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TIMED AUTOMATON

ANALYZING TIMED SYSTEMS USING TREE AUTOMATA
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x ≥ 4x := 0

y := 0

y := 0 y ≥ 1
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y ≤ 2
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cd

TIMED WORD a b c d ab bc c d

0 1.5 2 3.92.82.6 5.75.64.2 8.37.4

TIMED WORD LANGUAGE

a b c d ab bc c d

0 1.5 2 3.92.82.6 5.75.64.2 7.36.4

✓

✗

ℒ T (!)

NON-EMPTINESS / REACHABILITY PROBLEM

ℒ T (!) ≠ ∅



EMPTINESS FOR (PUSHDOWN) TIMED AUTOMATON

ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

‣ Well-studied problem with standard approach
▸ Timed automata (TA): Region construction [Alur-Dill’90] 

Many optimizations
▸ Pushdown timed automata (PDTA): Lifting region construction 

[Bouajjani et al. ’94] [Abdulla et al. ’12]
▸ Common feature:
▸ represent behaviors as timed words
▸ use abstractions to reduce to finite automata

⏱
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x ≥ 1 x ≤ 3y := 0

y := 0 y ≥ 1

y ≤ 2
a push(⏱ )
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ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

‣ Well-studied problem with standard approach 
▸ Timed automata (TA): Region construction [Alur-Dill’90] 

Many optimizations 
▸ Pushdown timed automata (PDTA): Lifting region construction 

[Bouajjani et al. ’94] [Abdulla et al. ’12] 
▸ Common feature: 
▸ represent behaviors as timed words 
▸ use abstractions to reduce to finite automata

‣ Our new approach 
▸ represent behaviors as graphs: words with timing constraints 
▸ Interpret graphs in trees to reduce to tree automata 
▸ High level and powerful technique 
▸ Simpler and uniform proofs for more complicated systems 
▸ New technique not relying on regions/zones



ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

OUTLINE

▸ BEHAVIOURS AS GRAPHS 

▸ DECIDING GRAPH PROPERTIES 

▸ DEFINABILITY OF PROPERTIES FOR TIMED SYSTEMS 

▸ TREE-WIDTH FOR TIMED SYSTEMS 

▸ INTERPRETING GRAPHS IN TREES 

▸ CONCLUSION
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x ≥ 1 x ≤ 3

x ≥ 4x := 0

y := 0

y := 0 y ≥ 1
y ≤ 1

y ≤ 2
a b

cd

TC-WORDS: WORDS WITH TIMING CONSTRAINTS

TC-WORD LANGUAGE: ℒ TCW (!)
▸ Every accepting path ρ in the timed system generates  

one TC-word tcw(ρ) ∈ ℒ TCW (!)
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x ≥ 1 x ≤ 3

x ≥ 4x := 0

y := 0

y := 0 y ≥ 1
y ≤ 1

y ≤ 2
a b

cd

TC-WORDS: WORDS WITH TIMING CONSTRAINTS

REALIZABLE TC-WORDS: ℜ"#$TCW

≥1

≤1≤2

≥4

a
d

TC-WORD LANGUAGE: ℒ TCW (!)

0 2 ?



REALIZATIONS OF TC-WORDS
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x ≥ 1 x ≤ 3

x ≥ 4x := 0

y := 0

y := 0 y ≥ 1
y ≤ 1

y ≤ 2
a b

cd

≤3≤3 ≤3 ≥4
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≥1
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a b
c d

ab b
c c d

a b c d ab bc c d

0 1.5 2 3.92.82.6 5.75.64.2 8.37.4

a b c d ab bc c d

0 1.3 2 4.52.82.7 6.76.44.6 8.37.4

TC-WORD

TIMED-WORDS

REALIZATION



TIMED WORDS vs TC-WORDS
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x ≥ 1 x ≤ 3

x ≥ 4x := 0

y := 0
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y ≤ 2
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cd

TC-WORDSTIMED-WORDS
ONE TC-WORDUNCOUNTABLY MANY REALIZATIONS

ONE TC-WORDNO REALIZATIONS

ℒ T (!) = Realizations(ℒ TCW (!))
GRAPHS OVER A FINITE SIGNATUREWORDS OVER AN INFINITE ALPHABET

ℒ T (!) ≠ ∅ ℒ TCW (!) ∩ ℜ"#$TCW ≠ ∅



TIMED WORDS vs TC-WORDS

ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

x ≥ 1 x ≤ 3

x ≥ 4x := 0

y := 0

y := 0 y ≥ 1
y ≤ 1

y ≤ 2
a b

cd

TC-WORDSTIMED-WORDS
ONE TC-WORDUNCOUNTABLY MANY REALIZATIONS

ONE TC-WORDNO REALIZATIONS

ℒ T (!) = Realizations(ℒ TCW (!))
GRAPHS OVER A FINITE SIGNATUREWORDS OVER AN INFINITE ALPHABET

ℒ T (!) ≠ ∅ ℒ TCW (!) ∩ ℜ"#$TCW ≠ ∅
THIS IS A GRAPH PROPERTY!
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OUTLINE

▸ BEHAVIOURS AS GRAPHS 

▸ DECIDING GRAPH PROPERTIES 

▸ DEFINABILITY OF PROPERTIES FOR TIMED SYSTEMS 

▸ TREE-WIDTH FOR TIMED SYSTEMS 

▸ INTERPRETING GRAPHS IN TREES 

▸ CONCLUSION



COURCELLE’S THEOREM

▸ Let TWk be the set of graphs of tree-width at most k 

▸ Let P be a property of graphs 

▸ If P is MSO-definable then P ∩ TWk ≠ ∅ is decidable

ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

▸ Graphs in TWk can be interpreted in trees (k-terms)

▸ Let P be an MSO-definable property of graphs

▸ ΦP MSO over graphs  ➪  ΦkP MSO over trees (k-terms)

▸ Then P ∩ TWk ≠ ∅ iff ΦkP satisfiable over trees (k-terms)

▸ THATCHER&WRIGHT’68: REDUCTION TO EMPTINESS OF TREE AUTOMATA



COURCELLE’S THEOREM

▸ Let TWk be the set of graphs of tree-width at most k 

▸ Let P be a property of graphs 

▸ If P is MSO-definable then P ∩ TWk ≠ ∅ is decidable

ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

▸ Graphs in TWk can be interpreted in trees (k-terms)

▸ Let P be a property of graphs

▸ Build directly a tree automaton !kP accepting k-terms 
denoting graphs satisfying P

▸ Then P ∩ TWk ≠ ∅ iff ℒ (!kP) ≠ ∅

HOW DO WE GET A GOOD COMPLEXITY?

CONCUR’16



WE WANT TO SOLVE

▸ Show that TC-words have bounded tree-width
‣ Show that our properties are MSO-definable
‣ Build directly tree automata for our properties
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ℒ TCW (!) ∩ ℜ"#$TCW ≠ ∅

COURCELLE’S THEOREM

▸ Let TWk be the set of graphs of tree-width at most k 

▸ Let P be a property of graphs 

▸ If P is MSO-definable then P ∩ TWk ≠ ∅ is decidable

CONCUR’16

CONCUR’16 

SPLIT-WIDTH



RELATED WORKS
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▸ P. Madhusudan & G. Parlato, POPL’11 
The tree-width of auxiliary storage 

▸ C. Aiswarya,  PG & K. Narayan Kumar, CONCUR’12 
MSO decidability of multi-pushdown systems via split-width 

▸ C. Aiswarya PhD’14 
Verification of communicating recursive programs via split-width 

▸ C. Aiswarya &  PG, FSTTCS’14 
Reasoning about distributed systems: WYSIWYG

TC-WORDS ARE QUITE DIFFERENT GRAPHS

REALIZABILITY IS THE MAIN CHALLENGE
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MSO-DEFINABLE GRAPH PROPERTIES
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G = ( V , → ) IS A WORD: LINEAR ORDER

Word(→) ::= ∀x, y, z
(

¬(x →+ x) ∧ (x = y ∨ x →+ y ∨ y →+ x) ∧ ¬(x → z ∨ x → y →+ z)
)



MSO-DEFINABLE GRAPH PROPERTIES
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G = ( V , → ,      ) IS A 1-CLOCK TC-WORD

✓

✗

Forward(!) ::= ∀x, y (x ! y =⇒ x < y)

Clock(!) ::= ¬∃x, y, x′, y′ (x ! y ∧ x′
! y′ ∧ x < x′ < y)

!

✗



MSO-DEFINABLE GRAPH PROPERTIES

ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

G = ( V , → ,      ) IS A 1-STACK TC-WORD

✓

Forward(!) ::= ∀x, y (x ! y =⇒ x < y)

Stack(!) ::= ¬∃x, y, x′, y′ (x ! y ∧ x′
! y′ ∧ (y = x′

∨ x ! x′ < y < y′ ∨ x < x′ < y ! y′))

!

✗

✗



MSO-DEFINABLE GRAPH PROPERTIES
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G = ( V , → ,      ) IS AN M-STACKS N-CLOCKS TC-WORD

???

Forward(!) ∧ ∃R = (R1, . . . , Rn) ∃S = (S1, . . . , Sm)

Partition(!, R, S) ∧
n∧

i=1

Clock(Ri) ∧
m∧

i=1

Stack(Si)

!
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G = ( V , → ,      ) IS AN M-STACKS N-CLOCKS TC-WORD

✓

???

Forward(!) ∧ ∃R = (R1, . . . , Rn) ∃S = (S1, . . . , Sm)
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Resetc(x) ::=
∨

δ∈∆
(c:=0)∈δ

Xδ(x) ! ::= !I !
I

MSO-DEFINABLE GRAPH PROPERTIES

ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

G = ( V , → ,      ) IS A TC-WORD ACCEPTED BY A TA !

???

!

∃X = (Xδ)δ∈∆ Partition(X) ∧ AcceptingPath(X)

∧ ∃(c!)c∈Clocks Partition(!, (c!)c∈Clocks)

∧
∧

c∈Clocks

∀x, y
(

x c
! y =⇒ Resetc(x) ∧ ¬∃(z x < z < y ∧ Resetc(z))

)

∧
∧

δ∈∆
(c∈I)∈δ

∀y
(

Xδ(y) =⇒ ∃x (x c
! y ∧ x !

I y)
)



[0,1][1,2]

[3,4]

[1,2]

[3,4]

MSO-DEFINABLE GRAPH PROPERTIES

ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

✗≤≤≤≤≤≤

THEOREM: REALIZABILITY OF TC-WORDS IS MSO-DEFINABLE WITH VINCENT JUGÉ

3 62 30 0 ?

∃ts : V → R, ∀x, y (x !I y =⇒ ts(y)− ts(x) ∈ I) ∧ (x→ y =⇒ ts(x) ! ts(y))
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MSO-DEFINABLE GRAPH PROPERTIES
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✗≤≤≤≤≤≤

THEOREM: REALIZABILITY OF TC-WORDS IS MSO-DEFINABLE WITH VINCENT JUGÉ

3 62 30 0 ?

∃ts : V → R, ∀x, y (x !I y =⇒ ts(y)− ts(x) ∈ I) ∧ (x→ y =⇒ ts(x) ! ts(y))
ℕ

∃tsm : V → [M ] = {0, . . . ,M − 1}, ∀x, y x !I y =⇒

(Big(x, y) ∧ I.up =∞) ∨ (¬Big(x, y) ∧ (tsm(y)− tsm(x))[M ] ∈ I)

Big(x, y) = ∃z, z′, x < z < z′ ! y ∧
∨

a,b,c|
(b−a)[M ]+(c−b)[M ]!M

tsm(x) = a ∧ tsm(z) = b ∧ tsm(z′) = c

1 34 10 2 2
M = 5



MSO-DEFINABLE GRAPH PROPERTIES

ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

REALIZABILITY IS NOT MSO-DEFINABLE WITHOUT THE LINEAR ORDER

G = ( V , → ,        ) IS REALIZABLE!

≤1

≥1

≤1 ≤1 ≤1

≥1 ≥1 ≥1

≤1

≥1≥1

≤1



WE WANT TO SOLVE 

▸ Show that TC-words have bounded tree-width 
‣ Show that our properties are MSO-definable 
‣ Build directly tree automata for our properties

ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

ℒ TCW (!) ∩ ℜ"#$TCW ≠ ∅

COURCELLE’S THEOREM

▸ Let TWk be the set of graphs of tree-width at most k 

▸ Let P be a property of graphs 

▸ If P is MSO-definable then P ∩ TWk ≠ ∅ is decidable

CONCUR’16

CONCUR’16 

SPLIT-WIDTH

✓



ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

OUTLINE

▸ BEHAVIOURS AS GRAPHS 

▸ DECIDING PROPERTIES OF GRAPHS 

▸ DEFINABILITY OF PROPERTIES FOR TIMED SYSTEMS 

▸ TREE-WIDTH FOR TIMED SYSTEMS 

▸ INTERPRETING GRAPHS IN TREES 

▸ CONCLUSION
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TREE-WIDTH ALGEBRA

ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

τ ::= i | i j | fgi(τ) | τ ⊕ τ

FORGET

ATOMIC

COMBINE ⊕

GRAPH G HAS TREE-WIDTH AT 
MOST k IF IT CAN BE CONSTRUCTED 
USING k+1 COLORS

TWk : graphs of tree-width at most k



TREE-WIDTH ALGEBRA
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τ ::= i | i j | fgi(τ) | τ ⊕ τ
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fgfg



TREE-WIDTH ALGEBRA
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τ ::= i | i j | fgi(τ) | τ ⊕ τ

FORGET

ADD

ATOMIC

COMBINE

DIVIDE

⊕

GRAPH DECOMPOSITION
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G = ( V , → ,      ) TC-WORD!

τ ::= i | i → j | i ! j | fgi(τ) | τ ⊕ τ

1-STACK TC-WORDS ⊆ TW2



ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

G = ( V , → ,      ) TC-WORD!

τ ::= i | i → j | i ! j | fgi(τ) | τ ⊕ τ

1-STACK TC-WORDS ⊆ TW2



ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

G = ( V , → ,      ) TC-WORD!

τ ::= i | i → j | i ! j | fgi(τ) | τ ⊕ τ

1-STACK TC-WORDS ⊆ TW2



1-STACK TC-WORDS ⊆ TW2

ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

G = ( V , → ,      ) TC-WORD!

τ ::= i | i → j | i ! j | fgi(τ) | τ ⊕ τ



1-STACK TC-WORDS ⊆ TW2

ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

G = ( V , → ,      ) TC-WORD!

τ ::= i | i → j | i ! j | fgi(τ) | τ ⊕ τ



1-STACK TC-WORDS ⊆ TW2

ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

G = ( V , → ,      ) TC-WORD!

τ ::= i | i → j | i ! j | fgi(τ) | τ ⊕ τ



1-STACK TC-WORDS ⊆ TW2

ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

G = ( V , → ,      ) TC-WORD!

τ ::= i | i → j | i ! j | fgi(τ) | τ ⊕ τ



1-STACK TC-WORDS ⊆ TW2

ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

G = ( V , → ,      ) TC-WORD!

τ ::= i | i → j | i ! j | fgi(τ) | τ ⊕ τ



1-STACK TC-WORDS ⊆ TW2

ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

G = ( V , → ,      ) TC-WORD!

τ ::= i | i → j | i ! j | fgi(τ) | τ ⊕ τ



1-STACK TC-WORDS ⊆ TW2

ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

G = ( V , → ,      ) TC-WORD!

τ ::= i | i → j | i ! j | fgi(τ) | τ ⊕ τ



1-STACK TC-WORDS ⊆ TW2

ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

G = ( V , → ,      ) TC-WORD!

τ ::= i | i → j | i ! j | fgi(τ) | τ ⊕ τ



1-STACK TC-WORDS ⊆ TW2

ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

G = ( V , → ,      ) TC-WORD!

τ ::= i | i → j | i ! j | fgi(τ) | τ ⊕ τ



1-STACK TC-WORDS ⊆ TW2

ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

G = ( V , → ,      ) TC-WORD!

τ ::= i | i → j | i ! j | fgi(τ) | τ ⊕ τ

2-STACKS ⇒ UNBOUNDED TREE-WIDTH
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ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

G = ( V , → ,      ) TC-WORD!

τ ::= i | i → j | i ! j | fgi(τ) | τ ⊕ τ

1-STACK k-CLOCKS TC-WORDS ⊆ TW3k+2

▸ At most one hanging reset node for each clock

▸ At most one Last reset node for each clock

▸ First and last points

▸ k+1 extra colors to maintain this invariant
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ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

G = ( V , → ,      ) TC-WORD!

τ ::= i | i → j | i ! j | fgi(τ) | τ ⊕ τ

1-STACK k-CLOCKS TC-WORDS ⊆ TW3k+2

▸ At most one hanging reset node for each clock 
▸ At most one Last reset node for each clock 
▸ First and last points 
▸ k+1 extra colors to maintain this invariant



WE WANT TO SOLVE 

▸ Show that TC-words have bounded tree-width 
‣ Show that our properties are MSO-definable 
‣ Build directly tree automata for our properties

ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

ℒ TCW (!) ∩ ℜ"#$TCW ≠ ∅

COURCELLE’S THEOREM

▸ Let TWk be the set of graphs of tree-width at most k 

▸ Let P be a property of graphs 

▸ If P is MSO-definable then P ∩ TWk ≠ ∅ is decidable

CONCUR’16

CONCUR’16 

SPLIT-WIDTH

✓

✓



ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

OUTLINE

▸ BEHAVIOURS AS GRAPHS 

▸ DECIDING PROPERTIES OF GRAPHS 

▸ DEFINABILITY OF PROPERTIES FOR TIMED SYSTEMS 

▸ TREE-WIDTH FOR TIMED SYSTEMS 

▸ INTERPRETING GRAPHS IN TREES 

▸ CONCLUSION
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TREE INTERPRETATION
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τ ::= i | i j | fgi(τ) | τ ⊕ τ

⊕
⊕ ⊕

⊕ ⊕

fgfg

▸ Edge = leaf

▸ Vertex = leaf + color

▸ One vertex = several 
leaves

▸ SameVertexi(x,y)

SameVertexi(x, y) ::= ∃z
(

z < x ∧ z < y

∧ ∀z′
(

(z < z′ < x ∨ z < z′ < y) =⇒ ¬fgi(z
′)
)

)

LCPDL/MSO OVER GRAPHS 
☟ 

LCPDL/MSO OVER TREES  



DIRECTLY BUILDING TREE AUTOMATA

ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

We can build a tree automaton Ak
valid of size 2O(k2) which accepts

all k-terms denoting valid TCWs.

We can build a tree automatonAk,M
real of sizeMpoly(k) which accepts

all k-terms denoting realizable TCWs using constants at most M .

☞
☞
☞

NON EMPTINESS / REACHABILITY L(S) ̸= ∅ ⇐⇒ L(Ak
valid ∩Ak,M

real ∩Ak
S) ̸= ∅

CONCUR’16

Let S be a pushdown timed automaton with set of clocks X.
Let |S| be its size (constants encoded in unary) and k = 3|X|+2.

We can build a tree automaton Ak
S of size |S|poly(k) which accepts

all k-terms denoting TCWs in LTCW(S).



WE WANT TO SOLVE 

▸ Show that TC-words have bounded tree-width 
‣ Show that our properties are MSO-definable 
‣ Build directly tree automata for our properties

ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

ℒ TCW (!) ∩ ℜ"#$TCW ≠ ∅

COURCELLE’S THEOREM

▸ Let TWk be the set of graphs of tree-width at most k 

▸ Let P be a property of graphs 

▸ If P is MSO-definable then P ∩ TWk ≠ ∅ is decidable

CONCUR’16 

SPLIT-WIDTH

✓

✓

✓
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CONCLUSION

▸ PSPACE decision procedure for timed automata 

▸ EXPTIME decision procedure for pushdown timed automata 

▸ EXPTIME decision procedure for multi-pushdown timed 
automata with bounded rounds

ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

1. Write behaviors as graphs with timing constraints 

2. Show a bound on tree-width for these graphs 

3. Show MSO-definability of the relevant properties, or 

4. Build Tree automata directly

NEW TECHNIQUE FOR ANALYZING TIMED SYSTEMS

RESULTS



CONCLUSION

▸ Efficient implementation 

▸ Concurrent recursive timed programs 

▸ MSO/LCPDL-definability of realizability and non-realizability 

▸ Model-Checking wrt. timed specifications

ANALYZING TIMED SYSTEMS USING TREE AUTOMATA

1. Write behaviors as graphs with timing constraints 

2. Show a bound on tree-width for these graphs 

3. Show MSO-definability of the relevant properties, or 

4. Build Tree automata directly

NEW TECHNIQUE FOR ANALYZING TIMED SYSTEMS

FUTURE WORK
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