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Need for formal verifications methods

Critical systems
I Transport

I Energy

I Medicine
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I Finance

I Embedded systems

I . . .

Complementary approaches
I Theorem prover

I Model checking

I Test
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Model Checking
3 steps

I Constructing the model M (transition systems)

I Formalizing the specification ϕ (temporal logics)

I Checking whether M |= ϕ (algorithmics)

Main difficulties
I Size of models (combinatorial explosion)

I Expressivity of models or logics

I Decidability and complexity of the model-checking problem

I Efficiency of tools

Challenges
I Extend models and algorithms to cope with more systems.

Infinite systems, parameterized systems, probabilistic systems, concurrent
systems, timed systems, hybrid systems, . . .

I Scale current tools to cope with real-size systems.
Needs for modularity, abstractions, symmetries, . . .
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Constructing the model

Example : Men, Wolf, Goat, Cabbage

Model = Transition system
I State = who is on which side of the river

I Transition = crossing the river
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Transition system

MWGC WC MG

MWC GC MWG W MGC

MGC W MWG CG MWC

MG WC MWGC
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Kripke structure
M = (S,A, T, I,AP, `)

I S: set of states (often finite)

I T ⊆ S ×A× S: set of transitions

I I ⊆ S: set of initial states

I AP: set of atomic propositions

I ` : S → 2AP: labelling function.

Digicode

Pb: How can we easily describe big systems?
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Using variables

Digicode

1 2 3 4

OPEN

A B A

cpt < n
B,C
cpt++

cpt < n
A
cpt++

cpt < n
C
cpt++

cpt < n
B,C
cpt++

5

ERROR

cpt = n
B,C
cpt++

cpt = n
A,C
cpt++

cpt = n
B,C
cpt++
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Kripke structures with variables

M = (S,A,V, T, I,AP, `)

I V : set of (typed) variables, e.g., boolean, [0..4], . . .

I Condition: formula involving variables

I Update: modification of variables

I Transition: p
condition,label,update
−−−−−−−−−−−−−−→ q

Programs = Kripke structures with variables
I Program counter = states

I Instructions = transitions

I Variables = variables
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Expanding variables (n = 2)

Digicode

1,0 2,0 3,0 4,0

OPEN

A B A

1,1 2,1 3,1 4,1

OPEN

A B A

B,C
C B,CA

1,2 2,2 3,2 4,2

OPEN

A B A

B,C
C B,CA

5,3 ERROR

B,C
A,C

B,C
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Symbolic representation

Logical representation

1 2 3 4

OPEN

A B A

cpt < n
B,C
cpt++

cpt < n
A
cpt++

cpt < n
C
cpt++

cpt < n
B,C
cpt++

5

ERROR

cpt = n
B,C
cpt++

cpt = n
A,C
cpt++

cpt = n
B,C
cpt++

δB = s = 1 ∧ cpt < n ∧ s′ = 1 ∧ cpt′ = cpt+ 1
∨ s = 1 ∧ cpt = n ∧ s′ = 5 ∧ cpt′ = cpt+ 1
∨ s = 2 ∧ s′ = 3 ∧ cpt′ = cpt

∨ s = 3 ∧ cpt < n ∧ s′ = 1 ∧ cpt′ = cpt+ 1
∨ s = 3 ∧ cpt = n ∧ s′ = 5 ∧ cpt′ = cpt+ 1
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Modular description of concurrent systems

Elevator

I Cabin: 0 1 2

I Door for level i: Closed Opened

I Call for level i: False True

The actual system is a synchronized product of all these automata.
It consists of (at most) 3× 23 × 23 = 192 states.
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Synchronized products

General product

I Components: Mi = (Si, Ai, Ti, Ii,APi, `i)

I Product: M = (S,A, T, I,AP, `) with

S =
∏

i Si, A =
∏

i(Ai ∪ {ε}), and I =
∏

i Ii

T = {(p1, . . . , pn)
(a1,...,an)
−−−−−−→ (q1, . . . , qn) | for all i, (pi, ai, qi) ∈ Ti or

pi = qi and ai = ε}
AP =

⊎

iAPi and `(p1, . . . , pn) =
⋃

i `(pi)

Synchronized products are restrictions of the general product.

I Synchronous: Async =
∏

i
Ai

I Asynchronous: Async =
⊎

i
Ai

I By states: Ssync ⊆ S

I By labels: Async ⊆ A

I By transitions: Tsync ⊆ T
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Example: Printer manager

Synchronization by states: (P, P ) is forbidden

Idle Wait Print

Idle

Wait

Print

I, I I, W I, P

W, I W, W W, P

P, I P, W
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Example: Elevator

Synchronization by actions

Cabin: 0 1 2

?up
!leave0

!reach1

?up
!leave1

!reach2

?up

?down
!leave2

!reach1

?down
!leave1

!reach0

?down

Door for level i: Closed Opened

?reachi

?reachi

?leavei

?leavei
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Example: digicode

Synchronization by transitions

1 2 3 4

OPEN

A B A

B,C A

C

B,C

1,0 2,0 3,0 4,0

OPEN

A B A

1,1 2,1 3,1 4,1

OPEN

A B A

B,C
C B,CA

1,2 2,2 3,2 4,2

OPEN

A B A

B,C
C B,CA

5,3

ERROR

B,C
A,C

B,C

0

1

2

3

ERROR
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Example: Peterson’s algorithm (1981)

Synchronization by shared variables

1 2

34

req[i]:=true

turn:=1-i

if turn=i

if req[1-i]=false

req[i]:=false

else

The global state is a 5-tuple: (state0, state1, req[0], req[1], turn)
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High-level descriptions

I Sequential programs = transition system with variables

I Concurrent programs with shared variables

I Concurrent programs with Rendez-vous

I Concurrent programs with FIFO communication

I Petri net

I . . .
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Models: expressivity versus decidability

(Un)decidability

I Automata with 2 integer variables = Turing powerful
Restriction to variables taking values in finite sets

I Asynchronous communication: unbounded fifo channels = Turing powerful
Restriction to bounded channels

Some infinite state models are decidable
I Petri nets. Several unbounded integer variables but no zero-test.

I Pushdown automata. Model for recursive procedure calls.

I Timed automata.

I . . .
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Static and dynamic properties

Static properties

Example: Mutual exclusion

Most safety properties are static.

They can be reduced to reachability.

Dynamic properties

Example: Every request should be eventually granted.

∧

i

∀t, (Calli(t) −→ ∃t
′ ≥ t, (atLeveli(t

′) ∧ openDoori(t
′)))

The elevator should not cross a level for which a call is pending without stopping.

∧

i

∀t∀t′, (Calli(t) ∧ t ≤ t
′ ∧ atLeveli(t

′)) −→

∃t ≤ t′′ ≤ t′, (atLeveli(t
′′) ∧ openDoori(t

′′)))
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First Order specifications

First order logic

I These specifications can be written in FO(<).

I FO(<) has a good expressive power.
. . . but FO(<)-formulas are not easy to write and to understand.

I FO(<) is decidable.
. . . but satisfiability and model checking are non elementary.

Temporal logics
I no variables: time is implicit.

I quantifications and variables are replaced by modalities.

I Usual specifications are easy to write and read.

I Good complexity for satisfiability and model checking problems.
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Linear versus Branching
Let M = (S, T, I,AP, `) be a Kripke structure.

Linear specifications

Example: The printer manager is fair.
On each run, whenever some process requests the printer, it eventually gets it.

Execution sequences (runs): σ = s0 → s1 → s2 → · · · with si → si+1 ∈ T

Two Kripke structures having the same execution sequences satisfy the same linear
specifications.

Actually, linear specifications only depend on the label of the execution sequence

`(σ) = `(s0)→ `(s1)→ `(s2)→ · · ·

Branching specifications

Example: Each process has the possibility to print first.

Such properties depend on the execution tree.

Execution tree = unfolding of the transition system
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Linear Temporal Logic (Pnueli 1977)

Syntax: LTL(AP,X,U)

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ

Semantics: t = [N,≤, λ] with λ : N→ Σ = 2AP and x ∈ N

t, x |= p if p ∈ λ(x)

t, x |= ¬ϕ if t, x 6|= ϕ

t, x |= ϕ ∨ ψ if t, x |= ϕ or t, x |= ψ

t, x |= Xϕ if ∃y. xl y & t, y |= ϕ

t, x |= ϕ U ψ if ∃z. x ≤ z & t, z |= ψ & ∀y. (x ≤ y < z)→ t, y |= ϕ

Example
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p ∅ p, q p q ∅ p, r q, r q
· · ·
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· · ·

ϕ ψ
· · ·
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Linear Temporal Logic (Pnueli 1977)
Macros:

I Eventually: Fϕ = > U ϕ

Fϕ
· · ·

ϕ
· · ·

I Always: Gϕ = ¬F¬ϕ

I Weak until: ϕW ψ = Gϕ ∨ ϕ U ψ

I ¬(ϕ U ψ) = (G¬ψ) ∨ (¬ψ U (¬ϕ ∧ ¬ψ)) = ¬ψ W (¬ϕ ∧ ¬ψ)

I Release: ϕ R ψ = ψ W (ϕ ∧ ψ) = ¬(¬ϕ U ¬ψ)

I Next until: ϕ XU ψ = X(ϕ U ψ)

I Xψ = ⊥ XU ψ and ϕ U ψ = ψ ∨ (ϕ ∧ ϕ XU ψ).
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I Xψ = ⊥ XU ψ and ϕ U ψ = ψ ∨ (ϕ ∧ ϕ XU ψ).
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Linear Temporal Logic (Pnueli 1977)

Specifications:
I Safety: G good

I MutEx: ¬F(crit1 ∧ crit2)

I Liveness: G F active

I Response: G(request→ F grant)

I Response’: G(request→ X(¬request U grant))

I Release: reset R alarm

I Strong fairness: G F request→ GF grant

I Weak fairness: FG request→ GF grant
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Linear Temporal Logic (Pnueli 1977)

Examples

Every elevator request should be eventually satisfied.

∧

i

G(Calli → F(atLeveli ∧ openDoori))

The elevator should not cross a level for which a call is pending without stopping.

∧

i

G(Calli → ¬atLeveli W (atLeveli ∧ openDoori)
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Past LTL

Semantics: t = [N,≤, λ] with λ : N→ Σ = 2AP and x ∈ N

t, x |= Yϕ if ∃y. y l x & t, y |= ϕ

t, x |= ϕ S ψ if ∃z. z ≤ x & t, z |= ψ & ∀y. (z < y ≤ x)→ t, y |= ϕ

Example

ϕ

Yϕ
· · ·

LTL versus PLTL

G(grant→ Y(¬grant S request))

= (request R ¬grant) ∧ G(grant→ (request ∨ X(request R ¬grant)))

Theorem (Laroussinie & Markey & Schnoebelen 2002)

PLTL may be exponentially more succinct than LTL.
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Expressivity

Theorem (Kamp 68)

LTL(Y, S,X,U) = FOΣ(≤)

Separation Theorem (Gabbay, Pnueli, Shelah & Stavi 80)

For all ϕ ∈ LTL(Y, S,X,U) there exist ←−ϕi ∈ LTL(Y, S) and −→ϕi ∈ LTL(X,U) such
that for all w ∈ Σω and k ≥ 0,

w, k |= ϕ ⇐⇒ w, k |=
∨

i

←−ϕi ∧
−→ϕi

Corollary: LTL(Y, S,X,U) = LTL(X,U)

For all ϕ ∈ LTL(Y, S,X,U) there exist −→ϕ ∈ LTL(X,U) such that for all w ∈ Σω,

w, 0 |= ϕ ⇐⇒ w, 0 |= −→ϕ

Elegant algebraic proof of LTL(X,U) = FOΣ(≤) due to Wilke 98.
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Satisfiability for LTL

Let AP be the set of atomic propositions and Σ = 2AP.

(Initial) Satisfiability problem

Input: A formula ϕ ∈ LTL(Y, S,X,U)

Question: Existence of w ∈ Σω such that w, 0 |= ϕ.

Theorem (Sistla & Clarke 85, Lichtenstein et. al 85)

The satisfiability problem for LTL is PSPACE-complete
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Model checking for LTL

Model checking problem

Input: A Kripke structure M = (S, T, I,AP, `) and a formula ϕ ∈ LTL

Question: Does M |= ϕ ?

I Universal MC: M |= ϕ if `(σ), 0 |= ϕ for all initial infinite run of M .

I Existential MC: M |= ϕ if `(σ), 0 |= ϕ for some initial infinite run of M .

Theorem (Sistla & Clarke 85, Lichtenstein et. al 85)

The Model checking problem for LTL is PSPACE-complete
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MC(X,U) ≤P SAT(X,U) (Sistla & Clarke 85)

Let M = (S, T, I,AP, `) be a Kripke structure and ϕ ∈ LTL(X,U)

Introduce new atomic propositions: APS = {ats | s ∈ S}

Define AP′ = AP ]APS Σ′ = 2AP′

π : Σ′ω → Σω by π(a) = a ∩AP.

Let w ∈ Σ′ω. We have w |= ϕ iff π(w) |= ϕ

Define

ψM =

(

∨

s∈I

ats

)

∧ G





∨

s∈S



ats ∧
∧

t6=s

¬att ∧
∧

p∈`(s)

p ∧
∧

p/∈`(s)

¬p ∧
∨

t∈T (s)

X att









We have w |= ψM iff π(w) = `(σ) for some initial infinite run σ of M.

Therefore, M 6|= ϕ iff `(σ) |= ¬ϕ for some initial infinite run σ of M
iff w |= ψM ∧ ¬ϕ for some w ∈ Σ′ω

iff ψM ∧ ¬ϕ is satisfiable
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QBF ≤P MC(X,U) (Sistla & Clarke 85)
Let γ = Q1x1 · · ·Qnxn

∧

1≤i≤m

∨

1≤j≤ki

aij with Qi ∈ {∀, ∃} and consider the KS M :

e0 s1

xt1

xf1

e1 s2

xt2

xf2

e2 · · · sn

xtn

xfn

en

f0

a11

a12

...

a1k1

f1

a21

a22

...

a2k2

f2 · · · fm−1

am1

am2

...

amkm

fm

Let ψij =

{

G(xfk → ¬aij W sk) if aij = xk

G(xtk → ¬aij W sk) if aij = ¬xk
and ψ =

∧

i,j

ψij .

Let ϕj = G(ej−1 → (¬sj−1 U xtj) ∧ (¬sj−1 U xfj ) and ϕ =
∧

j|Qj=∀

ϕj .

Then, γ is valid iff M 6|= ¬(ϕ ∧ ψ) iff σ |= ϕ ∧ ψ for some run σ.
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a22

...

a2k2

f2 · · · fm−1

am1

am2

...

amkm

fm

Let ψij =

{

G(xfk → ¬aij W sk) if aij = xk

G(xtk → ¬aij W sk) if aij = ¬xk
and ψ =

∧

i,j

ψij .

Let ϕj = G(ej−1 → (¬sj−1 U xtj) ∧ (¬sj−1 U xfj ) and ϕ =
∧

j|Qj=∀

ϕj .

Then, γ is valid iff M 6|= ¬(ϕ ∧ ψ) iff σ |= ϕ ∧ ψ for some run σ.
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Decision procedure for LTL

The core

From an LTL formula ϕ, construct a Büchi automaton Aϕ such that

L(A) = L(ϕ) = {w ∈ Σω | w, 0 |= ϕ}.

Satisfiability (initial)

Check the Büchi automaton Aϕ for emptiness.

Model checking

Construct the product B = M × A¬ϕ so that the successful runs of B correspond
to the successful run of A satisfying ¬ϕ.

Then, check B for emptiness.
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Büchi automata

Definition

A = (Q,Σ, I, T, F ) where

I Q: finite set of states

I Σ: finite set of labels

I I ⊆ Q: set of initial states

I T ⊆ Q× Σ×Q: transitions

I F ⊆ Q: set of accepting states (repeated, final)

Example

A = 1 2

a b

b

a

L(A) = {w ∈ {a, b}ω | |w|a = ω}
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Büchi automata for some LTL formulas

Definition

Recall that Σ = 2AP. For p, q ∈ AP, we let

I Σp = {a ∈ Σ | p ∈ a} and Σ¬p = Σ \ Σp
I Σp∧q = Σp ∩ Σq and Σp∨q = Σp ∪Σq
I Σp∧¬q = Σp \ Σq . . .

Examples

F p: 1 2

Σ Σ
Σp or

XX p:

G p:



39/71
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Büchi automata for some LTL formulas

Examples

FG p: 1 2

Σ Σp
Σp no deterministic Büchi automaton.

GF p:
deterministic Büchi automaton
are not closed under complement.

G(p→ F q):
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Büchi automata for some LTL formulas

Examples

p U q: 1 2

Σp
Σq

Σ

or 1 2

Σp∧¬q

Σq

Σ

pW q: or

p R q: or
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Büchi automata

Properties

Büchi automata are closed under union, intersection, complement.

I Union: trivial

I Intersection: easy (exercice)

I complement: hard

Let ϕ = F((p ∧ Xn ¬p) ∨ (¬p ∧ Xn p))

0

Σ
1Σp

1
Σ · · · n

Σ

n+ 1

Σ¬p Σ

1’
Σ¬p 2’

Σ
· · · n

Σ

Σp

Any non deterministic Büchi automaton for ¬ϕ has at least 2n states.
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Büchi automata

Exercice

Given Büchi automata for ϕ and ψ,

I Construct a Büchi automaton for Xϕ (trivial)

I Construct a Büchi automaton for ϕ U ψ

This gives an inductive construction of Aϕ from ϕ ∈ LTL(X,U) . . .

. . . but the size of Aϕ might be non-elementary in the size of ϕ.
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Generalized Büchi automata

Definition: acceptance on states

A = (Q,Σ, I, T, F1, . . . , Fn) with Fi ⊆ Q.

An infinite run σ is successful if it visits infinitely often each Fi.

G F p ∧ GF q: 0

Σ
Σp

ΣΣq

Σ

Definition: acceptance on transitions

A = (Q,Σ, I, T, T1, . . . , Tn) with Ti ⊆ T .

An infinite run σ is successful if it uses infinitely many transitions from each Ti.

G F p ∧ GF q:
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Σp

ΣΣq

Σ

Definition: acceptance on transitions

A = (Q,Σ, I, T, T1, . . . , Tn) with Ti ⊆ T .

An infinite run σ is successful if it uses infinitely many transitions from each Ti.

G F p ∧ GF q: 0

Σ

ΣpΣq
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GBA to BA

Synchronized product with

0 1
T1

2
T2

· · · n
Tn
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Negative normal form

Syntax (p ∈ AP)

ϕ ::= ⊥ | p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕ U ϕ | ϕ R ϕ

Any formula can be transformed in NNF
I ¬Xϕ = X¬ϕ

I ¬(ϕ U ψ) = (¬ϕ) R (¬ψ)

I ¬(ϕ R ψ) = (¬ϕ) U (¬ψ)

I ¬(ϕ ∨ ψ) = (¬ϕ) ∧ (¬ψ)

I ¬(ϕ ∧ ψ) = (¬ϕ) ∨ (¬ψ)

Note that this does not increase the number of Temporal subformulas.
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Reduction graph
Definition

Z ⊆ NNF is reduced if

I formulas in Z are of the form p, ¬p, or X β,

I ⊥ /∈ Z and {p,¬p} 6⊆ Z for all p ∈ AP.

Reduction graph
I Vertices: subsets of NNF

I Edges: Let Y ⊆ NNF and let α ∈ Y maximal not reduced.

If α = α1 ∨ α2: Y → Y \ {α} ∪ {α1},
Y → Y \ {α} ∪ {α2},

If α = α1 ∧ α2: Y → Y \ {α} ∪ {α1, α2},

If α = α1 R α2: Y → Y \ {α} ∪ {α1, α2},
Y → Y \ {α} ∪ {α2,Xα},

If α = α1 U α2: Y → Y \ {α} ∪ {α2},

Y
α
−→ Y \ {α} ∪ {α1,Xα}.

Note the mark α on the last edge
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Reduction graph

Example: ϕ = G(p→ F q)

ϕ = G(¬p ∨ F q)

State = set of obligations.

Reduce obligations to litterals and next-formulas.

Note again the mark F q on the last edge
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Automaton Aϕ

Definition: For Y ⊆ NNF, let

I Red(Y ) = {Z reduced | Y
∗
−→ Z}

I Redα(Y ) = {Z reduced | Y
∗
−→ Z without using an edge marked with α}

Definition: For Z ⊆ NNF reduced, define
I next(Z) = {α | Xα ∈ Z}

I ΣZ =
⋂

p∈Z

Σp ∩
⋂

¬p∈Z

Σ¬p

Automaton Aϕ

I States: Q = 2sub(ϕ), I = {ϕ}

I Transitions: T = {Y
ΣZ−−→ next(Z) | Y ∈ Q and Z ∈ Red(Y )}

I Acceptance: Tα = {Y
ΣZ−−→ next(Z) | Y ∈ Q and Z ∈ Redα(Y )}

for each α = α1 U α2 ∈ sub(ϕ).
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Automaton Aϕ
Example: ϕ = G(p→ F q)

ϕ = G(¬p ∨ F q)

¬p ∨ F q,Xϕ

¬p,Xϕ

F q,Xϕ

q,Xϕ

XF q,Xϕ

F q

Transition = check litterals and move forward.

Simplification
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Automaton Aϕ

Theorem L(Aϕ) = L(ϕ)

I |Q| ≤ 2|ϕ|

I number of acceptance tables = number of until sub-formulas.

Corollary

Satisfiability and Model Checking are decidable in PSPACE.

Remark

An efficient construction is based on Very Weak Alternating Automata.
(Gastin & Oddoux, CAV’01)

The domain is still very active.
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Possibility is not expressible in LTL

Example

ϕ: Whenever p holds, it is possible to reach a state where q holds.

ϕ cannot be expressed in LTL.

Consider the two models:

M1: 1

p, q

2

p
3

q

4

and M2: 1

p, q
2

p

2’

p

3

q

4

M1 |= ϕ but M2 6|= ϕ

M1 and M2 satisfy the same LTL formulas.
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Quantification on runs

Example

ϕ: Whenever p holds, it is possible to reach a state where q holds.

ϕ = AG(p→ EF q)

I E: for some infinite run

I A: for all infinite run

Some specifications
I EFϕ: ϕ is possible

I AGϕ: ϕ is an invariant

I AFϕ: ϕ is unavoidable

I EGϕ: ϕ holds globally along some path
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CTL∗ (Emerson & Halpern 86)

Syntax: CTL∗: Computation Tree Logic

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ | Eϕ | Aϕ

Semantics:

Let M = (S, T, I,AP, `) be a Kripke structure and σ an infinte run of M .

σ, i |= Eϕ if σ′, 0 |= ϕ for some infinite run σ′ such that σ′(0) = σ(i)

σ, i |= Aϕ if σ′, 0 |= ϕ for all infinite runs σ′ such that σ′(0) = σ(i)

State formulas

A formula of the form p or Eϕ or Aϕ only depends on the current state.

State formulas are closed under boolean connectives.

If ϕ is a state formula, define S(ϕ) = {s ∈ S | s |= ϕ}
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Model checking of CTL∗

Model checking problem

Input: A Kripke structure M = (S, T, I,AP, `) and a formula ϕ ∈ CTL∗

Question: Does M |= ϕ ?

Remark

M |= ϕ iff `(σ), 0 |= ϕ for all initial infinite run of M .

iff I ⊆ S(Aϕ)

Theorem

The model checking problem for CTL∗ is PSPACE-complete

Proof

PSPACE-hardness: follows from LTL ⊆ CTL∗.

PSPACE-easiness: inductively compute S(ψ) for all state formulas.
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Computing S(ψ)

State formulas
I S(p) = {s ∈ S | p ∈ `(s)},

I S(¬ψ) = S \ S(ψ),

I S(ψ1 ∧ ψ2) = S(ψ1) ∩ S(ψ2),

I S(ψ1 ∨ ψ2) = S(ψ1) ∪ S(ψ2),

I S(Eψ) = ?

Compute Aψ, replacing state subformulas of ψ by new atomic propositions.

To check whether s ∈ S(Eψ), check for emptiness the synchronized product
of Aψ and M with initial state s.

I Aψ = ¬E¬ψ

Model checking

M |= ϕ iff I ⊆ S(Aϕ).
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CTL (Clarke & Emerson 81)
Syntax: CTL: Computation Tree Logic

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | EXϕ | AXϕ | Eϕ U ϕ | Aϕ U ϕ

Remarks

The semantics is inherited from CTL∗.

All CTL-formulas are state formulas. Hence, we have a simpler semantics.

Semantics: only state formulas

Let M = (S, T, I,AP, `) be a Kripke structure and let s ∈ S.

s |= p if p ∈ `(s)

s |= EXϕ if ∃s = s0 → s1 → s2 → · · · with s1 |= ϕ

s |= AXϕ if ∀s = s0 → s1 → s2 → · · · , we have s1 |= ϕ

s |= Eϕ U ψ if ∃s = s0 → s1 → s2 → · · · , ∃j ≥ 0 with
sj |= ψ and sk |= ϕ for all 0 ≤ k < j

s |= Aϕ U ψ if ∀s = s0 → s1 → s2 → · · · , ∃j ≥ 0 with
sj |= ψ and sk |= ϕ for all 0 ≤ k < j
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CTL (Clarke & Emerson 81)

Semantics: only state formulas

Let M = (S, T, I,AP, `) be a Kripke structure without deadlocks and let s ∈ S.

s |= p if p ∈ `(s)

s |= EXϕ if ∃s→ s′ with s′ |= ϕ

s |= AXϕ if ∀s→ s′ we have s′ |= ϕ

s |= Eϕ U ψ if ∃s = s0 → s1 → s2 → · · · sj, with
sj |= ψ and sk |= ϕ for all 0 ≤ k < j

s |= Aϕ U ψ if ∀s = s0 → s1 → s2 → · · · , ∃j ≥ 0 with
sj |= ψ and sk |= ϕ for all 0 ≤ k < j

Macros
I EFϕ = E> U ϕ and AFϕ = A> U ϕ Fϕ = > U ϕ.

I EGϕ = ¬AF¬ϕ and AGϕ = ¬EF¬ϕ
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CTL (Clarke & Emerson 81)

Example

1 2 3 4

5 6 7 8

q p, q q r

p, r p, r p, q

Compute

S(EX p) =

S(AX p) =

S(EF p) =

S(AF p) =

S(E q U r) =

S(A q U r) =
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CTL (Clarke & Emerson 81)

Equivalent formulas
I AXϕ = ¬EX¬ϕ,

I Aϕ U ψ = ¬E¬(ϕ U ψ)
= ¬E(G¬ψ ∧ ¬ψ U (¬ϕ ∧ ¬ψ))
= ¬EG¬ψ ∨ ¬E¬ψ U (¬ϕ ∧ ¬ψ)

I AG(req→ F grant) = AG(req→ AF grant)

I AGFϕ = AG AFϕ infinitely often

I EFGϕ = EFEGϕ ultimately

I EGEFϕ 6= E GFϕ

I AFAGϕ 6= AFGϕ

I EGEXϕ 6= E GXϕ
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Model checking of CTL

Model checking problem

Input: A Kripke structure M = (S, T, I,AP, `) and a formula ϕ ∈ CTL

Question: Does M |= ϕ ?

Remark

M |= ϕ iff I ⊆ S(ϕ)

Theorem

The model checking problem for CTL is decidable in time O(|M | · |ϕ|)

Proof

Marking algorithm.
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Model checking of CTL

procedure mark(ϕ)

case ϕ = p ∈ AP
for all s ∈ S do s.ϕ := (p ∈ `(s));

case ϕ = ¬ϕ1

mark(ϕ1);
for all s ∈ S do s.ϕ := ¬ s.ϕ1;

case ϕ = ϕ1 ∨ ϕ2

mark(ϕ1); mark(ϕ2);
for all s ∈ S do s.ϕ := s.ϕ1 ∨ s.ϕ2;

case ϕ = EXϕ1

mark(ϕ1);
for all s ∈ S do s.ϕ := false;
for all (t, s) ∈ T do if s.ϕ1 then t.ϕ := true;

case ϕ = AXϕ1

mark(ϕ1);
for all s ∈ S do s.ϕ := true;
for all (t, s) ∈ T do if ¬ s.ϕ1 then t.ϕ := false;
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Model checking of CTL

procedure mark(ϕ)

case ϕ = Eϕ1 U ϕ2

mark(ϕ1); mark(ϕ2);
L := ∅;
for all s ∈ S do
s.ϕ := s.ϕ2;
if s.ϕ then L := L ∪ {s};

while L 6= ∅ do
take s ∈ L;
L := L \ {s};
for all t ∈ S with (t, s) ∈ T do

if t.ϕ1 ∧ ¬ t.ϕ then t.ϕ := true; L := L ∪ {t};
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Model checking of CTL

procedure mark(ϕ)

case ϕ = Aϕ1 U ϕ2

mark(ϕ1); mark(ϕ2);
L := ∅;
for all s ∈ S do
s.ϕ := s.ϕ2; s.nb := degree(s);
if s.ϕ then L := L ∪ {s};

while L 6= ∅ do
take s ∈ L;
L := L \ {s};
for all t ∈ S with (t, s) ∈ T do
t.nb := t.nb− 1;
if t.nb = 0 ∧ t.ϕ1 ∧ ¬ t.ϕ then t.ϕ := true; L := L ∪ {t};
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fairness

Fairness

Only fair runs are of interest

I Each process is enabled infinitely often:
∧

i

GF runi

I No process stays ultimately in the critical section:
∧

i

¬F GCSi =
∧

i

G F¬CSi

Fair Kripke structure

M = (S, T, I,AP, `,F) where F = {F1, . . . , Fn} with Fi ⊆ S.

An infinite run σ is fair if it visits infinitely often each Fi

Fair quantifications

Ef ϕ = E(fair ∧ ϕ) and Af ϕ = A(fair→ ϕ)

where
fair =

∧

i

GFFi
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fair CTL

Syntax of fair-CTL

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | Ef Xϕ | Af Xϕ | Ef ϕ U ϕ | Af ϕ U ϕ

Lemma: CTLf cannot be expressed in CTL

Consider the Kripke structure Mk defined by:

I Mk, 2k |= E GF p but Mk, 2k − 2 6|= EGF p

I If ϕ ∈ CTL and |ϕ| ≤ m ≤ k then Mk, 2k |= ϕ iff Mk, 2m |= ϕ

If the fairness condition is `−1(p) then Ef F> cannot be expressed in CTL.
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Model checking of CTLf

First step: Computation of Fair = {s ∈ S |M, s |= Ef F>}

Compute the SCC of M with Tarjan’s algorithm (in linear time).

Let S′ be the union of the SCCs which intersect each Fi.

Then, Fair is the set of states that can reach S′.

Note that reachability can be computed in linear time.

Reductions

Ef Xϕ = EX(Fair ∧ ϕ) and Ef ϕ U ψ = Eϕ U (Fair ∧ ψ)

It remains to deal with Af ϕ U ψ.

Recall that Aϕ U ψ = ¬EG¬ψ ∨ ¬E¬ψ U (¬ϕ ∧ ¬ψ)

This formula also holds for the fair quantifications.
Hence, we only need to compute the semantics of Ef Gϕ.
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Model checking of CTLf

Computation of Ef Gϕ

Let Mϕ be the restriction of M to Sf (ϕ).

Compute the SCC of Mϕ with Tarjan’s algorithm (in linear time).

Let S′ be the union of the SCCs of Mϕ which intersect each Fi.

Then, M, s |= Ef Gϕ iff M, s |= Eϕ U S′ iff Mϕ |= EFS′.

This is again a reachability problem which can be done in linear time.

Theorem

The model checking problem for CTLf is decidable in time O(|M | · |ϕ|)
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Missing in this talk

I Symbolic model checking for CTL using BDDs.

I µ- calculus

I . . .
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