Basics of model checking

Paul Gastin
LIAFA (Paris) and LSV (Cachan)
Paul.Gastin@liafa.jussieu.fr
Paul.Gastin@lsv.ens-cachan.fr

MOVEP, Dec. 2004

Need for formal verifications methods

Critical systems
- Transport
- Energy
- Medicine
- Communication
- Finance
- Embedded systems
- ...

Complementary approaches
- Theorem prover
- Model checking
- Test

Model Checking

3 steps
- Constructing the model M (transition systems)
- Formalizing the specification φ (temporal logics)
- Checking whether $M \models \varphi$ (algorithmics)

Main difficulties
- Size of models (combinatorial explosion)
- Expressivity of models or logics
- Decidability and complexity of the model-checking problem
- Efficiency of tools

Challenges
- Extend models and algorithms to cope with more systems.
 Infinite systems, parameterized systems, probabilistic systems, concurrent systems, timed systems, hybrid systems, ...
- Scale current tools to cope with real-size systems.
 Needs for modularity, abstractions, symmetries, ...
Constructing the model

Example: Men, Wolf, Goat, Cabbage

Model = Transition system
- State = who is on which side of the river
- Transition = crossing the river

References

Outline

1. Introduction
2. Models
 - Specification
 - Linear Time Specifications
 - Branching Time Specifications

Transition system

MWGC → WC → MG → W → MGC → G → MWC → MWG → WC → MWGC

MWG → MGC → G → MWC → MWG → WC → MWGC

C → MWG → MWC → G → MWC → MWG

??

??

??

???
Kripke structure

\[M = (S, A, T, I, AP, \ell) \]

- \(S \): set of states (often finite)
- \(T \subseteq S \times A \times S \): set of transitions
- \(I \subseteq S \): set of initial states
- \(AP \): set of atomic propositions
- \(\ell : S \to 2^{AP} \): labelling function.

Kripke structures with variables

\[M = (S, A, V, T, I, AP, \ell) \]

- \(V \): set of typed variables, e.g., boolean, [0..4], ...
- Condition: formula involving variables
- Update: modification of variables
- Transition: \(p \mapsto \text{condition, label, update}, q \)

Programs = Kripke structures with variables

- Program counter = states
- Instructions = transitions
- Variables = variables

Using variables

Digicode

- \(\text{cpt} < n \)
- \(B, C \)
- \(\text{cpt}++ \)

Diagram

\[\begin{array}{c}
1 \quad A \\
B, C \\
\text{cpt}++ \\
3 \\
\text{OPEN} \\
\end{array} \]

Program

- How can we easily describe big systems?

Expanding variables (\(n = 2 \))

Digicode

- \(\text{cpt} < n \)
- \(B, C \)
- \(\text{cpt}++ \)

Diagram

\[\begin{array}{c}
1, 0 \quad A \\
B, C \\
\text{cpt}++ \\
3, 0 \\
\text{OPEN} \\
\end{array} \]

Program

- How can we easily describe big systems?
Symbolic representation

Logical representation

Synchronization by states: \((P, P)\) is forbidden

Synchronized products

General product

- Components: \(M_i = (S_i, A_i, T_i, I_i, AP_i, \ell_i)\)
- Product: \(M = (S, A, T, I, AP, \ell)\) with
 \[S = \prod_i S_i, \quad A = \prod_i (A_i \cup \{\varepsilon\}), \quad I = \prod_i I_i \]
 \[T = \{(p_1, \ldots, p_n) \overset{(a_1, \ldots, a_n)}{\rightarrow} (q_1, \ldots, q_n) | \text{ for all } i, (p_i, a_i, q_i) \in T_i \text{ or } \}
 \quad p_k = q_i \text{ and } a_i = \varepsilon\]
 \[AP = \bigcup_i AP_i \text{ and } \ell(p_1, \ldots, p_n) = \bigcup_i \ell(p_i) \]

Synchronized products are restrictions of the general product.

- Synchronous: \(A_{\text{sync}} = \prod_i A_i\)
- Asynchronous: \(A_{\text{async}} = \bigcup_i A_i\)
- By states: \(S_{\text{sync}} \subseteq S\)
- By labels: \(A_{\text{sync}} \subseteq A\)
- By transitions: \(T_{\text{sync}} \subseteq T\)

Modular description of concurrent systems

Elevator

- Cabin: \(\text{Closed} \rightarrow \text{Opened}\)
- Door for level \(i\): \(\text{Closed} \rightarrow \text{Open}\)
- Call for level \(i\): \(\text{False} \rightarrow \text{True}\)

The actual system is a synchronized product of all these automata. It consists of (at most) \(3 \times 2^3 \times 2^3 = 192\) states.

Example: Printer manager

Synchronization by states: \((P, P)\) is forbidden

Idle

\(\text{Wait} \rightarrow \text{Print}\)

\(\text{Idle} \rightarrow \text{Wait} \rightarrow \text{Print}\)

\(\text{Wait} \rightarrow \text{Print}\)
Example: Elevator

Synchronization by actions

Example: digicode

Synchronization by transitions

Example: Peterson's algorithm (1981)

Synchronization by shared variables

High-level descriptions

- Sequential programs = transition system with variables
- Concurrent programs with shared variables
- Concurrent programs with Rendez-vous
- Concurrent programs with FIFO communication
- Petri net
- ...
Models: expressivity versus decidability

(Un)decidability
- Automata with 2 integer variables = Turing powerful
- Restriction to variables taking values in finite sets
- Asynchronous communication: unbounded fifo channels = Turing powerful
- Restriction to bounded channels

Some infinite state models are decidable
- Petri nets. Several unbounded integer variables but no zero-test.
- Pushdown automata. Model for recursive procedure calls.
- Timed automata.
- ...

Static and dynamic properties

Static properties
Example: Mutual exclusion
Most safety properties are static.
They can be reduced to reachability.

Dynamic properties
Example: Every request should be eventually granted.
\[\forall t, (\text{Call}, t) \rightarrow \exists t', (\text{atLevel}, t') \land \text{openDoor}, (t')) \]
The elevator should not cross a level for which a call is pending without stopping.
\[\forall \forall t', (\text{Call}, t) \land t \leq t' \land \text{atLevel}, (t')) \rightarrow \exists t \leq t' \leq t'', (\text{atLevel}, (t'') \land \text{openDoor}, (t''))) \]

First Order specifications

First order logic
- These specifications can be written in FO(<).
- FO(<) has a good expressive power.
 ... but FO(<)-formulas are not easy to write and to understand.
- FO(<) is decidable.
 ... but satisfiability and model checking are non elementary.

Temporal logics
- no variables: time is implicit.
- quantifications and variables are replaced by modalities.
- Usual specifications are easy to write and read.
- Good complexity for satisfiability and model checking problems.
Linear versus Branching

Let $M = (S, T, I, AP, t)$ be a Kripke structure.

Linear specifications

Example: The printer manager is fair. On each run, whenever some process requests the printer, it eventually gets it.

Execution sequences (runs): $\sigma = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \cdots$ with $s_i \rightarrow s_{i+1} \in T$

Two Kripke structures having the same execution sequences satisfy the same linear specifications.

Actually, linear specifications only depend on the label of the execution sequence

$$\ell(\sigma) = \ell(s_0) \rightarrow \ell(s_1) \rightarrow \ell(s_2) \rightarrow \cdots$$

Branching specifications

Example: Each process has the possibility to print first.

Such properties depend on the execution tree.

Execution tree = unfolding of the transition system

Linear Temporal Logic (Pnueli 1977)

Syntax: $LTL(AP, X, U)$

$$\varphi ::= \bot \mid p \in AP \mid \neg \varphi \mid \varphi \lor \varphi \mid X \varphi \mid \varphi U \varphi$$

Semantics: $t = [N, \leq, \lambda]$ with $\lambda : N \rightarrow \Sigma = 2^{AP}$ and $x \in N$

$t, x \models p$ if $p \in \lambda(x)$
$t, x \models \neg \varphi$ if $t, x \not\models \varphi$
$t, x \models \varphi \lor \psi$ if $t, x \models \varphi$ or $t, x \models \psi$
$t, x \models X \varphi$ if $\exists y, x \leq y \land t, y \models \varphi$
$t, x \models \varphi U \psi$ if $\exists z, x \leq z \land t, z \models \psi \land \forall y. (x \leq y < z) \rightarrow t, y \models \varphi$

Example

$$\varphi U \psi \quad \varphi U \psi \quad \cdots \quad \varphi U \psi$$

Outline

1 Introduction
2 Models
3 Specification
 - Linear Time Specifications
 - Branching Time Specifications

Linear Temporal Logic (Pnueli 1977)

Macros:

- **Eventually:** $F \varphi = T U \varphi$
 $$\begin{array}{c}
 F \varphi \\
 \cdot \\
 \cdot \\
 \cdot \\
 \cdot \\
 \varphi
 \end{array}$$

- **Always:** $G \varphi = \neg F \neg \varphi$
 $$\begin{array}{c}
 G \varphi \\
 \cdot \\
 \cdot \\
 \cdot \\
 \cdot \\
 \neg \varphi
 \end{array}$$

- **Weak until:** $\varphi W \psi = G \varphi \lor \varphi U \psi$
 $$\begin{array}{c}
 \varphi W \psi \\
 \cdot \\
 \cdot \\
 \cdot \\
 \cdot \\
 \varphi \psi
 \end{array}$$

- **Release:** $\varphi R \psi = \psi W (\varphi \land \psi) = \neg (\neg \psi U \neg \varphi)$
 $$\begin{array}{c}
 \varphi R \psi \\
 \cdot \\
 \cdot \\
 \cdot \\
 \cdot \\
 \psi
 \end{array}$$

- **Next until:** $\varphi X U \psi = X (\varphi U \psi)$
 $$\begin{array}{c}
 \varphi X U \psi \\
 \cdot \\
 \cdot \\
 \cdot \\
 \cdot \\
 \varphi \psi
 \end{array}$$

- **Next until:** $X \psi = \bot X U \psi$ and $\varphi U \psi = \psi \lor (\varphi \land \varphi X U \psi)$.
Linear Temporal Logic (Pnueli 1977)

Specifications:
- Safety: G good
- MutEx: $\neg F(\text{crit}_1 \land \text{crit}_2)$
- Liveness: GF active
- Response: $G(\text{request} \rightarrow F\text{grant})$
- Response': $G(\text{request} \rightarrow X(\neg \text{request} \land \text{grant}))$
- Release: reset R alarm
- Strong fairness: $GF\text{request} \rightarrow GF\text{grant}$
- Weak fairness: $FG\text{request} \rightarrow GF\text{grant}$

Past LTL

Semantics: $t = [N, \leq, \lambda]$ with $\lambda : N \rightarrow \Sigma = 2^{AP}$ and $x \in N$

$t, x \models Y \varphi$ if $\exists y. y < x \land t, y \models \varphi$

$t, x \models \varphi S \psi$ if $\exists z. z \leq x \land t, z \models \psi \land \forall y. (z < y \leq x) \rightarrow t, y \models \varphi$

Example

```
\begin{align*}
 & t, x \models Y \varphi \quad \text{if} \quad \exists y. y < x \land t, y \models \varphi \\
 & t, x \models \varphi S \psi \quad \text{if} \quad \exists z. z \leq x \land t, z \models \psi \land \forall y. (z < y \leq x) \rightarrow t, y \models \varphi
\end{align*}
```

LTL versus PLTL

$G(\text{grant} \rightarrow Y(\neg \text{grant} S \text{request}))$

$= (\text{request} R \neg \text{grant}) \land G(\text{grant} \rightarrow (\text{request} \lor X(\text{request} R \neg \text{grant})))$

Theorem (Laroussinie & Markey & Schnoebelen 2002)
PLTL may be exponentially more succinct than LTL.
Expressivity

Theorem (Kamp 68)

\[\text{LTL}(Y, S, X, U) = \text{FO}_\Sigma(\leq) \]

Separation Theorem (Gabbay, Pnueli, Shelah & Stavi 80)

For all \(\varphi \in \text{LTL}(Y, S, X, U) \) there exist \(\varphi^i \in \text{LTL}(Y, S) \) and \(\varphi^j \in \text{LTL}(X, U) \) such that for all \(w \in \Sigma^\omega \) and \(k \geq 0 \),

\[w, k \models \varphi \iff w, k \models \bigvee_i \varphi^i \land \bigvee_j \varphi^j \]

Corollary: \(\text{LTL}(Y, S, X, U) = \text{LTL}(X, U) \)

For all \(\varphi \in \text{LTL}(Y, S, X, U) \) there exist \(\varphi^i \in \text{LTL}(X, U) \) such that for all \(w \in \Sigma^\omega \),

\[w, 0 \models \varphi \iff w, 0 \models \varphi^i \]

Elegant algebraic proof of \(\text{LTL}(X, U) = \text{FO}_\Sigma(\leq) \) due to Wilke 98.

Satisfiability for LTL

Let \(AP \) be the set of atomic propositions and \(\Sigma = 2^{AP} \).

(Initial) Satisfiability problem

Input: A formula \(\varphi \in \text{LTL}(Y, S, X, U) \)

Question: Existence of \(w \in \Sigma^\omega \) such that \(w, 0 \models \varphi \).

Theorem (Sistla & Clarke 85, Lichtenstein et. al 85)

The satisfaction problem for LTL is PSPACE-complete

Model checking for LTL

Model checking problem

Input: A Kripke structure \(M = (S, T, I, AP, \ell) \) and a formula \(\varphi \in \text{LTL} \)

Question: Does \(M \models \varphi \) ?

- Universal MC: \(M \models \varphi \) if \(\ell(\sigma), 0 \models \varphi \) for all initial infinite run of \(M \).
- Existential MC: \(M \models \varphi \) if \(\ell(\sigma), 0 \models \varphi \) for some initial infinite run of \(M \).

Theorem (Sistla & Clarke 85, Lichtenstein et. al 85)

The Model checking problem for LTL is PSPACE-complete

\[\text{MC}(X, U) \leq_P \overline{\text{SAT}}(X, U) \] (Sistla & Clarke 85)

Let \(M = (S, T, I, AP, \ell) \) be a Kripke structure and \(\varphi \in \text{LTL}(X, U) \)

Introduce new atomic propositions: \(AP_S = \{ at_s \mid s \in S \} \)

Define \(AP' = AP \uplus AP_S \)

\[\Sigma' = 2^{AP'} \]

\(\pi : \Sigma' \rightarrow \Sigma^\omega \) by \(\pi(a) = a \cap AP \).

Let \(w \in \Sigma^\omega \). We have \(w \models \varphi \) iff \(\pi(w) \models \varphi \)

Define

\[\psi_M = \left(\bigvee_{s \in T} at_s \right) \land \bigwedge_{s \in S} \left(\bigvee_{t \neq s} \left(at_s \land \neg at_t \land \bigwedge_{p \in \ell(t)} p \land \bigwedge_{p \in \ell(s)} \neg p \land \bigvee_{t \in T(s)} X at_t \right) \right) \]

We have \(w \models \psi_M \) iff \(\pi(w) = \ell(\sigma) \) for some initial infinite run \(\sigma \) of \(M \).

Therefore, \(M \not\models \varphi \) iff \(\ell(\sigma) \models \neg \varphi \) for some initial infinite run \(\sigma \) of \(M \)

\(w \models \psi_M \land \neg \varphi \) for some \(w \in \Sigma^\omega \)

\(\psi_M \land \neg \varphi \) is satisfiable
Decision procedure for LTL

The core
From an LTL formula \(\varphi \), construct a Büchi automaton \(\mathcal{A}_\varphi \) such that
\[
\mathcal{L}(\mathcal{A}) = \mathcal{L}(\varphi) = \{ w \in \Sigma^\omega \mid w, 0 \models \varphi \}.
\]

Satisfiability (initial)
Check the Büchi automaton \(\mathcal{A}_\varphi \) for emptiness.

Model checking
Construct the product \(B = M \times \mathcal{A}_{\lnot \varphi} \) so that the successful runs of \(B \) correspond to the successful run of \(\mathcal{A} \) satisfying \(\lnot \varphi \).
Then, check \(B \) for emptiness.

Büchi automata for some LTL formulas

Definition
Recall that \(\Sigma = 2^{AP} \). For \(p, q \in AP \), we let
\[
\begin{align*}
\varSigma_p &= \{ a \in \Sigma \mid p \in a \} \quad \text{and} \quad \Sigma_{\neg p} = \Sigma \setminus \varSigma_p \\
\varSigma_{p \land q} &= \varSigma_p \cap \varSigma_q \quad \text{and} \quad \varSigma_{p \lor q} = \varSigma_p \cup \varSigma_q \\
\varSigma_{p \land \neg q} &= \varSigma_p \setminus \varSigma_q \quad \ldots
\end{align*}
\]

Examples
\[
\begin{align*}
\text{\texttt{F} } p: & \quad \begin{array}{c}
1 \quad \varSigma_p \\
\implies \text{1} \quad \varSigma_p
\end{array} \\
\text{\texttt{XX} } p: & \quad \\
\text{\texttt{G} } p: & \quad \begin{array}{c}
1 \quad \varSigma_p
\end{array}
\end{align*}
\]
Büchi automata for some LTL formulas

Examples

- \(F G p \):

- \(G F p \):

- \(G(p \rightarrow F q) \):

Büchi automata are not closed under complement.

Properties

- Büchi automata are closed under union, intersection, complement.
 - Union: trivial
 - Intersection: easy (exercise)
 - Complement: hard

Let \(\varphi = F((p \land X^n \neg p) \lor (\neg p \land X^n p)) \)

Büchi automata

Exercises

Given Büchi automata for \(\varphi \) and \(\psi \),

- Construct a Büchi automaton for \(X \varphi \) (trivial)
- Construct a Büchi automaton for \(\varphi U \psi \)

This gives an inductive construction of \(A_\varphi \) from \(\varphi \in \text{LTL}(X, U) \) . . .

... but the size of \(A_\varphi \) might be non-elementary in the size of \(\varphi \).
Generalized Büchi automata

Definition: acceptance on states
\[A = (Q, \Sigma, I, T, F_1, \ldots, F_n) \text{ with } F_i \subseteq Q. \]
An infinite run \(\sigma \) is successful if it visits infinitely often each \(F_i \).

\[\text{Synchronized product with} \]

Negative normal form

Syntax (\(p \in AP \))
\[\varphi ::= \bot \mid p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid X \varphi \mid \varphi U \varphi \mid \varphi F \varphi \]

Any formula can be transformed in NNF
\[\begin{align*}
\neg X \varphi &= X \neg \varphi \\
\neg(\varphi U \psi) &= (\neg \varphi) R (\neg \psi) \\
\neg(\varphi R \psi) &= (\neg \varphi) U (\neg \psi) \\
\neg(\varphi \lor \psi) &= (\neg \varphi) \land (\neg \psi) \\
\neg(\varphi \land \psi) &= (\neg \varphi) \lor (\neg \psi)
\end{align*} \]

Note that this does not increase the number of Temporal subformulas.

GBA to BA

Definition
\[Z \subseteq \text{NNF} \text{ is reduced if} \]
\[\begin{align*}
&\varphi \text{ formulas in } Z \text{ are of the form } p, \neg p, \text{ or } X \beta, \\
&\bot \notin Z \text{ and } \{p, \neg p\} \notin Z \text{ for all } p \in AP.
\end{align*} \]

Reduction graph

\[\begin{align*}
\text{Vertices: subsets of NNF} \\
\text{Edges: Let } Y \subseteq \text{NNF} \text{ and let } \alpha \in Y \text{ maximal not reduced.}
\end{align*} \]

If \(\alpha = \alpha_1 \lor \alpha_2 \):
\[Y \rightarrow Y \setminus \{\alpha\} \cup \{\alpha_1\}, \]
\[Y \rightarrow Y \setminus \{\alpha\} \cup \{\alpha_2\}, \]

If \(\alpha = \alpha_1 \land \alpha_2 \):
\[Y \rightarrow Y \setminus \{\alpha\} \cup \{\alpha_1, \alpha_2\}, \]

If \(\alpha = \alpha_1 R \alpha_2 \):
\[Y \rightarrow Y \setminus \{\alpha\} \cup \{\alpha_1, \alpha_2\}, \]
\[Y \rightarrow Y \setminus \{\alpha\} \cup \{\alpha_2, X \alpha\}, \]

If \(\alpha = \alpha_1 U \alpha_2 \):
\[Y \rightarrow Y \setminus \{\alpha\} \cup \{\alpha_2\}, \]
\[Y \rightarrow Y \setminus \{\alpha\} \cup \{\alpha_1, X \alpha\}. \]

Note the mark \(\alpha \) on the last edge.
Reduction graph

Example: \(\varphi = G(p \rightarrow Fq) \)

\[\varphi = G(\neg p \lor Fq) \]
\[q, X \varphi \]
\[\neg p \lor Fq, X \varphi \]
\[Fq, X \varphi \]
\[\neg p, X \varphi \]
\[XFq, X \varphi \]

State = set of obligations.
Reduce obligations to literals and next-formulas.
Note again the mark \(Fq \) on the last edge.

Automaton \(A_\varphi \)

Example: \(\varphi = G(p \rightarrow Fq) \)

\[\varphi = G(\neg p \lor Fq) \]
\[q, X \varphi \]
\[\neg p \lor Fq, X \varphi \]
\[Fq, X \varphi \]
\[\neg p, X \varphi \]
\[XFq, X \varphi \]

Transition = check literals and move forward.
Simplification

Automaton \(A_\varphi \)

Definition: For \(Y \subseteq \text{NNF} \), let

- \(\text{Red}(Y) = \{ Z \text{ reduced} \mid Y \xrightarrow{\alpha} Z \} \)
- \(\text{Red}_\alpha(Y) = \{ Z \text{ reduced} \mid Y \xrightarrow{\alpha} Z \text{ without using an edge marked with } \alpha \} \)

Definition: For \(Z \subseteq \text{NNF} \) reduced, define

- \(\text{next}(Z) = \{ \alpha \mid X \alpha \in Z \} \)
- \(\Sigma_Z = \bigcap_{p \in Z} \Sigma_p \cap \bigcap_{\neg p \in Z} \Sigma_{\neg p} \)

Automaton \(A_\varphi \)

- States: \(Q = 2^{\text{sub}(\varphi)}, \quad I = \{ \varphi \} \)
- Transitions: \(T = \{ Y \xrightarrow{\Sigma \alpha} \text{next}(Z) \mid Y \in Q \text{ and } Z \in \text{Red}(Y) \} \)
- Acceptance: \(T_a = \{ Y \xrightarrow{\Sigma \alpha} \text{next}(Z) \mid Y \in Q \text{ and } Z \in \text{Red}_\alpha(Y) \} \)
 for each \(\alpha = \alpha_1 \cup \alpha_2 \in \text{sub}(\varphi) \).

Automaton \(A_\varphi \)

Theorem: \(L(A_\varphi) = L(\varphi) \)

- \(|Q| \leq 2^{|\varphi|} \)
- number of acceptance tables = number of until sub-formulas.

Corollary

Satisfiability and Model Checking are decidable in PSPACE.

Remark

An efficient construction is based on Very Weak Alternating Automata.
(Gastin & Oddoux, CAV’01)

The domain is still very active.
Possibility is not expressible in LTL

Example

\(\varphi \): Whenever \(p \) holds, it is possible to reach a state where \(q \) holds.

\(\varphi \) cannot be expressed in LTL.

Consider the two models:

- \(M_1 \):

 \[
 \begin{array}{c}
 1 \\
 \rightarrow \\
 p, \ q \\
 2 \\
 \rightarrow \\
 p \\
 3 \\
 \rightarrow \\
 q \\
 4 \\
 \end{array}
 \]

- \(M_2 \):

 \[
 \begin{array}{c}
 1 \\
 \rightarrow \\
 p \\
 2 \\
 \rightarrow \\
 p, \ q \\
 3 \\
 \rightarrow \\
 q \\
 4 \\
 \end{array}
 \]

\(M_1 \models \varphi \) but \(M_2 \not\models \varphi \)

\(M_1 \) and \(M_2 \) satisfy the same LTL formulas.

Original References

Outline

1. Introduction
2. Models
3. Specification
 - Linear Time Specifications
 - Branching Time Specifications

Quantification on runs

Example

\(\varphi \): Whenever \(p \) holds, it is possible to reach a state where \(q \) holds.

\[\varphi = \text{AG}(p \rightarrow \text{EF } q) \]

- \(E \): for some infinite run
- \(A \): for all infinite run

Some specifications

- \(\text{EF } \varphi \): \(\varphi \) is possible
- \(\text{AG } \varphi \): \(\varphi \) is an invariant
- \(\text{AF } \varphi \): \(\varphi \) is unavoidable
- \(\text{EG } \varphi \): \(\varphi \) holds globally along some path
CTL* (Emerson & Halpern 86)

Syntax: CTL*: Computation Tree Logic

\[\varphi ::= \bot | p (p \in \text{AP}) | \neg \varphi | \varphi \vee \varphi | X \varphi | \varphi U \varphi | E \varphi | A \varphi \]

Semantics:
Let \(M = (S, T, I, \text{AP}, \ell) \) be a Kripke structure and \(\sigma \) an infinite run of \(M \).

- \(\sigma, i \models E \varphi \) if \(\sigma', 0 \models \varphi \) for some infinite run \(\sigma' \) such that \(\sigma'(0) = \sigma(i) \)
- \(\sigma, i \models A \varphi \) if \(\sigma', 0 \models \varphi \) for all infinite runs \(\sigma' \) such that \(\sigma'(0) = \sigma(i) \)

State formulas
A formula of the form \(p \) or \(E \varphi \) or \(A \varphi \) only depends on the current state.
State formulas are closed under boolean connectives.
If \(\varphi \) is a state formula, define \(S(\varphi) = \{ s \in S \mid s \models \varphi \} \)

Model checking of CTL*

Model checking problem

- **Input:** A Kripke structure \(M = (S, T, I, \text{AP}, \ell) \) and a formula \(\varphi \in \text{CTL}^* \)
- **Question:** Does \(M \models \varphi \)?

Remark

\[M \models \varphi \iff \ell(\sigma), 0 \models \varphi \text{ for all initial infinite run of } M. \]
\[\iff I \subseteq S(A \varphi) \]

Theorem
The model checking problem for CTL* is PSPACE-complete

Proof
PSPACE-hardness: follows from LTL \(\subseteq \text{CTL}^* \).
PSPACE-easiness: inductively compute \(S(\psi) \) for all state formulas.

Computing \(S(\psi) \)

State formulas

- \(S(p) = \{ s \in S \mid p \in \ell(s) \} \)
- \(S(\neg \psi) = S \setminus S(\psi) \)
- \(S(\psi_1 \land \psi_2) = S(\psi_1) \cap S(\psi_2) \)
- \(S(\psi_1 \lor \psi_2) = S(\psi_1) \cup S(\psi_2) \)
- \(S(E \psi) = ? \) Compute \(A'_\psi \), replacing state subformulas of \(\psi \) by new atomic propositions.

To check whether \(s \in S(E \psi) \), check for emptiness the synchronized product of \(A'_\psi \) and \(M \) with initial state \(s \).

- \(A \psi = \neg E \neg \psi \)

Model checking

\[M \models \varphi \iff I \subseteq S(A \varphi). \]

CTL (Clarke & Emerson 81)

Syntax: CTL: Computation Tree Logic

\[\varphi ::= \bot | p (p \in \text{AP}) | \neg \varphi | \varphi \vee \varphi | EX \varphi | AX \varphi | E \varphi U \varphi | A \varphi U \varphi \]

Remarks
The semantics is inherited from CTL*.
All CTL-formulas are state formulas. Hence, we have a simpler semantics.

Semantics: only state formulas
Let \(M = (S, T, I, \text{AP}, \ell) \) be a Kripke structure and let \(s \in S \).

- \(s \models p \) if \(p \in \ell(s) \)
- \(s \models EX \varphi \) if \(\exists s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \cdots \text{ with } s_1 \models \varphi \)
- \(s \models AX \varphi \) if \(\forall s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \cdots \text{ we have } s_1 \models \varphi \)
- \(s \models E \varphi U \psi \) if \(\exists s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \cdots \text{ with } s_j = \psi \) and \(s_k \models \psi \) for all \(0 \leq k < j \)
- \(s \models A \varphi U \psi \) if \(\forall s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \cdots \text{ with } s_j = \psi \) and \(s_k \models \psi \) for all \(0 \leq k < j \).
CTL (Clarke & Emerson 81)

Semantics: only state formulas
Let $M = (S, T, I, AP, \ell)$ be a Kripke structure without deadlocks and let $s \in S$.

- $s \models p$ if $p \in \ell(s)$
- $s \models \Box \varphi$ if $\exists s' \rightarrow s'$ with $s' \models \varphi$
- $s \models \Diamond \varphi$ if $\forall s \rightarrow s'$ we have $s' \models \varphi$
- $s \models E \varphi U \psi$ if $\exists s = s_0 \rightarrow s_1 \rightarrow \cdots \rightarrow s_k \rightarrow s_{k+1}$ with $s_j \models \psi$ and $s_k \models \varphi$ for all $0 \leq k < j$
- $s \models A \varphi U \psi$ if $\forall s = s_0 \rightarrow s_1 \rightarrow \cdots \rightarrow s_j \geq 0$ with $s_j \models \psi$ and $s_k \models \varphi$ for all $0 \leq k < j$

Macros
- $E \varphi = E \top U \varphi$ and $A \varphi = A \top U \varphi$
- $F \varphi = \top U \varphi$
- $E \varphi = \neg A \neg \varphi$ and $A \varphi = \neg EF \neg \varphi$

Equivalent formulas
- $\Diamond \varphi = \neg \Box \neg \varphi$
- $A \varphi U \psi = \neg E (\neg \psi U \psi)$
 $= \neg E (G \neg \psi \land E \neg \psi)$
 $= \neg E (G \neg \neg \varphi \land \neg \psi)$
 $= \neg E G \neg \psi \lor \neg E \psi \land \neg \psi$
- $A G(\text{req} \rightarrow F \text{grant}) = AG(\text{req} \rightarrow F \text{grant})$
- $A G F \varphi = AG AF \varphi$
- $E F G \varphi = EF EG \varphi$
- $E G E F \varphi \neq E G F \varphi$
- $A F A G \varphi \neq A F G \varphi$
- $E G E X \varphi \neq E G X \varphi$

Model checking of CTL

Input: A Kripke structure $M = (S, T, I, AP, \ell)$ and a formula $\varphi \in \text{CTL}$

Question: Does $M \models \varphi$?

Remark
$M \models \varphi$ iff $I \subseteq S(\varphi)$

Theorem
The model checking problem for CTL is decidable in time $O(|M| \cdot |\varphi|)$

Proof
Marking algorithm.
procedure mark(ϕ)

case ϕ = p ∈ AP
 for all s ∈ S do s.ϕ := (p ∈ ℓ(s));

case ϕ = ¬ϕ1
 mark(ϕ1);
 for all s ∈ S do s.ϕ := ¬s.ϕ1;

case ϕ = ϕ1 ∨ ϕ2
 mark(ϕ1); mark(ϕ2);
 for all s ∈ S do s.ϕ := s.ϕ1 ∨ s.ϕ2;

case ϕ = EXϕ1
 mark(ϕ1);
 for all s ∈ S do s.ϕ := false;
 for all (t, s) ∈ T do if s.ϕ1 then t.ϕ := true;

case ϕ = AXϕ1
 mark(ϕ1);
 for all s ∈ S do s.ϕ := true;
 for all (t, s) ∈ T do if ¬s.ϕ1 then t.ϕ := false;

procedure mark(ϕ)

case ϕ = p ∈ AP
 for all s ∈ S do s.ϕ := (p ∈ ℓ(s));

case ϕ = ¬ϕ1
 mark(ϕ1);
 for all s ∈ S do s.ϕ := ¬s.ϕ1;

case ϕ = ϕ1 ∨ ϕ2
 mark(ϕ1); mark(ϕ2);
 for all s ∈ S do s.ϕ := s.ϕ1 ∨ s.ϕ2;

case ϕ = EXϕ1
 mark(ϕ1);
 for all s ∈ S do s.ϕ := false;
 for all (t, s) ∈ T do if s.ϕ1 then t.ϕ := true;

case ϕ = AXϕ1
 mark(ϕ1);
 for all s ∈ S do s.ϕ := true;
 for all (t, s) ∈ T do if ¬s.ϕ1 then t.ϕ := false;

fairness

Fairness

Only fair runs are of interest

- Each process is enabled infinitely often: \(\bigwedge_i GF \text{run}_i \)
- No process stays ultimately in the critical section: \(\bigwedge_i \neg GFCS_i = \bigwedge_i GF\neg CS_i \)

Fair Kripke structure

\(M = (S, T, I, AP, \ell, \mathcal{F}) \) where \(\mathcal{F} = \{ F_1, \ldots, F_n \} \) with \(F_i \subseteq S \).
An infinite run \(\sigma \) is fair if it visits infinitely often each \(F_i \)

Fair quantifications

\(E_f \varphi = E(\text{fair} \land \varphi) \) and \(A_f \varphi = A(\text{fair} \rightarrow \varphi) \)

where
\[\text{fair} = \bigwedge_i GF F_i \]
fair CTL

Syntax of fair-CTL

\[\varphi ::= \bot \mid p \ (p \in AP) \mid \neg \varphi \lor \varphi \mid E_f X \varphi \mid A_f X \varphi \mid E_f \varphi U \varphi \mid A_f \varphi U \varphi \]

Lemma: CTL\(_f\) cannot be expressed in CTL

Consider the Kripke structure \(M_k \) defined by:

\[\begin{array}{c}
2k-2 \\
\vdots \\
2k-1 \\
2k-3 \\
p
\end{array} \]

\[\begin{array}{c}
3 \\
\vdots \\
2 \\
1 \\
p
\end{array} \]

- \(M_k, 2k \models EGF p \) but \(M_k, 2k-2 \not\models EGF p \)
- If \(\varphi \in CTL \) and \(|\varphi| \leq m \leq k \) then \(M_k, 2k \models \varphi \) iff \(M_k, 2m \models \varphi \)

If the fairness condition is \(\ell^{-1}(p) \) then \(E_f F \top \) cannot be expressed in CTL.

Model checking of CTL\(_f\)

First step: Computation of Fair = \(\{ s \in S \mid M, s \models E_f F \top \} \)

Compute the SCC of \(M \) with Tarjan’s algorithm (in linear time).

Let \(S’ \) be the union of the SCCs which intersect each \(F_i \).

Then, Fair is the set of states that can reach \(S’ \).

Note that reachability can be computed in linear time.

Reductions

\[E_f X \varphi = EX(Fair \land \varphi) \quad \text{and} \quad E_f \varphi U \psi = E \varphi U (Fair \land \psi) \]

It remains to deal with \(A_f \varphi U \psi \).

Recall that \(A \varphi U \psi = \neg EG \neg \psi \lor \neg E \neg \psi U (\neg \varphi \land \neg \psi) \)

This formula also holds for the fair quantifications.

Hence, we only need to compute the semantics of \(E_f G \varphi \).

Missing in this talk

- Symbolic model checking for CTL using BDDs.
- \(\mu \)-calculus
- \(\ldots \)