is a tuple A = (Q,A, I,M, T ) with

I Q a finite set of states,

I I ∈ SQ a row vector of initial weights,

I T ∈ S〈Test〉Q a column vector of terminal weighted tests,

I M ∈ (S〈Test〉〈Move〉)Q×Q the transition matrix.

1
⊳?

5

3 4

2

(2a? + 3b?)→

c? ↓x

¬x?→

7→

↑

→

I =
(
5 0 0 0

)
M =


(2a? + 3b?)→ 0 c? ↓x 0

→ 0 0 0
0 0 ¬x?→ 7→
0 ↑ 0 0



T =


/?
0
0
0


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
Each accepting run of A over u has weight 5× 2|u|a × 3|u|b × 7|u|c

Non-deterministic choice in state 3 yields i+ 1 runs if x is dropped on position i

[[A]](u) = 5× 2|u|a × 3|u|b × 7|u|c ×
∏
i|ui=c

(i+ 1)
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Formal semantics
A configuration of A is a tuple (u, σ, q, i, π) with

I u ∈ A+ a word,

I σ : Peb→ pos(u) a valuation,

I q ∈ Q the current state,

I i ∈ pos(u) the current position,

I π ∈ (Peb× pos(u))∗ the stack of pebbles currently dropped.

Reusable pebbles: σπ defined inductively by σε = σ and σπ(x,i) = σπ[x 7→ i].

Configurations are locations of the weighted transition system TS(A).
The weight of transition (u, σ, p, i, π) ; (u, σ, q, j, π′) is

[[M→p,q]](u, σπ, i, i) if j = i+ 1 and π′ = π (→)

[[M←p,q]](u, σπ, i, i) if j = i− 1 and π′ = π (←)

[[M↓xp,q]](u, σπ, i, i) if j = 0, i < |u| and π′ = π(x, i) (↓x)

[[M↑p,q]](u, σπ, i, i) if π = π′(y, j) for some y ∈ Peb (↑)

where Md
p,q ∈ S〈Test〉 is the coefficient of move d in Mp,q.
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Formal semantics

For ρ run of TS(A), weight(ρ) is the product of the weights of its transitions.

Given (u, σ, i, j) ∈ Mk(A+) and p, q ∈ Q, we define

[[Ap,q]](u, σ, i, j) =
∑
ρ

weight(ρ)

sum over runs ρ from configuration (u, σ, p, i, ε) to configuration (u, σ, q, j, ε).

[[A]](u, σ, i, j) =
∑
p,q∈Q

Ip × [[Ap,q]](u, σ, i, j)× [[Tq]](u, σ, j, j)
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Semantics at a higher level
Let A = (Q,A, I,M, T ) be a 2-way weighted automaton.

We have M ∈ (S〈Test〉〈{←,→}〉)Q×Q.

The matrix Mn describes the paths of length n of the automaton A.

The semiring K = S〈〈Mk(A+)〉〉 is continuous.

Let [[M ]] = ([[Mp,q]])p,q∈Q ∈ KQ×Q.

[[M ]]n gives the semantics restricted to paths of length n.

[[Ap,q]] =
∑
n≥0

([[M ]]n)p,q = ([[M ]]∗)p,q [[A]] = I × [[M ]]∗ × T

The semiring of matrices KQ×Q is also continuous.

[[M ]] =

(
A B
C D

)
then [[M ]]∗ =

(
(A+BD∗C)∗ A∗B(D + CA∗B)∗

D∗C(A+BD∗C)∗ (D + CA∗B)∗

)
The entries of the matrix [[M ]]∗ are in the rational closure of the entries of [[M ]].

Corollary:

We can construct a pebWE E(A) = I ×M∗ × T which is equivalent to A.
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Semantics at a higher level

What about pebbles?

Partial monoid of dynamically marked words: (u, σ, i, π, j, π′).

Partial composition (associative):

(u, σ, i, π, k, π′) · (u, σ, k, π′, j, π′′) = (u, σ, i, π, j, π′′)

Semantics of drop and lift:

[[↓x]](u, σ, i, π, j, π′) =

{
1 if π′ = π(x, i) and j = 0 and i < |u|
0 otherwise

[[↑]](u, σ, i, π, j, π′) =

{
1 if π = π′(y, j) for some y ∈ Peb

0 otherwise

Then, [[A]] = I × [[M ]]∗ × T .

But this does not give a pebWE equivalent to A.
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Layered automata
Fix K ≥ 0 and ` : Q→ {0, . . . ,K} mapping each state to its layer.

Automaton A = (Q,A, I,M, T ) is K-layered if

I `(q) 6= K implies Iq = 0 = Tq,

I `(p) 6= `(q) implies M←p,q = 0 =M→p,q,

I M
↓x
p,q 6= 0 implies `(q) = `(p)− 1,

I M↑p,q 6= 0 implies `(q) = `(p) + 1.

A 2-layered automaton has the following form:

I =
(

I(2) 0 0

)
, M =


N (2) D(2) 0

L(1) N (1) D(1)

0 L(0) N (0)

 , T =


T (2)

0

0


2-way transitions: entries in N (i) are in S〈Test〉〈{←,→}〉,
Lift transitions: entries in L(i) are in S〈Test〉〈{↑}〉,
Drop transitions: entries in D(i) are in S〈Test〉〈{↓x | x ∈ Peb}〉.
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From automata to expressions

Theorem:

Let A = (Q,A, I,M, T ) be a K-layered pebWA.

We can construct a matrix H ∈ pebWEQ×Q such that

[[Hp,q]] = [[A≤ip,q]]

for all i ≤ K and p, q ∈ Q(i) = `−1(i) be the set of states in layer i.

The pebWE E(A) = I ×H × T is equivalent to A:

[[E(A)]] = [[A]]

Moreover, the pebble-depth of E(A) is at most K.
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From automata to expressions

M =

 N D

L P

 =

 N 0

0 0

+

 0 D

L P



H =


N +G 0

0 P


Gp,q =

∑
p′,q′

∑
x∈Peb

dxp,p′ · x!
(
(P ∗)p′,q′ · `q′,q · →∗

)
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From expressions to automata
Litteral-length of a pebWE:

``((2a? + b?)→(2b? + 3c?)) = 1
``(→+a?←+b?→+c?←+d?→+) = 5

``(→+ a?x!
(
(¬x?→)∗ b? (¬x?→)+ c?←+ d?→+

)
→∗) = 8

Theorem:

For each pebWE E we can construct a layered pebWA A(E) such that

[[A(E)]] = [[E]]

i.e., for all (u, σ, i, j) ∈ Mk(A+) we have

[[A(E)]](u, σ, i, j) = [[E]](u, σ, i, j) .

The number of layers in A(E) is the pebble-depth of E.

The number of states of A(E) is 1 + ``(E).

The time complexity is cubic.
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Standard automata

A pebWA A = (Q,A, I,M, T ) is standard if it has a single initial state ι with no
ingoing transition, and the initial weight is 1.

A = ι

c
NJ U A =

(
1 0

) 0 J

0 N


 c

U



pebWA for the atomic pebWE:

A(s) = ι
s A(→) = ι

→ 1

A(ϕ) = ι
ϕ

A(←) = ι
← 1
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Sum

A1 +A2 = ι

c1 + c2

N1J1 U1

N2J2 U2

A1 +A2 =
(

1 0 0
)


0 J1 J2

0 N1 0

0 0 N2




c1 + c2

U1

U2


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Product

A1 · A2 = ι

c1c2

N1J1 U1c2

N2
c1J2 U2

U1J2

A1 · A2 =
(

1 0 0
)


0 J1 c1J2

0 N1 U1J2

0 0 N2




c1c2

U1c2

U2


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Product
The automaton for 2a = 2 · a? · → is computed as follows:

ι

2

· ι

a?

· ι
→

1

= ι
2a

1

The automaton for E = (2a? + b?)→(2b? + 3c?)

ι

2a? + b?

· ι
→

1

· ι

2b? + 3c?

= ι
2a+ b

2b? + 3c?

ι

c1c2

N1J1 U1c2

N2
c1J2 U2

U1J2
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Star

A∗ = ι

c∗
N + Uc∗Jc∗J Uc∗

A∗ =
(

1 0
) 0 c∗J

0 N + Uc∗J


 c∗

Uc∗



For E =→+a?←+b?→+c?←+d?→+, we compute:

A(→+) = ι

→

→ 1

A(→+ · a?) = ι

→

→ a?

A(E) = ι

→

→

←

a?←

→

b?→

←

c?←

→

d?→ 1
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Pebbles

x!A = ι

ι′

↓x

τ

NJ U⊳?↑

x!A =
(

1 0 0 0
)


0 0 ↓x 0

0 0 0 0

0 0 0 J

0 U/?↑ 0 N




0

1

0

0



For E =→+ a?x!
(
(¬x?→)∗ b? (¬x?→)+ c?←+ d?→+

)
→∗, we compute:

ι
→

→

a?↓x
¬x?→

¬x?→

(b? ∧ ¬x?)→

(b? ∧ ¬x?)→

¬x?→ ←

c?←

→

d?→ ⊳?↑

τ
→

→

1
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Evaluation of pebble weighted automata

Let A = (Q,A, I,M, T ) be a K-layered pebWA.

Recall that Q(i) = `−1(i) is the set of states in layer i.

Theorem:

Given a K-layered pebWA with p pebbles and a word w ∈ A+,
we can compute with O((K+1)|w|p+1) matrix operations (sum, product, iteration)
all values [[Ap,q]](w, σ) for all p, q ∈ Q(K) and valuations σ : Peb→ pos(w).

Note that the number of valuations is |w|p.

With reusable pebbles p may be much smaller than K.

Probabilistic LTL can be translated to K-layered pebWA with only 1 pebble.

The number K of layers is the nesting depth of the formula.
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Evaluation of pebble weighted automata

A K-layered pebWA A = (Q,A, I,M, T ) is strongly K-layered
if in each layer i ≤ K, only a fixed pebble xi may be dropped.

Theorem:

Given a strongly K-layered pebWA with p pebbles and a word w ∈ A+,
with O((K + 1)|w|max(1,p)) matrix operations (sum, product, iteration),
we can compute the values [[Ap,q]](w, σ) for all p, q ∈ Q(K) and σ : Peb→ pos(w).

If a K-layered pebWA uses at most 1 pebble then it is strongly K-layered.

pebWA associated with probabilistic LTL formulas are strongly K-layered.

Corollary:

The evaluation problem for probabilistic LTL is linear in |w|.
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Some future directions
Some variations:

I Restrict the syntax of pebWE and pebWA to avoid infinite sums.
E.g., forward proper or backward proper iterations or loops.

I Restrict the syntax of pebWE and pebWA to fit the probabilistic setting (next
talk).

I Weighted extension of regular XPath and tree walking automata.
Use marked trees instead of marked words.

Some open problems:

I Try to obtain a quadratic time algorithm for the translation of pebWE to
pebWA.
Generalize the notion of star normal form introduced by Brüggeman-Klein
(TCS’93) for word languages
Generalize the algorithm of Allauzen and Mohri (MFCS’06) for classical
weighted expressions and automata.

I Replace the x!− construction of pebWE with a chop product E ; F which
evaluates E on the current prefix and F on the current suffix.
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(TCS’93) for word languages
Generalize the algorithm of Allauzen and Mohri (MFCS’06) for classical
weighted expressions and automata.

I Replace the x!− construction of pebWE with a chop product E ; F which
evaluates E on the current prefix and F on the current suffix.


	Introduction: 2-way moves and pebbles
	Counting Patterns
	Weighted temporal logic

	Weighted expressions with pebbles
	Series over continuous semirings
	Weighted expressions with pebbles
	Series over partial monoids

	Weighted automata with pebbles
	From automata to expressions
	From expressions to automata
	Evaluation of pebble weighted automata
	Concluding remarks

