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Model Checking

3 steps
» Constructing the model M (transition systems)
» Formalizing the specification ¢ (temporal logics)
» Checking whether M |= ¢ (algorithmics)

Main difficulties

» Size of models (combinatorial explosion)

» Expressivity of models or logics
» Decidability and complexity of the model-checking problem

» Efficiency of tools

Challenges

» Extend models and algorithms to cope with more systems.
Infinite systems, parameterized systems, probabilistic systems, concurrent
systems, timed systems, hybrid systems, ...

» Scale current tools to cope with real-size systems.
Needs for modularity, abstractions, symmetries, ...
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Constructing the model

Example : Men, Wolf, Goat, Cabbage

Model = Transition system

» State = who is on which side of the river

» Transition = crossing the river



Transition system
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» S: set of states (often finite)

» T'C S x A x S: set of transitions
» I C S: set of initial states

» AP: set of atomic propositions

» (:S — 22 labelling function.
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Kripke structure
M = (S,A,T,I,AP, ()

» S: set of states (often finite)

» T'C S x A x S: set of transitions
» I C S: set of initial states

» AP: set of atomic propositions

» (:S — 22 labelling function.

Digicode

Pb: How can we easily describe big systems?




Using variables
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Kripke structures with variables

M = (S,A,V,T,I,AP,0)

v

V: set of (typed) variables, e.g., boolean, [0..4], ...

Condition: formula involving variables

v

v

Update: modification of variables

condition,label,update

v

Transition: p




Kripke structures with variables

M = (S,A,V,T,I,AP,0)

v

V: set of (typed) variables, e.g., boolean, [0..4], ...

Condition: formula involving variables

v

v

Update: modification of variables

condition,label,update

v

Transition: p

Programs = Kripke structures with variables

» Program counter = states

» |nstructions = transitions

» Variables = variables



Expanding variables (n = 2)
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Symbolic representation

Logical representation

cpt <n cpt <n
5. 4 cpt <n
cpt++ cpt++ B.C

7

S5 =

<< <L

s=1ANcpt<nAs =1Acpt =cpt+1
s=1Acpt=nAs =5Acpt =cpt+1
s=2ANs =3 Acpt =cpt

s=3Acpt<nAs =1Acpt =cpt+1
s=3Acpt=nAs =5Acpt =cpt+1




Modular description of concurrent systems

Elevator

Cabin: o-

Door for level i: - Opened

— ()

Call for level i False o [ True



Modular description of concurrent systems

Elevator

Cabin: o—

Door for level i: - Opened

— ()

Call for level i False o [ True

The actual system is a synchronized product of all these automata.
It consists of (at most) 3 x 23 x 23 = 192 states.



Synchronized products

General product
> Components: M; = (Si,Ai,Ti,Ii,APi,fi)
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S:Hi S, A:Hi(AiU{E}), and I:Hi‘[i
T={(p1,.-,pn) —5 (qu,...,qn) | forall i, (p;, ai,q:) € Ty or

pi =q; and a; = ¢}
AP =4, AP; and £(p1,...,pn) = U, £(ps)
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> By states: Sgync € S
By labels: Agyne C A
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Synchronized products

General product
> Components: M; = (Si,Ai,Ti,Ii,APi,fi)
> Product: M = (S, A, T,I,AP,{) with
S:Hi S, A:Hi(AiU{E}), and I:Hi‘[i
T = {(pr,- - pn) "2 (g1, gn) | for all 4, (py, az,q5) € Ty or

pi =q; and a; = ¢}
AP =4, AP; and £(p1,...,pn) = U, £(ps)

Synchronized products are restrictions of the general product.

» Synchronous: Agsynec =[], 4i

> Asynchronous: Agne =4, A
> By states: Sgync € S

By labels: Agyne C A

> By transitions: Tiyne €T

v



Example: Printer manager

Synchronization by states: (P, P) is forbidden




Example: Elevator

Synchronization by actions

?down up up 7up
lleaveg

lleave,

Cabin:
?down ?down
lleave; lleaves
Ireachg Ireach;
?leave; ?reach;

Door for level i:




Example: digicode

Synchronization by transitions




Example: Peterson’s algorithm (1981)

Synchronization by shared variables

if req[l-il=false

req[i] :=false turn:=1-1i




Example: Peterson’s algorithm (1981)

Synchronization by shared variables

if req[l-il=false

req[i] :=false turn:=1-1i

req[i] :=true

The global state is a b-tuple: (statep, state;, reql[0], req[1], turn)



v

v

v

v

High-level descriptions

Sequential programs = transition system with variables
Concurrent programs with shared variables

Concurrent programs with Rendez-vous

Concurrent programs with FIFO communication

Petri net



Models: expressivity versus decidability

(Un)decidability

» Automata with 2 integer variables = Turing powerful
Restriction to variables taking values in finite sets

» Asynchronous communication: unbounded fifo channels = Turing powerful
Restriction to bounded channels



Models: expressivity versus decidability

(Un)decidability

» Automata with 2 integer variables = Turing powerful
Restriction to variables taking values in finite sets

» Asynchronous communication: unbounded fifo channels = Turing powerful
Restriction to bounded channels

Some infinite state models are decidable

> Petri nets. Several unbounded integer variables but no zero-test.

» Pushdown automata. Model for recursive procedure calls.
» Timed automata.

> oo
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Static and dynamic properties

Static properties

Example: Mutual exclusion
Most safety properties are static.

They can be reduced to reachability.



Static and dynamic properties

Static properties

Example: Mutual exclusion
Most safety properties are static.

They can be reduced to reachability.

Dynamic properties

Example: Every request should be eventually granted.
/\Vt, (Call;(t) — 3’ > ¢, (atLevel;(t') A openDoor;(t')))
i
The elevator should not cross a level for which a call is pending without stopping.

J\Vtvt', (Calli(t) At < ¢/ A atLevel;(t')) —

It <" <t,(atLevel;(t") A openDoor,(t")))



First Order specifications

First order logic
» These specifications can be written in FO(<).
» FO(<) has a good expressive power.

... but FO(<)-formulas are not easy to write and to understand.
» FO(<) is decidable.

... but satisfiability and model checking are non elementary.



First Order specifications

First order logic

» These specifications can be written in FO(<).

» FO(<) has a good expressive power.
... but FO(<)-formulas are not easy to write and to understand.

» FO(<) is decidable.
... but satisfiability and model checking are non elementary.

Temporal logics

» no variables: time is implicit.

» quantifications and variables are replaced by modalities.
» Usual specifications are easy to write and read.
» Good complexity for satisfiability and model checking problems.



Linear versus Branching
Let M = (S,T,1,AP,?) be a Kripke structure.

Linear specifications

Example: The printer manager is fair.
On each run, whenever some process requests the printer, it eventually gets it.

Execution sequences (runs): o = sg — s1 — S — -+ with 8; — 841 € T

Two Kripke structures having the same execution sequences satisfy the same linear
specifications.

Actually, linear specifications only depend on the label of the execution sequence

0(o) = £(s0) = £(s1) — £(s2) — -+



Linear versus Branching
Let M = (S,T,1,AP,?) be a Kripke structure.

Linear specifications

Example: The printer manager is fair.
On each run, whenever some process requests the printer, it eventually gets it.

Execution sequences (runs): o = sg — s1 — S — -+ with 8; — 841 € T

Two Kripke structures having the same execution sequences satisfy the same linear
specifications.

Actually, linear specifications only depend on the label of the execution sequence

Uo) = £(s0) — L(s1) — £(s2) — -+~

Branching specifications

Example: Each process has the possibility to print first.
Such properties depend on the execution tree.

Execution tree = unfolding of the transition system
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Linear Temporal Logic (Pnueli 1977)

Syntax: LTL(AP, X, U)

pu=L1|p(PeAP)|-p|loVe| Xp|lpUgp
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Syntax: LTL(AP, X, U)
pu=L1|p(PeAP)|-p|loVe| Xp|lpUgp

Semantics: t = [N, <, A\ with \: N - S =2 and z € N

t,x Ep if peXx)

t,x = - if tzlEe
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Linear Temporal Logic (Pnueli 1977)

Syntax: LTL(AP, X, U)
pu=L1|p(PeAP)|-p|loVe| Xe|lpUgp

Semantics: t = [N, <, A\ with \: N - S =2 and z € N

t,x Ep if peXx)

t,x = - if tzlEe

t,xlEpVYy if tzbEportzlEy

t,x =X if Jy.az<y & tyEop

teEpUy if Fzz<z & tzEY & Vy. (x<y<z)—>tykEop

Example

Uy
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Linear Temporal Logic (Pnueli 1977)

» Eventually: Fo=TUgp
Fo

> Always: Gp=-F-p
Gy
» Weak until: @¢W1p=GpVeUy
> ~(pUe) = (G) V(= U (mp A h)) = 2p W (=9 A )

v

Release: YRy =9 W (pAY) ==(-pU-)



Linear Temporal Logic (Pnueli 1977)

» Eventually: Fo=TUgp
Fo

> Always: Gp=-F-p
Gy
» Weak until: @¢W1p=GpVeUy
> “(pU¥) = (G )V (U (o A=) =W (~p A —¢)

v

Release: YRy =9 W (pAp) =—(—pU-1)
Next until: o XUy = X(p U )
e XU ¢

2 2 Y

v



Linear Temporal Logic (Pnueli 1977)

» Eventually: Fo=TUgp
Fo

> Always: Gp=-F-p
Gy
» Weak until: @¢W1p=GpVeUy
> “(pU¥) = (G )V (U (o A=) =W (~p A —¢)

v

Release: YRy =9 W (pAp) =—(—pU-1)
Next until: o XUy = X(p U )
p XUy
¥ ¥ P

Xip= 1L XUt and oUt =V (o ApXU).

v

v
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» Safety: G good

> MutEx: — F(crity A crits)

> Liveness: GF active
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Linear Temporal Logic (Pnueli 1977)

» Safety: G good

> MutEx: = F(crity A crits)

> Liveness: G F active

> Response: G(request — F grant)

> Response’: G(request — X(—request U grant))
> Release: reset R alarm

» Strong fairness: G Frequest — GF grant



>

>

>

>

Linear Temporal Logic (Pnueli 1977)

Safety:

MutEx:
Liveness:
Response:
Response’:
Release:

Strong fairness:
Weak fairness:

G good

= F(crity A crits)

GF active

G(request — F grant)

G(request — X(—request U grant))
reset R alarm

G Frequest — G F grant

F Grequest — GF grant



Linear Temporal Logic (Pnueli 1977)

Examples

Every elevator request should be eventually satisfied.

/\ G(Call; — F(atLevel; A openDoor;,))

K3



Linear Temporal Logic (Pnueli 1977)

Examples

Every elevator request should be eventually satisfied.

/\ G(Call; — F(atLevel; A openDoor;,))

K3

The elevator should not cross a level for which a call is pending without stopping.

/\ G(Call; — —atLevel; W (atLevel; A openDoor;,)

K3
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Semantics: t = [N, <, A\] with A\: N — ¥ =24F and 2 € N

t,z =Y if Jyy<z & tLLyEo
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Semantics: t = [N, <, A\] with A\: N — ¥ =24F and 2 € N

t,r EYep if Jyy<z & tLLbyEo
t,rEpSy if Jzz<z & tzEyY & Vy. z<y<z)—tyEyp

Example
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LTL versus PLTL
G(grant — Y(—grant S request))
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Past LTL

Semantics: t = [N, <, A\] with A\: N — ¥ =24F and 2 € N

t,r EYep if Jyy<z & tLLbyEo
t,rEpSy if Jzz<z & tzEyY & Vy. z<y<z)—tyEyp

Example

g 9 g 7979

LTL versus PLTL
G(grant — Y(—grant S request))

= (request R —~grant) A G(grant — (request V X(request R —~grant)))

Theorem (Laroussinie & Markey & Schnoebelen 2002)
PLTL may be exponentially more succinct than LTL.
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Theorem (Kamp 68)

LTL(Y,S,X,U) = FOx(<)
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Expressivity
Theorem (Kamp 68)

LTL(Y,S, X, U) = FOx(<)

Separation Theorem (Gabbay, Pnueli, Shelah & Stavi 80)
that for all w € ¥“ and £ > 0,

For all ¢ € LTL(Y,S, X, U) there exist ; € LTL(Y,S) and »; € LTL(X, U) such

wkEp <= wkE\/ &g

Corollary: LTL(Y, S, X,U) = LTL(X, U)

For all ¢ € LTL(Y,S, X, U) there exist ¢ € LTL(X, U) such that for all w € %,

w,0Ep <= w,0=¢



Expressivity
Theorem (Kamp 68)

LTL(Y, S, X, U) = FOx(<)
Separation Theorem (Gabbay, Pnueli, Shelah & Stavi 80)

that for all w € ¥¥ and k£ > 0

For all ¢ € LTL(Y,S, X, U) there exist ; € LTL(Y,S) and »; € LTL(X, U) such

w,k E o <<= w,k':\/io_i/\@)
Corollary: LTL(Y, S, X, U)

= LTL(X, U)
For all ¢ € LTL(Y, S, X, U) there exist @

» € LTL(X, U) such that for all w € ¥*
w,0Ep <<= w07y

Elegant algebraic proof of LTL(X,U) =

FOs (<) due to Wilke 98.

[m]



Satisfiability for LTL

Let AP be the set of atomic propositions and ¥ = 24F.

(Initial) Satisfiability problem
Input: A formula ¢ € LTL(Y, S, X, U)

Question:  Existence of w € X% such that w,0 | ¢.



Satisfiability for LTL

Let AP be the set of atomic propositions and ¥ = 24F.

(Initial) Satisfiability problem
Input: A formula ¢ € LTL(Y, S, X, U)

Question:  Existence of w € X% such that w,0 | ¢.

Theorem (Sistla & Clarke 85, Lichtenstein et. al 85)
The satisfiability problem for LTL is PSPACE-complete
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Input: A Kripke structure M = (S, T, I, AP,¢) and a formula ¢ € LTL
Question: Does M = ¢ ?
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Model checking for LTL

Model checking problem
Input: A Kripke structure M = (S, T, I, AP,¢) and a formula ¢ € LTL
Question: Does M = ¢ ?

> Universal MC: M [= ¢ if £(0),0 = ¢ for all initial infinite run of M.
» Existential MC: M [= ¢ if £(0),0 = ¢ for some initial infinite run of M.

Theorem (Sistla & Clarke 85, Lichtenstein et. al 85)

The Model checking problem for LTL is PSPACE-complete



MC(X,U) <p SAT(X,U) (Sistla & Clarke 85)

Let M = (S,T,1,AP,¢) be a Kripke structure and ¢ € LTL(X, U)

Introduce new atomic propositions: APg = {ats | s € S}
Define AP’ = AP W APy 3/ = AP 7 X% — X% by 7(a) = a N AP.

Let w € X', We have w = ¢ iff 7(w) E ¢
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Let M = (S,T,1,AP,¢) be a Kripke structure and ¢ € LTL(X, U)
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MC(X,U) <p SAT(X,U) (Sistla & Clarke 85)

Let M = (S,T,1,AP,¢) be a Kripke structure and ¢ € LTL(X, U)

Introduce new atomic propositions: APg = {ats | s € S}
Define AP’ = AP & AP 3/ = AP 7 X% — X% by 7(a) = a N AP.

Let w € X', We have w = ¢ iff 7(w) E ¢

Define

Y = (\/ats> AGLV latan N-aten N\ pA N\ oA\ Xat
sel s€S t#s pEL(s) pEL(s) teT(s)

We have w = ¢y iff w(w) = £(o) for some initial infinite run o of M.

Therefore, M = ¢ iff £(0) = —¢ for some initial infinite run o of M
iff  w = Yy A - for some w € B¢
iff s A - is satisfiable



QBF <p MC(X,U) (Sistla & Clarke 85)

Let v = Q171 - Qny /\ \/ a;; with Q; € {V,3} and consider the KS M:

1<i<m 1<j<k;

) I/xt\ I/9”5\ I/xf\
—>c)—> 5] €1 — 52 es Sn en
f N f/ N f/J
Ty Ty T
{ aiy az am1
foda?&flda?&h fm71/'ar.w\fm —
al:k1 / \a Q:k2 / \Emk /



QBF <p MC(X,U) (Sistla & Clarke 85)

Let v = Q171 - Qny /\ \/ a;; with Q; € {V,3} and consider the KS M:

1<i<m 1<j<k;

—>€0—>S{/xt1 \61 —»i/xé\eg NN s{/xz\en
N, N N7 |
{ aii a1 ml
/a12§f14a22§f2 m2

KO NG T s

alk‘l a2k2 a‘mkm

may Wsp) if ag = 2
LetwiJZ{G(xk_) o) e = and w:/\wm.

G(xz — 45 W Sk) if Qi = 7Tk

~



QBF <p MC(X,U) (Sistla & Clarke 85)

Let v = Q121+ Qny /\ \/ a;; with Q; € {V,3} and consider the KS M:

1<i<m 1<j<k;

<
Lo 1 b
—»-C)—» S1 €1 —» S2 €9 Sn €n
\ f/ \ f/ \ f/
xy Ty xd J
{ am1
Z: 5‘« 5,5 RN
\ / \ /f2 f’"\ : /fm
1](:1 a‘2k2 a‘mkm
—>ﬂai-Wsk) if aj; = a1
Let 1; J J d = id
€ wj { L Q4 W@k) if Qi = 7Tk an w {}wg
Let 9; = G(ej—1 — (msj—1 Uxh) A (-s5-1 Uxf) and ©= /\ ©;.



QBF <p MC(X,U) (Sistla & Clarke 85)

Let v = Q121+ Qny /\ \/ a;; with Q; € {V,3} and consider the KS M:
1<i<m 1<<k;

) }/xt\e }/wé\e }/xf\e
—»CQ) —» 1\xf/ 11— Q\xf/ 2 s n\xf/Jn
| P

§f2 ST At
/

VN
\m/ N

a2k, mk,,
— —a; Wsg) if ai; = xp
Let and = ;
wlj { to_ —aij W Sk) if aij = -y w l/’>wlj
Let 9; = G(ej—1 — (=sj—1 Uah) A (=sj-1 U x;) and ©= /\ ©;.

Then, v is valid iff M [~ (¢ A ) iff o = ¢ A4 for some run o.



Decision procedure for LTL

From an LTL formula ¢, construct a Biichi automaton A, such that

L(A) = L(p) = {w € ¥ [ w,0 | ¢}.



Decision procedure for LTL

From an LTL formula ¢, construct a Biichi automaton A¢ such that

L(A) = L(p) = {w € ¥ [ w,0 | ¢}.

Satisfiability (initial)

Check the Biichi automaton A, for emptiness.




Decision procedure for LTL

The core
From an LTL formula ¢, construct a Biichi automaton A¢ such that

L(A) = L(p) = {w € ¥ [ w,0 | ¢}.

Satisfiability (initial)

Check the Biichi automaton A, for emptiness.

Model checking

Construct the product B = M x A~ so that the successful runs of B correspond
to the successful run of A satisfying —p.

Then, check B for emptiness.



Buchi automata

Definition
A=(Q,%,I,T, F) where
» (: finite set of states
» X finite set of labels
» I C @Q: set of initial states
» T C @ x X x @Q: transitions
» F C @Q: set of accepting states (repeated, final)

Example




Buchi automata

Definition
A=(Q,%,I,T, F) where
» (: finite set of states
» X finite set of labels
» I C @Q: set of initial states
» T C @ x X x @Q: transitions
» F C @Q: set of accepting states (repeated, final)

Example

L(A) = {w € {a,0}* | [w]a = w}



Buchi automata for some LTL formulas

Definition

Recall that & = 24P, For p,q € AP, we let
» Y, ={a€eX|p€a} and X ,=3\3%,
> Ypng =2pNYE, and Yy =3,U%,
> Ypa-g = Up \ Xg

Examples

E E
PN
O——Q@

F p:



Buchi automata for some LTL formulas

Definition

Recall that & = 24P, For p,q € AP, we let
» Y, ={a€eX|p€a} and X ,=3\3%,
> Ypng =2pNYE, and Yy =3,U%,
> Ypa-g = Up \ Xg

Examples
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Buchi automata for some LTL formulas

Definition

Recall that & = 24P, For p,q € AP, we let
» Y, ={a€eX|p€a} and X ,=3\3%,
> Ypng =2pNYE, and Yy =3,U%,
> Ypa-g = Up \ Xg

Examples

. =y L (QF
@ o {0

ﬁ
™
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F p:



Buchi automata for some LTL formulas

Definition

Recall that & = 24P, For p,q € AP, we let
» Y, ={a€eX|p€a} and X ,=3\3%,
> Ypng =2pNYE, and Yy =3,U%,
> Ypa-g = Up \ Xg

Examples
. 2' . '2 3} Eﬂp . 2



Buchi automata for some LTL formulas

Examples

D) 2p
FGp: 8 p é



Buchi automata for some LTL formulas

Examples

(s, 07
PN

FGp: ° L @ no deterministic Biichi automaton.



Buchi automata for some LTL formulas

Examples

(). Y
FGp: ° p @ no deterministic Biichi automaton.

GFp:



Buchi automata for some LTL formulas

Examples

FGp:

GFp:

no deterministic Blichi automaton.

deterministic Biichi automaton
are not closed under complement.



Buchi automata for some LTL formulas

Examples
(Y,
FGp: ° p @ no deterministic Biichi automaton.

deterministic Biichi automaton

™
J
5
™
kS
™
S

GFp: are not closed under complement.
-p
2ﬁp\/q Zﬁq
ape
6p—Fa): —(De__2)
g



Buchi automata for some LTL formulas

Examples

Ep' 'E EPAW' 'E
pUgq: 8 > 5 or 3 > Cg)



Buchi automata for some LTL formulas

Examples

o Ep . E } p/\ﬁq : E
p by LpAag by

AT C TG S R



Buchi automata for some LTL formulas

Examples

e OO OO
o CO CO

A A A

PATG
pA—
qNA—

- - -
o o o

0O OO Co
O CO CO

pUg
pW q:
pRyq



Buchi automata

Properties

Blichi automata are closed under union, intersection, complement.
» Union: trivial
> Intersection: easy (exercice)

» complement: hard

Let ¢ = F((p A X" =p) V (—p A X" p))

Any non deterministic Biichi automaton for - has at least 2" states.



Buchi automata

Exercice
Given Biichi automata for ¢ and 1,
Construct a Biichi automaton for X ¢ (trivial)

Construct a Biichi automaton for ¢ U



Buchi automata

Exercice
Given Biichi automata for ¢ and 1,
Construct a Biichi automaton for X ¢ (trivial)

Construct a Biichi automaton for ¢ U

This gives an inductive construction of A, from ¢ € LTL(X,U) ...



Buchi automata

Exercice
Given Biichi automata for ¢ and 1,
Construct a Biichi automaton for X ¢ (trivial)

Construct a Biichi automaton for ¢ U

This gives an inductive construction of A, from ¢ € LTL(X,U) ...

... but the size of A, might be non-elementary in the size of ¢.



Generalized Biuichi automata

Definition: acceptance on states
A: (Q727]7T7F17---,Fn) Wlth E g Q

An infinite run o is successful if it visits infinitely often each Fj.

GFpA GFgq:




Generalized Biuichi automata

Definition: acceptance on states
A: (Q727]7T,F1,--.,Fn) Wlth E g Q

An infinite run o is successful if it visits infinitely often each Fj.

GFpA GFgq:

Definition: acceptance on transitions

A: (Q727]7T,T1,--.,Tn) Wlthn gT

An infinite run o is successful if it uses infinitely many transitions from each T;.

GFpA GFgq:




GBA to BA

Synchronized product with




Negative normal form

Syntax (p € AP)

pu=L|p|lpleve|leAp|Xe|eUp|pRe



Negative normal form

Syntax (p € AP)

pu=L|p|lpleve|leAp|Xe|eUp|pRe

Any formula can be transformed in NNF

Note that this does not increase the number of Temporal subformulas.



Reduction graph
Definition
Z C NNF is reduced if

» formulas in Z are of the form p, —p, or X3,
» 1L ¢ Z and {p,—p} L Z for all p € AP.

Reduction graph
> Vertices: subsets of NNF
» Edges: Let Y C NNF and let @ € Y maximal not reduced.

If @« = a1 V as: Y ->Y\{a}U{a1},

Y - Y\ {a} U{as},
If o = a1 A as: Y =Y\ {a}U{al,as},
If « = a1 Ras: Y - Y\ {a}U{as,as},

Y - Y\ {a} U{az, Xa},

If @« = a1 Uas: Y - Y\ {a} U{as},
Y S Y\ {a}U{a,Xa}.

Note the mark « on the last edge



Reduction graph
Example: ¢ = G(p — Fq)

0= G(-pVFq)

State = set of obligations.



Reduction graph
Example: ¢ = G(p — Fq)

p= G(-pVFq)

Y

(pVFq Xyp)

State = set of obligations.
Reduce obligations to litterals and next-formulas.



Reduction graph
Example: ¢ = G(p — Fq)

0= G(-pVFq)

( jp7X§0 )

State = set of obligations.
Reduce obligations to litterals and next-formulas.



Reduction graph

Example: ¢ = G(p — Fq)

0= G(-pVFq) (@, X))

A

(-pVFq Xo Fg, X))
Fq
Y

Y Y

(—p,X¢) ( XFqg, X))

State = set of obligations.

Reduce obligations to litterals and next-formulas.



Reduction graph

Example: ¢ = G(p — Fq)

¢ = G(-pVFq) (4, X¢)

Fq

Y

State = set of obligations.
Reduce obligations to litterals and next-formulas.
Note again the mark F ¢ on the last edge



Automaton A,

Definition: For Y C NNF, let
» Red(Y) = {Z reduced | Y 5 Z}
» Red,(Y) = {Z reduced | Y = Z without using an edge marked with a}




Automaton A,

Definition: For Y C NNF, let
» Red(Y) = {Z reduced | Y 5 Z}
» Red,(Y) = {Z reduced | Y = Z without using an edge marked with a}

Definition: For Z C NNF reduced, define

» next(Z) = {a | Xa € Z}

»Sz=(1% N () Z»

pEZ —\pEZ




Automaton A,

Definition: For Y C NNF, let

» Red(Y) = {Z reduced | Y 5 Z}
» Red,(Y) = {Z reduced | Y = Z without using an edge marked with a}

Definition: For Z C NNF reduced, define

» next(Z) = {a | Xa € Z}

»Sz=(1% N () Z»

pEZ —\pEZ

Automaton A,

» States: Q = 25P(®) T ={p}
> Transitions: 7' = {Y Zz, next(Z) | Y € Q and Z € Red(Y)}

» Acceptance: Ty = {V =2 next(Z) | Y € Q and Z € Redo(Y)}
for each o = a1 U az € sub(p).




Automaton A,

Example: ¢ = G(p — Fq)




Automaton A,

Example: ¢ = G(p — Fq)

Transition = check litterals and move forward.



Automaton A,

Example: ¢ = G(p — Fq)

Transition = check litterals and move forward.



Automaton A,

Example: ¢ = G(p — Fq)

Transition = check litterals and move forward.



Automaton A,

Example: ¢ = G(p — Fq)

q7_'pax<:0

Faq,—p,Xe

XFq,=p, X

Transition = check litterals and move forward.



Automaton A,

Example: ¢ = G(p — Fq)

Q7_'pax<:0

FQ7"p7X§0

XFq,—p,X¢p

Transition = check litterals and move forward.



Automaton A,

Example: ¢ = G(p — Fq)

XFq,—p,X¢p

Transition = check litterals and move forward.



Automaton A,

Example: ¢ = G(p — Fq)

Q7_'pax<tp

Transition = check litterals and move forward.

Simplification



Automaton A,
Theorem

L(A,) = L(p)
» Q| < 9lel

» number of acceptance tables = number of until sub-formulas.



Automaton A,
Theorem

L(A,) = L(p)
» Q| < 9lel

» number of acceptance tables = number of until sub-formulas.
Corollary
Satisfiability and Model Checking are decidable in PSPACE.




Automaton A,

Theorem L(A,) = L(p)
> Q| < 21¥l

» number of acceptance tables = number of until sub-formulas.

Corollary
Satisfiability and Model Checking are decidable in PSPACE.

Remark

An efficient construction is based on Very Weak Alternating Automata.
(Gastin & Oddoux, CAV'01)

The domain is still very active.
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» Gabbay, Pnueli, Shelah & Stavi 80. On the temporal analysis of fairness.
ACM Symp. PoPL’'80, p. 163-173.

» Gabbay 87. The declarative past and imperative future: Executable temporal
logics for interactive systems. conf. on Temporal Logics in Specifications,
April 87. LNCS 398, p. 409-448, 19809.



QOutline

© Specification

@ Branching Time Specifications



Possibility is not expressible in LTL

Example

w: Whenever p holds, it is possible to reach a state where ¢ holds.
@ cannot be expressed in LTL.

Consider the two models:

MiE¢ but MyWp
My and M> satisfy the same LTL formulas.



Quantification on runs

Example

w: Whenever p holds, it is possible to reach a state where ¢ holds.

= AG(p — EF q)
E: for some infinite run

A: for all infinite run



Quantification on runs

Example

: Whenever p holds, it is possible to reach a state where ¢ holds.

= AG(p — EF q)
E: for some infinite run

A: for all infinite run

Some specifications

» EF ¢: ¢ is possible

» AGy: ¢ is an invariant

» AF ¢: @ is unavoidable

» EGp: ¢ holds globally along some path



CTL* (Emerson & Halpern 86)

Syntax: CTL*: Computation Tree Logic

pu=1|p(PeEAP)|~p|eVe|Xp|pUp|Ep|Ap



CTL* (Emerson & Halpern 86)

Syntax: CTL*: Computation Tree Logic

pu=1|p(PeEAP)|~p|eVe|Xp|pUp|Ep|Ap

Semantics:
Let M = (S,T,I,AP,?) be a Kripke structure and o an infinte run of M.

o,i EEp if o',0 ¢ for some infinite run ¢’ such that ¢/(0) = o (i)
o,i EAp if o',0 ¢ for all infinite runs o’ such that o/(0) = o(4)



CTL* (Emerson & Halpern 86)

Syntax: CTL*: Computation Tree Logic
pu=L|p(€eAP)[~p|oVe|XplpUp|Ep|Ayp

Semantics:
Let M = (S,T,I,AP,?) be a Kripke structure and o an infinte run of M.

o,i EEp if o',0 ¢ for some infinite run ¢’ such that ¢/(0) = o (i)
o,i EAp if o',0 ¢ for all infinite runs o’ such that o/(0) = o(4)

State formulas
A formula of the form p or E ¢ or A only depends on the current state.

State formulas are closed under boolean connectives.

If ¢ is a state formula, define S(¢) ={s € S | s E ¢}



Model checking of CTL"

Model checking problem
Input: A Kripke structure M = (S,T,I,AP,£) and a formula ¢ € CTL"

Question: Does M = ¢ ?

Remark
MEe iff £(0),0 = ¢ for all initial infinite run of M.

iff ICS(Ayp)



Model checking of CTL"

Model checking problem
Input: A Kripke structure M = (S,T,I,AP,£) and a formula ¢ € CTL"

Question: Does M = ¢ ?

Remark
MEe iff £(0),0 = ¢ for all initial infinite run of M.
iff I CS(Ap)

Theorem
The model checking problem for CTL* is PSPACE-complete

Proof
PSPACE-hardness: follows from LTL C CTL*.

PSPACE-easiness: inductively compute S(v) for all state formulas.



Computing S(¢)

State formulas

> S(p)={seS[pells)}

> S(—y) = S\ S(¥),
> S Atpe) = S(¢h1) N S (),
> S(th1 Vha) = S(31) U S(2),



Computing S(v)

> S(p) ={s € S|pel(s)}
S(—y) = S\ S(¥),
St Aha) = S(¢1) N S(a),
)=
Y) =

S(¥1 Vaho 5(¢1)U5(¢2),
S(E

v v v v



Computing S(¢)

State formulas

> S(p)={s € S|pel(s)},
> S(—p) = S\ S(¥),

» S Apa) = S(31) N S(e),

» S V) = 5(¢1)U5(¢2),

> S(Ev) =

Compute Ay, replacing state subformulas of i by new atomic propositions.

To check whether s € S(E1)), check for emptiness the synchronized product
of Ay and M with initial state s.



Computing S(¢)

State formulas

> S(p)={s € S|pel(s)},
> S(—y) = S\ S(¥),

> S Atpe) = S(¢h1) N S (),
» S Vape) = S(¢1)US(¢2),

> S(Ey) =

Compute Ay, replacing state subformulas of i by new atomic propositions.

To check whether s € S(E1)), check for emptiness the synchronized product
of Ay and M with initial state s.

Model checking
MEpiff I CS(Ap).



CTL (Clarke & Emerson 81)

Syntax: CTL: Computation Tree Logic
pu=L|p(PeEAP)|[-¢|oVe|EXp|[AXp|EpUp|ApUyp



CTL (Clarke & Emerson 81)

Syntax: CTL: Computation Tree Logic
pu=L|p(PeEAP)|[-¢|oVe|EXp|[AXp|EpUp|ApUyp

Remarks

The semantics is inherited from CTL".

All CTL-formulas are state formulas. Hence, we have a simpler semantics.



CTL (Clarke & Emerson 81)

Syntax: CTL: Computation Tree Logic
pu=L|p(PeEAP)|[-¢|oVe|EXp|[AXp|EpUp|ApUyp

Remarks

The semantics is inherited from CTL".

All CTL-formulas are state formulas. Hence, we have a simpler semantics.

Semantics: only state formulas

Let M = (S, T,1,AP,¢) be a Kripke structure and let s € S.

sEp if
s EEXp if
skEAXe if
sEEpUY if
sEApUy if

p € L(s)

ds =89 — 81 — s3 — -+ with s1 E ¢

Vs =89 — 81— S2 — -+, we have s1 F ¢

ds =59 — s1 — s2 — -+, 37 > 0 with
sjiEYand s =pforall 0 <k <j

Vs =89 — 81 — Sg — -+, 35 > 0 with

siEvand s =g forall 0 <k <j



CTL (Clarke & Emerson 81)

Semantics: only state formulas

Let M = (S,T,I,AP,?) be a Kripke structure without deadlocks and let s € S.

skEp

s EEXo
s EAXp
sEEpUY

sEApUY

if
if
if
if

if

p € {(s)

ds — &' with s’ = ¢

Vs — s’ we have s’ = ¢

ds =89 — 81 — 83 — --- 55, with
siEvand s =g forall 0 <k <j

Vs =89 — 81 — Sg — - -+ ,3j5 > 0 with
sjiEYand s =pforall 0 <k <j



CTL (Clarke & Emerson 81)

Semantics: only state formulas

Let M = (S,T,I,AP,?) be a Kripke structure without deadlocks and let s € S.

sEp if pel(s)

s EEXp if Js— s with s’ =

sEAXp if Vs— s wehaves o

sEEeUY if ds=s9—s1 — 53— ---sj, with
siEvand s =g forall 0 <k <j

sEApUY if Vs=sy— s — s2—---,35 >0 with
sjiEYand s =pforall 0 <k <j

Macros
EFop=ETUp and AFp=ATUp Fo=TUegp.
EGp=-AF—-¢p and AGy=-EF—-p



CTL (Clarke & Emerson 81)

Example




CTL (Clarke & Emerson 81)

Example

Compute
S(EXp) = {1,2,3,5,6}

S(AXp) =

S(EF p) =
S(AFp) =
S(EqUr) =
S(AqUr) =
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Compute
S(EXp) = {1,2,3,5,6}
S(AXp) = {3,6}

S(EF p)
S(AF p)
S(EqUr)
S(AqUr)



CTL (Clarke & Emerson 81)

Example

Compute

S(EXp) = {1,2,3,5,6}
S(AXp) = {3,6}

S(EFp) = {1,2,3,4,5,6,7,8}
S(AFp) =
S(EqUr) =
S(AqUr) =



CTL (Clarke & Emerson 81)

Example

Compute
S(EXp) = {1,2,3,5,6}
S(AXp) = {3,6}

S(EFp) = {1,2,3,4,5,6,7,8}
S(AFp) = {2,3,5,6,7}

S(EqUr)

S(AqUr)



CTL (Clarke & Emerson 81)

Example
p,r p,r D, q
‘Q‘G O—®
Cﬂ —D
q p,q q r
Compute
S(EXp) = {1,2,3,5,6}
S(AXp) = {3,6}

S(EFp) = {1,2,3,4,5,6,7,8}

S(AFp) = {2,3,5,6,7}
S(EqUr)=1{1,2,3,4,5,6}
S(AgUr) =



CTL (Clarke & Emerson 81)

Example
p,r p,r D, q
CQ‘G O—®
Cﬂ —D
q p,q q r
Compute
S(EXp) = {1,2,3,5,6}
S(AXp) = {3,6}
S(EFp) = {1,2,3,4,5,6,7,8}

S(AFp) ={2,3,5,6,7}
S(EqUr)=1{1,2,3,4,5,6}
S(AqUr) ={2,3,4,5,6}



CTL (Clarke & Emerson 81)

Equivalent formulas
AXp = 2EX g,



CTL (Clarke & Emerson 81)

Equivalent formulas
ApU ~E-(pU)

—E(G—¢Y A=y U (=p A=)
~EG—t)V —E ) U (mp A )



CTL (Clarke & Emerson 81)

Equivalent formulas
ApU ~E-(pU)

—E(G—¢Y A=y U (=p A=)
~EG—t)V —E ) U (mp A )

A G(req — F grant) = AG(req — AF grant)



CTL (Clarke & Emerson 81)

Equivalent formulas
ApU ~E-(pU)

—E(G—¢Y A=y U (=p A=)
~EG—t)V —E ) U (mp A )

A G(req — F grant) = AG(req — AF grant)

AGFyp =AGAFyp infinitely often
EFGy=EFEGyp ultimately



CTL (Clarke & Emerson 81)

Equivalent formulas
ApU ~E-(pU)

~E(G—% A9 U (= A )
= —EG—¢V—E-U (~p A1)

A G(req — F grant) = AG(req — AF grant)

AGFyp =AGAFyp infinitely often
EFGy=EFEGyp ultimately

EGEFp # EGF ¢
AFAGp #AFGyp

EGEXp #EGXp I ¥ g



Model checking of CTL

Model checking problem
Input: A Kripke structure M = (S, T,1,AP,¢) and a formula ¢ € CTL

Question: Does M = ¢ ?

Remark
M = iff I C S(yp)



Model checking of CTL

Model checking problem
Input: A Kripke structure M = (S, T,1,AP,¢) and a formula ¢ € CTL

Question: Does M = ¢ ?

Remark
M = iff I C S(yp)

Theorem
The model checking problem for CTL is decidable in time O(|M| - |¢]|)

Proof
Marking algorithm.



Model checking of CTL

procedure mark(¢p)

case ¢ = p € AP

for all s € S do s.o := (p € £(s));
case ¢ = —py

mark(¢1);

for all s € S do s.p := = s.¢01;

case o = 1 V @2

mark(p1); mark(p2);

for all s € S do s.p := 5.1 V s.¢2;
case p = EX

mark(p1);

for all s € S do s.pp := false;

for all (¢,s) € T do if s.¢p1 then t.¢ := true;
case p = AX

mark(p1);

for all s € S do s.p := true;

for all (t,s) € T do if = 5.1 then t.@ := false;



Model checking of CTL

procedure mark(y)

case p = Ep1 U @
mark(p1); mark(e2);
L:=0;
for all s € S do
8. i= S.(pa;
if s.p then L := L U{s};
while L # () do
take s € L;
L:=L\{s}
for all t € S with (¢,s) € T do
if t.o1 A = t.p then t.p := true; L := LU {t};



Model checking of CTL

procedure mark(y)

case ¢ = Ap1 U @y
mark(p1); mark(e2);
L:=0;
for all s € S do
S.p i= S.pp2; s.nb = degree(s);
if s.p then L := L U{s};

while L # () do
take s € L;
L:=L\{s}
for all t € S with (¢,s) € T do
t.nb:=tnb—1;

if t.nb=0At.p1 A~ t.p then t.p :=true; L := LU {t};
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Fairness

Only fair runs are of interest

Each process is enabled infinitely often: /\ GF run;

(2

No process stays ultimately in the critical section: /\ -FGCS; = /\ GF-CS;
i i

Fair Kripke structure
M = (S,T,I,AP,(,F) where F = {F,...,F,} with F; C S.

An infinite run o is fair if it visits infinitely often each F;

Fair quantifications

Ef ¢ = E(fair A ¢) and Af o = A(fair — ¢)

where
fair = /\ GFF;

2
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fair CTL

Syntax of fair-CTL

pu=1|p(EAP) |~ |oVp|EXp|ArXp|EfpUp|ArpUgp

Lemma: CTL; cannot be expressed in CTL

Consider the Kripke structure Mj, defined by:

® "
2% 2% —1 2% — 2 %—3) -
P

p -p p -p -p p -p

» M, 2k =EGFp but M;,2k—2~EGFp

> If o € CTL and |p| < m < k then My, 2k = ¢ iff My,2m = ¢

If the fairness condition is £~!(p) then E; F T cannot be expressed in CTL.
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First step: Computation of Fair = {s € S| M,s =E;F T}
Compute the SCC of M with Tarjan's algorithm (in linear time).

Let S’ be the union of the SCCs which intersect each Fj;.
Then, Fair is the set of states that can reach S’.

Note that reachability can be computed in linear time.
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Reductions
Ey X = EX(Fair A ¢) and E; ¢ Ut = Ep U (Fair A¢)



Model checking of CTL;

First step: Computation of Fair = {s € S| M,s =E;F T}

Compute the SCC of M with Tarjan's algorithm (in linear time).
Let S’ be the union of the SCCs which intersect each Fj;.
Then, Fair is the set of states that can reach S’.

Note that reachability can be computed in linear time.

Reductions

Ef X = EX(Fair A ¢) and EfoUy =E@U (Fair A ¢)
It remains to deal with Ay ¢ U 1.

Recall that Ao Uy = -EG— V ~E—-9) U (—¢p A 1))

This formula also holds for the fair quantifications.
Hence, we only need to compute the semantics of Ef G ¢.



Model checking of CTL;

Computation of E; G

Let M, be the restriction of M to S¢(yp).

Compute the SCC of M, with Tarjan’s algorithm (in linear time).
Let S’ be the union of the SCCs of M, which intersect each Fj.
Then, M,s =Ef Gy iff M,s =EpUS"iff M, =EFS’.

This is again a reachability problem which can be done in linear time.



Model checking of CTL;

Computation of E; G

Let M, be the restriction of M to S¢(yp).

Compute the SCC of M, with Tarjan’s algorithm (in linear time).
Let S’ be the union of the SCCs of M, which intersect each Fj.
Then, M,s =Ef Gy iff M,s =EpUS"iff M, =EFS’.

This is again a reachability problem which can be done in linear time.

Theorem
The model checking problem for CTL; is decidable in time O(|M| - |¢]|)




Missing in this talk

» Symbolic model checking for CTL using BDDs.

» u- calculus

>-.-
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