On Quantitative Logics
and Weighted Automata

Paul Gastin
LSV, ENS Cachan, INRIA, CNRS, FRANCE
Leipzig, Wata 2010, May 3-7

Slides at http://www.lsv.ens-cachan.fr/~gastin/Talks/

http://www.lsv.ens-cachan.fr/~gastin/Talks/

Motivations

Analysis of quantitative systems
Probabilistic Systems
Minimization of costs
Maximization of rewards
Computation of reliability

Optimization of energy consumption

Models (no time)

Probabilistic automata (generative, reactive)

Transition systems with costs or rewards

All are special cases of Weighted Automata.

Motivations
Specifications should also be quantitative
Aim: introduce weighted MSO logic (wMSO) and study its properties
Satisfiability
Model Checking
Expressivity

Qualitative (Boolean) Picture

Rational
Automata MEO - ,ucachulus
CTL" - = =~ — —-Models
// r\\ , Checking
Star F [- ,
e b ; > FO -—> LTL CTL

Counter Free

We should extend this picture to the quantitative setting.

Plan

@ VSO Logic

Weighted MSO Logic

Weighted MSO versus Weighted Automata
Weighted CTL" and PCTL"

Conclusion and Open Problems

u]
)]
1
n
it

12584

Structures

A structure s consists of
pos(s) set of positions/vertices/nodes
As : pos(s) — X labeling of positions
Relations depending on the structure:
FE edges in graphs
< linear order for words
< successor relation for words

<1 and <2 two successor relations for binary trees
< = (<1 U <2)" associated partial order

Graphs

Words

w=a b acabcacb

S
AN

Trees

MSO Logic

Ingredients
Variables:

Positions (first-order) : z, y, z1, z2, ...
Sets of positions (predicates) : X, Y, X1, Xo, ...
x € X: atomic formula

Quantifications: dz, 34X, Vz, VX
Boolean connectives: V, A, 1, =, «—
Labels: P,(x) for a € ¥ (constant predicates)

Relations of the structures: t Ey, x <y, x <1y, ...

MSO over Graphs

Definition: Syntax

pu=0[1|FP@)[zeX[zEy|-ploVelphy
|z p | Ve | AX ¢ | VX ¢

Example: 3-coloring

3R, B,G Ve(r € RVx € BVzxeQ)
AVz,y(x Ey — ~(z,y € RVa,y € BVz,y€Qq))

MSO over Trees
Definition: Syntax
pu=0|1|FPx)|zeX|z<y|lz<y|-p|leVe|lpAp
[Tz |Vee|IX @ | VX @

S
a/s/\b\s
PAANN /\
Sbs ab

a

Example: Parse tree for S — aSbS + ab

Va root(xz) — Ps(x)
Nleaf(z) «— (Py(x) V Py(x))
A Ps(x) — Jz1,m0 (x <1 21 A Po(21) A <g 22 A Py(22))
V 3z, xo, 23,4 (<1 21 A Po(x1) AT <g 2 A Ps(x2)
ANz <gx3 A Py(x3) Ao <4 x4 N\ Pg(x4))

MSO over Ordered Unranked Trees

Definition: Syntax

pu=0|1|Pz)|zeX |z<y|lz<sy|pw|leVe|lpAp
|z |V |IX | VX @

S
a/s/\b\s
PAANN /\
Sbs ab

a

Example: Parse tree for S — aSbS + ab

Vo root(x) — Pg(x)
Aleaf () «— (Pu(z) V Py(z))
A Ps(x) — Fzq, 20 (v <1 21 A Po(x1) A1 <5 T2 A Pyo(22))
V 3z, xe, 23,4 (<1 21 A Pa(21) A 21 <5 22 A Pg(22)
Ao < x3 A\ Py(x3) A3 <5 x4 A\ Ps(x4))

Some Questions about MSO Logic

Problems
Expressivity
Compare with other formalisms

Satisfiability
Given ¢ € MSO(X, <1, <3) does there exist a binary tree ¢ such that ¢ |= ¢?

Model checking
Given ¢ € MSO(X, <) and a model M, does M = ¢?
ie., w = @ for all w € L(M)

Complexity of the above decision problems

Solution: MSO = Automata
Finite words: Elgot'61, Trakhtenbrot'61
Infinite words: Biichi'60
Infinite trees: Rabin'69

Effective translations between MSO and Automata.
Closure and decision properties of automata.

Free variables and assighments

Effective translation
p € MSO(%,...) —> A
with s |= ¢ iff s € L(A) for all structures s.

The translation from MSO to Automata is by structural induction.
We need to deal with free variables.

Example: 3-coloring

¢(R,B,G)=Vz(x € RVz e BVzxe€Qq)
AVz,y(x Ey — —(z,y € RVx,y € BVz,y€QG))

!

|

\
WA

Choose sets o(R), o(B), o(G) of positions and
evaluate ¢ with this assignment.

|

U7T_w
H—00

Assignments

Definition: Assignments

Let s be a structure.
Let V be a finite set of first-order and second-order variables.

A (V, s)-assignment o is a function mapping
first-order variables in V to elements in pos(s) and

second-order variables in) to subsets of pos(s).

For i € pos(s), let o[z — 4] be the (VU {z}, s) assignment
mapping x to ¢ and which coincides with o otherwise.

For I C pos(s), we define o[X > I] similarly.

Assignments

Example: 3-coloring

3R, B, G Ve(r € RVz € BVzeQG)
AVz,y(x Ey — ~(x,y € RVz,y € BVa,y € q))

oc=[B~{1,3,5,9},G — {2,4,7}, R+ {6,8,10},2 +— 6,y — 10]
g0 (x Ey— —~(x,y€e RVz,y € BVa,y € q))

Assignments as Extended labeling

Example:

> = O
Q O
Q O O

1
(abaa,z — 2, X — {1,3}) is encoded by 0
a

Definition: Encoding

Let V be a finite set of first-order and second-order variables.

Define £y = ¥ x {0, 1}V.

Let s be a structure over X (i.e., As : pos(s) — X) and o be a (V, s)-assignment.
(s,0) is encoded as the structure s’ over X, with the extended labeling A\

defined for i € pos(s) by Ay (i) = (As(2), 7) with

T(x)=1 iff i=o0(x)
T(X)=1 iff ieo(X)

A structure s’ over Xy, will be written as a pair (s, o).
Note that o is not necessarily a valid (), s)-assignment.

Semantics
3 equivalent definitions

Let ¢ € MSO(Z,...) be a formula.

Let V D Free(yp) be a finite set of first-order and second-order variables.

Let (s,0) be a structure over ¥y .
1. Classical: if o is a valid (V, s)-assignment
s,0 E ¢
2. Language:
Ly(p) ={(s,0) | o is a valid (V, s)-assignment and s,0 |= ¢}

3. Characteristic function of Ly (p):

1 if ois avalid (V,s)-assignment and s,0 |= ¢
[elv(s,0) = .
0 otherwise.

Plan
MSO Logic

© Weighted MSO Logic

Weighted MSO versus Weighted Automata
Weighted CTL" and PCTL"

Conclusion and Open Problems

12584

Weighted MSO Logic (wMSO)

Quantitative semantics

Let A be a wA and s a struture.
The semantics [A](s) is a value from some semiring: B, N, R, ...

Let ¢ be a wMSO formula, s a structure and o a (V, s)- assignment.

The semantics [¢]y (s, o) should also be a value from the semiring.

History of equivalences between (restricted) wMSO and wA

Generalizations of Elgot's, Trakhtenbrot's, Biichi's, Rabin's theorems.

Finite words Droste & Gastin, ICALP’95
Trees Droste & Vogler, TCS'06
Infinite words Droste & Rahonis, CIAA’07
Pictures Fischtner, STACS'06
Traces Meinecke, CSR’06

Distributed systems Bollig & Meinecke, LFCS'07

Semirings

Definition: Semiring
K= (K, &, ®,0,1)
(K,®,0) is a commutative monoid,
(K,®,1) is a monoid,
multiplication distributes over addition, and 0 is absorbant.

Examples:
Boolean: B = ({0,1},V,A,0,1)
Natural: (IN,+,-,0,1)
Tropical: (IN U {oco}, min, +, 0o, 0)
Probabilistic: Prob = (R>0,+,-,0,1)
Reliability: ([0, 1], max,-,0,1)

Syntax of Weighted MSO Logics (wMSO)
Definition: Syntax for words wWMSO(K;, X, <)

pu=k|lz<y|P(z)[z€X|p|lpVe|lpAp
|z | Ve |IX p | VX @

with k € K and a € ¥
Definition: Syntax for (ranked) trees WMSO(K, X, <, <tq, <3)

pu=klz<ylz<y|Pu(z)|zeX|pleVe|lpAp
[Tz | Ve |TX ¢ | VX ¢

with ke Kanda e X

Definition: Syntax for (ordered) unranked trees WMSO(K, ¥, <, <)

pu=klz<lylr<sy|Puz)|z€X|0|eVe|lpAp
|Fz o |Vee | IX o | VX

with £ € K and a € X

Semantics of wMSO

Constants k£ €¢ K

k if o is a valid (V, s)-assignment
0 otherwise

[[k]]V(S7 U) = {

Atomic formulas: we use the boolean semantics

[Pa(@)] (5, 0) = {1 it As(0(2) = a

0 otherwise

0 otherwise [x € X]y(s,0)= {1 if o(z) € 0(X)

1 ifo(z) <o(y)
0 otherwise

if o(z) <; 0(y)
otherwise

[[$<y]]v(s70)={ [z <iylv(s,0)= {(1)

Negation: extends the boolean semantics

1 if [¢]v(s,0) =0 and o is a valid (V, s)-assignment

[=lv(s,0) = {

0 otherwise

Semantics of wMSO

Disjunction and existential quantifications are sums
[e1 vV 2lv(s, o) = [palv(s, o) @ [p2]v(s, 0)
HELI‘ 90]]\}(37 0) = @ [[‘p]]vu{x}(sa U[x — Z])

i€dom(s)

[[HXLP]]V(‘S?O—) = @ HQO]]VU{X}(S,U[X 4)1])
ICdom(s)

Conjunction and universal quantifications are products
[o1 A @a]v(s,0) = [p1]v(s, o) @ [p2]v (s, o)
Vzelv(s,0) = &) [elvuge(s,alz — i)

i1€dom(s)

VX ¢lv(s,0) = Q) [elvurxy(s,olX = 1))
ICdom(s)

Examples

Compute overt IN the semantics of
> [Fz Ps(2)](t)
// \\
// \\ Cl/ \

/ \ / \ > [Bz (Ps(2) A =3y (z <y A Ps(y))](#)

> [Be (Pa(z) v (Bo(2) A 2)](#)

> [Bz (Ps(z) Ady (z <y A Ps(y))]®)
Can we compute

number of nodes for the rule S — aSbS
the value 2ltle . 3l

the number of leaves of odd depth

Boolean fragment of wMSO

Definition: syntax of bMSO(X, <, <;)
pu=0[llz<ylz<iy|Pu(r)[zcX|[-¢[pAp|Vzp|VXp
with a € .

Remark: Boolean and Quantitative semantics coincide on bMSO

[—¢]v(s,0) = {1 if [¢]v(s,0) =0

0 otherwise
[p1 A 2]v(s,0) = [p1]v(s,) ® [p2]v(s, o)
Veelv(s,o) = Q) [¢lvuay(s olz — i)

i€dom(s)

VX elv(s,0) = @ [elvorxy(s,olX — 1))
ICdom(s)

Boolean fragment of wMSO

Definition: Macros for disjunction and existential quantifications

def
©1 V02 = (=1 A —pa)

3z vz -y

IX o X —p

Hence, we can easily define boolean formulas for all MSO properties.

Number of nodes for the rule S — aSbS

// \\ Jz (Ps(z) Ay (z <y A Ps(y)))
//\\ a/ \b

Useful Macro

Definition: Useful macro
+ def
P1 = 2 = —p1 V (91 A p2)

If 1 is boolean (i.e., if [i1] takes values in {0,1}), we have

[p2lv(s,0) if [pa]v(s,0) =1

1 otherwise.

+
[er = @2]v(s,0) = {
If ©1, @2 are boolean, then ¢ x5 (2 is the usual boolean implication.

Va ((Pa(z) = 2) A (Py(z) = 3))

//‘\\
//\\ a/\b

Step formulas
Definition: Syntax of bMSO-step

pu=klal-p|leVel|lpAe
with £ € K and o € bMSO

Proposition: Normal form for bMSO-step
For every bMSO-step formula ¢, one can construct an equivalent formula

finite

with ¢,, € bMSO and &, € K.

Proof:

Let o, ..., be the bMSO formulas in ¢.

For I C{1,...,p}, define p; = pla;/1 if i € I, O otherwise].
Then, [¢r] = k5 is constant.

Define ¢y = N\;c; i A /\i¢1 —a;, a bMSO formula.

Then, ¢ is equivalent to ¢ = \/Ig{lva} kr ANy.

First-order fragments

Definition: Weighted first-order (wFO)

pu=kle<ylz<;y|FPu@)|zeX|ploeVe|pAp|[Tzep|Vre

with £ € K and a € X.

Definition: Boolean first-order (bFO)
pu=0|1llz<yle<iy|Pulz)[z€X|p|pAp|Vzep
with a € .

+
We can use the macros V, — and Jx.

Definition: bFO-step

pu=klal-pleVel|leAp
with £ € K and o € bFO

Plan

MSO Logic
Weighted MSO Logic

© Weighted MSO versus Weighted Automata
@ Weighted Automata
@ From Weighted MSO to Weighted Automata
@ From Weighted Automata to Weighted MSO
@ Transitive closure

Weighted CTL" and PCTL"

Conclusion and Open Problems

Weighted Automata by Example

Several paths for v = ab™a:

weight(ma) = 2 - (3)" 1= 1=

3 3.2n
If n is even: , ,
m:1$2a3+2 256
weight(ms) = £ 1" 2 = 2

10

Probabilistic: Prob = (R>¢,+,-,0,1)
+ 5=+ if nis odd

[A](v) = {20 312

=t 33= ifniseven

Reliability: ([0, 1], max,-,0,1)
[Al(v) =

max

0,32n) if nis odd

(
ax(20, T 2,7) if n is even

Weighted Automata formally

Definition: Weighted Automaton
A weighted automaton over K and X is a quadruple A = (Q, A, u1,y) where
@ is the nonempty finite set of states,
WX — KQ@%Q is the transition weight function,
and),y € K@ provide weights for entering and leaving a state, respectively.

Definition: Semantics [A] : & - K
The weight of a path m: gg —5 g1 — ... — @n_1 — g, in Ais

. def
WClght(Tr) = ,u(al)qo,lh e :u(an)Qn—MQn'

The semantics of A is defined by

[Al(w) = Y A(p)- weight(r) - ¥(q)

path w:pl)q

Weighted Automata: Examples

2a + 3b+ 1c

1% 1x
<< L) la <(l)
1% 1
—1b
13 13

<(élerla((é

Weighted Automata: semantics revisited
Definition:

The transition weight function ;1 : ¥ — K2*@ is extended to a morphism
pi Xt K9xQ

Proposition: Semantics

For w € ¥* and p,q € Q, we have p(w),q = Z weight (7).
path ﬂ:pih]
Hence, [AJ(w) = Y A(p)- weight(m) - v(g) = A u(w) - 7.

path w:pl>q

From wMSO to wA: constants

Valid assignments and constant formulas

Note that [p]v(s,0) = 0 if o is not a valid (), s)-assignment.

Consider a deterministic and complete finite automaton (over words, trees,
accepting the pairs (s, 0) over Xy, such that o is a valid (V, s)-assignment.

Put weight 1 on all transitions as well as on final states.

Put weight & on the initial state.

We get an automaton A(k, V) is equivalent to the constant formula k:

[A(E V)] = [K]v-

From wMSO to wA:
Boolean Connectives

» Disjunction is sum: Take disjoint union of A; and A,.
» Conjunction is product: Take synchronized product of A; and As.

If py LiLN q1 in Ay and po LELN g2 in Ay then

kiks)a .
(p1,p2) Laka)a, (q1,92) in A1 ® Ay

» Negation: restricted to bMSO-step formulas

Existential Quantifications

BXelv(s,o)= @B [ehvux(s,0lX — 1))
ICdom(s)

Proof:
Let A= A(p, VU{X}) = (@A 1,7)
Then, A" = A(3X ¢, V) = (Q, A\, i/,) with

M/(a’ 7) = p(a, 7[X = 0]) & p(a, 7[X — 1])

Fix w = ay - --a, and a path ™ = po,p1,...,pn € Q. For each i € pos(w),

k7 (ai,0)
Pi—1 —>p1 and Pi—1

Then,

kL (as,1) . (K ®k;)as
p; are grouped in p;_1 ——— p;.

weight 4, (m,w) = (kY © ki) (kS k3) - (k2 @ k;.)
= @ weight 4 (7, w, [X — I])

ICpos(w)

Universal Quantifications

Example: [V 2] is recognizable
2%

We have [vz 2](w) = [[2l(w, 2~) =2

1<i<[w]
Example: [VyVz 2] is not recognizable when K = (N, +,-,0,1)
We have [VyVz 2J(w) = [[[¥z 2l(w,y i) =21
1<i<[w]
Let A= (Q, A, p,7) and M = max{[Ap|, [7pl, [1(@)pql | P,q € Q,a € A}
Then, for any w € A*, we have [A](w) < |Q[lwI+1. Mlwi+2 = 20(wD),
Therefore, [VyVzx 2] is not recognizable.

Universal Quantifications

Example: [VX 2] is not recognizable when K = (N, +,-,0,1)

We have [VX 2](w) = H 2](w, X —I)= 92"

IC{L,lwl}

Remark:

The same counter-examples hold for
the tropical semiring (IN U {oc}, min, +, 0o, 0)
the arctical semiring (INU {—o0}, max, +, —00, 0)

From wMSO to wA: Vz ¢

Proof: Consider Vx ¢ with ¢ = \/ k; A p; a bMSO-step formula.
1<j<n

Let W = Free(p) and V = Free(Vz ¢) = W\ {z}.

We assume that the languages L; = Lyy(p;) (1 < j < n) form a partition of A},,.

Let (w,0) € A3,. Vi€ pos(w) 3lwv(i) € {1,...,n} such that (w, oz — i]) € Ly ;).

We have Vz o] (w, H [e](w, oz — i]) = H ky i)
1<i<|w| 1<i<|w|
The map v : pos(w) — {1,...,n} is encoded with an extended labeling.

Let A= Ax{1,...,n}. Awordin (Ay)* will be written (w, v, o) where (w, o) € A3,
and v € {1,...,n}"l'is interpreted as a map v : pos(w) — {1,...,n}.
L={(w,v,0)e(Ay)*| v()=j iff (w,olz—i])e L;} is recognizable.
Then, A(Vz ¢, V) running on (w, (f) guesses v, checks that its guess is correct with

the (deterministic) automaton for L, and computes H ky(iy-
1<i< |w

Restricted Weighted MSO Logic
Definition: L-step where L being bFO or bMSO
az=k|f|-alaValaha
with ke Kand g € L
Definition: 3V(L-step) where £ being bFO or bMSO

Formulas of the form X Vz p(x, X) where ¢ is an L-step formula.

Definition: Restricted wMSO (wRMSO)

pu=k|lz<ylz<;y|Puz)|zeX|aleVe|oAp|Tzp|Voa|IX e
with k € K, a € ¥ and a € bMSO-step.

Theorem: Expressivity (DG ICALP'95, BGMZ ICALP’10)

Let f be a series over K. The following are equivalent:
1. f is recognizable by a wA.
2. f is definable in 3V(bFO-step).
3. f is definable in wRMSO.

Decidability

Proposition: The translation from wRMSO to wA is effective.

Corollary:

Satisfiability is decidable for WRMSO whenever emptiness is decidable for wA.

Equivalence is decidable for wWRMSO whenever equivalence is decidable for wA.

wA to JV(bFO-step)
Proof: Let A= (Q,\, 1,7)
For d > 1 and p, q € @, define the bFO-step formula

Z,q(z): \/ (ﬂ”" d)p.g N /\ v,$+J*1)

vy vgEXDD 1<j<d

For every word w and i € pos(w) with i +d — 1 € pos(w), we have

[¥5.q (@) (w, 3) = p(wli, i +d —1])pq

Semantics of A with macro-paths

Forwe Xt and k = {%J we have

pwpg = D wwlld)pg - pwld+1,2d])g 6 - plwlkd + 1, [w]])gp.q

q1,92,--,9k €EQ

wA to JV(bFO-step)

Proof: A= (Q,\, i,y) is equivalent to 3X Vz ¢

Assume @ = {1,...,n} and let d = 2n + 1. Assume also that 1 is the initial state.

A set X consisting of positions g < xg+qo <1 < T1+q1 < 22 < ...
with 2z = df + 1 and 1 < ¢, < n encodes the macro-path of A

w(l,d] w[d+1,2d] wlkd+1,|w|] 2
q0 q1 qQ Qg !

oz, X) = [Iast >nA{l,2} C X A (¢far V @nea,)]

% [Iast <nAX =0A [z =first \/ PP (1) /\v(q)]}
q€Q
tar(, X) = (last > z +d + 1) A ((xeXAXm}x,Hn} £0) 5
\/ XNz, x+d+n] = {x—i—p,x—l—d,m—&—d—i—q}/\wl‘f’q(:ﬂ))
P,q€EQ
Onear(z, X) = (last <z +d +n) A ((xeX/\Xﬁ}x,x—&-n] £0) 5

\V (X Nz, last] = o+ p}) A RS (2) Ay(g))
P,q€Q

Forward Transitive Closure
Definition: Forward Transitive Closure (BGMZ ICALP'10)

Let ¢(x,y) be a wMSO formula with z,y € Free(p). We define

o (z,9) € (z < y) Aoz, y),

def
¢’ (2,y) = 32(z < 2 <y Ap(z,2) Ap(2,y))
More generally, for n > 1 we define

def
90n+1(37»y) = 321,---7271[11 =20<21 < <2zZp<zZpt1 =YA /\ SO(Zi,ZiH)]
0<i<n

We now define a transitive closure operator TCS o by TCo o=V, -, ¢™

Remark: the infinite disjunction above is well defined.

Forward Transitive Closure

Example:
Let ¢ = TC;y(Q Ay = x + 2) over the semiring K = IN. We have

2" iflul=2n+1withn>1
0 otherwise.

[¥] (u, first, last) = {

Remark: the support of 1 is not bFO-definable.

Forward Transitive Closure

Example: Modulo can be expressed with TC*

de

For1<m < ¢ T=rm :fx:m\/TC;z(z:y—f—@)(m,x)

Forward Transitive Closure
Example: Computing big values with TC*
Let K = N and oz, y) < (y=2+1)AV22A (z =15 V22).
Then, [TCS, @l (w, first, last) = 21w

Recognizable series are not closed under TC<.

First-oder and Transitive Closure

Definition: FO4+TC*<

pu=k|Pu(z) [z<y|-eloVeleAp|Ize|Voe|TC
where k € K, a € X.
Definition: Bounded Transitive Closure

N-TC3, ¢ is defined as TCS, ¢ but jumps are limited by N.

Definition: FO+BTC*<

pu=k|Pu(x) |z <yl -wloVelpAp|Ire|Yop | N-TC o
where k € K, a € ¥ and N > 0.
Theorem: Bollig, G., Monmege, Zeitoun ICALP’'10

FO+BTC* has the same expressive power as weighted automata with pebbles.

Fragments for Weighted Automata

Definition:
For £ C bMSO, the fragment TC=(L-step) consists of formulas of the form

TG0
where ¢(x,y) is an L-step formula with Free(p) = {x, y}.

Theorem: Expressivity of Transitive Closure (BGMZ ICALP'10)

Let f be a series over K. The following are equivalent:
1. f is recognizable by a wA.
2. f is definable in TC<((bFO 4+ mod)-step).
3. f is definable in TC<(bMSO-step).
4. f is definable in 3V(bFO-step).
5. f is definable in 3V(bMSO-step).
6. f is definable in wRMSO.

Expressivity of Transitive Closure

Proof: TC=(bMSO-step) C EIV(bMSO—step)

Let oy, 2) = \/ ki A oi(with ©; € bMSO.
el

We define a bMSO-step formula ¢ (xz, X, y, z) such that
[TC5 ()9, 2) = 3X Vol Xy, 2)

The quantification 3X guesses the intermediary positions: y < y; < -+ <y, < 2
The quantification Va computes the product for this guessed sequence.

Define £z, X) = \/ ki Ayl <y A X Nz,y] = {y} A pi(2,7))
i€l
We have [[5]](1173,J) _ {[[90]](“’ Js next(j, J)) ifj < I-nax(J)
0 otherwise.

W, X, y,2)=(y=2AX=0A(z=25 oy,2))V
(y#2A{y,2} S X Cy, 2l A ((w € X Aa < 2) 5 £z, X))

Plan
MSO Logic

Weighted MSO Logic

Weighted MSO versus Weighted Automata
@ Weighted CTL* and PCTL*
@ Probabilistic Automata

@ Extended Weighted MSO Logic

@ Weighted CTL*

@ Weighted CTL* versus Weighted MSO

Conclusion and Open Problems

Qualitative (Boolean) Picture

Rational
Automata MEO - M-CaITculus
CTL* - = =~ — —-Models
// ’\\/ . Checking
Star F (- ,
ar Free i, L N

Counter Free

Quantitative Picture

w-Rational

w-Automata W'RE‘_‘MSO PCI{‘
CTLS - - --—- Models
\ ,” Checking
/
w-Star Free <«—» w-FO PCT

Our aim is to compare and unify these logics
Bollig & G. DLT'09

Quantitative Logics

PCTL: Probabilistic CTL Hansson & Jonsson, '94
PCTL*: Probabilistic CTL* de Alfaro, '98
CTL$: Valued CTL Buchholz & Kemper, '03, '09

wMSO: Weighted MSO Droste & Gastin, '05, '07, '09

Reactive Probabilistic Finite Automata
Definition: RPFA on Prob = (R0, +,+,0, 1)

A reactive probabilistic finite automaton (RPFA) is a weighted automaton
A = (Q, qo, it, F') over Prob such that, for all g € Q and a € %,

> (g a,q") €{0,1}

'€Q

Generative Probabilistic Finite Automata

Definition: GPFA on Prob = (Rx¢,+,,0,1)

A generative probabilistic finite automaton (GPFA) is a weighted automaton
A = (Q, qo, i, F') over Prob such that, for all ¢ € Q,

> ulg.a.q)e{0,1}

(a,q")EXXQ

Weighted Trees

Semantics of weighted MSO is on weighted trees
which are unfoldings of weighted automata

Definition: Weighted Trees: Trees(D, K, X)

t: D — KxX
u = (ke(u), le(u))

Extended Weighted MSO
Definition: Syntax of wWMSO(K, %, C)

= leVelenp|dze|IXp|[Vze | VX
where k € K, a € X, x,y are first-order variables, X is a set variable and < € C.

C is a vocabulary of symbols >t € C with arity (<) € IN.
C={<}
Each symbol 1 € C is given a semantics [: K1)~ |,
Ordered semiring: [<] : K* — {0,1}
Definition: Semantics: [¢]y : Trees(D, K, X)) = K
Let t: D* — KxX be a weighted tree and o a (V,t)-assignment.
e N CAORACD))
[5(@)v (¢, 0) = ro(o())
[<(p1, ..., o)yt o) = [<]([er]v(t o), ..., [er]v (o)) if arity () = r

Examples

Example:
Let 1 = 3z (Py(z) A (k(z) > 0)).

[plt) = B (L(u) =) ® (ki(u) > 0)

u€edom(t)

is the number of nodes labeled b and having a positive weight.

Example:

Let oy = Va ((Pa(z) A (k(z) > 0)) 5 k().

[eal () = @ (Palw) A (i) > 0) 5 i (u)

uedom(t)

multiplies the positive values of a-labeled nodes.

Examples

Example:

Let path(x, X) be a boolean formula stating that X is a maximal path
starting from node «z,

The following boolean formula checks if X satisfies a SU b,
Y@, X)=3z(ze XN <zAB()AVy(z<y<z =+ P.(y)))

The quantitative formula £(z, X) = Vy ((y € X Az < y) = k(y)) computes
the weight of path X, i.e., the product of weights of nodes in X \ {z}.

Then, we compute the sum of weights of paths from z satisfying a SU b with

X (path(z, X) A ¢(z, X) A &(z, X))

Extended Weighted MSO

Proposition: Satisfiability
The satisfiability problem for wMSO(Prob, ¥, {<}) is undecidable.

Proof:

Let A= (Q, qo, 4, F') be a reactive probabilistic finite automaton over .

By [DG], 3¢ € wRMSO(Prob,) such that [¢](w) = [A](w) for all unweighted
words w € ¥*.

Since ¢ does not use x(z), considering weighted or unweighted words or trees does
not make any difference.

Now, for p € [0,1] and w € ¥* we have [p < p](w) # 0 iff [A](w) > p.

Hence, p < ¢ is satisfiable iff the automaton A with threshold p accepts a nonempty
language.

By , A. Paz (1971) this is undecidable.

Weighted CTL"

Definition: Syntax of wCTL*(K, Prop,C)
Boolean path formulas: Y= | Ay || SUY

Quantitative state formulas:

pu=k|r|pl-pleVeleAp|x(p1,.. ., Parityea) | (1)

where p € Prop, k € K, < € C.

Definition: Semantics for Boolean path formulas with 3 = 2777

t: D — KxX weighted tree, w branch of ¢, u node on w.
u = (ke(u), b(w))

hwube I [elw 40

tw,u =11 Ay if tyw,u =1y and w, u = iy

t,w,u = if t,w,u b=

tw,u =y SU g if Ju < v <w: (Lw,v =y and Vu < o' <v:t,w, v 1))

Weighted CTL"

Definition: Syntax of wCTL*(K, Prop,C)
Boolean path formulas: Y= | YAy || pSUy

Quantitative state formulas:
pu=k|r|p|-p|leVe|lpAp|x(pr,. .. Paityea) | H(Y)
where p € Prop, k € K, < € C.

Definition: Semantics for quantitative state formulas with 3 = 2777

t: D* — KxX weighted tree, u node of ¢.
u = (ke(u), le(u))
1 ifpel(u)
e t =
el) = fig(ur) [p1 (¢, w) {0 otherwise

[alprs- -5 on)l(tw) = P<I(lpal (G w), - Tor) (8 w)) i arity(ba) = 7

()]t w) = D X (o)

weEBranches(t) | t,w,ul=y v]|u<v<w

Example for (') on a finite tree

Example:

[t u) = D X (o)

wéEBranches(t) | t,w,ul=yY v|u<v<w

L)

N\ /N
by W i)

/

\ /N /A

FHed 3} 5o 3{r} s} st} s} &{r}

1 5\ 1 19
(24 2 Z.(1) ==
<6+6>+3 =2

Wl o
W =

Unfoldings are infinite (regular) trees

ja 30 ja
| 1 / 1| \ 1 |
1b Za 5@ Za la

)
/

la

[k(FB)](t €) = @ ® fit(v)zzzn.i.lzi

w left branch v |e<v<w n>0

Infinite sums and products

Some well-defined infinite sums or products

@D ki is well defined if [{i € I | k; # 0}| < oo,

iel
Q) ki is well defined if [{i € I | k; # 1}| < o0,
iel
®ki is well defined if k; = 0 for some 7 € I,
il

1

2i
i>0

Unfoldings of gPFA

le

2{p}
G‘b 2 }/ \1{}
ERvs 31"
N AN
Hry| |3} 2(p} Hr} +{p} 2{r}
o /N /N /N /N
Y Hpy 30} sy 20} Hpy 30} 0y 20}

e}

Probability measure
The weight of each branch is an infinite product which converges to 0.
The sum of the weights of all branches starting from any node should be 1.

To define [u()], we use the probability measure on the sequence space.

We get [1u(p SUP)](te) = 3 (g)n =1

n>0

Probability measure

Definition: Let A = (Q,) be a GPFA over Prob = (R>, +,+,0, 1)
Let t? be the tree unfolding of A starting from g,
D =3 x @ is the set of directions of t¢,
For u = (a1, q1)(az,q2) -+ (an,qn) € D* and go = ¢, we let

n

prob?(uD*) = H#(q@‘—hai,%‘) = H kra (u) -

i=1 vEPref (u)
If ¢ is a boolean path formula, then

L) = {w € D¥ | t%, uw, u |= 9}
is regular, hence measurable (Vardi '85) and we define

[1()] (89, u) = prob®* @™ (£3 ()

PCTL" is a boolean fragment of wCTL"

Definition: Probabilistic computation tree logic PCTL* de Alfaro '98
The syntax of PCTL™ is given by:

Boolean path formulas: Y= A || SUS"

Boolean state formulas: eu=0|p|l-@|eAe|p@)>k|u) >k

where n € NU {oo}, p € Prop, k € [0,1].

Recall: Syntax of wCTL*(Prob, Prop, {>})

Boolean path formulas: Y= | YAy || P SUy

Quantitative state formulas: @ =k | |p|-@|eVe|oAp| o> o| pn@))
where p € Prop, k € R.

Remark: PCTL" is a boolean fragment of wCTL"(Prob, Prop,{>})
State formulas are restricted:

do not use x,

use > and 1(v) only in comparisons of the form: (u(w) > k) or =(k > (1))

wCTL is a fragment of wCTL"

Definition: Syntax of wCTL(K, Prop,C)

Only quantitative state formulas:
pi=k|k|p|-0|eVeloAe [pr,. ., Pantya) | (0 SUS" ©)
where p € Prop, k € K, <€ C, n € NU {oo}.

Recall: Syntax of wCTL*(K, Prop,C)
Boolean path formulas: Y= |YvAY || SUY

Quantitative state formulas:
pu=k|r|p|l-@loVelpAe|x(e1,.. . Paity)) | #(1)
where p € Prop, k € K, =< € C.

Remark: wCTL is a fragment of wCTL*(K, Prop,C)

0 | <
Boolean path formulas are restricted to 1) ::= o SU=" ¢

PCTL is a fragment of wCTL

Definition: Probabilistic CTL Hansson & Jonsson '94

Only Boolean state formulas:
=0[p|-w|pAe|ulpSU=" @) 2 k| uleSU=") >k

where n € NU {oo}, p € Prop, k € [0,1].

Recall: Syntax of wCTL(Prob, Prop, {>})

Only quantitative state formulas:
pu=k|r|pl-pleveloip|o>o|uleSUs"y)
where p € Prop, k € [0,1], n € NU {cc}.

Remark: PCTL is a fragment of wCTL(Prob, Prop,{>})

wCTL" is a fragment of wMSO
Theorem: Bollig & G. DLT'09

wCTL" is a fragment of wMSO for finite trees and arbitrary semirings.

Proof: Translation of boolean path formulas

Y= |YvAY | |YSUy

Implicitely, 1 has two free variables, the path (set of nodes) and the current node.

We build a boolean MSO formula % (z, X) € bMSO(K, X, C).

) = (@(z) # 0)

Y1 Ao(x, X) = ¢ (@, X) A (2, X)
)
)

Y1 VU (2, X) =32z € X ANz <2AP(2, X) AVy ((z <y < 2) imﬁl(y,

We assume that the interpretation of X is indeed a path.

We use 3, V and o get boolean formulas.

X))

wCTL" is a fragment of wMSO

Proof: Translation of quantitative state formulas

pu=k|k|p|l-pleVelpAp|ea(p,. - Paityea) | 1Y)
Here, ¢ only has an implicit free variable, the current node.
We build a weighted MSO formula @(z) € wMSO(K, X, C).

[()](¢t,w) = @ ® kt(v)
weEBranches(t) | t,w,ul=Yy v |u<v<w
AD)(z) = 3X (path(z, X) A $(z, X) AE(z, X))
path(z,X) =2 € X
AVz(zeX B (z=2vIyye X Ay<2))
AN=Jy, 2,2 eX(y<zhy<zZ Az#2)
AVy((ye XA3z(y<z) H3z(zeXAy<z2))

£, X)=Vy(ye X Az <y) 5 k(y))

wCTL is a fragment of wMSO on gPFA

Theorem: Bollig & G. DLT'09
wCTL is a fragment of wMSO on probabilistic systems (GPFA).

Unfoldings of probabilistic systems (GPFA) are infinite.

The translation of u(1)(x) given above does not work.

We need to be careful with the induced infinite sums and products.

wCTL is a fragment of wMSO on gPFA

Proof: Translation of z(1 SUS" ¢s)

p(p1 SUS™ 5)() = X (path="(z, X) A ¢o(x, X) A £(x, X))
paths®(z,X) =z € X
AVz(zeX B (z=2vIyye X Ay<2))
A=y, 2,2 eX(y<zhy<zZ Az#2)
path<"(z, X) = path=®(z, X) A=3z1,...,2pn € X (z <21 < --- < Zp)
¥ = (1 A p2) SU (92 A=(0SU 1))
€z, X)=Vy((y e X Az <y) 5 k(y))
path="(z, X) A Y(x, X) is a boolean formula which holds if and only if
X is a minimal path satisfying 1 SUS™ s.
&(x, X') computes the probability of this finite path.

34X computes the sum of the probability of such paths.

Plan
MSO Logic

Weighted MSO Logic

Weighted MSO versus Weighted Automata
Weighted CTL" and PCTL"

© Conclusion and Open Problems

12584

Conclusion

» There is a very rich theory for probabilistic systems.

» Various logics for specification
» Efficient algorithms for model checking
» and much more (probabilistic bisimulation, ...)

» Analysis of other quantitative properties is more and more important.
Reliability, energy consumption, ...

» We should develop a strong theory for analysis of various quantitative aspects

Building upon existing theory of weighted automata
and the large experience in analysing probabilistic systems.

Open problems

Problems on wMSO
Identify fragments for which satisfiability and model checking are decidable.
Compare expressivity of wCTL* (or PCTL*) and wMSO on GPFA.
Compare expressivity of wCTL* (or PCTL*) and wMSO on RPFA.

Extend the comparison to other semirings.
E.g. the Expectation semiring Eisner '01
Useful to compute expected rewards.

Find a weighted p-calculus which contains wCTL and compare its expressivity
with wMSO.

Weighted p-calculus on words Meinecke, DLT'09
Weighted p-calculus for quantitative games Fischer, Gradel & Kaiser '08

	MSO Logic
	Weighted MSO Logic
	Weighted MSO versus Weighted Automata
	Weighted Automata
	From Weighted MSO to Weighted Automata
	From Weighted Automata to Weighted MSO
	Transitive closure

	Weighted CTL* and PCTL*
	Probabilistic Automata
	Extended Weighted MSO Logic
	Weighted CTL*
	Weighted CTL* versus Weighted MSO

	Conclusion and Open Problems

