S. AKSHAY, IIT BOMBAY PAUL GASTIN, LSV ENS PARIS-SACLAY (ENS CACHAN) S. KRISHNA, IIT BOMBAY

TIMED WORD LANGUAGE $\mathscr{L}_{\mathsf{T}}(\mathscr{A})$

NON-EMPTINESS / REACHABILITY PROBLEM

 $\mathcal{L}_\mathsf{T}(\mathcal{A}) \neq \emptyset$

EMPTINESS FOR (PUSHDOWN) TIMED AUTOMATON

- Well-studied problem with standard approach
 - Timed automata (TA): Region construction [Alur-Dill'90]
 Many optimizations
 - Pushdown timed automata (PDTA): Lifting region construction
 [Bouajjani et al. '94] [Abdulla et al. '12]
 - Common feature:
 - represent behaviors as timed words
 - use abstractions to reduce to finite automata

EMPTINESS FOR (PUSHDOWN) TIMED AUTOMATON

- Well-studied problem with standard approach
 - Timed automata (TA): Region construction [Alur-Dill'90] Many optimizations
 - Pushdown timed automata (PDTA): Lifting region construction
 [Bouajjani et al. '94] [Abdulla et al. '12]
 - Common feature:
 - represent behaviors as timed words
 - use abstractions to reduce to finite automata
- Our new approach
 - represent behaviors as graphs: words with timing constraints
 - Interpret graphs in trees to reduce to tree automata
 - High level and powerful technique
 - Simpler and uniform proofs for more complicated systems
 - New technique not relying on regions/zones

OUTLINE

- BEHAVIOURS AS GRAPHS
- DECIDING GRAPH PROPERTIES
- DEFINABILITY OF PROPERTIES FOR TIMED SYSTEMS
- TREE-WIDTH FOR TIMED SYSTEMS
- INTERPRETING GRAPHS IN TREES
- CONCLUSION

BEHAVIORS AS GRAPHS: TIMED SYSTEMS

TC-WORDS: WORDS WITH TIMING CONSTRAINTS

BEHAVIORS AS GRAPHS: TIMED SYSTEMS

TC-WORDS: WORDS WITH TIMING CONSTRAINTS

TC-WORD LANGUAGE: $\mathscr{L}_{\mathsf{TCW}}(\mathcal{A})$

• Every accepting path ρ in the timed system generates one TC-word $tcw(\rho) \in \mathscr{L}_{TCW}(\mathcal{A})$

BEHAVIORS AS GRAPHS: TIMED SYSTEMS

TC-WORDS: WORDS WITH TIMING CONSTRAINTSTC-WORD LANGUAGE: $\mathscr{L}_{TCW}(\mathcal{A})$ REALIZABLE TC-WORDS: \Reeal_{TCW}

BEHAVIORS AS GRAPHS: TIMED SYSTEMS

TC-WORDS: WORDS WITH TIMING CONSTRAINTSTC-WORD LANGUAGE: $\mathscr{L}_{TCW}(\mathscr{A})$ REALIZABLE TC-WORDS: \Reeal_{TCW}

 $\mathscr{L}_{\mathsf{T}}(\mathcal{A}) \neq \emptyset \quad \bigstar \quad \mathscr{L}_{\mathsf{TCW}}(\mathcal{A}) \cap \mathfrak{Real}_{\mathsf{TCW}} \neq \emptyset$

 $\mathscr{L}_{\mathsf{T}}(\mathcal{A}) \neq \emptyset \iff \mathscr{L}_{\mathsf{TCW}}(\mathcal{A}) \cap \mathfrak{Real}_{\mathsf{TCW}} \neq \emptyset$ THIS IS A GRAPH PROPERTY!

OUTLINE

- BEHAVIOURS AS GRAPHS
- DECIDING GRAPH PROPERTIES
- DEFINABILITY OF PROPERTIES FOR TIMED SYSTEMS
- TREE-WIDTH FOR TIMED SYSTEMS
- INTERPRETING GRAPHS IN TREES
- CONCLUSION

- Let TW_k be the set of graphs of tree-width at most k
- Let P be a property of graphs
- If P is MSO-definable then $P \cap TW_k \neq \emptyset$ is decidable
- Graphs in TW_k can be interpreted in trees (k-terms)
- Let P be an MSO-definable property of graphs
- Φ_P MSO over graphs ⇔ Φ^k_P MSO over trees (k-terms)
- Then P ∩ TW_k ≠ Ø iff Φ^k_P satisfiable over trees (k-terms)
 THATCHER&WRIGHT'68: REDUCTION TO EMPTINESS OF TREE AUTOMATA

HOW DO WE GET A GOOD COMPLEXITY?

- Let TW_k be the set of graphs of tree-width at most k
- Let P be a property of graphs
- If P is MSO-definable then $P \cap TW_k \neq \emptyset$ is decidable
- Graphs in TW_k can be interpreted in trees (k-terms)
- Let P be a property of graphs
- Build directly a tree automaton A^k_P accepting k-terms denoting graphs satisfying P
- ► Then $P \cap TW_k \neq \emptyset$ iff $\mathscr{L}(\mathcal{A}^k_P) \neq \emptyset$

- Let TW_k be the set of graphs of tree-width at most k
- Let P be a property of graphs
- If P is MSO-definable then $P \cap TW_k \neq \emptyset$ is decidable
- WE WANT TO SOLVE $\mathscr{L}_{\mathsf{TCW}}(\mathcal{A}) \cap \mathfrak{Real}_{\mathsf{TCW}} \neq \emptyset$
- Show that TC-words have bounded tree-width
- Show that our properties are MSO-definable
- Build directly tree automata for our properties

CONCUR'16

- P. Madhusudan & G. Parlato, POPL'11 The tree-width of auxiliary storage
- C. Aiswarya, PG & K. Narayan Kumar, CONCUR'12 MSO decidability of multi-pushdown systems via split-width
- C. Aiswarya PhD'14

Verification of communicating recursive programs via split-width

C. Aiswarya & PG, FSTTCS'14

Reasoning about distributed systems: WYSIWYG

OUTLINE

- BEHAVIOURS AS GRAPHS
- DECIDING GRAPH PROPERTIES
- DEFINABILITY OF PROPERTIES FOR TIMED SYSTEMS
- TREE-WIDTH FOR TIMED SYSTEMS
- INTERPRETING GRAPHS IN TREES
- CONCLUSION

MSO-DEFINABLE GRAPH PROPERTIES $G = (V, \rightarrow)$ IS A WORD: LINEAR ORDER

$$\mathsf{Word}(\to) ::= \forall x, y, z \ \left(\neg (x \to^+ x) \land (x = y \lor x \to^+ y \lor y \to^+ x) \land \neg (x \to z \lor x \to y \to^+ z) \right)$$

MSO-DEFINABLE GRAPH PROPERTIES G = (V, \rightarrow , \frown) IS A 1-STACK TC-WORD

 $\begin{aligned} \mathsf{Forward}(\curvearrowleft) &::= \forall x, y \ (x \frown y \implies x < y) \\ \mathsf{Stack}(\frown) &::= \neg \exists x, y, x', y' \ (x \frown y \land x' \frown y' \land (y = x' \lor x \leqslant x' < y < y' \lor x < x' < y \leqslant y')) \end{aligned}$

MSO-DEFINABLE GRAPH PROPERTIES $G = (V, \rightarrow, \frown)$ IS A TC-WORD ACCEPTED BY A TA \mathcal{A} **???** $\exists \overline{X} = (X_{\delta})_{\delta \in \Delta}$ Partition $(\overline{X}) \land \mathsf{AcceptingPath}(X)$ $\wedge \exists (^{c} \frown)_{c \in \mathsf{Clocks}} \mathsf{Partition}(\frown, (^{c} \frown)_{c \in \mathsf{Clocks}})$ $\bigwedge \quad \forall x, y \ \left(x \ ^{c} \frown y \ \Longrightarrow \ \mathsf{Reset}_{c}(x) \land \neg \exists (z \ x < z < y \land \mathsf{Reset}_{c}(z)) \right)$ $c \in \mathsf{Clocks}$ $\wedge \quad \bigwedge \quad \forall y \left(X_{\delta}(y) \implies \exists x \ (x \ ^{c} \frown y \land x \frown^{I} y) \right)$

$$\delta \in \Delta \ (c \in I) \in \delta$$

$$\operatorname{\mathsf{Reset}}_{c}(x) ::= \bigvee_{\substack{\delta \in \Delta \\ (c:=0) \in \delta}} X_{\delta}(x) \qquad \qquad \frown ::= \biguplus_{I} \frown^{I}$$

MSO-DEFINABLE GRAPH PROPERTIES THEOREM: REALIZABILITY OF TC-WORDS IS MSO-DEFINABLE

 $\exists \mathsf{ts} \colon V \to \mathbb{R}, \ \forall x, y \ (x \curvearrowright^I y \implies \mathsf{ts}(y) - \mathsf{ts}(x) \in I) \land (x \to y \implies \mathsf{ts}(x) \leqslant \mathsf{ts}(y))$

MSO-DEFINABLE GRAPH PROPERTIES THEOREM: REALIZABILITY OF TC-WORDS IS MSO-DEFINABLE

 $\exists \mathsf{ts} \colon V \to \mathbb{X}, \ \forall x, y \ (x \curvearrowright^I y \implies \mathsf{ts}(y) - \mathsf{ts}(x) \in I) \land (x \to y \implies \mathsf{ts}(x) \leqslant \mathsf{ts}(y))$

 $\exists \mathsf{tsm} \colon V \to [M] = \{0, \dots, M-1\}, \ \forall x, y \ x \curvearrowright^I y \Longrightarrow$ $(\mathsf{Big}(x, y) \land I.\mathsf{up} = \infty) \lor (\neg \mathsf{Big}(x, y) \land (\mathsf{tsm}(y) - \mathsf{tsm}(x))[M] \in I)$

$$\begin{split} \mathsf{Big}(x,y) = \exists z, z', \ x < z < z' \leqslant y \ \wedge \bigvee_{\substack{a,b,c \mid \\ (b-a)[M] + (c-b)[M] \geqslant M}} \mathsf{tsm}(x) = a \wedge \mathsf{tsm}(z) = b \wedge \mathsf{tsm}(z') = c \end{split}$$

MSO-DEFINABLE GRAPH PROPERTIES $G = (V, \rightarrow, \frown)$ is realizable

- Let TW_k be the set of graphs of tree-width at most k
- Let P be a property of graphs
- If P is MSO-definable then $P \cap TW_k \neq \emptyset$ is decidable

CONCUR'16

SPLIT-WIDTH

CONCUR'16

- WE WANT TO SOLVE $\mathscr{L}_{\mathsf{TCW}}(\mathcal{A}) \cap \mathfrak{Real}_{\mathsf{TCW}} \neq \emptyset$
- Show that TC-words have bounded tree-width
- Show that our properties are MSO-definable
- Build directly tree automata for our properties

OUTLINE

- BEHAVIOURS AS GRAPHS
- DECIDING PROPERTIES OF GRAPHS
- DEFINABILITY OF PROPERTIES FOR TIMED SYSTEMS
- TREE-WIDTH FOR TIMED SYSTEMS
- INTERPRETING GRAPHS IN TREES
- CONCLUSION

$$\tau ::= i \mid i - j \mid \mathsf{fg}_i(\tau) \mid \tau \oplus \tau$$

$$\tau ::= i \mid i - j \mid \mathsf{fg}_i(\tau) \mid \tau \oplus \tau$$

$$\tau ::= i \mid i - j \mid \mathsf{fg}_i(\tau) \mid \tau \oplus \tau$$

$$\tau ::= i \mid i - j \mid \mathsf{fg}_i(\tau) \mid \tau \oplus \tau$$

TREE-WIDTH ALGEBRA TW_k : graphs of tree-width at most k $\tau ::= i \mid i - j \mid \mathsf{fg}_i(\tau) \mid \tau \oplus \tau$

GRAPH G HAS TREE-WIDTH AT Most k if it can be constructed USING k+1 colors

COMBINE 🕀

1-STACK TC-WORDS \subseteq **TW**₂ $\tau ::= i \mid i \rightarrow j \mid i \frown j \mid \mathsf{fg}_i(\tau) \mid \tau \oplus \tau$

1-STACK TC-WORDS \subseteq **TW**₂ $\tau ::= i \mid i \rightarrow j \mid i \frown j \mid \mathsf{fg}_i(\tau) \mid \tau \oplus \tau$

1-STACK TC-WORDS \subseteq **TW**₂ $\tau ::= i \mid i \rightarrow j \mid i \frown j \mid \mathsf{fg}_i(\tau) \mid \tau \oplus \tau$

$1-\text{STACK TC-WORDS} \subseteq \text{TW}_2 \qquad \qquad \mathbf{G} = (\mathbf{V}, \rightarrow, \frown) \text{ TC-WORD}$ $\tau ::= i \mid i \rightarrow j \mid i \frown j \mid fg_i(\tau) \mid \tau \oplus \tau$

1-STACK TC-WORDS \subseteq TW₂ $\tau ::= i \mid i \rightarrow j \mid i \frown j \mid fg_i(\tau) \mid \tau \oplus \tau$

1-STACK TC-WORDS \subseteq TW₂ $\tau ::= i \mid i \rightarrow j \mid i \frown j \mid fg_i(\tau) \mid \tau \oplus \tau$

$1-\text{STACK TC-WORDS} \subseteq \text{TW}_2 \qquad \qquad \text{G} = (V, \rightarrow, \frown) \text{TC-WORD}$ $\tau ::= i \mid i \rightarrow j \mid i \frown j \mid fg_i(\tau) \mid \tau \oplus \tau$

1-STACK TC-WORDS \subseteq TW₂ $\tau ::= i \mid i \rightarrow j \mid i \frown j \mid fg_i(\tau) \mid \tau \oplus \tau$

1-STACK TC-WORDS \subseteq **TW**₂ $G = (V, \rightarrow, \frown) TC-WORD$ $\tau ::= i \mid i \to j \mid i \frown j \mid \mathsf{fg}_i(\tau) \mid \tau \oplus \tau$

1-STACK TC-WORDS \subseteq TW₂ $\tau ::= i \mid i \rightarrow j \mid i \frown j \mid fg_i(\tau) \mid \tau \oplus \tau$

1-STACK TC-WORDS \subseteq TW₂ $\tau ::= i \mid i \rightarrow j \mid i \frown j \mid fg_i(\tau) \mid \tau \oplus \tau$

$1-\text{STACK TC-WORDS} \subseteq \text{TW}_2 \qquad \qquad \text{G} = (V, \rightarrow, \frown) \text{TC-WORD}$ $\tau ::= i \mid i \rightarrow j \mid i \frown j \mid fg_i(\tau) \mid \tau \oplus \tau$

1-STACK TC-WORDS \subseteq **TW**₂ $\tau ::= i \mid i \rightarrow j \mid i \frown j \mid fg_i(\tau) \mid \tau \oplus \tau$

$$\tau ::= i \mid i \to j \mid i \frown j \mid \mathsf{fg}_i(\tau) \mid \tau \oplus \tau$$

- At most one hanging reset node for each clock
- At most one Last reset node for each clock
- First and last points

k+1 extra colors to maintain this invariant

1-STACK k-CLOCKS TC-WORDS \subseteq TW_{3k+2} G = (V, \rightarrow , \frown) TC-WORD $\tau ::= i | i \rightarrow j | i \frown j | \text{fg}_i(\tau) | \tau \oplus \tau$

1-STACK k-CLOCKS TC-WORDS \subseteq **TW**_{3k+2} **G** = (V, \rightarrow , \frown) **TC-WORD**

- At most one hanging reset node for each clock
- At most one Last reset node for each clock
- First and last points
- k+1 extra colors to maintain this invariant

COURCELLE'S THEOREM

- Let TW_k be the set of graphs of tree-width at most k
- Let P be a property of graphs
- If P is MSO-definable then $P \cap TW_k \neq \emptyset$ is decidable
- WE WANT TO SOLVE $\mathscr{L}_{\mathsf{TCW}}(\mathcal{A}) \cap \mathfrak{Real}_{\mathsf{TCW}} \neq \emptyset$
- Show that TC-words have bounded tree-width ✓ SPLIT-WI
- Show that our properties are MSO-definable
- Build directly tree automata for our properties

CONCUR'16

OUTLINE

- **BEHAVIOURS AS GRAPHS**
- DECIDING PROPERTIES OF GRAPHS
- DEFINABILITY OF PROPERTIES FOR TIMED SYSTEMS
- TREE-WIDTH FOR TIMED SYSTEMS
- ► INTERPRETING GRAPHS IN TREES
- CONCLUSION

TREE INTERPRETATION $\tau ::= i \mid i - j \mid \mathsf{fg}_i(\tau) \mid \tau \oplus \tau$ \oplus Ŧ fg fg (+(+

TREE INTERPRETATION $\tau ::= i \mid i - j \mid \mathsf{fg}_i(\tau) \mid \tau \oplus \tau$

Edge = leaf

- **TREE INTERPRETATION** $\tau ::= i \mid i j \mid \mathsf{fg}_i(\tau) \mid \tau \oplus \tau$
- Edge = leaf
- Vertex = leaf + color

- TREE INTERPRETATION au ::=
 - Edge = leaf
 - Vertex = leaf + color
 - One vertex = several
 leaves

- TREE INTERPRETATION au :
 - Edge = leaf
 - Vertex = leaf + color
- One vertex = severalleaves

- **TREE INTERPRETATION**
 - Edge = leaf
 - Vertex = leaf + color
 - One vertex = several leaves
 - SameVertex_i(x,y)

 $\tau ::= i \mid i - j \mid \mathsf{fg}_i(\tau) \mid \tau \oplus \tau$ $(\pm$ fg fg SameVertex_i $(x, y) ::= \exists z \ (z < x \land z < y)$ $\wedge \forall z' \big((z < z' < x \lor z < z' < y) \implies \neg \mathsf{fg}_i(z') \big) \big)$

TREE INTERPRETATION $\tau ::= i \mid i - j \mid \mathsf{fg}_i(\tau) \mid \tau \oplus \tau$ Edge = leaf (+Vertex = leaf + color One vertex = several leaves fg tg SameVertex_i(x,y) Æ SameVertex_i $(x, y) ::= \exists z \ (z < x \land z < y)$ $\wedge \forall z' \big((z < z' < x \lor z < z' < y) \implies \neg \mathsf{fg}_i(z') \big) \big)$

TREE INTERPRETATION

- Edge = leaf
- Vertex = leaf + color
- One vertex = several leaves
- SameVertex_i(x,y)

 $\tau ::= i \mid i - j \mid \mathsf{fg}_i(\tau) \mid \tau \oplus \tau$ (+tg +SameVertex_i $(x, y) ::= \exists z \ (z < x \land z < y)$ $\wedge \forall z' \big((z < z' < x \lor z < z' < y) \implies \neg \mathsf{fg}_i(z') \big) \big)$

TREE INTERPRETATION

- Edge = leaf
- Vertex = leaf + color
- One vertex = several leaves
- SameVertex_i(x,y)

LCPDL/MSO OVER GRAPHS LCPDL/MSO OVER TREES

SameVertex_i $(x, y) ::= \exists z \ (z < x \land z < y)$

 $\wedge \forall z' \big((z < z' < x \lor z < z' < y) \implies \neg \mathsf{fg}_i(z') \big) \big)$

DIRECTLY BUILDING TREE AUTOMATA

- We can build a tree automaton $\mathcal{A}_{\text{valid}}^k$ of size $2^{\mathcal{O}(k^2)}$ which accepts all *k*-terms denoting valid TCWs.
- We can build a tree automaton $\mathcal{A}_{\mathsf{real}}^{k,M}$ of size $M^{\mathsf{poly}(k)}$ which accepts all k-terms denoting realizable TCWs using constants at most M.
- Let S be a pushdown timed automaton with set of clocks X. Let |S| be its size (constants encoded in unary) and k = 3|X| + 2. We can build a tree automaton \mathcal{A}_{S}^{k} of size $|S|^{\mathsf{poly}(k)}$ which accepts all k-terms denoting TCWs in $\mathcal{L}_{\mathsf{TCW}}(S)$.

NON EMPTINESS / REACHABILITY $\mathcal{L}(\mathcal{S}) \neq \emptyset \iff \mathcal{L}(\mathcal{A}^k_{\mathsf{valid}} \cap \mathcal{A}^{k,M}_{\mathsf{real}} \cap \mathcal{A}^k_{\mathcal{S}}) \neq \emptyset$

COURCELLE'S THEOREM

- Let TW_k be the set of graphs of tree-width at most k
- Let P be a property of graphs
- If P is MSO-definable then $P \cap TW_k \neq \emptyset$ is decidable
- WE WANT TO SOLVE $\mathscr{L}_{\mathsf{TCW}}(\mathcal{A}) \cap \mathfrak{Real}_{\mathsf{TCW}} \neq \emptyset$
- Show that TC-words have bounded tree-width ✓ SPLIT-WI
- Show that our properties are MSO-definable
- Build directly tree automata for our properties \checkmark

OUTLINE

- BEHAVIOURS AS GRAPHS
- DECIDING PROPERTIES OF GRAPHS
- DEFINABILITY OF PROPERTIES FOR TIMED SYSTEMS
- TREE-WIDTH FOR TIMED SYSTEMS

- INTERPRETING GRAPHS IN TREES
- CONCLUSION

CONCLUSION NEW TECHNIQUE FOR ANALYZING TIMED SYSTEMS

- 1. Write behaviors as graphs with timing constraints
- 2. Show a bound on tree-width for these graphs
- 3. Show MSO-definability of the relevant properties, or
- 4. Build Tree automata directly

RESULTS

- PSPACE decision procedure for timed automata
- EXPTIME decision procedure for pushdown timed automata
- EXPTIME decision procedure for multi-pushdown timed automata with bounded rounds

CONCLUSION NEW TECHNIQUE FOR ANALYZING TIMED SYSTEMS

- 1. Write behaviors as graphs with timing constraints
- 2. Show a bound on tree-width for these graphs
- 3. Show MSO-definability of the relevant properties, or
- 4. Build Tree automata directly

FUTURE WORK

- Efficient implementation
- Concurrent recursive timed programs
- MSO/LCPDL-definability of realizability and non-realizability
- Model-Checking wrt. timed specifications

THANK YOU