Efficient computations with pebbles

Paul Gastin joint work with Benjamin Monmege

LSV, ENS Cachan, INRIA, CNRS, FRANCE

Dresden, Wata 2012, May 29 - June 2nd

Slides at http://www.lsv.ens-cachan.fr/~gastin/Talks/ See also CIAA'2012

◆□▶◆舂▶◆≧▶◆≧▶ ≧ の�? 1/45

Outline

- Introduction: 2-way moves and pebbles
 - Counting Patterns
 - Weighted temporal logic

Weighted expressions with pebbles

Weighted automata with pebbles

From automata to expressions

From expressions to automata

Evaluation of pebble weighted automata

Concluding remarks

$$E = \rightarrow^{+}a? \leftarrow^{+}b? \rightarrow^{+}c? \leftarrow^{+}d? \rightarrow^{+}$$

$$w = c \quad a \quad b \quad c \quad d \quad b \quad a \quad d \quad c \quad b \quad a \quad b$$

<□ > < @ > < ≧ > < ≧ > ≧ の Q @ 3/45

$$E = \rightarrow^{+}a? \leftarrow^{+}b? \rightarrow^{+}c? \leftarrow^{+}d? \rightarrow^{+}$$

$$w = c \ a \ b \ c \ d \ b \ a \ d \ c \ b \ a \ b$$

 $\llbracket E \rrbracket(w) = 8$

An equivalent 1-way expression is more complex and less intuitive.

<ロト<回ト<三ト<三ト<三ト 三 のへで 3/45

$$E = \rightarrow^+ a? \leftarrow^+ b? \rightarrow^+ c? \leftarrow^+ d? \rightarrow^+$$

$$w = c \quad a \quad b \quad c \quad d \quad b \quad a \quad d \quad c \quad b \quad a \quad b$$

 $\llbracket E \rrbracket(w) = 8$

An equivalent 1-way expression is more complex and less intuitive.

$$F = \rightarrow^+ a? x! \left((\neg x? \rightarrow)^* b? (\neg x? \rightarrow)^+ c? \leftarrow^+ d? \rightarrow^+ \right) \rightarrow^*$$

<ロト<回ト<三ト<三ト<三ト 三 のへで 3/45

$$E = \rightarrow^+ a? \leftarrow^+ b? \rightarrow^+ c? \leftarrow^+ d? \rightarrow^+$$

$$w = c \quad a \quad b \quad c \quad d \quad b \quad a \quad d \quad c \quad b \quad a \quad b$$

 $\llbracket E \rrbracket(w) = 8$

An equivalent 1-way expression is more complex and less intuitive.

$$F = \rightarrow^{+} a? x! \left((\neg x? \rightarrow)^{*} b? (\neg x? \rightarrow)^{+} c? \leftarrow^{+} d? \rightarrow^{+} \right) \rightarrow^{*}$$
$$\llbracket F \rrbracket (w) = 4$$

<□ > < @ > < E > < E > E のQ → 3/45

Future and Past modalities

$$\begin{split} \varphi_1 &= \mathsf{F}(a \land \mathsf{P}(b \land \mathsf{F}(c \land \mathsf{P}\,d))) \\ \varphi_2 &= \mathsf{G}(\texttt{grant} \to \mathsf{P}\,\texttt{request}) \\ \varphi_3 &= \mathsf{G}(\texttt{grant} \to \mathsf{Y}((\neg\texttt{grant})\,\mathsf{S}\,\texttt{request})) \end{split}$$

Each LTL formula φ has an implicit free variable x denoting the position where the formula is evaluated. We use a pebble to mark this position.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 釣�� 5/45

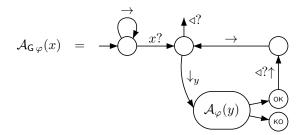
Let $\mathbb{P}(\varphi, u, i)$ denote the probability that φ holds on word u at position i.

 $\mathbb{P}(\mathsf{G}\,\varphi, u, i) \quad = \quad \prod_{j \ge i} \mathbb{P}(\varphi, u, j)$

Each LTL formula φ has an implicit free variable x denoting the position where the formula is evaluated. We use a pebble to mark this position.

Let $\mathbb{P}(\varphi, u, i)$ denote the probability that φ holds on word u at position i.

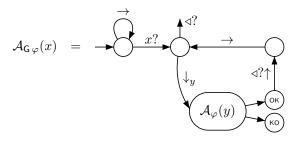
 $\mathbb{P}(\mathsf{G}\,\varphi,u,i) \ = \ \prod_{j\geq i} \mathbb{P}(\varphi,u,j)$



Each LTL formula φ has an implicit free variable x denoting the position where the formula is evaluated. We use a pebble to mark this position.

Let $\mathbb{P}(\varphi, u, i)$ denote the probability that φ holds on word u at position i.

 $\mathbb{P}(\mathsf{G}\,\varphi,u,i) \ = \ \prod_{j\geq i} \mathbb{P}(\varphi,u,j)$



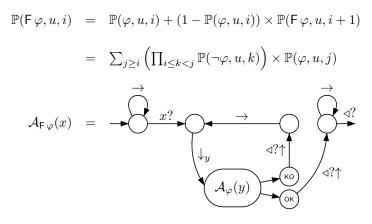
 $E_{\mathsf{G}\,\varphi}(x) \quad = \quad \triangleright ? \to^* x ? \left((y! E_{\varphi}(y)) \to \right)^* \triangleleft ? \, .$

 $\mathbb{P}(\mathsf{F}\,\varphi,u,i) \hspace{.1in} = \hspace{.1in} \mathbb{P}(\varphi,u,i) + (1-\mathbb{P}(\varphi,u,i)) \times \mathbb{P}(\mathsf{F}\,\varphi,u,i+1)$

$$\begin{split} \mathbb{P}(\mathsf{F}\,\varphi, u, i) &= \mathbb{P}(\varphi, u, i) + (1 - \mathbb{P}(\varphi, u, i)) \times \mathbb{P}(\mathsf{F}\,\varphi, u, i+1) \\ &= \sum_{j \geq i} \left(\prod_{i \leq k < j} \mathbb{P}(\neg \varphi, u, k) \right) \times \mathbb{P}(\varphi, u, j) \end{split}$$

 $\mathbb{P}(\mathsf{F}\,\varphi, u, i) = \mathbb{P}(\varphi, u, i) + (1 - \mathbb{P}(\varphi, u, i)) \times \mathbb{P}(\mathsf{F}\,\varphi, u, i+1)$ $= \quad \textstyle \sum_{j \geq i} \left(\prod_{i \leq k < j} \mathbb{P}(\neg \varphi, u, k) \right) \times \mathbb{P}(\varphi, u, j)$ ⊲? x? $\mathcal{A}_{\mathsf{F}\,\varphi}(x)$ ⊲?′ \downarrow_y ⊲?↑ ко $\mathcal{A}_{\varphi}(y)$ OK

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣 ◆ ○ ○ ○ 6/45

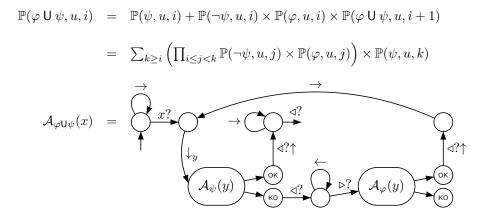


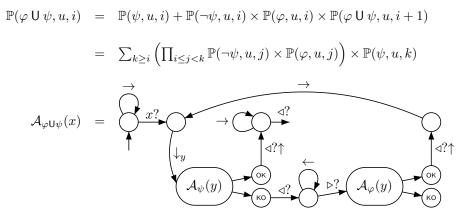
 $E_{\mathsf{F}\,\varphi}(x) \quad = \quad \triangleright? \to *x? \left((y!E_{\neg\varphi}(y)) \to \right)^* (y!E_{\varphi}(y)) \to *\triangleleft?$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣 ◆ ○ ○ ○ 6/45

 $\mathbb{P}(\varphi ~\mathsf{U} ~\psi, u, i) ~=~ \mathbb{P}(\psi, u, i) + \mathbb{P}(\neg \psi, u, i) \times \mathbb{P}(\varphi, u, i) \times \mathbb{P}(\varphi ~\mathsf{U} ~\psi, u, i+1)$

$$\begin{split} \mathbb{P}(\varphi \ \mathsf{U} \ \psi, u, i) &= \mathbb{P}(\psi, u, i) + \mathbb{P}(\neg \psi, u, i) \times \mathbb{P}(\varphi, u, i) \times \mathbb{P}(\varphi \ \mathsf{U} \ \psi, u, i+1) \\ &= \sum_{k \geq i} \left(\prod_{i \leq j < k} \mathbb{P}(\neg \psi, u, j) \times \mathbb{P}(\varphi, u, j) \right) \times \mathbb{P}(\psi, u, k) \end{split}$$





 $E_{\varphi \cup \psi}(x) = \rhd? \to *x? \big((y!(E_{\neg \psi}(y) \leftarrow *E_{\varphi}(y))) \to \big)^* (y!E_{\psi}(y)) \to * \triangleleft?$

Outline

Introduction: 2-way moves and pebbles

- 2 Weighted expressions with pebbles
 - Series over continuous semirings
 - Weighted expressions with pebbles
 - Series over partial monoids

Weighted automata with pebbles

From automata to expressions

From expressions to automata

Evaluation of pebble weighted automata

Concluding remarks

A semiring S is complete if every family $(s_i)_{i \in I} \subseteq S$ is summable and the following conditions are satisfied:

- $\sum_{i \in \emptyset} s_i = 0$ $\sum_{i \in \{1\}} s_i = s_1$ $\sum_{i \in \{1,2\}} s_i = s_1 + s_2$
- if $I = \bigcup_{j \in J} I_j$ is a partition, $\sum_{j \in J} \left(\sum_{i \in I_j} s_i \right) = \sum_{i \in I} s_i$
- $\blacktriangleright \left(\sum_{i \in I} s_i\right) \times \left(\sum_{j \in J} t_j\right) = \sum_{(i,j) \in I \times J} (s_i \times t_j)$

Compatibility Associativity Distributivity

A semiring S is complete if every family $(s_i)_{i \in I} \subseteq S$ is summable and the following conditions are satisfied:

- $\sum_{i \in \emptyset} s_i = 0$ $\sum_{i \in \{1\}} s_i = s_1$ $\sum_{i \in \{1,2\}} s_i = s_1 + s_2$
- if $I = \bigcup_{j \in J} I_j$ is a partition, $\sum_{j \in J} \left(\sum_{i \in I_j} s_i \right) = \sum_{i \in I} s_i$
- $\left(\sum_{i\in I} s_i\right) \times \left(\sum_{j\in J} t_j\right) = \sum_{(i,j)\in I\times J} (s_i \times t_j)$ Distributivity

A semiring ${\mathbb S}$ is continuous if it is complete and

- The relation $a \le b$ if b = a + c for some c is an order relation Order
- $\sum_{i \in I} s_i$ is the least upper bound of the finite sums Approximability

$$\sum_{i \in I} s_i = \bigsqcup_{J \subseteq I, J \text{ finite}} \sum_{i \in J} s_i$$

Compatibility

Associativity

A semiring S is complete if every family $(s_i)_{i \in I} \subseteq S$ is summable and the following conditions are satisfied:

- $\sum_{i \in \emptyset} s_i = 0$ $\sum_{i \in \{1\}} s_i = s_1$ $\sum_{i \in \{1,2\}} s_i = s_1 + s_2$
- if $I = \bigcup_{j \in J} I_j$ is a partition, $\sum_{j \in J} \left(\sum_{i \in I_j} s_i \right) = \sum_{i \in I} s_i$
- $\left(\sum_{i\in I} s_i\right) \times \left(\sum_{j\in J} t_j\right) = \sum_{(i,j)\in I\times J} (s_i \times t_j)$ Distributivity

A semiring ${\mathbb S}$ is continuous if it is complete and

- The relation $a \le b$ if b = a + c for some c is an order relation Order
- $\sum_{i \in I} s_i$ is the least upper bound of the finite sums Approximability

$$\sum_{i \in I} s_i = \bigsqcup_{J \subseteq I, J \text{ finite}} \quad \sum_{i \in J} s_i$$

Star operation: for $s \in \mathbb{S}$, we let $s^* = \sum_{i \in \mathbb{N}} s^i$ (with $s^0 = 1$).

Compatibility

Associativity

Examples:

- ▶ The Boolean semiring $(\{0,1\}, \lor, \land, 0, 1)$ with \sum defined as an infinite disjunction.
- ▶ $(\mathbb{R}_{\geq 0} \cup \{\infty\}, +, \times, 0, 1)$ with \sum defined as usual for positive series: in particular, $s^* = \infty$ if $s \ge 1$ and $s^* = 1/(1-s)$ if $0 \le s < 1$.
- $(\mathbb{N} \cup \{\infty\}, +, \times, 0, 1)$ as a complete subsemiring of the previous one.
- $(\mathbb{R} \cup \{-\infty\}, \min, +, -\infty, 0)$ with $\sum = \inf$.
- $(\mathbb{R} \cup \{\infty\}, \max, +, \infty, 0)$ with $\sum = \sup$.
- Complete lattices such as $([0, 1], \min, \max, 0, 1)$.
- The semiring of languages over an alphabet A: (2^{A*}, ∪, +, Ø, {ε}) with ∑ defined as (infinite) union.

Marked words

- Let u = u₀ ··· u_{n-1} ∈ A⁺ be a non-empty word.
 The set of positions of u is pos(u) = {0, 1, ..., n}.
- Let Peb be the (finite) set of pebbles.
- A (statically) marked word is a tuple (u, σ, i, j) where $u \in A^+$ is a word, $\sigma : \operatorname{Peb} \to \operatorname{pos}(u)$ is a valuation and $i, j \in \operatorname{pos}(u)$ are positions. We denote by $\operatorname{Mk}(A^+)$ the set of marked words.

We will see below that $Mk(A^+)$ forms a partial monoid.

Syntax of pebWE:

$$E ::= s \mid \varphi \mid \to \mid \leftarrow \mid x!E \mid E + E \mid E \cdot E \mid E^+$$
$$\varphi ::= a? \mid \triangleright? \mid \triangleleft? \mid x? \mid \neg\varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi$$

with $s \in \mathbb{S}$, $a \in A$, $x \in \text{Peb}$.

Syntax of pebWE:

$$E ::= s \mid \varphi \mid \to \mid \leftarrow \mid x!E \mid E + E \mid E \cdot E \mid E^+$$
$$\varphi ::= a? \mid \triangleright? \mid \triangleleft? \mid x? \mid \neg\varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi$$

with $s \in \mathbb{S}$, $a \in A$, $x \in \text{Peb}$.

Semantics of Test formulas φ :

- ▶ ▷? holds on position 0,
- \triangleleft ? holds on position |u|,
- ▶ *a*? holds if the letter on the current position is *a*,
- ▶ *x*? holds if the current position is marked with pebble *x*.

Syntax of pebWE:

$$E ::= s \mid \varphi \mid \to \mid \leftarrow \mid x!E \mid E + E \mid E \cdot E \mid E^+$$
$$\varphi ::= a? \mid \triangleright? \mid \triangleleft? \mid x? \mid \neg\varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi$$

with $s \in \mathbb{S}$, $a \in A$, $x \in \text{Peb}$.

Semantics of Test formulas φ :

- ▶ ▷? holds on position 0,
- \triangleleft ? holds on position |u|,
- ▶ *a*? holds if the letter on the current position is *a*,
- ▶ *x*? holds if the current position is marked with pebble *x*.

Semantics over marked words: $\llbracket E \rrbracket \in \mathbb{S}\langle\!\langle \operatorname{Mk}(A^+) \rangle\!\rangle$.

$$\begin{split} \llbracket E \rrbracket \colon \operatorname{Mk}(A^+) &\to & \mathbb{S} \\ & (u,\sigma,i,j) &\mapsto & \llbracket E \rrbracket(u,\sigma,i,j) \end{split}$$

Syntax of pebWE:

$$E ::= s \mid \varphi \mid \to \mid \leftarrow \mid x!E \mid E + E \mid E \cdot E \mid E^+$$
$$\varphi ::= a? \mid \triangleright? \mid \triangleleft? \mid x? \mid \neg\varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi$$

with $s \in \mathbb{S}$, $a \in A$, $x \in \text{Peb}$.

$$\begin{split} \llbracket s \rrbracket(u,\sigma,i,j) &= \begin{cases} s & \text{if } j = i \\ 0 & \text{otherwise} \end{cases} \\ \llbracket \varphi \rrbracket(u,\sigma,i,j) &= \begin{cases} 1 & \text{if } j = i \text{ and } u,\sigma,i \models \varphi \\ 0 & \text{otherwise} \end{cases} \\ \llbracket \rightarrow \rrbracket(u,\sigma,i,j) &= \begin{cases} 1 & \text{if } j = i + 1 \\ 0 & \text{otherwise} \end{cases} \\ \llbracket \leftarrow \rrbracket(u,\sigma,i,j) &= \begin{cases} 1 & \text{if } j = i - 1 \\ 0 & \text{otherwise} \end{cases} \end{split}$$

Syntax of pebWE:

$$E ::= s \mid \varphi \mid \to \mid \leftarrow \mid x!E \mid E + E \mid E \cdot E \mid E^+$$
$$\varphi ::= a? \mid \triangleright? \mid \triangleleft? \mid x? \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi$$

with $s \in \mathbb{S}$, $a \in A$, $x \in \text{Peb}$.

$$\begin{split} \llbracket E + F \rrbracket(u, \sigma, i, j) &= \llbracket E \rrbracket(u, \sigma, i, j) + \llbracket F \rrbracket(u, \sigma, i, j) \\ \llbracket E \cdot F \rrbracket(u, \sigma, i, j) &= \sum_{k \in \operatorname{pos}(u)} \llbracket E \rrbracket(u, \sigma, i, k) \times \llbracket F \rrbracket(u, \sigma, k, j) \end{split}$$

Syntax of pebWE:

$$E ::= s \mid \varphi \mid \to \mid \leftarrow \mid x!E \mid E + E \mid E \cdot E \mid E^+$$
$$\varphi ::= a? \mid \triangleright? \mid \triangleleft? \mid x? \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi$$

with $s \in \mathbb{S}$, $a \in A$, $x \in \text{Peb}$.

$$\begin{split} [E+F]\!](u,\sigma,i,j) &= [\![E]\!](u,\sigma,i,j) + [\![F]\!](u,\sigma,i,j) \\ [\![E+F]\!](u,\sigma,i,j) &= \sum_{k \in \text{pos}(u)} [\![E]\!](u,\sigma,i,k) \times [\![F]\!](u,\sigma,k,j) \\ [\![E^+]\!](u,\sigma,i,j) &= \sum_{n>0} [\![E^n]\!](u,\sigma,i,j) \end{split}$$

Syntax of pebWE:

$$E ::= s \mid \varphi \mid \to \mid \leftarrow \mid x!E \mid E + E \mid E \cdot E \mid E^+$$
$$\varphi ::= a? \mid \triangleright? \mid \triangleleft? \mid x? \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi$$

with $s \in \mathbb{S}$, $a \in A$, $x \in \text{Peb}$.

$$\begin{split} [E+F]\!](u,\sigma,i,j) &= & [\![E]\!](u,\sigma,i,j) + [\![F]\!](u,\sigma,i,j) \\ & [\![E+F]\!](u,\sigma,i,j) &= & \sum_{k \in \text{pos}(u)} [\![E]\!](u,\sigma,i,k) \times [\![F]\!](u,\sigma,k,j) \\ & [\![E^+]\!](u,\sigma,i,j) &= & \sum_{n>0} [\![E^n]\!](u,\sigma,i,j) \\ & [\![x!E]\!](u,\sigma,i,j) &= & \begin{cases} [\![E]\!](u,\sigma[x \mapsto i]\!],0,|u|) & \text{if } j = i < |u| \\ 0 & \text{otherwise} \end{cases} \end{split}$$

Examples of pebWE

Abbreviations:

- $\blacktriangleright \ \llbracket E \rrbracket(u,\sigma) = \llbracket E \rrbracket(u,\sigma,0,|u|).$
- $\label{eq:constraint} \begin{array}{l} \bullet \ \, \mbox{If E has no free variable:} \\ \llbracket E \rrbracket(u,i,j) = \llbracket E \rrbracket(u,\sigma,i,j) \ \, \mbox{and} \ \, \llbracket E \rrbracket(u) = \llbracket E \rrbracket(u,0,|u|). \end{array}$

Examples of pebWE

・ロト・同ト・ヨト・ヨト ヨ のへで 15/45

Abbreviations:

- $\blacktriangleright \ \llbracket E \rrbracket(u,\sigma) = \llbracket E \rrbracket(u,\sigma,0,|u|).$
- $\label{eq:entropy} \begin{array}{l} \bullet \ \, \mbox{If E has no free variable:} \\ \llbracket E \rrbracket(u,i,j) = \llbracket E \rrbracket(u,\sigma,i,j) \ \, \mbox{and } \llbracket E \rrbracket(u) = \llbracket E \rrbracket(u,0,|u|). \end{array}$

Examples in the natural semiring

$$\bullet \ \llbracket \rightarrow^*a? \rightarrow^* \rrbracket(baaba) = 3$$

$$[[(2 \rightarrow)^+]](u) = 2^{|u|}$$

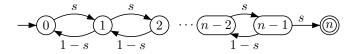
- $\bullet \ \llbracket E_1 \triangleleft ? \leftarrow^* \triangleright ? E_2 \rrbracket(u) = \llbracket E_1 \rrbracket(u) \times \llbracket E_2 \rrbracket(u)$
- $[(x!((2\rightarrow)^+)\rightarrow)^+](u) = 2^{|u|^2}$

Examples of pebWE

Consider the *continuous* semiring $(\mathbb{R}_{>0}^{\infty}, +, \times, 0, 1)$, and let 0 < s < 1:

 $E = (\neg \triangleleft?(s \rightarrow + (1 - s) \neg \triangleright? \leftarrow))^* \triangleleft?$

Random walk on a word u of length n (Markov chain):



With $\alpha = \frac{1-s}{s}$, one can show that

$$\llbracket E \rrbracket(u) = \frac{1}{1 + \alpha + \ldots + \alpha^{|u|}}$$

Expressions for probabilistic LTL

 $A = 2^{AP}$ with AP the set of atomic propositions.

$$E_p(x) = \triangleright? \rightarrow^* x? p? \rightarrow^* \triangleleft?$$
$$E_{\varphi \land \psi}(x) = E_{\varphi}(x) \leftarrow^* E_{\psi}(x)$$
$$E_{\varphi \lor \psi}(x) = E_{\varphi}(x) + E_{\neg \varphi \land \psi}(x)$$

Expressions for probabilistic LTL

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 の � で 17/45

 $A = 2^{AP}$ with AP the set of atomic propositions.

$$E_{p}(x) = \triangleright? \rightarrow^{*} x ? p? \rightarrow^{*} \triangleleft?$$

$$E_{\varphi \land \psi}(x) = E_{\varphi}(x) \leftarrow^{*} E_{\psi}(x)$$

$$E_{\varphi \lor \psi}(x) = E_{\varphi}(x) + E_{\neg \varphi \land \psi}(x)$$

$$E_{\mathbf{X}\varphi}(x) = \triangleright? \rightarrow^{*} x? \rightarrow (x! E_{\varphi}(x)) \rightarrow^{*} \triangleleft?$$

$$E_{\mathbf{Y}\varphi}(x) = \triangleright? \rightarrow^{*} x? \leftarrow (x! E_{\varphi}(x)) \rightarrow^{*} \triangleleft?$$

Reusable pebbles!

Expressions for probabilistic LTL

 $A = 2^{AP}$ with AP the set of atomic propositions.

$$\begin{split} E_{p}(x) &= \triangleright ? \rightarrow^{*} x ? p ? \rightarrow^{*} \triangleleft ? \\ E_{\varphi \land \psi}(x) &= E_{\varphi}(x) \leftarrow^{*} E_{\psi}(x) \\ E_{\varphi \lor \psi}(x) &= E_{\varphi}(x) + E_{\neg \varphi \land \psi}(x) \\ E_{X \varphi}(x) &= \triangleright ? \rightarrow^{*} x ? \rightarrow (x ! E_{\varphi}(x)) \rightarrow^{*} \triangleleft ? \\ E_{Y \varphi}(x) &= \triangleright ? \rightarrow^{*} x ? \leftarrow (x ! E_{\varphi}(x)) \rightarrow^{*} \triangleleft ? \\ E_{\varphi \cup \psi}(x) &= \triangleright ? \rightarrow^{*} x ? ((x ! E_{\neg \psi \land \varphi}(x)) \rightarrow)^{*} (x ! E_{\psi}(x)) \rightarrow^{*} \triangleleft ? \\ E_{\varphi \mathsf{S} \psi}(x) &= \triangleright ? \rightarrow^{*} x ? ((x ! E_{\neg \psi \land \varphi}(x)) \leftarrow)^{*} (x ! E_{\psi}(x)) \rightarrow^{*} \triangleleft ? \end{split}$$

Reusable pebbles!

 $\mathbb{S}\langle\!\langle A^* \rangle\!\rangle$ is a semiring with pointwise sum and Cauchy product:

$$(f+g)(w) = f(w) + g(w)$$
$$(f \times g)(w) = \sum_{w=uv} f(u) \times g(v)$$

If S is continuous, so is $\mathbb{S}\langle\!\langle A^* \rangle\!\rangle$.

Hence we have a star operation on $\mathbb{S}\langle\!\langle A^*\rangle\!\rangle\colon f^*=\sum_{n\geq 0}f^n.$

 $\mathbb{S}\langle\!\langle A^* \rangle\!\rangle$ is a semiring with pointwise sum and Cauchy product:

$$(f+g)(w) = f(w) + g(w)$$
$$(f \times g)(w) = \sum_{w=uv} f(u) \times g(v)$$

If \mathbb{S} is continuous, so is $\mathbb{S}\langle\!\langle A^* \rangle\!\rangle$.

Hence we have a star operation on $\mathbb{S}\langle\!\langle A^* \rangle\!\rangle$: $f^* = \sum_{n \ge 0} f^n$.

Compositional semantics of rational expressions over $\mathbb{S}\langle\langle A^* \rangle\rangle$:

$$[\![E+F]\!] = [\![E]\!] + [\![F]\!] \qquad [\![E \cdot F]\!] = [\![E]\!] \times [\![F]\!] \qquad [\![E^*]\!] = [\![E]\!]^*$$

If M is an arbitrary monoid, the same holds in $\mathbb{S}\langle\langle M \rangle\rangle$.

 $\mathbb{S}\langle\!\langle A^* \rangle\!\rangle$ is a semiring with pointwise sum and Cauchy product:

$$(f+g)(w) = f(w) + g(w)$$
$$(f \times g)(w) = \sum_{w=uv} f(u) \times g(v)$$

If \mathbb{S} is continuous, so is $\mathbb{S}\langle\!\langle A^* \rangle\!\rangle$.

Hence we have a star operation on $\mathbb{S}\langle\!\langle A^*\rangle\!\rangle\colon f^*=\sum_{n\geq 0}f^n.$

Compositional semantics of rational expressions over $\mathbb{S}\langle\langle A^* \rangle\rangle$:

$$[\![E+F]\!] = [\![E]\!] + [\![F]\!] \qquad [\![E \cdot F]\!] = [\![E]\!] \times [\![F]\!] \qquad [\![E^*]\!] = [\![E]\!]^*$$

If M is an arbitrary monoid, the same holds in $\mathbb{S}\langle\langle M \rangle\rangle$.

What about 2-way moves and pebbles?

 $Mk(A^+) = \{(u, \sigma, i, j) \mid u \in A^+, \sigma \colon Peb \to pos(u), i, j \in pos(u)\}$

Partial composition over $Mk(A^+)$ (associative):

$$(u,\sigma,i,k)\cdot(u,\sigma,k,j)=(u,\sigma,i,j)$$

 $Mk(A^{+}) = \{(u, \sigma, i, j) \mid u \in A^{+}, \sigma \colon Peb \to pos(u), i, j \in pos(u)\}$ Partial composition over Mk(A⁺) (associative):

$$(u,\sigma,i,k)\cdot(u,\sigma,k,j)=(u,\sigma,i,j)$$

Cauchy product over $\mathbb{S}((Mk(A^+)))$ (associative):

$$(f \times g)(u, \sigma, i, j) = \sum_{\substack{(u, \sigma, i, j) = xy \\ k \in \text{pos}(w)}} f(x) \times g(y)$$
$$= \sum_{\substack{k \in \text{pos}(w) \\ k \in \text{pos}(w)}} f(u, \sigma, i, k) \times g(u, \sigma, k, j)$$

 $Mk(A^+) = \{(u, \sigma, i, j) \mid u \in A^+, \sigma \colon Peb \to pos(u), i, j \in pos(u)\}$ Partial composition over Mk(A⁺) (associative):

$$(u,\sigma,i,k)\cdot(u,\sigma,k,j)=(u,\sigma,i,j)$$

Cauchy product over $\mathbb{S}((Mk(A^+)))$ (associative):

$$(f \times g)(u, \sigma, i, j) = \sum_{\substack{(u, \sigma, i, j) = xy \\ k \in \text{pos}(w)}} f(x) \times g(y)$$
$$= \sum_{\substack{k \in \text{pos}(w) \\ k \in \text{pos}(w)}} f(u, \sigma, i, k) \times g(u, \sigma, k, j)$$

Compositional semantics of rational expressions over $\mathbb{S}((Mk(A^+)))$:

$$\llbracket E + F \rrbracket = \llbracket E \rrbracket + \llbracket F \rrbracket \qquad \llbracket E \cdot F \rrbracket = \llbracket E \rrbracket \times \llbracket F \rrbracket$$

Partial units of $Mk(A^+)$:

 $Mk(A^+) = \{(u, \sigma, i, j) \mid u \in A^+, \ \sigma \colon Peb \to pos(u), \ i, j \in pos(u)\}$ $Unit(A^+) = \{(u, \sigma, i, i) \mid u \in A^+, \ \sigma \colon Peb \to pos(u), \ i \in pos(u)\}$

Partial units of $Mk(A^+)$:

 $\begin{aligned} \mathrm{Mk}(A^+) &= \{(u,\sigma,i,j) \mid u \in A^+, \ \sigma \colon \mathrm{Peb} \to \mathrm{pos}(u), \ i,j \in \mathrm{pos}(u) \} \\ \mathrm{Unit}(A^+) &= \{(u,\sigma,i,i) \mid u \in A^+, \ \sigma \colon \mathrm{Peb} \to \mathrm{pos}(u), \ i \in \mathrm{pos}(u) \} \end{aligned}$

Unit of $\mathbb{S}((Mk(A^+)))$ for the Cauchy product:

 $1_{\text{Unit}(A^+)}$ the characteristic function of $\text{Unit}(A^+)$.

$$(f \times 1_{\mathrm{Unit}(A^+)})(u,\sigma,i,j) = \sum_{k \in \mathrm{pos}(w)} f(u,\sigma,i,k) \times 1_{\mathrm{Unit}(A^+)}(u,\sigma,k,j) = f(u,\sigma,i,j)$$

Partial units of $Mk(A^+)$:

 $Mk(A^+) = \{(u, \sigma, i, j) \mid u \in A^+, \ \sigma \colon Peb \to pos(u), \ i, j \in pos(u)\}$ $Unit(A^+) = \{(u, \sigma, i, i) \mid u \in A^+, \ \sigma \colon Peb \to pos(u), \ i \in pos(u)\}$

Unit of $\mathbb{S}((Mk(A^+)))$ for the Cauchy product:

 $1_{\text{Unit}(A^+)}$ the characteristic function of $\text{Unit}(A^+)$.

$$(f \times 1_{\operatorname{Unit}(A^+)})(u, \sigma, i, j) = \sum_{k \in \operatorname{pos}(w)} f(u, \sigma, i, k) \times 1_{\operatorname{Unit}(A^+)}(u, \sigma, k, j) = f(u, \sigma, i, j)$$

 $(\mathbb{S}((Mk(A^+))), +, \times, 0, 1_{Unit(A^+)})$ is a semiring.

 $\mathbb{S}\langle\!\langle\mathrm{Mk}(A^+)\rangle\!\rangle$ is continuous if \mathbb{S} is continuous. Star operation: $f^*=\sum_{n\geq 0}f^n$

Partial units of $Mk(A^+)$:

 $Mk(A^+) = \{(u, \sigma, i, j) \mid u \in A^+, \ \sigma \colon Peb \to pos(u), \ i, j \in pos(u)\}$ $Unit(A^+) = \{(u, \sigma, i, i) \mid u \in A^+, \ \sigma \colon Peb \to pos(u), \ i \in pos(u)\}$

Unit of $\mathbb{S}((Mk(A^+)))$ for the Cauchy product:

 $1_{\text{Unit}(A^+)}$ the characteristic function of $\text{Unit}(A^+)$.

$$(f \times 1_{\operatorname{Unit}(A^+)})(u, \sigma, i, j) = \sum_{k \in \operatorname{pos}(w)} f(u, \sigma, i, k) \times 1_{\operatorname{Unit}(A^+)}(u, \sigma, k, j) = f(u, \sigma, i, j)$$

 $(\mathbb{S}\langle\!\langle \mathrm{Mk}(A^+)\rangle\!\rangle,+,\times,0,1_{\mathrm{Unit}(A^+)})$ is a semiring.

 $M(A^+)$ is continuous if S is continuous. Star operation: $f^* = \sum_{n \ge 0} f^n$ Compositional semantics of rational expressions:

 $[\![E+F]\!] = [\![E]\!] + [\![F]\!] \qquad [\![E \cdot F]\!] = [\![E]\!] \times [\![F]\!] \qquad [\![E^*]\!] = [\![E]\!]^*$

Partial monoids

A partial monoid is a triple (Z, \cdot, Y) where

- Z is the set of elements,
- $: Z^2 \rightarrow Z$ is a partially defined associative concatenation,
- $Y \subseteq Z$ is a set of partial units satisfying:

$$\begin{array}{lll} \forall z \in Z & \exists ! y \in Y & y \cdot z = z \\ \forall z \in Z & \exists ! y \in Y & z \cdot y = z \\ \forall x, z \in Z & \forall y \in Y & x \cdot y = z \Longrightarrow x = z \\ \forall x, z \in Z & \forall y \in Y & y \cdot x = z \Longrightarrow x = z \end{array}$$

Partial monoids

A partial monoid is a triple (Z, \cdot, Y) where

- Z is the set of elements,
- $\blacktriangleright \ :: Z^2 \rightarrow Z$ is a partially defined associative concatenation,
- $Y \subseteq Z$ is a set of partial units satisfying:

$$\begin{array}{ll} \forall z \in Z & \exists ! y \in Y & y \cdot z = z \\ \forall z \in Z & \exists ! y \in Y & z \cdot y = z \\ \forall x, z \in Z & \forall y \in Y & x \cdot y = z \implies x = z \\ \forall x, z \in Z & \forall y \in Y & y \cdot x = z \implies x = z \end{array}$$

Proposition: Series over partial monoids

If ${\mathbb S}$ is a continuous semiring and (Z,\cdot,Y) is a partial monoid, then

- the series $\mathbb{S}\langle\!\langle Z \rangle\!\rangle$ forms a continuous semiring $(\mathbb{S}\langle\!\langle Z \rangle\!\rangle, +, \times, 0, 1_Y)$,
- the star operation is defined on $\mathbb{S}\langle\!\langle Z \rangle\!\rangle$.

Outline

Introduction: 2-way moves and pebbles

Weighted expressions with pebbles

3 Weighted automata with pebbles

From automata to expressions

From expressions to automata

Evaluation of pebble weighted automata

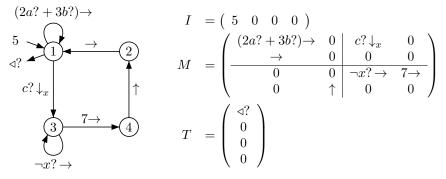
Concluding remarks

Weighted automata with pebbles

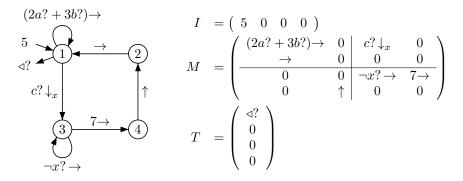
Move = { \leftarrow , \rightarrow , \uparrow } \cup { $\downarrow_x | x \in \text{Peb}$ } is the set of possible moves of an automaton.

A pebble weighted automaton (pebWA) is a tuple $\mathcal{A} = (Q, A, I, M, T)$ with

- Q a finite set of states,
- $I \in \mathbb{S}^Q$ a row vector of initial weights,
- $T \in \mathbb{S}\langle \text{Test} \rangle^Q$ a column vector of terminal weighted tests,
- $M \in (\mathbb{S}(\text{Test})(\text{Move}))^{Q \times Q}$ the transition matrix.



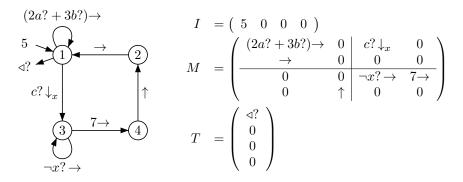
Weighted automata with pebbles



Each accepting run of \mathcal{A} over u has weight $5 \times 2^{|u|_a} \times 3^{|u|_b} \times 7^{|u|_c}$

◆□ → ◆ □ → ◆ 三 → ◆ 三 ・ つ Q (* 24/45)

Weighted automata with pebbles



Each accepting run of \mathcal{A} over u has weight $5 \times 2^{|u|_a} \times 3^{|u|_b} \times 7^{|u|_c}$

Non-deterministic choice in state 3 yields i + 1 runs if x is dropped on position i

$$\llbracket \mathcal{A} \rrbracket(u) = 5 \times 2^{|u|_a} \times 3^{|u|_b} \times 7^{|u|_c} \times \prod_{i|u_i=c} (i+1)$$

A configuration of ${\mathcal A}$ is a tuple (u,σ,q,i,π) with

- ▶ $u \in A^+$ a word,
- $\sigma \colon \operatorname{Peb} \to \operatorname{pos}(u)$ a valuation,
- $q \in Q$ the current state,
- $i \in pos(u)$ the current position,
- $\pi \in (\operatorname{Peb} \times \operatorname{pos}(u))^*$ the stack of pebbles currently dropped.

Reusable pebbles: σ_{π} defined inductively by $\sigma_{\varepsilon} = \sigma$ and $\sigma_{\pi(x,i)} = \sigma_{\pi}[x \mapsto i]$.

A configuration of ${\mathcal A}$ is a tuple (u,σ,q,i,π) with

- ▶ $u \in A^+$ a word,
- $\sigma \colon \operatorname{Peb} \to \operatorname{pos}(u)$ a valuation,
- $q \in Q$ the current state,
- $i \in pos(u)$ the current position,
- $\pi \in (\operatorname{Peb} \times \operatorname{pos}(u))^*$ the stack of pebbles currently dropped.

Reusable pebbles: σ_{π} defined inductively by $\sigma_{\varepsilon} = \sigma$ and $\sigma_{\pi(x,i)} = \sigma_{\pi}[x \mapsto i]$.

Configurations are locations of the weighted transition system $TS(\mathcal{A})$. The weight of transition $(u, \sigma, p, i, \pi) \rightsquigarrow (u, \sigma, q, j, \pi')$ is

$$\begin{split} \llbracket M_{p,q}^{\rightarrow} \rrbracket(u, \sigma_{\pi}, i, i) & \text{if } j = i+1 \text{ and } \pi' = \pi \qquad (\rightarrow) \\ \llbracket M_{p,q}^{\leftarrow} \rrbracket(u, \sigma_{\pi}, i, i) & \text{if } j = i-1 \text{ and } \pi' = \pi \qquad (\leftarrow) \\ \llbracket M_{p,q}^{\downarrow_x} \rrbracket(u, \sigma_{\pi}, i, i) & \text{if } j = 0, \ i < |u| \text{ and } \pi' = \pi(x, i) \qquad (\downarrow_x) \\ \llbracket M_{p,q}^{\uparrow} \rrbracket(u, \sigma_{\pi}, i, i) & \text{if } \pi = \pi'(y, j) \text{ for some } y \in \text{Peb} \qquad (\uparrow) \end{split}$$

where $M_{p,q}^d \in \mathbb{S}\langle \text{Test} \rangle$ is the coefficient of move d in $M_{p,q}$.

For ρ run of $TS(\mathcal{A})$, weight(ρ) is the product of the weights of its transitions. Given $(u, \sigma, i, j) \in Mk(A^+)$ and $p, q \in Q$, we define

$$[\![\mathcal{A}_{p,q}]\!](u,\sigma,i,j) = \sum_{\rho} \mathsf{weight}(\rho)$$

sum over runs ρ from configuration $(u, \sigma, p, i, \varepsilon)$ to configuration $(u, \sigma, q, j, \varepsilon)$.

For ρ run of $TS(\mathcal{A})$, weight(ρ) is the product of the weights of its transitions. Given $(u, \sigma, i, j) \in Mk(A^+)$ and $p, q \in Q$, we define

$$[\![\mathcal{A}_{p,q}]\!](u,\sigma,i,j) = \sum_{\rho} \mathsf{weight}(\rho)$$

sum over runs ρ from configuration $(u, \sigma, p, i, \varepsilon)$ to configuration $(u, \sigma, q, j, \varepsilon)$.

$$\llbracket \mathcal{A} \rrbracket (u, \sigma, i, j) = \sum_{p, q \in Q} I_p \times \llbracket \mathcal{A}_{p, q} \rrbracket (u, \sigma, i, j) \times \llbracket T_q \rrbracket (u, \sigma, j, j)$$

Let $\mathcal{A} = (Q, A, I, M, T)$ be a 2-way weighted automaton. We have $M \in (\mathbb{S}(\text{Test}) \setminus \{\leftarrow, \rightarrow\})^{Q \times Q}$.

The matrix M^n describes the paths of length n of the automaton \mathcal{A} .

Let $\mathcal{A} = (Q, A, I, M, T)$ be a 2-way weighted automaton.

We have $M \in (\mathbb{S}\langle \text{Test} \rangle \langle \{\leftarrow, \rightarrow\} \rangle)^{Q \times Q}$.

The matrix M^n describes the paths of length n of the automaton \mathcal{A} .

The semiring $\mathbb{K} = \mathbb{S}\langle\!\langle \operatorname{Mk}(A^+)\rangle\!\rangle$ is continuous. Let $\llbracket M \rrbracket = (\llbracket M_{p,q} \rrbracket)_{p,q \in Q} \in \mathbb{K}^{Q \times Q}$. $\llbracket M \rrbracket^n$ gives the semantics restricted to paths of length n.

$$\llbracket \mathcal{A}_{p,q} \rrbracket = \sum_{n \ge 0} (\llbracket M \rrbracket^n)_{p,q} = (\llbracket M \rrbracket^*)_{p,q} \qquad \llbracket \mathcal{A} \rrbracket = I \times \llbracket M \rrbracket^* \times T$$

Let $\mathcal{A} = (Q, A, I, M, T)$ be a 2-way weighted automaton.

We have $M \in (\mathbb{S}\langle \text{Test} \rangle \langle \{\leftarrow, \rightarrow\} \rangle)^{Q \times Q}$.

The matrix M^n describes the paths of length n of the automaton \mathcal{A} .

The semiring $\mathbb{K} = \mathbb{S}\langle\!\langle \operatorname{Mk}(A^+)\rangle\!\rangle$ is continuous. Let $\llbracket M \rrbracket = (\llbracket M_{p,q} \rrbracket)_{p,q \in Q} \in \mathbb{K}^{Q \times Q}$. $\llbracket M \rrbracket^n$ gives the semantics restricted to paths of length n.

 $\llbracket \mathcal{A}_{p,q} \rrbracket = \sum_{n \ge 0} (\llbracket M \rrbracket^n)_{p,q} = (\llbracket M \rrbracket^*)_{p,q} \qquad \llbracket \mathcal{A} \rrbracket = I \times \llbracket M \rrbracket^* \times T$

The semiring of matrices $\mathbb{K}^{Q \times Q}$ is also continuous.

$$\llbracket M \rrbracket = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \text{ then } \llbracket M \rrbracket^* = \begin{pmatrix} (A + BD^*C)^* & A^*B(D + CA^*B)^* \\ D^*C(A + BD^*C)^* & (D + CA^*B)^* \end{pmatrix}$$

The entries of the matrix $\llbracket M \rrbracket^*$ are in the rational closure of the entries of $\llbracket M \rrbracket$.

Corollary:

We can construct a pebWE $E(\mathcal{A}) = I \times M^* \times T$ which is equivalent to \mathcal{A} .

What about pebbles?

Partial monoid of dynamically marked words: $(u, \sigma, i, \pi, j, \pi')$. Partial composition (associative):

 $(u,\sigma,i,\pi,k,\pi')\cdot(u,\sigma,k,\pi',j,\pi'')=(u,\sigma,i,\pi,j,\pi'')$

What about pebbles?

Partial monoid of dynamically marked words: $(u, \sigma, i, \pi, j, \pi')$. Partial composition (associative):

$$(u,\sigma,i,\pi,k,\pi')\cdot(u,\sigma,k,\pi',j,\pi'')=(u,\sigma,i,\pi,j,\pi'')$$

Semantics of drop and lift:

$$\llbracket \downarrow_x \rrbracket(u, \sigma, i, \pi, j, \pi') = \begin{cases} 1 & \text{if } \pi' = \pi(x, i) \text{ and } j = 0 \text{ and } i < |u| \\ 0 & \text{otherwise} \end{cases}$$
$$\llbracket \uparrow \rrbracket(u, \sigma, i, \pi, j, \pi') = \begin{cases} 1 & \text{if } \pi = \pi'(y, j) \text{ for some } y \in \text{Peb} \\ 0 & \text{otherwise} \end{cases}$$

What about pebbles?

Partial monoid of dynamically marked words: $(u, \sigma, i, \pi, j, \pi')$. Partial composition (associative):

$$(u,\sigma,i,\pi,\mathbf{k},\pi')\cdot(u,\sigma,\mathbf{k},\pi',j,\pi'')=(u,\sigma,i,\pi,j,\pi'')$$

Semantics of drop and lift:

$$\llbracket \downarrow_x \rrbracket(u, \sigma, i, \pi, j, \pi') = \begin{cases} 1 & \text{if } \pi' = \pi(x, i) \text{ and } j = 0 \text{ and } i < |u| \\ 0 & \text{otherwise} \end{cases}$$
$$\llbracket \uparrow \rrbracket(u, \sigma, i, \pi, j, \pi') = \begin{cases} 1 & \text{if } \pi = \pi'(y, j) \text{ for some } y \in \text{Peb} \\ 0 & \text{otherwise} \end{cases}$$

Then, $\llbracket \mathcal{A} \rrbracket = I \times \llbracket M \rrbracket^* \times T$. But this does not give a pebWE equivalent to \mathcal{A} .

Outline

Introduction: 2-way moves and pebbles

Weighted expressions with pebbles

Weighted automata with pebbles

4 From automata to expressions

From expressions to automata

Evaluation of pebble weighted automata

Concluding remarks

Layered automata

Fix $K \ge 0$ and $\ell: Q \to \{0, \dots, K\}$ mapping each state to its layer. Automaton $\mathcal{A} = (Q, A, I, M, T)$ is K-layered if

- $\ell(q) \neq K$ implies $I_q = 0 = T_q$,
- $\blacktriangleright \ \ell(p) \neq \ell(q) \text{ implies } M_{p,q}^{\leftarrow} = 0 = M_{p,q}^{\rightarrow},$
- $M_{p,q}^{\downarrow_x} \neq 0$ implies $\ell(q) = \ell(p) 1$,
- $M_{p,q}^{\uparrow} \neq 0$ implies $\ell(q) = \ell(p) + 1$.

Layered automata

Fix $K \ge 0$ and $\ell: Q \to \{0, \dots, K\}$ mapping each state to its layer. Automaton $\mathcal{A} = (Q, A, I, M, T)$ is K-layered if

- $\ell(q) \neq K$ implies $I_q = 0 = T_q$,
- $\blacktriangleright \ \ell(p) \neq \ell(q) \text{ implies } M_{p,q}^{\leftarrow} = 0 = M_{p,q}^{\rightarrow},$
- $M_{p,q}^{\downarrow_x} \neq 0$ implies $\ell(q) = \ell(p) 1$,
- $\blacktriangleright \ M^{\uparrow}_{p,q} \neq 0 \text{ implies } \ell(q) = \ell(p) + 1.$
- A 2-layered automaton has the following form:

$$I = \left(\begin{array}{c|c|c} I^{(2)} & 0 & 0 \end{array}\right), \ M = \left(\begin{array}{c|c|c} N^{(2)} & D^{(2)} & 0 \\ \hline L^{(1)} & N^{(1)} & D^{(1)} \\ \hline 0 & L^{(0)} & N^{(0)} \end{array}\right), \ T = \left(\begin{array}{c|c} T^{(2)} \\ \hline 0 \\ \hline 0 \\ \hline 0 \end{array}\right)$$

2-way transitions: entries in $N^{(i)}$ are in $\mathbb{S}\langle \text{Test} \rangle \langle \{\leftarrow, \rightarrow\} \rangle$, Lift transitions: entries in $L^{(i)}$ are in $\mathbb{S}\langle \text{Test} \rangle \langle \{\uparrow\} \rangle$, Drop transitions: entries in $D^{(i)}$ are in $\mathbb{S}\langle \text{Test} \rangle \langle \{\downarrow_x \mid x \in \text{Peb}\} \rangle$.

From automata to expressions

Theorem:

Let $\mathcal{A} = (Q, A, I, M, T)$ be a *K*-layered pebWA. We can construct a matrix $H \in \text{pebWE}^{Q \times Q}$ such that

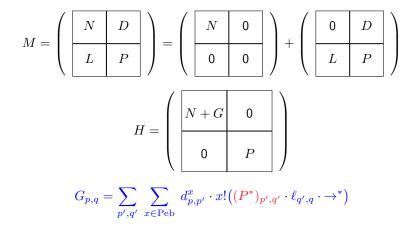
 $\llbracket H_{p,q} \rrbracket = \llbracket \mathcal{A}_{p,q}^{\leq i} \rrbracket$

for all $i \leq K$ and $p, q \in Q^{(i)} = \ell^{-1}(i)$ be the set of states in layer i. The pebWE $E(\mathcal{A}) = I \times H \times T$ is equivalent to \mathcal{A} :

 $\llbracket E(\mathcal{A}) \rrbracket = \llbracket \mathcal{A} \rrbracket$

Moreover, the pebble-depth of $E(\mathcal{A})$ is at most K.

From automata to expressions



◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ Q ○ 32/45

Outline

Introduction: 2-way moves and pebbles

Weighted expressions with pebbles

Weighted automata with pebbles

From automata to expressions

5 From expressions to automata

Evaluation of pebble weighted automata

Concluding remarks

From expressions to automata

Litteral-length of a pebWE:

$$\begin{split} \ell\ell((2a?+b?) &\rightarrow (2b?+3c?)) = 1 \\ \ell\ell(\rightarrow^+a? \leftarrow^+b? \rightarrow^+c? \leftarrow^+d? \rightarrow^+) = 5 \\ \ell\ell(\rightarrow^+a? \mathbf{x}! \Big((\neg x? \rightarrow)^*b? (\neg x? \rightarrow)^+c? \leftarrow^+d? \rightarrow^+ \Big) \rightarrow^*) = 8 \end{split}$$

From expressions to automata

Litteral-length of a pebWE:

$$\ell\ell((2a? + b?) \rightarrow (2b? + 3c?)) = 1 \ell\ell(\rightarrow^+ a? \leftarrow^+ b? \rightarrow^+ c? \leftarrow^+ d? \rightarrow^+) = 5 \ell\ell(\rightarrow^+ a? x! ((\neg x? \rightarrow)^* b? (\neg x? \rightarrow)^+ c? \leftarrow^+ d? \rightarrow^+) \rightarrow^*) = 8$$

Theorem:

For each pebWE E we can construct a layered pebWA $\mathcal{A}(E)$ such that

$$\llbracket \mathcal{A}(E) \rrbracket = \llbracket E \rrbracket$$

i.e., for all $(u,\sigma,i,j)\in \mathrm{Mk}(A^+)$ we have

$$\llbracket \mathcal{A}(E) \rrbracket (u,\sigma,i,j) = \llbracket E \rrbracket (u,\sigma,i,j) \,.$$

The number of layers in $\mathcal{A}(E)$ is the pebble-depth of E.

The number of states of $\mathcal{A}(E)$ is $1 + \ell \ell(E)$.

The time complexity is cubic.

Standard automata

A pebWA $\mathcal{A} = (Q, A, I, M, T)$ is standard if it has a single initial state ι with no ingoing transition, and the initial weight is 1.

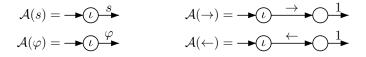
$$\mathcal{A} = \underbrace{\mathbf{A}}_{c} \underbrace{\mathbf{A}}_{$$

Standard automata

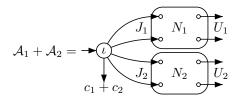
A pebWA $\mathcal{A} = (Q, A, I, M, T)$ is standard if it has a single initial state ι with no ingoing transition, and the initial weight is 1.

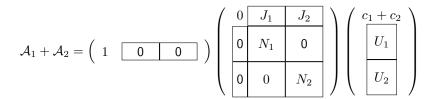
$$\mathcal{A} = \underbrace{\mathbf{A}}_{c} \underbrace{\mathbf{A}}_{$$

pebWA for the atomic pebWE:



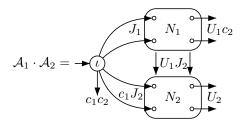
Sum

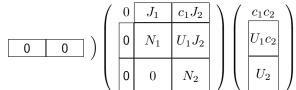




<□▶<□▶<□▶<三▶<=>><=> ○へ○ 36/45

Product

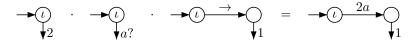


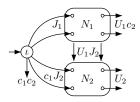


$$\mathcal{A}_1 \cdot \mathcal{A}_2 = \left(\begin{array}{ccc} 1 & \boxed{0} & 0 \end{array}\right)$$

Product

The automaton for $2a = 2 \cdot a? \cdot \rightarrow$ is computed as follows:

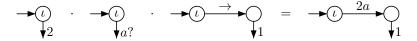




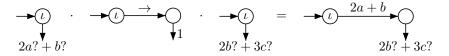
< □ ▶ < @ ▶ < 差 ▶ < 差 ▶ 差 の < @ 38/45

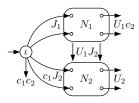
Product

The automaton for $2a = 2 \cdot a? \cdot \rightarrow$ is computed as follows:

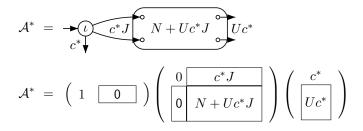


The automaton for $E = (2a? + b?) \rightarrow (2b? + 3c?)$

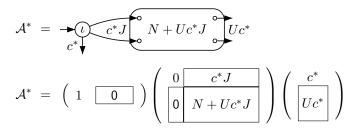




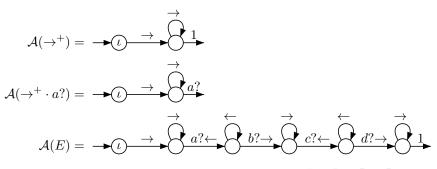
Star



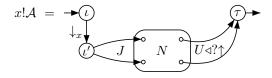
Star

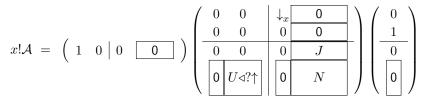


For $E = \rightarrow^+ a? \leftarrow^+ b? \rightarrow^+ c? \leftarrow^+ d? \rightarrow^+$, we compute:

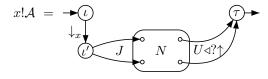


Pebbles



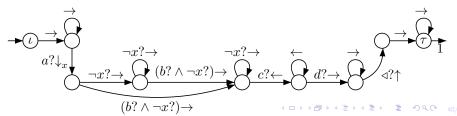


Pebbles



$$x!\mathcal{A} = \begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & \downarrow_x & 0 \\ 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & J \\ \hline 0 & U \triangleleft?\uparrow & 0 & N \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ \hline 0 \\ \hline 0 \\ 0 \end{pmatrix}$$

For $E = \rightarrow^+ a? x! ((\neg x? \rightarrow)^* b? (\neg x? \rightarrow)^+ c? \leftarrow^+ d? \rightarrow^+) \rightarrow^*$, we compute:



Outline

Introduction: 2-way moves and pebbles

Weighted expressions with pebbles

Weighted automata with pebbles

From automata to expressions

From expressions to automata

6 Evaluation of pebble weighted automata

Concluding remarks

Let $\mathcal{A} = (Q, A, I, M, T)$ be a *K*-layered pebWA. Recall that $Q^{(i)} = \ell^{-1}(i)$ is the set of states in layer *i*.

Theorem:

Given a K-layered pebWA with p pebbles and a word $w \in A^+$, we can compute with $\mathcal{O}((K+1)|w|^{p+1})$ matrix operations (sum, product, iteration) all values $[\![\mathcal{A}_{p,q}]\!](w,\sigma)$ for all $p,q \in Q^{(K)}$ and valuations $\sigma \colon \operatorname{Peb} \to \operatorname{pos}(w)$.

Note that the number of valuations is $|w|^p$.

Let $\mathcal{A} = (Q, A, I, M, T)$ be a *K*-layered pebWA. Recall that $Q^{(i)} = \ell^{-1}(i)$ is the set of states in layer *i*.

Theorem:

Given a K-layered pebWA with p pebbles and a word $w \in A^+$, we can compute with $\mathcal{O}((K+1)|w|^{p+1})$ matrix operations (sum, product, iteration) all values $[\![\mathcal{A}_{p,q}]\!](w,\sigma)$ for all $p,q \in Q^{(K)}$ and valuations $\sigma \colon \operatorname{Peb} \to \operatorname{pos}(w)$. Note that the number of valuations is $|w|^p$.

With reusable pebbles p may be much smaller than K.

Probabilistic LTL can be translated to K-layered pebWA with only 1 pebble.

The number K of layers is the nesting depth of the formula.

A K-layered pebWA $\mathcal{A} = (Q, A, I, M, T)$ is strongly K-layered if in each layer $i \leq K$, only a fixed pebble x_i may be dropped.

Theorem:

Given a strongly K-layered pebWA with p pebbles and a word $w \in A^+$, with $\mathcal{O}((K+1)|w|^{\max(1,p)})$ matrix operations (sum, product, iteration), we can compute the values $[\![\mathcal{A}_{p,q}]\!](w,\sigma)$ for all $p,q \in Q^{(K)}$ and $\sigma \colon \operatorname{Peb} \to \operatorname{pos}(w)$.

A K-layered pebWA $\mathcal{A} = (Q, A, I, M, T)$ is strongly K-layered if in each layer $i \leq K$, only a fixed pebble x_i may be dropped.

Theorem:

Given a strongly K-layered pebWA with p pebbles and a word $w \in A^+$, with $\mathcal{O}((K+1)|w|^{\max(1,p)})$ matrix operations (sum, product, iteration), we can compute the values $[\![\mathcal{A}_{p,q}]\!](w,\sigma)$ for all $p,q \in Q^{(K)}$ and $\sigma \colon \operatorname{Peb} \to \operatorname{pos}(w)$.

If a K-layered pebWA uses at most 1 pebble then it is strongly K-layered.

pebWA associated with probabilistic LTL formulas are strongly K-layered.

Corollary:

The evaluation problem for probabilistic LTL is linear in |w|.

Outline

Introduction: 2-way moves and pebbles

Weighted expressions with pebbles

Weighted automata with pebbles

From automata to expressions

From expressions to automata

Evaluation of pebble weighted automata

Concluding remarks

Some future directions

Some variations:

- Restrict the syntax of pebWE and pebWA to avoid infinite sums.
 E.g., forward proper or backward proper iterations or loops.
- Restrict the syntax of pebWE and pebWA to fit the probabilistic setting (next talk).
- Weighted extension of regular XPath and tree walking automata. Use marked trees instead of marked words.

Some future directions

Some variations:

- Restrict the syntax of pebWE and pebWA to avoid infinite sums.
 E.g., forward proper or backward proper iterations or loops.
- Restrict the syntax of pebWE and pebWA to fit the probabilistic setting (next talk).
- Weighted extension of regular XPath and tree walking automata. Use marked trees instead of marked words.

Some open problems:

 Try to obtain a quadratic time algorithm for the translation of pebWE to pebWA.

Generalize the notion of star normal form introduced by Brüggeman-Klein (TCS'93) for word languages Generalize the algorithm of Allauzen and Mohri (MFCS'06) for classical weighted expressions and automata.

▶ Replace the *x*!- construction of pebWE with a *chop* product *E*; *F* which evaluates *E* on the current prefix and *F* on the current suffix.